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1 Accelerated driving field frames
The superadiabatic geometric quantum gate is defined on the two-dimensional Hilbert space H 2 and is driven by a time-
dependent field. Consequentially, the Hamiltonian in the laboratory frame HL(t) follows as the one of a two-level system with
energy spacing h̄ω0 and a driving field of angular frequency ωD(t), phase ϕ and amplitude ΩR(t):

HL(t) =
h̄
2

(
ω0 2ΩR(t)cos(ωD(t)t +ϕ)

2ΩR(t)cos(ωD(t)t +ϕ) −ω0

)
=

h̄
2

(
ω0 ΩR(t)(ei(ωD(t)t+ϕ)+ e−i(ωD(t)t+ϕ))

ΩR(t)(ei(ωD(t)t+ϕ)+ e−i(ωD(t)t+ϕ)) −ω0

)
. (1)

The transformation H0 =UHLU† + ih̄ ∂U
∂ t U† brings us into a reference frame rotating with the driving field frequency. Here, U

is the unitary matrix U(t) = ei/h̄HD(t)t defined by the applied driving field frequency:

HD(t) =
h̄
2

(
ωD(t) 0

0 −ωD(t)

)
. (2)

Note, that this transformation changes the description from the laboratory frame HL(t), a frame of constant rotation rate, to the
rotating frame of the driving field H0(t) rotating at a non-constant rate. This is a non-standard case of transformation leading to
the appearance of time-dependent terms on the diagonal of H0(t). Explicitly, the time dependence of ωD(t) causes the second
term of the transformation

(
ih̄ ∂U

∂ t U†
)

to contain two components (−h̄/2 ·ωD(t) and −th̄/2 · ∂ωD(t)/∂ t), which is in stark
contrast to driving fields of fixed frequency. Explicitly, for the Hamiltonian in the driving field frame (rotating at a time-varying
rate) one obtains

H0(t) =
h̄
2

(
∆(t)+ ∆̇(t)t ΩR(t)eiωD(t)t(e−i(ωD(t)t+ϕ)+ e−i(ωD(t)t+ϕ))

ΩR(t)e−iωD(t)t(ei(ωD(t)t+ϕ)+ e−i(ωD(t)t+ϕ)) −(∆(t)+ ∆̇(t)t)

)
=

h̄
2

(
∆(t)+ ∆̇(t)t ΩR(t)e−iϕ

ΩR(t)eiϕ −(∆(t)+ ∆̇(t)t)

)
. (3)

where we rewrite the driving field detuning as ∆(t) = ω0−ωD(t) and its temporal derivative ∆̇(t) =−ω̇D(t). In this derivation
we performed the rotating wave approximation to average out fast oscillating frequency components.
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2 Driving field parameters
To ensure working in the experimentally accessible regime the free parameters were set to Ω0 = 3.5MHz, ∆0 = 1MHz and
τ = 2π×0.8/(2Ω0) for our system limited by Ωmax ≈ 7.5MHz. For completeness, find the expressions for the driving field
parameters utilized to realize the superadiabatic geometric Pauli-X gate below.

ΩR(t) =



Ω0
[
1+ cos πt

τ

]
, 0≤ t < τ

Ω0

[
1− cos π(t−τ)

τ

]
, τ ≤ t < 2τ

Ω0

[
1+ cos π(t−2τ)

τ

]
, 2τ ≤ t < 3τ

Ω0

[
1− cos π(t−3τ)

τ

]
, 3τ ≤ t ≤ 4τ

(4)

and

∆S(t) =



∆0
[
cos πt

τ
−1
]
, 0≤ t < τ

∆0

[
cos π(t−τ)

τ
+1
]
, τ ≤ t < 2τ

∆0

[
cos π(t−2τ)

τ
−1
]
, 2τ ≤ t < 3τ

∆0

[
cos π(t−3τ)

τ
+1
]
, 3τ ≤ t ≤ 4τ

(5)

and

ϕ +φs(t) =

φs(t)+ ϕ̃ ′1, 0≤ t < τ

φs(t)+ ϕ̃ ′2, τ ≤ t < 3τ

φs(t)+ ϕ̃ ′1, 3τ ≤ t ≤ 4τ

. (6)

As for the Pauli-Z gate the acquired geometric phase γ ′ can be chosen via the relation γ ′ = π− (ϕ̃ ′2− ϕ̃ ′1).
In supplementary Supp.Fig.1 the driving field parameter of the superadiabatic geometric Pauli-X and Pauli-Z gate used

for the experimental realization are presented. Note, while the Rabi-frequency ΩS(t) and phase ϕ +φs(t) of the Pauli-X and
Pauli-Z gate are identical except for a time shift of τ , the driving field detuning functions ∆(t) defer strongly and the maximal
absolute detuning of the Pauli-Z gate is twice as high as the one of the Pauli-X gate. This difference is originating from the
obtained solution ∆(t) of the differential equation ∆(t)+ ∆̇(t)t = ∆S(t). From the mathematical point of view the effective
superadiabatic detuning ∆S(t) are again identical up to a time shift of τ . However, involved with the different amplitudes of the
detunings ∆(t) there might be some experimental implications for realizations choosing large ∆0.

Supplementary Figure 1. Driving field parameters as a function of time. (a) Shows the applied Rabi frequency ΩR(t) of
the superadiabatic geometric quantum gate, (b) the driving field detuning ∆(t) (not to be confused with ∆S(t)) and (c) the phase
ϕ +φs(t) for Pauli-X (blue) and Pauli-Z (orange) gate, respectively
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3 Standard Quantum Process Tomography

The standard quantum process tomography employed in this work is a modified version of the one presented in Ref.1, which
was designed for the reconstruction of the process matrix of evolutions in the three-dimensional Hilbert space H 3. Switching
to two-dimensional H 2 Hilbert space in the case of our super-adiabatic geometric realizations requires the choice of an
appropriate set of basis operators. We chose the Pauli matrices σσσ complemented by the identity matrix (see Supp.Tab.1). The
pulse sequences generating the basis states are illustrated in Supp. Tab.2.

Supplementary Table 1. Convention of the basis operators used in the quantum process tomography for the gates
performed on the two dimensional Hilbert space H 2.

Em Pauli Operator explicit expression matrix representation

E1 σ0 |0〉〈0|+ |−〉〈−|
(

1 0
0 1

)
E2 σx |0〉〈−|+ |−〉〈0|

(
0 1
1 0

)
E3 σy i |0〉〈−|− i |−〉〈0|

(
0 −i
i 0

)
E4 σz |0〉〈0|− |−〉〈−|

(
1 0
0 −1

)

Supplementary Table 2. Pulse sequence for quantum process tomography. EXC represent an initialization into the ms = 0
state by a laser pulse. (τ) j symbolizes a microwave j-pulse of length τ . DET means the readout out of the ms = 0 population
by excitation for 300ns and simultaneous fluorescence detection.

Ψ j explicit expression initialization readout
Ψ1 |0〉 EXC DET
Ψ2 |−〉 EXC+(π)y (π)y +DET

Ψ3
1√
2
(|0〉+ |−〉) EXC+

(
π

2

)
y

(
π

2

)
y +DET

Ψ4
1√
2
(|0〉+ i |−〉) EXC+

(
π

2

)
x

(
π

2

)
x +DET
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4 Randomized benchmarking

The randomized benchmarking analysis is performed following the approach of Knill et al.2. In essence, randomly generated
sequences of gate operations of different length are utilized to measure the discrepancy between the expected and experimentally
obtained result as a function of the sequence length. In order to observe the error scaling independently of the applied sequence
the errors are randomized by means of randomly chosen Pauli pulses which are interleaved with the π/2-rotations assumed to
perform the computation. The combination of one Pauli randomization pulse with one π/2-rotation is typically referred to as
computational gate. By additionally varying the sequence itself, an additional averaging is obtained. The increase of the error
probability with the number of computational gates l leads to a decay of the average fidelity. The experimental randomized
benchmarking data were fitted by the function f (l) = 1− ((1−αnεm)(1−αnεg)

l +1)/αn, where αn = 2n/(2n−1) is a factor
depending on the number of qubits n involved3. The error probability εm accounts for errors in the state preparation, the final
projection Pauli randomization pulse combination and the readout.

The sequence generation is performed as follows: NG = 4 random sequences G = {G1, . . .} of π/2-rotations around the
x, z, x, and z-axis are cropped to Nl = 13 different lengths lk = {2,4,6,8,10,14,18,22,26,30,34,40,48}. For each sequence
the final state is calculated and a randomly chosen projective pulse R added under the condition that the output state at the
end of the sequence is one of the system eigenstates. Each individual sequence is then Pauli randomized NP = 8 times by
randomly choosing a sequence P = {P1, . . .} (consisting out of π-rotations around x, z, y, x, y, and z-axis as well as the identity
operation γ = 0,π) of length lk +2. Subsequently, the total sequence S = Plk+2RPlk+1Glk . . .G1P1 is generated. By comparing
the measured output state with the expected one the average gate fidelity is obtained. The average gate fidelity is calculated as
the mean over the N = NP ·NG = 32 measurements for each gate length lk. Uncertainties are estimated by the standard error of
the mean σmean = σ/

√
N. All operations in S are performed by SAGQGs.

Randomized benchmarking of the dynamic gate set follows equivalently when replacing the SAGQGs by dynamic π and
π/2-pulses. The gates performing the computation are assumed to be π/2-rotations around x, y, x, and y-axis. Rotations
around the z-axis during the Pauli randomization are realized by appropriately adjusting the phase of the driving field. Identity
operations are performed by rotations of 2π around x and x.
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Supplementary Figure 2. Bloch sphere trajectories of the Pauli-Z (a,b) and Pauli-X (c,d) gate operation acting on the
initial states |ψi〉= 1/

√
2(|1〉− i |0〉), respectively. Bloch vector components are given by u(t) = ρ10(t)+ρ01(t) (blue),

v(t) = i(ρ01(t)−ρ10(t)) (orange) and w(t) = ρ00(t)−ρ11(t) (green), where ρ(t) is the density matrix representationof the
instantaneous state.

5 Bloch sphere trajectory

In Supp.Fig.2 the Bloch sphere trajectory for Pauli-Z (a,b) and Pauli-X (c,d) gates acting on the initial states |ψi〉= 1√
2
(|1〉− i |0〉)

are presented. Analogue measurements of the Bloch sphere trajectory for the initial state |ψi〉= 1√
2
(|1〉+ |0〉) are shown in

Supp.Fig.3. For the Pauli-X gate the Bloch sphere trajectory follows the “orange slice”-like trajectory, since the initial state
|ψi〉 corresponds to one of the energy eigenvalue |λ±(0)〉 of the Hamiltonian at time t = 0.
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Supplementary Figure 3. Bloch sphere trajectories of the Pauli-Z (a,b) and Pauli-X (c,d) gate operation acting on the
initial states |ψi〉= 1/

√
2(|1〉+ |0〉), respectively. Bloch vector components are given by u(t) = ρ10(t)+ρ01(t) (blue),

v(t) = i(ρ01(t)−ρ10(t)) (orange) and w(t) = ρ00(t)−ρ11(t) (green), where ρ(t) is the density matrix representation of the
instantaneous state.
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