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Abstract

Oscillatory activity robustly correlates with task demands during many cognitive tasks. How-

ever, not only are the network mechanisms underlying the generation of these rhythms

poorly understood, but it is also still unknown to what extent they may play a functional role,

as opposed to being a mere epiphenomenon. Here we study the mechanisms underlying

the influence of oscillatory drive on network dynamics related to cognitive processing in sim-

ple working memory (WM), and memory recall tasks. Specifically, we investigate how the

frequency of oscillatory input interacts with the intrinsic dynamics in networks of recurrently

coupled spiking neurons to cause changes of state: the neuronal correlates of the corre-

sponding cognitive process. We find that slow oscillations, in the delta and theta band, are

effective in activating network states associated with memory recall. On the other hand,

faster oscillations, in the beta range, can serve to clear memory states by resonantly driving

transient bouts of spike synchrony which destabilize the activity. We leverage a recently

derived set of exact mean-field equations for networks of quadratic integrate-and-fire neu-

rons to systematically study the bifurcation structure in the periodically forced spiking net-

work. Interestingly, we find that the oscillatory signals which are most effective in allowing

flexible switching between network states are not smooth, pure sinusoids, but rather burst-

like, with a sharp onset. We show that such periodic bursts themselves readily arise sponta-

neously in networks of excitatory and inhibitory neurons, and that the burst frequency can

be tuned via changes in tonic drive. Finally, we show that oscillations in the gamma range

can actually stabilize WM states which otherwise would not persist.

Author summary

Oscillations are ubiquitous in the brain and often correlate with distinct cognitive tasks.

Nonetheless their role in shaping network dynamics, and hence in driving behavior
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during such tasks is poorly understood. Here we provide a comprehensive study of the

effect of periodic drive on neuronal networks exhibiting multistability, which has been

invoked as a possible circuit mechanism underlying the storage of memory states. We

find that oscillatory drive in low frequency bands leads to robust switching between stored

patterns in a Hopfield-like model, while oscillations in the beta band suppress sustained

activity altogether. Furthermore, inputs in the gamma band can lead to the creation of

working-memory states, which otherwise do not exist in the absence of oscillatory drive.

Introduction

Oscillations are ubiquitous in neuronal systems and span temporal scales over several orders

of magnitude [1]. Some prominent rhythms, such as occipital alpha waves during eye-closure

[2] or slow-oscillations during non-REM sleep [3] are indicative of a particular behavioral

state. Other rhythms have been specifically shown to correlate with memory demands during

working memory tasks, including theta (4–8Hz) [4–7], alpha/beta (8–30Hz) [8–10] and

gamma (20–100Hz) [11–13]. Understanding the physiological origin and functional role of

such oscillations is an area of active research.

Here we study how oscillatory signals in distinct frequency bands can serve to robustly and

flexibly switch between different dynamical states in cortical circuit models of working mem-

ory and memory storage and recall. In doing so we characterize the dynamical mechanisms

responsible for some of the computational findings in an earlier study [14]; we go beyond that

work to include new results on oscillatory control of network states. Specifically, we consider

the response of multistable networks of recurrently coupled spiking neurons to external oscil-

latory drive. We make use of recent theoretical advances in mean-field theory to reduce the

spiking networks to a low-dimensional macroscopic description in terms of mean firing rate

and membrane potential, which is exact in the limit of large networks [15]. This allows us to

perform a systematic and detailed exploration of network states analytically or with numerical

bifurcation analysis, which informs us about suitable parameter sets for numerical simulations.

The latter serve to give representative examples of the dynamical phenomena investigated

here. As a result, we can completely characterize the dynamics of the forced system.

Specifically, we consider networks which exhibit multistability in the absence of forcing.

Such attracting network states have been proposed as the neural correlate of memory recall

[16, 17], and as a possible mechanism for sustaining neuronal activity during working memory

tasks [18–20]. We find that an external oscillatory drive interacts with such multistable net-

works in highly nontrivial ways. Low-frequency oscillations are effective in switching on states

of elevated activity in simple bistable networks, while in higher dimensional multistable net-

works they allow for robust switching between stored memory states. Higher frequencies, in

the beta range, destabilize WM states through a resonant interaction which recruits spike syn-

chrony. Such oscillatory signals can therefore be used to clear memory buffers. Finally, when

networks operate outside the region of multistability, e.g. due to reduced excitability, an oscil-

latory signal in the gamma range can be used to recover robust memory recall.

Results

Oscillatory drive can selectively turn on or off WM states

Networks of recurrently coupled excitatory neurons can exhibit bistability given sufficiently

strong synaptic weights. Such networks act as binary switches: a transient input can cause a
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transition from a baseline state to a state of elevated activity, or vice-versa. We asked to what

extent an oscillatory signal alone could also drive transitions between states in such a network.

In particular we were interested in knowing if the directionality of the transition, and hence

the final state of the system, could be controlled via the frequency of the oscillatory drive.

To investigate this we simulated a network of recurrently coupled excitatory quadratic inte-

grate-and-fire neurons, see Methods for details. Fig 1 shows an illustration of the network

dynamics as a function of the stimulus frequency and initial state of the network. In particular,

at low frequencies, the oscillations push the system from the state of low activity into the state

Fig 1. Frequency response of a network of QIF neurons. Here we show the response of an excitatory network of 104 all-to-all

coupled QIF neurons with distributed input currents to periodic forcing. The model parameters are chosen such that the network is

bistable, see also Fig 2A. Each panel shows the network-averaged firing rate (black: network of QIF neurons; orange: result of mean-

field equations Eq 1) and raster plot of the response for an initial condition in the low-activity state (top, r� 6Hz) and high-activity

state (bottom, r� 73Hz), as well as the oscillatory forcing I(t). A At low enough frequencies, the system is pushed from the low- to

the high-activity state. B At slightly higher frequencies, both states persist under the forcing. C Driven with forcing from an

intermediate range of frequencies, the state with high firing activity destabilizes in favor of the state with low firing activity. D At

high frequencies, both states persist under the forcing. Parameters: τ = 20ms, η = −10, Δ = 2, J ¼ 15
ffiffiffiffi
D
p

, A = 1.

https://doi.org/10.1371/journal.pcbi.1006430.g001
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of high activity, which persists under such forcing, see Fig 1A. As the frequency is increased

past a critical value, it is no longer effective in driving a transition, and the network remains in

its initial state, see Fig 1B. A further increase then shows the opposite effect: The state of high

activity becomes unstable under the forcing, whereas the state of low activity persists, Fig 1C.

At large enough frequencies we then observe again that no transitions occur and the initial net-

work state persists, Fig 1D.

The results from Fig 1 show that the frequency of an external oscillatory drive can be used

to selectively destabilize a given network state. For the parameter values used here, oscillation

frequencies in the delta range result in a WM state while frequencies in the beta range force

the system to the “ground” state, essentially clearing the WM state, a result seen also in [14].

Oscillations outside these ranges are ineffective in driving transitions. We seek to understand

the mechanisms underlying these transitions, and additionally to determine to what extent the

precise frequency ranges are influenced by the network parameters. To do this we will take

advantage of recent work in which the authors derived a set of simple equations for the mean

firing rate and mean membrane potential in a network of recurrently coupled quadratic inte-

grate-and-fire (QIF) neurons [15]. In the large-system limit these equations are exact and fluc-

tuations can be neglected. The exact correspondence between the low-dimensional mean-field

equations and the original network allows us to use standard dynamical systems techniques to

fully characterize the range of dynamical states in the network.

Model equations and network analysis

The dynamics in networks of recurrently coupled QIF neurons can be described exactly under

the assumptions of all-to-all coupling and quenched neuronal variability, i.e. static distribu-

tions in cellular or network properties. For the case of a single network of excitatory cells in

which the input currents to individual neurons are distributed, the resulting mean-field equa-

tions are [15]:

t2 _r ¼
D

p
þ 2tvr;

t _v ¼ v2 þ Jtr þ Zþ IðtÞ � p2t2r2:

ð1Þ

Here, r is the network average of the firing rate and v is the network average of the mem-

brane potential, J is the strength of synaptic weights. In the derivation of the mean-field equa-

tions each synaptic weight is scaled as 1/N, where N is the system size, leading to an order

one contribution to the mean input in the thermodynamic limit, whereas fluctuations vanish.

η and Δ are, respectively, the center and width of the static distribution of inputs, which is con-

sidered to be Lorentzian. External, time-variant forcing is represented here by I(t). The time

constant τ is the membrane time constant of the individual neurons and is set to 20ms

throughout.

This macroscopic model permits a straightforward investigation of the stationary states in

the full network. For sufficiently strong synaptic coupling two stable fixed points co-exist over

a range of mean external inputs, see Fig 2A. Linear stability analysis further reveals that the sta-

ble high-activity fixed point is a focus for sufficiently high rates, whereas the stable low-activity

fixed point is a node [15]. The network therefore shows a damped oscillatory response to

external perturbations in the high-activity state. This response reflects transient spike syn-

chrony which decays over time due to the heterogeneity; the characteristic time scale of the

desynchronization is in fact proportional to the width of the distribution of input currents Δ
[21]. This type of spike synchrony is seen ubiquitously in networks of both heterogeneous and

noise-driven spiking neurons operating in the mean-driven regime, in which neurons fire as
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oscillators [15, 22, 23], and is captured in Eq 1 by the interplay between the mean sub-thresh-

old membrane potential and mean firing rate [24].

We use this macroscopic description to systematically investigate the network response to

periodic forcing with amplitude A and frequency f, see Eq 8. Fig 2B shows a phase diagram of

the network dynamics as a function of these two parameters. As in Fig 1 we keep track of the

final state of the network as a function of the initial state. For sufficiently slow frequencies and

over a range of amplitudes the network is always driven to the high-activity state (green). This

region therefore corresponds to recall of the memory state, see Fig 2C (left). For an intermedi-

ate range of frequencies a sufficiently strong forcing always drives the network to the low-

activity state (red), which corresponds to clearance, Fig 2C (right). The frequency band for

clearance is essentially set by the frequency of intrinsic oscillations of the high-activity state,

i.e. it is a resonant effect, see Fig 3. Weak forcing and forcing at very high frequencies fail to

drive any transitions, while strong forcing at low enough frequencies can enslave the network

dynamics entirely (orange). For the parameter values used here recall occurs for frequencies

below about 2Hz and clearance in the range between 10-30Hz.

Fig 2. Switching behavior at the macroscopic scale. A Bifurcation analysis of the stationary states identifies a bistable regime for

large enough J where a stable focus (red) and a stable node (blue) coexist, separated by a saddle (dotted green). The color-coded

curve represents the bifurcation diagram for the value of J ¼ 15
ffiffiffiffi
D
p

used here, and the grey curves represent the bifurcation

diagrams at different values (left to right: 4J/3, 2J/3, J/3). B The different dynamic regimes of the forced system are shown here as a

function of the amplitude A and the frequency f of the forcing. Green: Recall; Red: Clearance; Grey: no switching. Orange: only one

globally stable periodic orbit exists due to the system being entrained to the forcing, hysteretically switching between the node and

the focus. C Example time traces from B, with initial conditions chosen to be the focus (red) or the node (blue). D The heuristic

firing-rate equations Eq 4 show an equivalent fixed point structure, with the exception that the focus is a node here. E Clearance

does not occur in the firing-rate equations, as the node cannot be destabilized by nonlinear resonance. Parameters: τ = 20ms,

η = −10, Δ = 2, J ¼ 15
ffiffiffiffi
D
p

, A = 1.

https://doi.org/10.1371/journal.pcbi.1006430.g002
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In order to characterize the role of spike synchrony in determining the network response,

we derive a reduced firing rate equation with the identical fixed-point structure as in the origi-

nal, exact mean-field equations Eq 1, but without the subthreshold dynamics. Specifically, the

fixed-point value of the firing rate in Eq 1 can be written as

r0 ¼ FðJtr0 þ ZÞ; ð2Þ

where F is the steady-state f-I curve, which in the case of Eq (1) is

FðxÞ ¼
1
ffiffiffi
2
p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ D

2
pq

: ð3Þ

We use the steady-state f-I curve to construct a heuristic firing rate model given by

t _r ¼ � r þ FðJtr þ Zþ IðtÞÞ; ð4Þ

and investigate its response to periodic forcing I(t). Eq 4 is similar in form to the classic Wil-

son-Cowan firing rate model for a single population [25]. In this case the high-activity branch

of the firing rate is a node, i.e. it no longer shows damped oscillations in response to perturba-

tions, see Fig 2D. Furthermore, the region of “clearance” has completely vanished in the phase

diagram in Fig 2E, confirming that in the original network it was due to a resonance reflecting

an underlying spike synchrony mechanism.

Fig 3. Linear and nonlinear response. A Linear response of focus, saddle and node to sinusoidal and non-sinusoidal inputs, with

the focus showing a characteristic resonant response at approximately 40Hz. The response of the focus to non-sinusoidal input

shows additional sub-harmonic resonances. B Nonlinear response of the fixed points by means of bifurcation analysis in the forcing

frequency for different amplitudes. Non-sinusoidal forcing leads to a richer bifurcation structure. C Bifurcation diagram in f for

non-sinusoidal forcing with A = 1, and comparison with numerical results (bottom). The bifurcation structure is governed by

saddle-node bifurcations (SN) and period-doubling bifurcations (PD). Branches of period-doubled solutions are omitted here. D A

two-parameter bifurcation analysis of the focus reveals the loci of saddle-node bifurcations (red) and period-doubling bifurcations

(blue) in the (f, A)-plane. We compare these with the logarithmic mean squared deviation (log MSD) from the fixed point (color

scale), obtained by time simulations. Grey areas indicate regions where the system leaves the basin of attraction of the focus.

Parameters: τ = 20ms, η = −10, J ¼ 15
ffiffiffiffi
D
p

, Δ = 2.

https://doi.org/10.1371/journal.pcbi.1006430.g003
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Recall and clearance occur due to forcing-induced bifurcations

Given the simplicity of the mean-field equations Eq 1 we can calculate the linear response of

the system analytically, without the need for extensive numerical simulations. The response of

the focus to weak sinusoidal inputs (linear response) already shows a clear resonance for the

high-activity state (Fig 3A), where the resonant frequency is

fres ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r0ð2p2r0 � JtÞ
q

; ð5Þ

see Methods. Furthermore, additional, sub-harmonic resonance peaks occur when the forcing

is sharply peaked, leading to a broadening of the resonance spectrum (Fig 3A, right); this effect

is due to the presence of many sub-harmonics of the linear resonance in the forcing term itself.

Conversely, the node does not show such a resonance, indicating a qualitative difference in the

response of the two stable fixed points.

However, the switching behaviors seen in Figs 1 and 2 and the corresponding destabiliza-

tion of network states cannot be attributed to this linear resonance alone—nonlinear effects

have to be taken into account. This can be seen by plotting the bifurcation diagram for the

response of the network to the forcing for several values of the forcing amplitude. For relatively

weak, but finite forcing, the network response consists of a periodic orbit in the vicinity of the

corresponding unforced fixed-point, Fig 3B (top). As the forcing amplitude is increased, the

resonance peak of the focus moves towards slower frequencies, akin to a softening spring.

Then, a pair saddle-node bifurcations leads to a range of frequencies in which three periodic

orbits coexist, see Fig 3B middle-right.

At large enough amplitudes for the sharply-peaked, non-sinusoidal forcing two additional

bifurcations occur which are responsible for the “recall” and “clearance” behaviors respectively,

see Fig 3B (bottom-right) and Fig 3C. Specifically, for sufficiently large frequencies, the stable

periodic orbit due to the low-activity node (blue line) coexists with the unstable one due to the

saddle-point (green line), and with a third state, emanating from the focus (red line). When the

forcing frequency is sufficiently small, only the latter solution persists. This can be understood

as quasi-stationary response of the system due to the slow forcing, see the Methods section for

details. In other words, the forcing here is slow and large enough to push the system beyond

the bistable regime into the basin of attraction of the focus. Therefore, at low frequencies the

only solution is the periodic orbit in the vicinity of the high-activity focus, which explains why

low frequencies are effective in switching on the high-activity state, i.e. for “recall”.

On the other hand, in the range of frequencies over which the network response is resonant,

period-doubling bifurcations of the focus lead to a frequency band in which all periodic orbits

around the focus are unstable. This is due to the rapid occurrence of further period-doubling

bifurcations, leading to the emergence of chaotic responses to the forcing. As we show in the

Methods section, there exist narrow frequency bands in which these chaotic responses are sta-

ble, but a numerical investigation of these shows that they quickly become unstable as the fre-

quency of the forcing is changed. Therefore, the periodic orbit in the vicinity of the low-

activity node is the only stable solution. Frequencies in this range are therefore effective in

switching off the high-activity state, i.e. for “clearance”. As we show in Fig 3D, the loci of bifur-

cations that periodic orbits around the focus undergo, explain well the parameter range in the

(A, f )-plane in which clearance is observed, i.e. the red area in Fig 2B.

Higher-dimensional memory circuits

A single bistable network of neurons serves as a canonical illustration of a memory circuit.

However, such a network can only store a single bit of information; actual memory circuits
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must be capable of storing more information. In terms of neuronal architecture this can be

achieved by having a network which is comprised of several or many neuronal clusters [16, 17,

26]. We asked to what extent the frequency-selective switching behavior seen in a single bis-

table network could also be found in a clustered network. We look first at a simple, two-cluster

network and then the more general case of a higher-dimensional multi-clustered network.

Two competing neuronal populations. We set up a network of two identical populations

with recurrent excitation and mutual inhibition, see Fig 4A. This network of two competing

neuronal populations may be regarded as the substrate of a number of cognitive tasks, such as

perceptual bistability (visual [27, 28], auditory [29], or olfactory [30]), or forced two-choice

decision making [31, 32].

We choose parameters such that there is one stable fixed point at which both populations

are in the low firing regime, and two stable fixed points in which one population is in the low

firing regime and the other is in the high firing regime. The latter two are symmetric with

respect to a swap of population indices, i.e. reflection symmetric, see the bifurcation diagram

in Fig 4B. The system is placed near a sub-critical pitchfork bifurcation, where the former

fixed point would become unstable.

With both populations being in the low firing regime, global oscillatory forcing does not

generate switching behavior at any frequency, see Fig 4C. If the two populations are driven by

weak, independent noise sources, we also fail to observe any switching on relevant time scales,

see Fig 4D. However, the noise sources serve to break the symmetry of the system, and com-

bining them with global oscillatory drive now allows for frequency-selective recall and clear-

ance, as in the single-population network, see Fig 4E. Specifically, low frequency drive switches

the network from a symmetric state to one in which one of the populations is active (2Hz stim-

ulation in Fig 4E); continued low-frequency forcing generates ongoing stochastic switching

between the two activated states. When this drive is released the currently active configuration

Fig 4. Switching in a network of two competing populations of neurons. A We consider two identical populations with recurrent

excitatory connections and mutual inhibition. B Bifurcation diagram of the fixed points of the system. The system can be in a

symmetric state (black) or asymmetric state (grey). We choose a point in the tri-stable regime (η = −6, vertical line), where either

both populations are quiescent, or one population is active and the other quiescent. The insets show the stable states (two

asymmetric, one symmetric). C Applying global forcing with slow frequency (2Hz) does not lead to the activation of either of the

asymmetric patterns, due to the lack of symmetry breaking mechanisms. D Driving the system with independent noise sources

(zero-mean Ornstein-Uhlenbeck process) with small noise amplitude σ does not lead to reliable switching due to long residence

times. E Combining noise with a protocol that generates oscillations of different frequencies over different time intervals leads to the

reliable (but random) activation of one of the two asymmetric patterns and switching between these at 2Hz, and the clearing of a

sustained pattern at 40Hz. Parameters: η = −6, Δ = 2, Je ¼ � Ji ¼ 15
ffiffiffiffi
D
p

, τ = 20ms, A = 2, σ = 0.05.

https://doi.org/10.1371/journal.pcbi.1006430.g004

Role of oscillations in cognitive tasks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006430 September 6, 2018 8 / 24

https://doi.org/10.1371/journal.pcbi.1006430.g004
https://doi.org/10.1371/journal.pcbi.1006430


is stabilized (between 40 and 60 seconds in Fig 4E). Finally, an intermediate range of frequen-

cies is effective in clearing the currently held active state (40Hz stimulation in Fig 4E) and sta-

bilizing the symmetric, low-activity state. An analysis of the bifurcation structure in this

network as a function of forcing amplitude and frequency reveals that bifurcations analogous

to those responsible for recall and clearance in the single-population model, i.e. Fig 3, also

occur here.

A many-cluster network. Here we consider a network of 100 neuronal populations which

interact via effective interactions which may be excitatory or inhibitory. The connectivity is

chosen so that 10 distinct, random activity patterns are encoded; in each pattern five neuronal

populations are active, i.e. the coding sparseness is 5%. The patterns and connectivity matrix

are shown in Fig 5A and 5B respectively. Simulations again reveal a frequency-selective

response of the network similar to the two-population model. Namely, low frequency inputs

in the presence of weak noise switch on the activated state and allow for robust switching,

while over a range of intermediate frequencies all activated states are cleared, see Fig 5C. The

relative contribution of the neuronal populations that participate in a specific pattern to the

activity of the entire network is shown in Fig 5D.

Generating burst-like oscillations

Thus far we have treated oscillations as an extrinsic effect, i.e. we are agnostic as to their origin.

To be effective for flexible control of memory states, the oscillatory forcing we have considered

here must fulfill two requirements: First, it must have a broad range of possible frequencies,

and secondly, it must have a burst-like shape. Here we show that a simple circuit comprised of

interacting excitatory and inhibitory populations can satisfy both these requirements.

Fig 5. Hopfield network with random patterns. A A network of 100 neural populations is chosen to encode ten patterns with five

populations each. The patterns can overlap. B The corresponding connectivity matrix of the network. C We apply an activation/

deactivation protocol. The encoded patterns are randomly activated in the presence of slow oscillations (2Hz), sustained in the

absence of oscillations (grey, from 60s to 80s), and deactivated in the presence of fast oscillations (40Hz). All populations have

independent noise sources (Ornstein-Uhlenbeck) with amplitude σ. D Relative contribution of each pattern to the total activity of

the network. Parameters: η = −8, Δ = 2, J = 10, τ = 20ms, A = 5, σ = 0.2.

https://doi.org/10.1371/journal.pcbi.1006430.g005
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Specifically, we construct a network of QIF neurons consisting of an E-I circuit which spon-

taneously oscillates, and drives a downstream population of E cells, which itself is bistable, see

Fig 6. Using the corresponding mean-field equations for the E-I circuit, we found a broad

region of oscillatory states of the E-I network as a function of the mean external drive to the E

and I populations, ηe and ηi respectively, see the phase diagram Fig 6B. By adjusting the exter-

nal drive to the E and I populations alone we can tune the output frequency over an order of

magnitude. This allows us to selectively switch the downstream network on and off, as shown

in Fig 6C.

Gamma oscillations can generate memory states

Outside the region of bistability (or multistability in the case of clustered networks), neuronal

networks will relax to a single stationary state in the response to a transient input. Here we

show that this need not be the case if the network activity is subjected to ongoing oscillatory

modulation.

As an illustration we take a single population of excitatory neurons with strong recurrent

excitation, but insufficient tonic drive to place it in the region of bistability. As a result, the

response of the network to a transient excitatory stimulus decays to baseline, as seen in Fig 7A

(top). However, in the presence of an oscillatory input in the gamma range, which itself only

very weakly modulates the network activity (Fig 7A middle), the transient input now switches

the network to an activated state with prominent gamma modulation Fig 7A (bottom). Once

the oscillations cease (green arrow) the activated state vanishes.

This phenomenon depends crucially on the presence of the spike-synchrony mechanism

underlying the damped oscillatory response of the high-activity focus discussed earlier. Specifi-

cally, for the parameter values used in Fig 7 the only fixed-point solution which exists is the

low-activity node. Nonetheless, oscillatory forcing at sufficiently high firing rates can still

recruit and resonate with the damped oscillatory interaction between the mean firing rate and

mean membrane potential in the network. The resulting resonant frequency can no longer be

associated with the linear response of the focus as it is a fully nonlinear network property.

The phase diagram Fig 7B shows the regions of bistability given an oscillatory forcing, for

different forcing amplitudes. For zero amplitude the curve corresponds to the saddle-node

(SN) bifurcation of the unforced system (horizontal black line). Note that only sufficiently

high frequencies allow for bistability given tonic inputs which place the network below the SN.

Furthermore, there is a clear resonance in the range of 60–90Hz for these parameter values. As

the forcing frequency f!1 the curves converge to the SN line of the unforced system. This is

because the forcing we use has zero-mean and hence, given the low-pass filter property of neu-

ronal networks, has no effect on the network dynamics at high frequencies.

Discussion

In this article we have studied the role of oscillations in switching or maintaining specific brain

states. Specifically, we identified distinct frequency bands: delta, beta, and gamma with specific

functional roles. This finding is especially intriguing given that the networks we study are rela-

tively simple. Connectivity is all-to-all and neurons are exclusively excitatory. For the multi-

population networks, interactions between populations are assumed to be mediated by fast

inhibition, leading to a winner-take-all behavior. Furthermore, synaptic transmission is con-

sidered to be instantaneous, with the only relevant time scale being the membrane time con-

stant (τ = 20ms). The susceptibility of the networks to forcing of distinct frequencies therefore

does not depend on the presence of multiple time scales associated with intrinsic currents, syn-

aptic kinetics or sub-classes of inhibitory cells. Rather, the key dynamic factors are: bistability
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Fig 6. Forced switching with oscillations from an E-I network. A The network is built such that an excitatory population (E1) and

an inhibitory population (I) form a circuit that can generate oscillatory output via the excitatory population (E1), which is fed into

another excitatory populations (E2). The latter is in the bistable regime. B Bifurcation diagram of the E1-I-circuit in the parameters ηe
and ηi. The organizing bifurcations are a pair of saddle-node bifurcations (SN) of the fixed points, and a Hopf branch (H) that

connects to one of the saddle-node branches via a Bogdanov-Takens codimension-two point (BT). (Limit cycles are found below the

Hopf branch). C Firing rates and raster plots of the population outputs as a result of the parameter tuning. Time traces of population

E2 are portrayed for both stable initial conditions (node and focus). By choosing ηe and ηi accordingly, recall (ηe = −4.4, ηi = −18),

clearance (ηe = −1, ηi = −5.5) and bistable response (ηe = 0, ηi = −2) can be observed. Other parameters: Je ¼ � Ji ¼ 15
ffiffiffiffi
D
p

,

Jee ¼ 3:5
ffiffiffiffi
D
p

, Δ = 2, τ = 20ms. Mean current of E2: η = −10.

https://doi.org/10.1371/journal.pcbi.1006430.g006
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or multistability due to recurrent excitatory reverberation, and transient spike synchrony in

response to external drive. Given this, we expect to see the same phenomenology in more bio-

physically realistic networks as long as there is bistability and external noise sources are not

too strong. Additionally, none of the mechanisms we study depend crucially on the specific

choice of neuron model, at least for type I spiking models. The “switching-on” at low frequen-

cies depends only on the presence of a saddle-node bifurcation, which is ubiquitous in net-

works of spiking neurons in the bistable regime. Similarly, the “switching-off” or “clearance”

depends only on recruiting spike synchrony, which occurs readily in both integrate-and-fire

models as well as conductance-based spiking models [24]. In fact, in the mean-driven regime

spiking networks in general robustly exhibit a resonance to oscillatory inputs, which reflects

the underlying synchrony mechanism [20, 23, 33].

In the region of bistability, low frequencies are effective in pushing the network into a high-

activity state; for not too large amplitudes the network remains in the activated state on the

downswing of the input. The cut-off frequency for this “recall” signal is determined by the

escape time of the network from the vicinity of the saddle-node bifurcation in the low-activity

state, and here is a few Hertz, see Fig 2A. In multi-stable networks, this same mechanism

allows for robust switching between distinct memory states. On the other hand, frequencies in

the beta range are effective in switching off the high-activity state by resonantly driving bouts

of spike synchrony. The precise frequency range depends on network parameters, see Fig 8. In

both cases the relevant frequency ranges scale with the membrane time constant of the neu-

rons. Therefore, e.g. choosing a time constant τ = 10ms will simply stretch the x-axis of the

phase diagram in Fig 2B by a factor of two. Finally, we showed that forcing in the gamma

range can allow for robust working memory states which otherwise do not exist, i.e. the system

Fig 7. Forcing-induced bistability. A Here we illustrate the interplay between high frequency forcing and a transient stimulus

outside the bistable regime. In the absence of oscillations, a 40ms long stimulus with amplitude 6.8 (bar) does not produce sustained

activity in the model system, neither do oscillations on their own. However, the combination of oscillations with the transient

stimulus leads to sustained high activity, until the oscillations are turned off (arrow). B Loci of the saddle-node bifurcation

representing the lower limit of the bistable area, as functions of η and the frequency of the forcing, for different amplitudes of

forcing. The choice of parameters in A is indicated by a triangle. Parameters: η = −11.5, Δ = 2, J ¼ 15
ffiffiffiffi
D
p

, τ = 20ms, A = 2, f = 80Hz.

https://doi.org/10.1371/journal.pcbi.1006430.g007
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sits outside the region of bistability with oscillatory forcing. This mechanism once again

depends on resonantly recruiting spike synchrony.

We find that non-sinusoidal, burst-like drive is most effective in switching the network

state, see Fig 3A and 3B. In fact, this is precisely the type of oscillation which readily emerges

in a simple E-I network. Furthermore, the oscillation frequency can be modulated over a wide

range through changes in the tonic drive to the E-I circuit alone, see Fig 6. This means that the

state of downstream memory networks can be flexibly controlled via an E-I circuit through

global changes in excitability alone.

While here we have considered networks in which intrinsic oscillatory activity is due to

transient spike synchronization, spiking networks can also generate oscillatory activity due to

E-I and I-I loops, which can occur in the absence of strong spike synchrony. For example, net-

works of coupled excitatory (E) and inhibitory (I) spiking neurons readily generate oscillations

via a Hopf bifurcation when excitation is sufficiently strong and fast [34, 35]. The E-I loop, and

in particular the ratio of E to I time constants, largely sets the frequency of these oscillations,

which tend to lie in the gamma range (30–100Hz). On the other hand, the I-I loop itself can

underlie the generation of fast oscillations (>100Hz), the frequency of which is set by the

inhibitory synaptic delay [35, 36]. Both the E-I and I-I loops contribute to the population

Fig 8. Change of resonant frequency with model parameters. We compute the (linear) resonant frequency of the saddle for

parameter values in the bistable regime (delimited by black lines), specifically where “recall” occurs using non-sinusoidal forcing

(delimited by red line). As “clearance” is caused by nonlinear resonance of the focus, the corresponding frequency band is found

near the linear resonant frequency. At fixed values of J the resonant frequency varies approximately by a factor of two across the

range of values of η. Other parameters: Δ = 2, τ = 20ms.

https://doi.org/10.1371/journal.pcbi.1006430.g008
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frequency in E-I networks, with the E-I loop dominating when recurrent excitation is strong.

Resonant responses to periodic stimuli due to the E-I loop in neuronal circuits have been stud-

ied in firing rate models [37–39] as well as in networks of LIF neurons [33].

Damped oscillatory activity due to the E-I loop can also arise in the high-activity state of the

bistable regime of E-I networks [40]. In this scenario external periodic drive could also be used

for “clearance” of the activated state by resonating with the E-I loop. While the phenomenol-

ogy of this resonance would be similar to the resonance we have considered in this manuscript,

the mechanism is nonetheless distinct as it does not involve spike synchrony. On the other

hand, spike synchrony does robustly lead to resonances in E-I networks, as measured for

example by the linear response [23]. In principle both resonances could be present in the bis-

table regime of E-I networks, allowing for an even more complex response to oscillatory input

than we have studied here.

Current non-invasive brain-stimulation techniques, such as repetitive transcranial mag-

netic stimulation [41], or transcranial alternating current stimulation [42], apply transient

oscillatory signals to large parts of the brain. Our study may be useful to investigate the impact

of such signals on the dynamics of neuronal mass models and the psychological and behavioral

effects of neuromodulation. Our results could also be of relevance for investigating the use of

deep-brain stimulation to treat Parkinson’s disease [43] and (pharmacologically) treatment-

resistant depression [44]. Although the model used here describes networks of spiking neurons

with instantaneous synapses, future studies could also incorporate synaptic dynamics with

appropriate time scales for excitatory and inhibitory transmission [24]. These time scales can

be influenced by drugs, or (pathological) changes in neurotransmitters. The framework devel-

oped here may therefore serve as a tool to study the cause of functional deficiencies in synapse-

related conditions, so-called “synaptopathies” [45, 46].

Methods

Mathematical model

Neural mass and neural field models are an important tool for understanding macroscopic

neuronal dynamics. Classical models include the Wilson-Cowan model [25, 47] or the Amari

model [48, 49]. However, such macroscopic models of brain activity often pose a stark simpli-

fication of the actual dynamics, and often miss important features from the spiking dynamics,

such as spike synchronization. Recently, there have been advances in linking the microscopic

and macroscopic dynamics of networks of spiking neurons [15, 23, 50–57].

We consider a neural mass model that was recently derived from networks of all-to-all cou-

pled quadratic integrate-and-fire neurons in the thermodynamic limit [15], see Eq (1). To sim-

plify the mathematical treatment, we divide t by τ which represents the case of time being

measured in units of τ, thus eliminating τ from the equations:

_r ¼
D

p
þ 2vr;

_v ¼ v2 þ Jr þ Zþ IðtÞ � p2r2:

ð6Þ

Here, r represents the ensemble average of the firing rate of neurons, and v represents the

ensemble average of the membrane potential. The parameters η and Δ represent the center

and witdh of the Lorentzian distribution of time-invariant input currents into the neuronal

ensemble, and J is the coupling constant between neurons. Time-varying external inputs

are given by I(t). The original model (1) can then be recovered by t! τt, r! r/τ. As we set

τ = 20ms, r = 1 here corresponds to a firing rate of r = 50Hz in the full model.
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Here, we consider I(t) to be T-periodic, i.e. I(t + T) = I(t). We distinguish between two

types of input: sinusoidal input,

IðtÞ ¼ A sin ð2pftÞ; ð7Þ

and non-sinusoidal input,

IðtÞ ¼ Aðg sin ðpftÞn � 1Þ; ð8Þ

where we take n = 20 for the simulations presented in this paper. The parameter A represents

the amplitude of the forcing. The constant γ is chosen such that
R T

0
IðtÞdt ¼ 0. We choose this

type of zero-mean forcing to avoid any changes in network excitability which a tonic DC-offset

might cause. In other words, the input models a reorganization of afferent spikes into periodic

volleys without adding any additional spikes. In the non-sinusoidal case the spikes are more

synchronized than in the sinusoidal case.

We compare the full model equations with its equivalent heuristic firing rate equation,

which preserves the fixed point structure but reduces the dynamical behavior. This is done by

considering stationary solutions given by

0 ¼
D

p
þ 2vr;

0 ¼ v2 þ Jr þ Z � p2r2:

ð9Þ

Solving these equations for r is equivalent to solving Eq 2. Thus, the reduced heuristic firing

rate equations can be expressed by

_r ¼ � r þ FðJr þ ZÞ; ð10Þ

where the f-I function F(Jr + η) is given by Eq 3.

Linear response

Ignoring transient dynamics, the response of the model equations to the external input I(t) is

T-periodic as well, at least in the limit of small amplitudes A (an exception are period-doubled

solutions, which are a nonlinear phenomenon only relevant at larger A). In this case the corre-

sponding Fourier spectra of the firing rate r(t) and of the membrane potential v(t) are discrete:

rðtÞ ¼ r0 þ ðr1eiot þ r2e2iot þ . . .þ c:c:Þ;

vðtÞ ¼ v0 þ ðv1eiot þ v2e2iot þ . . .þ c:c:Þ
ð11Þ

For brevity of exposition we use here the angular frequency ω = 2πf instead of the ordinary

frequency f. This approach describes the projection of solutions of r and v from a continuous

spaceR onto a discrete function space V, with orthogonal basis functions einωt, n 2 Z. The

same Fourier decomposition applies to the input current I(t):

IðtÞ ¼ I0 þ ðI1eiot þ I2e2iot þ � � � þ c:c:Þ ð12Þ

To determine the linear response of the model equations [58], we first carry out a Fourier

decomposition of the system linearized around the fixed points given by r0 and v0:

inorn ¼ 2v0rn þ 2r0vn;

inovn ¼ Jrn þ In þ 2v0vn � 2p2r0rn:
ð13Þ
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Solving this set of linear equations, we obtain

rn ¼ 2r0InO
� 1

n ; vn ¼ ðino � 2v0ÞInO
� 1

n ; ð14Þ

with

On ¼ ð2v0 � inoÞ
2
þ o2

0
; ð15Þ

where ω0 is the (angular) resonant frequency:

o2
0
¼ � 2r0ðJ � 2p2r0Þ: ð16Þ

The resonant frequency is state-dependent and changes with model parameters. Reintro-

ducing the time scale τ, perturbations of the upper branch solution resonate at a frequency

ores ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0ð2p2r0 � JtÞ

p
; ð17Þ

where r0 is the value of the steady-state firing rate. This is true as long as the argument of the

square root is positive. Therefore as the firing rate decreases along the upper branch, for

decreasing external input, the frequency decreases to zero at which point the focus becomes a

node. This point occurs before the saddle-node is reached unless Δ = 0 in which case it exactly

coincides with the saddle-node.

Fig 8 shows how the linear resonant frequency of the stable focus in the bistable regime of a

network of excitatory QIF neurons varies as a function of the mean external input η and the

strength of synaptic coupling J. Recall is not possible to the left of the red curve given the non-

linear forcing used here. This line is determined by setting Amin = Amax, see Eqs (26) and (27)

further below.

The time-dependent linear response of the firing rate and the membrane potential is now

given by

rðtÞ ¼
X1

n¼1

2r0InO
� 1

n einot þ c:c:; vðtÞ ¼
X1

n¼1

ðino � 2v0ÞInO
� 1

n einot þ c:c: ð18Þ

From this, we can derive the amplitude of the linear response of the firing rate,

rlinðoÞ ¼ ðmax
t

rðtÞ � min
t

rðtÞÞ=2; ð19Þ

and analogously of the membrane potential. Alternatively, one can derive the time-averaged

linear response (“power”) of the system:

R2ðoÞ ¼
1

T

Z T

0

rðt;oÞ2dt ¼ 8r2

0

X1

n¼1

jInj
2
jOnj

� 2
; ð20Þ

V2ðoÞ ¼
1

T

Z T

0

vðt;oÞ2dt ¼ 2
X1

n¼1

n2o2 þ 4v2

0

� �
jInj

2
jOnj

� 2
: ð21Þ

Here we have made use of the orthogonality of the basis functions, and the fact that

T = 2π/ω.

Numerical continuation

In order to exhaustively and accurately trace the bifurcations that occur in the model equa-

tions, we make use of AUTO 07p [59]. Since this software is designed to deal with autonomous

Role of oscillations in cognitive tasks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006430 September 6, 2018 16 / 24

https://doi.org/10.1371/journal.pcbi.1006430


systems, we recast the (non-autonomous) model Eq (1) into a set of autonomous equations:

_r ¼
D

p
þ 2vr;

_v ¼ v2 þ Jr þ Zþ AIðxðtÞÞ � p2r2;

_x ¼ x þ oy � ðx2 þ y2Þx;

_y ¼ y � ox � ðx2 þ y2Þy:

ð22Þ

The last two equations create the periodic stimulus x(t) = sin(ωt) in the model equations.

We distinguish the sinusoidal case,

IðxðtÞÞ ¼ xðtÞ; ð23Þ

and the non-sinusoidal case

IðxðtÞÞ ¼ gxðtÞ20
� 1: ð24Þ

Continuation of the forced system is performed by starting from a known fixed point (r0,

v0) at A = 0, and continuing solutions by increasing A up to the desired value. We use the L2-

norm as a scalar measure to represent periodic solutions:

L2ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

Z T

0

rðtÞ2dt

s

: ð25Þ

Where we perform this one-parameter continuation, we represent solution branches by

plotting the L2-norm against the parameter that is being varied. Where we perform two-

parameter continuation, we plot the loci of bifurcations against the two parameters being

varied.

Mechanisms underlying switching

Here we illustrate in greater detail the mechanisms underlying the “switching on” of activated

network states (or simple switching between attractors in the case of a multi-stable network) at

low frequencies, and the “switching off” of activated states at frequencies in the beta range.

Recall. The effect of low frequencies can be understood by considering the quasi-

stationary response, namely how changes in the external drive alter the steady-state network

solution. Fig 9A–9C show the steady-state bifurcation diagram for a single excitatory popula-

tion of QIF neurons as a function of the mean external drive η.

On top of these bifurcation diagrams we plot the firing rate of the forced system against the

x-axis, which is η + I(t) as the forcing can be understood to be a time-varying mean input cur-

rent into the system. This is to illustrate that at low frequencies the system remains close to the

fixed points (except when it switches between them), hence the term “quasi-stationary”. Given

a mean input which places the system within the region of bistability, a small-amplitude, low-

frequency forcing fails to push the system past the low-activity saddle-node, see Fig 9A. In a

range of forcing amplitudes the network switches to the high-activity state and remains on the

upper solution branch, see Fig 9B, while for larger amplitudes the network activity becomes

slaved to the forcing, Fig 9C. The range of suitable amplitudes depends on the model parame-

ter η, which is situated in the bistable regime. For clarity, we denote the chosen parameter by

η0. The bistable regime is delimited by two saddle-node bifurcations, that occur at ηc1 and ηc2,

respectively. Thus we have ηc1 < η0 < ηc2. The range of amplitudes also depends on the shape

of the forcing representative of the case A = 1. In this case, the forcing is characterized by its
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minimum value Imin and its maximum value Imax. We assume Imin < 0< Imax. The minimal

amplitude required to push the system from the node to the saddle is then given by

Amin ¼
Zc2 � Z0

Imax
: ð26Þ

The maximum amplitude, up to which the system stays on the upper branch, is given by

Amax ¼
Zc1 � Z0

Imin
: ð27Þ

If the system parameters are such that Amax� Amin, then there is no amplitude regime at

which recall occurs, and increasing the amplitude leads directly to hysteresis.

Clearance. Fig 10 shows the details of the bifurcation structure of the periodically forced

network which leads to the “clearance” behavior.

Specifically, a series of period-doubling bifurcations, a so-called period-doubling cascade,

leads to the emergence of a chaotic orbit. This orbit is initially stable, but a further decrease of

the frequency leads to global instability of the chaotic orbit, and the destabilization of the peri-

odic orbit around the focus, see Fig 10A and 10B. The latter occurs just below a forcing fre-

quency of f = 32.5Hz, see Fig 10B. In Fig 10C we show representative time traces for forcing

frequencies of f = 32.45Hz and f = 32.5Hz. In the former case, the system leaves the forced

focus in less than three seconds, whereas in the latter case the chaotic orbit persists for the

whole simulation period of 103 seconds. We infer from this that the critical frequency at which

the chaotic orbit loses stability globally is within this frequency range.

Fig 9. Mechanisms of switching: Quasi-stationary response. A At amplitudes below the critical range no switching occurs

(A = 0.7). B Amplitude values within the critical range lead to switching (A = 1). C At amplitudes above the critical range the system

undergoes periodic hysteretic switching (A = 1.3). D Bifurcation diagram of stationary states with critical values for saddle-node

bifurcations (ηc1, ηc2) and the choice of model parameter (η0). E Normalized non-sinusoidal forcing over one period (A = 1), with

minimum and maximum values indicated. Parameters: η = −10, J ¼ 15
ffiffiffiffi
D
p

, Δ = 2, τ = 20ms, f = 0.1Hz.

https://doi.org/10.1371/journal.pcbi.1006430.g009
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Memory networks

A natural extension of the single-population model is to consider a network of neural masses:

_rn ¼
D

p
þ 2vnrn;

_vn ¼ v2
n þ J

XN

m¼1

Anmrm þ Zþ IðtÞ þ sxnðtÞ � p2r2

n;

ð28Þ

where the adjacency matrix A with entries Anm determines the connectivity structure between

neural masses. The term σξn(t) describes an additional noise input, where σ is the noise ampli-

tude, and ξn(t) is the random variable.

In this paper we consider two scenarios, the first of which is two neural populations with

recurrent excitation and mutual inhibition. The adjacency matrix of such a network is given

by

A ¼
Je Ji

Ji Je

 !

; ð29Þ

where Ji< 0< Je.
In the second scenario, we examine the dynamics within a Hopfield network [16]. Rather

than creating the network through learning algorithms, we build the network as follows. First,

we choose the patterns that the network should encode and write them into an array U. Each

column of this array represents one pattern, where we put 1 for populations that are active in

this pattern, and 0 otherwise. As a result, the array U has the size N ×Npat, where Npat is the

number of patterns encoded, and N is the network size. Each pattern consists of Np active pop-

ulations. The adjacency matrix of a network that encodes these patterns can then be

Fig 10. Mechanisms of switching: Nonlinear resonance. A Bifurcation diagram of the focus with f as bifurcation parameter at

A = 1. B Inset of A, with period-doubling bifurcations (orange dots) and emerging branches of period-doubled solutions shown. The

period-doubling cascade gives rise to stable chaos (grey area), which becomes unstable at lower frequencies. C Example time series

from B around the area where the chaotic attractor becomes unstable. Parameters: η = −10, J ¼ 15
ffiffiffiffi
D
p

, Δ = 2, τ = 20ms.

https://doi.org/10.1371/journal.pcbi.1006430.g010
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constructed as follows [17],

A ¼ ðU � pÞ � ðU � pÞT � Q; ð30Þ

with p = Np/N. The entries of A are capped at a maximum value of (1 − p)2 −Q to account for

saturation effects in synaptic plasticity. Otherwise, the strength of connections in the network

would steadily increase as patterns are added. The offset Q introduces global inhibition that

stabilizes the encoded patterns. We set Q = 0.2.

Each population is subjected to an independent Ornstein-Uhlenbeck process ξn(t) to break

the symmetry of the networks. The Ornstein-Uhlenbeck process is implemented as Langevin

equation:

t _xn ¼ � xn þ znðtÞ; ð31Þ

where zn(t) are independent Gaussian white noise sources, hzn(t)zm(t − s)i = δ(s)δmn, and τ is

the characteristic time scale, which we set to τ = 20ms.

E-I circuit generating oscillations

To create a network that generates oscillations, we consider a network of an excitatory popula-

tion interacting with an inhibitory one:

_re ¼
D

p
þ 2vere;

_ve ¼ v2
e þ Jere þ Jiri þ Ze � p2r2

e ;

_ri ¼
D

p
þ 2viri;

_vi ¼ v2
i þ Jere þ Jiri þ Zi � p2r2

i :

ð32Þ

For simplicity, we choose Je = −Ji = J. The two populations differ in terms of the means of

their tonic input currents, ηe and ηi. We vary these two parameters to identify the regime

where stable oscillations exists, and to change the frequency of these oscillations.

A canonical model for nonlinear resonance in the bistable regime

In the network model, the high-activity branch of solutions in the bistable regime exhibits

damped oscillations. Periodic external drive can resonate with these intrinsic oscillations, lead-

ing to destabilizing period-doubling bifurcations as seen in the previous section. Here we

show that this mechanism is present in the simplest possible model exhibiting a saddle-node

bifurcation and for which the upper branch becomes a focus:

_x ¼ y; ð33Þ

_y ¼ m � x2 � axyþ IðtÞ: ð34Þ

This model is a particular unfolding of the so-called Takens-Bogdanov normal form [60],

for which there is no Hopf bifurcation, which is the relevant case for our network model. It is

easily shown that a saddle-node bifurcation occurs in these equations at μ = 0 and that the

fixed point solutions are x0 ¼ �
ffiffiffi
m
p

and y0 = 0 for μ> 0, see Fig 11A.

Furthermore, the solution x0 ¼ �
ffiffiffi
m
p

is a saddle, and x0 ¼
ffiffiffi
m
p

is a stable focus for which

the frequency goes to zero smoothly as μ! 0. Fig 11B shows that in the forced system there is

a range of frequencies for which there is no stable solution; in the normal form equation the

solution diverges while in the network model the system settles to a periodic orbit in the
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vicinity of the low-activity state. The instability is due to a series of period-doubling bifurca-

tions as in the full system. Furthermore, comparison of the phase diagram of the normal form

equation with that of the full system shows they are qualitative similar, see Fig 11C. This indi-

cates that the nonlinear resonance seen in the network of QIF neurons is a generic feature of

any system with a stable focus in the vicinity of a saddle-node bifurcation.

Author Contributions

Conceptualization: Helmut Schmidt, Daniele Avitabile, Ernest Montbrió, Alex Roxin.
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42. Herrmann CS, Rach S, Neuling T, Strüber D. Transcranial alternating current stimulation: a review of

the underlying mechanisms and modulation of cognitive processes. Front Hum Neurosci. 2013; 7:279.

https://doi.org/10.3389/fnhum.2013.00279 PMID: 23785325

Role of oscillations in cognitive tasks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006430 September 6, 2018 23 / 24

https://doi.org/10.1103/PhysRevLett.86.2186
https://doi.org/10.1103/PhysRevLett.86.2186
http://www.ncbi.nlm.nih.gov/pubmed/11289886
https://doi.org/10.1103/PhysRevE.96.052407
http://www.ncbi.nlm.nih.gov/pubmed/29347806
https://doi.org/10.1162/089976600300015286
https://doi.org/10.1371/journal.pcbi.1003301
https://doi.org/10.1371/journal.pcbi.1003301
http://www.ncbi.nlm.nih.gov/pubmed/24204236
https://doi.org/10.1371/journal.pcbi.1005881
https://doi.org/10.1371/journal.pcbi.1005881
http://www.ncbi.nlm.nih.gov/pubmed/29287081
https://doi.org/10.1016/S0006-3495(72)86068-5
http://www.ncbi.nlm.nih.gov/pubmed/4332108
https://doi.org/10.1371/journal.pcbi.1003727
http://www.ncbi.nlm.nih.gov/pubmed/25101662
https://doi.org/10.1016/j.tics.2006.09.003
https://doi.org/10.1016/j.tics.2006.09.003
https://doi.org/10.1007/s10827-011-0351-y
http://www.ncbi.nlm.nih.gov/pubmed/21748526
https://doi.org/10.1371/journal.pcbi.1004555
http://www.ncbi.nlm.nih.gov/pubmed/26562507
https://doi.org/10.1016/j.cub.2009.07.052
http://www.ncbi.nlm.nih.gov/pubmed/19699095
https://doi.org/10.1037/0033-295X.113.4.700
http://www.ncbi.nlm.nih.gov/pubmed/17014301
https://doi.org/10.1371/journal.pcbi.1000046
https://doi.org/10.1371/journal.pcbi.1000046
http://www.ncbi.nlm.nih.gov/pubmed/18369436
https://doi.org/10.1007/BF00275728
http://www.ncbi.nlm.nih.gov/pubmed/224126
https://doi.org/10.1152/jn.01095.2002
http://www.ncbi.nlm.nih.gov/pubmed/12611969
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1063/1.3080663
http://www.ncbi.nlm.nih.gov/pubmed/19335019
https://doi.org/10.1371/journal.pcbi.1002158
http://www.ncbi.nlm.nih.gov/pubmed/21980269
https://doi.org/10.1162/NECO_a_00786
https://doi.org/10.1162/NECO_a_00786
http://www.ncbi.nlm.nih.gov/pubmed/26496044
https://doi.org/10.1103/PhysRevE.94.012410
http://www.ncbi.nlm.nih.gov/pubmed/27575167
https://doi.org/10.1016/S1474-4422(03)00321-1
http://www.ncbi.nlm.nih.gov/pubmed/12849236
https://doi.org/10.3389/fnhum.2013.00279
http://www.ncbi.nlm.nih.gov/pubmed/23785325
https://doi.org/10.1371/journal.pcbi.1006430


43. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for

the treatment of Parkinson’s disease. Lancet Neurol. 2009; 8:67–81. https://doi.org/10.1016/S1474-

4422(08)70291-6 PMID: 19081516

44. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep Brain Stimula-

tion for Treatment-Resistant Depression. Neuron. 2005; 45:651–660. https://doi.org/10.1016/j.neuron.

2005.02.014 PMID: 15748841

45. Brose N, O’Connor V, Skehel P. Synaptopathy: dysfunction of synaptic function? Biochem Soc Trans.

2010; 38:443–444. https://doi.org/10.1042/BST0380443 PMID: 20298199

46. Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, et al.

Synaptopathies: synaptic dysfunction in neurological disorders—A review from students to students. J

Neurochem. 2016; 138:785–805. https://doi.org/10.1111/jnc.13713 PMID: 27333343

47. Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic ner-

vous tissue. Kybernetik. 1973; 13:55–80. https://doi.org/10.1007/BF00288786 PMID: 4767470

48. Amari S. Homogeneous nets of neuron-like elements. Biol Cybern. 1975; 17:211–220. https://doi.org/

10.1007/BF00339367 PMID: 1125349

49. Amari S. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern. 1977; 27:

77–87. https://doi.org/10.1007/BF00337259 PMID: 911931

50. Ostojic S, Brunel N. From spiking neuron models to linear-nonlinear models. PLOS Comput Biol. 2011;

7:e1001056. https://doi.org/10.1371/journal.pcbi.1001056 PMID: 21283777

51. Buice MA, Chow CC. Dynamic Finite Size Effects in Spiking Neural Networks. PLOS Comput Biol.

2013; 9:e1002872. https://doi.org/10.1371/journal.pcbi.1002872 PMID: 23359258

52. Luke TB, Barreto E, So P. Complete classification of the macroscopic behavior of a heterogeneous net-

work of theta neurons. Neural Comput. 2013; 25:3207–3234. https://doi.org/10.1162/NECO_a_00525

PMID: 24047318

53. Laing CR. Derivation of a neural field model from a network of theta neurons. Phys Rev E. 2014;

90:010901. https://doi.org/10.1103/PhysRevE.90.010901

54. Visser S, Van Gils SA. Lumping Izhikevich neurons. EPJ Nonlinear Biomed Phys. 2014; 2:6. https://doi.

org/10.1140/epjnbp19

55. Mattia M. Low-dimensional firing rate dynamics of spiking neuron networks. arXiv preprint. 2016;

arXiv:160908855.

56. Schwalger T, Deger M, Gerstner W. Towards a theory of cortical columns: from spiking neurons to inter-

acting neural populations of finite size. PLOS Comput Biol. 2017; 13:e1005507. https://doi.org/10.1371/

journal.pcbi.1005507 PMID: 28422957

57. Augustin M, Ladenbauer J, Baumann F, Obermayer K. Low-dimensional spike rate models derived

from networks of adaptive integrate-and-fire neurons: comparison and implementation. PLOS Comput

Biol. 2017; 13:e1005545. https://doi.org/10.1371/journal.pcbi.1005545 PMID: 28644841

58. Robinson PA, Rennie CJ, Rowe DL. Dynamics of large-scale brain activity in normal arousal states and

epileptic seizures. Phys Rev E. 2002; 65:041924. https://doi.org/10.1103/PhysRevE.65.041924

59. Eusebius J. Doedel, Alan R. Champneys, Fabio Dercole, et al. AUTO-07P: Continuation and Bifurcation

Software for Ordinary Differential Equations (2007).

60. Wiggins S Introduction to Applied Nonlinear Dynamical Systems and Chaos Springer, 2nd edition

2003.

Role of oscillations in cognitive tasks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006430 September 6, 2018 24 / 24

https://doi.org/10.1016/S1474-4422(08)70291-6
https://doi.org/10.1016/S1474-4422(08)70291-6
http://www.ncbi.nlm.nih.gov/pubmed/19081516
https://doi.org/10.1016/j.neuron.2005.02.014
https://doi.org/10.1016/j.neuron.2005.02.014
http://www.ncbi.nlm.nih.gov/pubmed/15748841
https://doi.org/10.1042/BST0380443
http://www.ncbi.nlm.nih.gov/pubmed/20298199
https://doi.org/10.1111/jnc.13713
http://www.ncbi.nlm.nih.gov/pubmed/27333343
https://doi.org/10.1007/BF00288786
http://www.ncbi.nlm.nih.gov/pubmed/4767470
https://doi.org/10.1007/BF00339367
https://doi.org/10.1007/BF00339367
http://www.ncbi.nlm.nih.gov/pubmed/1125349
https://doi.org/10.1007/BF00337259
http://www.ncbi.nlm.nih.gov/pubmed/911931
https://doi.org/10.1371/journal.pcbi.1001056
http://www.ncbi.nlm.nih.gov/pubmed/21283777
https://doi.org/10.1371/journal.pcbi.1002872
http://www.ncbi.nlm.nih.gov/pubmed/23359258
https://doi.org/10.1162/NECO_a_00525
http://www.ncbi.nlm.nih.gov/pubmed/24047318
https://doi.org/10.1103/PhysRevE.90.010901
https://doi.org/10.1140/epjnbp19
https://doi.org/10.1140/epjnbp19
https://doi.org/10.1371/journal.pcbi.1005507
https://doi.org/10.1371/journal.pcbi.1005507
http://www.ncbi.nlm.nih.gov/pubmed/28422957
https://doi.org/10.1371/journal.pcbi.1005545
http://www.ncbi.nlm.nih.gov/pubmed/28644841
https://doi.org/10.1103/PhysRevE.65.041924
https://doi.org/10.1371/journal.pcbi.1006430

