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Perceptual, motor and cognitive processes are based on rich interactions between

remote regions in the human brain. Such interactions can be carried out through

phase synchronization of oscillatory signals. Neuronal synchronization has been

primarily studied within the same frequency range, e.g., within alpha or beta

frequency bands. Yet, recent research shows that neuronal populations can also

demonstrate phase synchronization between different frequency ranges. An extraction

of such cross-frequency interactions in EEG/MEG recordings remains, however,

methodologically challenging. Here we present a new method for the robust

extraction of cross-frequency phase-to-phase synchronized components. Generalized

Cross-Frequency Decomposition (GCFD) reconstructs the time courses of synchronized

neuronal components, their spatial filters and patterns. Our method extends the

previous state of the art, Cross-Frequency Decomposition (CFD), to the whole range

of frequencies: it works for any f1 and f2 whenever f1 : f2 is a rational number. GCFD

gives a compact description of non-linearly interacting neuronal sources on the basis

of their cross-frequency phase coupling. We successfully validated the new method in

simulations and tested it with real EEG recordings including resting state data and steady

state visually evoked potentials (SSVEP).

Keywords: cross-frequency coupling, EEG&MEG, phase-to-phase coupling, brain oscillations, source localization

1. INTRODUCTION

Synchronization between neuronal populations is considered to be a key mechanism
underlying interactions between distinct groups of neurons. According to the
communication-through-coherence (CTC) hypothesis, efficient communication between two
groups of neurons is only possible, when the oscillations are phase-locked (coherent) (Fries, 2015).

Among the various synchronization phenomena, interactions within the same frequency band
(with ratio 1 : 1, i.e., gamma-gamma, alpha-alpha or beta-beta) have been mostly studied and
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well characterized both in humans (Varela et al., 2001; Halgren
et al., 2002; Howard et al., 2003; Palva et al., 2005) and in
animals (Womelsdorf et al., 2017). These coherent interactions
are present both during tasks and during the resting state. In
an MEG study it has been shown that pronounced 1 : 1 phase
synchrony is present in resting state for all frequency bands
and over the whole cortex whereas local 1 : r, r ≥ 2 , phase
synchrony is increased during problem solving in the beta-alpha
and gamma-alpha range over the right hemispheric posterior
regions (Palva et al., 2005). Meanwhile, long-range alpha-band
phase synchronization is associated with attentional and working
memory processing (Palva and Palva, 2011). Synchronization
in beta and gamma frequency ranges and their spatial patterns
indicate the activation of visual attention and forming of visual
representation (Siebenhühner et al., 2016). It has been established
that beta phase synchronization accompanies auditory-motor
rhythm learning (Edagawa and Kawasaki, 2017). Gamma range
zero phase synchronization can be associated with sensory
representation in the olfactory bulb (Li and Cleland, 2017).

In addition to within frequency synchronization, coupling
between two frequency bands has also been observed in
humans (Sauseng et al., 2008; Jirsa and Müller, 2013;
Akiyama et al., 2017; Palva and Palva, 2017) and animal
recordings (Chrobak and Buzsáki, 1998). Such cross-frequency
synchronization of neuronal oscillations in two distinct
frequency bands is an active topic of investigation (Palva and
Palva, 2017). In fact, recent experimental results suggest that
cross-frequency coupling between spatially distributed sources
may underlie dynamic formation of functional brain networks
involved in perceptual, cognitive and motor performance (as
reviewed in Hyafil et al., 2015).

Several types of cross-frequency coupling have been revealed:
amplitude-to-amplitude, phase-to-phase, amplitude-to-phase
cross-frequency coupling (Canolty et al., 2006; Jensen and
Colgin, 2007). According to the recent findings, different
cross-frequency coupling types are associated with various
functional roles. For example, theta oscillations affect phase
or power of gamma oscillations in the auditory circuits during
speech processing (Giraud and Poeppel, 2012; Hyafil et al., 2015).
Cross-frequency coupling between gamma power and alpha
phase reflect individual ability to encode memory (Park et al.,
2016).

A particularly important form of neuronal interactions
is phase-to-phase synchronization since it represents stable
spike-time relationships between distant neuronal oscillations
and, therefore, it directly coordinates phase coupling of
fast and slow oscillations (Siebenhühner et al., 2016).
Phase-to-phase synchronization is believed to integrate and
coordinate neuronal activity (Jirsa and Müller, 2013; Akiyama
et al., 2017). There is evidence that cross-frequency phase
synchrony between theta and alpha-gamma and between
alpha and beta-gamma oscillations reflect the load in working
memory tasks (Siebenhühner et al., 2016). Cross-frequency
phase coupling underlies recent animal neurophysiological
observations: theta-gamma neuronal interactions in the
hippocampus (Belluscio et al., 2012). Interactions between
alpha, theta, beta and gamma band oscillations in fronto-cortical

areas and its modulation appear to play a crucial role in
higher cognitive functions (Palva and Palva, 2017), such as
working memory (Chaieb et al., 2015), memory integration and
attentional processes (Sauseng et al., 2008).

Albeit potentially important for cognitive function and brain
computation, phase-to-phase coupling is not easy to characterize
in noninvasive recordings, since the prevalent methods suffer
from a number of difficulties, such as non-sinusoidal nature of
oscillations, non-stationarity of the signals and large amount of
noise in EEG data (Nikulin and Brismar, 2006; Hyafil et al., 2015;
Lozano-Soldevilla et al., 2016). A particularly difficult problem
relates to volume conduction, which leads to the simultaneous
detection of the same signal at many sensors thus complicating
the extraction of the individual neuronal sources showing cross-
frequency synchronization. One way to solve this problem
is to use inverse source modeling. This approach, however,
also has limitations due to non-uniqueness of the obtained
solutions. Finally, spatial decomposition techniques might be
used to extract coupled signals, such as SPoC (Source Power
Comodulation) andCFD (Cross FrequencyDecomposition). The
latter, while being highly efficient, is limited to 1 : r ratio (Nikulin
et al., 2012). Hence, new techniques for reliable estimation of
cross-frequency phase coupling are needed.

In order to avoid the limitations of the previous methods, in
the present study we propose a new approach for the extraction
of components demonstrating cross-frequency phase coupling.
We refer to this new method as Generalized Cross-Frequency
Decomposition (GCFD). The GCFD is a generalization of
CFD (Nikulin et al., 2012) and features non-linear techniques
to extract the strongest rhythmic components coupled at p : q
frequency ratio. The method is applicable to a wide range of cross
frequency interactions compared to previous state-of-art CFD.
We tested the performance of the GCFD both in simulations and
on real EEG data (steady state visually evoked potentials (SSVEP)
and resting state datasets).

2. METHODS

2.1. Cross-Frequency Phase Synchrony
Let s(t) be the time course of a real-valued signal. The
instantaneous phase of s(t) is defined as follows. The signal s(t)
is first complexified:

s̃(t) = s(t)+ iH(s)(t),

where H(·) is Hilbert transform and i is the imaginary unit.
Complex-valued signal s̃(t) is called analytic signal for s(t) and
admits the following factorization

s̃(t) = A(t) · eiϕ(t), A(t) ∈ R, A ≥ 0, ϕ(t) ∈ R,

where A(t) is called instantaneous amplitude of s(t), and ϕ(t),
defined modulo 2π , is called its instantaneous phase.

To study ordinary 1 : 1 phase synchrony of two narrow-band
signals s1(t) and s2(t) with the same central frequency f , we
observe their cyclic phase difference

1ϕ(t) := ϕ2(t)− ϕ1(t) mod 2π
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in a long enough time window t = 1..T. In the case of total
absence of synchrony, the empirical probability distribution of
1ϕ(t) across the time window would be uniform on the segment
[0, 2π]. Any significant deviation from the uniform distribution
indicates presence of an interaction between the instantaneous
phases of s1(t) and s2(t). A strong form of this is when 1ϕ(t)
has a strongly pronounced unimodal distribution on [0, 2π]. This
means that for some c ∈ [0, 2π], at almost every timemoment we
observe that ϕ2(t)− ϕ1(t) ≈ c. This is called phase locking.

Now let us generalize this to the case when the central
frequencies f1 and f2 of s1(t) and s2(t) are different but rationally
related:

f1 : f2 = p : q, p, q ∈ N,

see Rosenblum et al. (2001). Study of synchrony between such
signals is the primary goal of this paper. To analyze this case, we
again calculate their instantaneous phases ϕ1 and ϕ2 but now we
consider generalized cyclic phase difference

1ϕp,q(t) := pϕ2(t)− qϕ1(t) mod 2π .

Now we say that s1 and s2 are in cross-frequency phase synchrony
(CFS) if the distribution of 1ϕp,q(t) is non-uniform.

We use the following Phase Locking Value (Rosenblum et al.,
2001; Palva et al., 2005) to estimate the strength of CFS between
s1 and s2 in the time window t = 1..T:

PLVp,q(ϕ1,ϕ2) =
1

T

∣
∣
∣
∣
∣

∑

t=1..T

ei1ϕp,q(t)

∣
∣
∣
∣
∣
. (1)

2.2. Preprocessing
In case of empirically obtained recordings, raw E/MEG data are
inspected and cleaned of blinking and other muscle artifacts. This
is done by applying Independent Component Analysis (FastICA
algorithm, see Hyvärinen et al., 2001) and removing all the
artifact-related components. In the end, we have multi-channel
E/MEG signal with one or more continuous time intervals clear
of artifacts, called epochs.

Cleaned E/MEG data is then low-pass filtered into a wide band
starting from 0.5 Hz to about 150% of the highest frequency to
be used in the analysis. If we are interested in cross-frequency
interaction between a 20 Hz rhythm and a 30 Hz rhythm, the
high cut-off frequency of the filter would be 45 Hz. This is done
to further clean the data of any high-frequency noise.

2.3. The GCFD Algorithm
The general workflow of the proposed method is presented in
Figure 1 and details will be presented in the subsequent sections.
The method consists of the following principal steps:

(a) choose one band that represents a “reference” band - P, while
another represents a “fit” band - Q;

(b) identify one or few candidate components for the reference
band;

(c) for the other frequency, using non-linear optimization find
the unique components which are in the strongest synchrony
with the reference rhythm candidates;

(d) output the pair(s) which exhibit the best synchronization.

Below we address each of these steps in detail, as well as some
auxiliary steps.

2.3.1. Reference Band Choice
In the following analysis, the frequency bands f1 and f2 play
two different roles. First, we pick a few strongest rhythmic
components from the reference band using Spatio-Spectral
Decomposition, see Subsection 2.3.2. These components become
our reference signals. Second, for each of the reference signals, we
find the component in the fit band which is themost synchronous
to the rhythmic activity in the reference signal. This is done with
the new Cross-Frequency Phase Fitting (XPF) method which is
the core of this paper.

When there is no particular reason to prefer f1 over f2 or
vice versa as a reference band, we recommend choosing the
band with smaller frequency. This way polynomial expressions
in the nonlinear optimization procedure have lower degrees and
thus the method converges faster and is more accurate. In the
following, we always assume that f1 is the reference band and f2
is the fit band.

We emphasize here that XPF is asymmetric with respect to the
order of the frequency bands f1 and f2. That is, the same analysis
but with the bands swapped places is not, in general, guaranteed
to yield the same results. However numerical experiments on
simulated data indicate that, while the results might be different,
both approaches are very close to the ground truth. Spatial
patterns for the components in the fit band are, on average, found
more accurately then spatial patterns for the components in the
reference band, we elaborate on this in the sections below.

2.3.2. Spatio-Spectral Decomposition
For the reference frequency band f1, we perform a decomposition
procedure which allows us to extract relevant oscillatory
components and to reduce the dimensionality of the data.
Among such procedures, Spatio-Spectral Decomposition (SSD)
method (Nikulin et al., 2011) showed particularly good results
in simulation tests. This is because SSD is better tailored to treat
narrow-band signals as compared to more general methods such
as ICA.

Essentially, SSDmaximizes the Signal-to-Noise Ratio which is
defined as the ratio of the power at the narrow frequency band
of interest to the power of the noise at the surrounding flanking
frequency ranges. See Nikulin et al. (2011), for the full description
of SSD and (Nikulin et al., 2012), section 3 for its compact outline.
We employ SSD in GCFD two times. First time we use SSD
to extract the strongest rhythmic components in the reference
band, see Subsection 2.3.1. Second time we perform SSD to
reduce computational complexity of the nonlinear optimization
problem by lowering the effective number of components in the
fit band, see Subsection 2.4.

For the following analysis, from the reference band we take
only the components with the largest eigenvalues, and discard
the rest of the reference band signal space. Each particular dataset
may have different numbers of these significant components. We
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FIGURE 1 | Outline of the algorithm.

recommend first using the default number of 5 components, and
adjust it later if needed.

2.3.3. Cross-Frequency Phase Fitting (XPF)
Cross-Frequency Phase Fitting (XPF) is the core procedure of
GCFD. Its inputs are a single narrow-band reference signal r(t)
at a frequency f1 and a collection of multiple narrow-band signals

m1(t), . . . ,mI(t) at a frequency f2, where f1 : f2 = p : q with
positive integers p, q, and t = 1..T. During the standard GCFD
workflow, the reference signals are components from SSD which
are fed into XPF one by one. Another possible scenario described
in Subsection 2.5 is when the single reference signal is known a
priori. Then XPF is applied only once using this particular signal
and a set of signals in the fit band.
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We assume that mi is a linear combination of an unknown
“target” signal s(t) which is in cross-frequency phase synchrony
(CFS) with r(t), and IN noise components ni:






m1

...
mI






T

=








s
n1
...

nIN








T

· P, (2)

where P is a real-valued (IN + 1)-by-I matrix called spatial
mixing matrix, or spatial pattern matrix. We first aim to recover
the coefficients wi ∈ R such that s(t) =

∑

i wimi(t). These
coefficients are called spatial filter, or simply filter. If P was a
square matrix, then wi would be the first column of P−1.

For every channel r(t) and mi(t) we compute their complex
analytic signals r̃(t) = r(t) + iH(r)(t) and m̃i(t) = mi(t) +
iH(mi)(t), where H(·) is Hilbert transform and i is the imaginary
unit. Signals r̃(t), m̃i(t) are C-valued time series such that for
every t = 1..T holds

Re (r̃(t)) = r(t), Re (m̃i(t)) = mi(t).

Now for r̃(t) we perform so-called frequency warp by q times.
Namely, we make up a new C-valued signal r̃[q](t) such that

|r̃[q](t)| = |r̃(t)|, Arg (r̃[q](t)) = q · Arg (r̃(t)). (3)

An equivalent way to write this down is

r̃[q](t) =
r̃(t)q

|r̃(t)|q−1
for each t ∈ 1..T.

Note the difference between the notations (·)[q] and (·)q. We keep
the latter for the standard complex power

zq = z · . . . · z
︸ ︷︷ ︸

q times

.

By construction, whenever some other signal g(t) displays a p : q
synchronization with r̃(t), it is also in p : 1 synchronization with
r̃[q](t), and vice versa. The q-th power r̃(t)q of the signal r̃(t) has
the same property but it is less convenient for computational
purposes because its magnitude |r̃(t)|q could either be very small
or very large for large values of q.

As indicated in Nikulin et al. (2012), maximization
of correlation between narrow-band signals is similar to
maximization of their coherence. It has been observed earlier
that coherence primarily reflects phase synchronization (Nolte
et al., 2004), yet it also measures amplitude correlation between
the two signals. Coherence represents phase synchronization
weighted by the amplitude co-modulation (Nolte et al., 2004;
Friston et al., 2012). Mezeiová and Paluš (2012), however,
showed that in practice phase synchronization (as measured
through synchronization index) and coherence might give
similar results. In addition, Nolte et al. (2004) observed that for
empirical signals, it is not entirely clear whether one can assume
independence between the amplitude and phase. Moreover, the

authors argued that for very low signal-to-noise ratio the phase
can be strongly affected and thus coherence (which includes
amplitude covariation) can give more robust results than the
synchronization index.

Based on this evidence, we will be maximizing the correlation
between C-valued signals s̃

p
1 and s̃2, where s̃1 = s + iH(s1),

s̃2 = s + iH(s2) are the analytic signals for s1, s2. We can find
the coefficients wi as the solution to the optimization problem

argmin
wi∈R

∑

t

∣
∣
∣
∣
∣

(

∑

i

wim̃i(t)

)p

− r̃[q](t)

∣
∣
∣
∣
∣

2

= ? (4)

Note that, while both m̃i(t) and r̃[q](t) are complex-valued,
we are still looking for the coefficients wi in the real space.
Thus, this is a particular case of a Constrained Nonlinear Least
Squares Problem (see, for instance, Schittkowski, 1988). A
standard approach is to start from a random guess for wi and
iteratively descend to the local minimum. Practically, multiple
modern high-level computation suites offer compact solvers
for Constrained Nonlinear Least Squares Problems. In our
implementation we used lsqnonlin function from MATLAB.
Those who prefer Python can use scipy.optimize.least_squares
function from SciPy package which provides a similar
functionality.

2.3.4. Back to Spatial Patterns
Finally, for each reference component r(t) in the frequency
band f1, we have the coefficients of the spatial filter wi and the
component s(t) =

∑

wimi(t) in the fit frequency band f2 which is
in cross-frequency phase synchrony with r(t). Now we explicitly
compute the cross-frequency Phase-Locking Value (1) of r(t) and
s(t) and choose the pair(s) (r, s) with the highest PLV.

The last step is to convert the spatial filters for the newly found
components into the corresponding spatial patterns (see Haufe
et al., 2014). An approach proposed by Parra et al. (2005) is based
on assumption that the sources are mutually uncorrelated, and
yields a compact formula

p =
MTs

sTs
,

where p is the sought pattern, s(t) =
∑

i wimi(t), and M = (mi)
is the matrix of sensor space signals in f2 frequency band. This
calculation is equivalent (Haufe et al., 2014) to the multiplication
of the covariance matrix of the data inM with the filter w.

The final output of the algorithm is the most synchronous
pair (r, s) along with the respective spatial filters and spatial
patterns. These spatial patterns can now be visualized as scalp
topographies, see example on Figure 3.

2.4. Secondary SSD
Because the computational complexity of the core nonlinear
optimization problem rapidly increases as the number of
channels N grows (approximately, by order of ∼ N3, depending
on a particular solver), it is sometimes beneficial to reduce
the dimension of the problem. For this we project the original
sensor space into a linear subspace of fewer dimensions. We
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apply Spatio-Spectral Decomposition (see Subsection 2.3.2) to
the narrow-band signals at frequency f2 and neglect all but 15
most significant components. For example, for N = 60 sensors
this yields a speed-up of approximately 43 = 64 times. For a
larger number of sensors, this step becomes even more critical.

Then we apply the same nonlinear optimization procedure
(see Subsection 2.3.3) to the same reference signal and the first
15 SSD components as fit signals. This is possible because the
optimization actually employs no information about the real
nature of sensors’ positions and works equally well for such
“virtual sensors.” Finally, each spatial pattern p′ of length 15
found in the space of virtual sensors has to be converted back
to the original sensor space:

p = S · p′,

where p is a spatial pattern of lengthN in the space of real sensors
and S is a N × 15 matrix of SSD components’ spatial patterns.

Note that this speed optimization might come at a cost of
reduced accuracy of the algorithm, because the search for the best
spatial filter is then performed in some 15-dimensional subspace
rather than the whole filter space. Thus for some cases one may
consider to disable this option. However, this option is extremely
useful for a fast rough search for synchronized components
across many frequency bands’ combinations.

2.5. Reference Signal r Known a priori
In some experimental scenarios, we may want to study
synchronization of brain oscillations to a certain signal which
is already known. For example, Bayraktaroglu et al. (2011)
conducted a study of cortico-muscular coherence between a
single-channel electromyogram signal and a multi-channel EEG
data. Another example is the entrainment of neuronal activity in
visual cortex to a periodic screen flickering. In such a case, an
SSD step is not required prior to the main nonlinear optimization
procedure. Another relevant example for this scenario is a local
field potential (LFP) recording with good SNR. In all these cases
the method skips the steps (a) and (b), recall Subsection 2.3, and
proceeds straight to (c) since we need just the XPF procedure
without the rest of the GCFD algorithm. We will call this
truncated version of the workflow the detached XPF procedure.

We conducted numerical simulations to assess the capability
of detached XPF to tackle these situations with the known
reference signals. These tests showed that in this mode the
overall pattern reconstruction quality for synchronized sources
is significantly better than of a more sophisticated full GCFD
algorithm (see below). Moreover, the detached XPF is capable of
precise source reconstruction at greater values of p and q, tested
up to p, q = 5. See Subsection 3.1 for details.

2.6. General Phase Locking
In the above, we searched for components in cross-frequency
phase synchrony:

pϕ2 − qϕ1 mod 2π ≈ 0.

A weaker condition called cross-frequency phase locking requires
only a constant difference between the adapted cyclic phases of

the signals:

pϕ2 − qϕ1 mod 2π ≈ const.

To search for cross-frequency phase-locked components in a
E/MEG signal, we modify the formula (3) for the frequency warp
of reference components. We choose an integer K ≈ 10 and
define a complex-valued signals r̃[q,k] as

|r̃[q,k](t)| = |r̃(t)|, Arg (r̃[q,k](t)) = q · Arg (r̃(t))+
k

K
2π (5)

for k = 0..K − 1. Then we run the above algorithms for each
k = 1..K − 1, and look for the components with the highest PLV
among all the runs.

Our preliminary analysis has shown that the distribution
of phase differences between components is quite broad thus
indicating that there is no need to exactly align the phases of
both signals to have 0 or π difference. A similar number of
K = 12 has been successfully used in another study for coherence
optimization (Bayraktaroglu et al., 2012).

2.7. Simulations
For algorithm performance tests we picked p : q ratios which are
most likely to demonstrate cross-frequency phase synchrony in
human brain E/MEG recordings:

p : q = 1 : 2, 1 : 3, 1 : 4, 2 : 1, 2 : 3, 3 : 1, 3 : 2, 3 : 4, 4 : 1, 4 : 3.

(6)
We aimed at simulating phase couplings between theta, alpha,
beta and low gamma oscillations. Some of them, like alpha:beta
(1:2), were previously observed in E/MEG recordings. For each
ratio p : q we ran 100 independent randomized simulations
of brain activity and tested how accurate was our algorithm
reconstructing the true synchronized sources.

For each simulation we first generated 5 independent pairs
of cross-frequency synchronized oscillatory signals with different
frequency ratio p : q. The procedure for each pair was as follows.
We generated 150 seconds length of white noise, sampled at
200 Hz frequency. This noise was then band-pass filtered in 9-
11 Hz frequency range using two passes of Butterworth filter, one
forward and one backward. Such two passes allow for canceling
out any phase distortion caused by artifacts of a single pass of
a filter (Mitra and Kuo, 2001). Then we frequency warped two
copies of this signal by p and by q times, respectively. This
provided us with a pair of p : q-synchronized signals in frequency
bands around 10pHz and 10qHz.

In addition we used 100 mutually independent noise sources
with 1/f power spectrum (so-called pink noise). Such a power
spectrum is typical for E/MEG human brain recordings.

Each of 10 synchronized oscillatory signals and 100 noise
signals coresponded to a respective current dipole randomly
chosen from the nodes of triangularly tesselated cortical mantle.
Dipole orientation was also randomized. We used a realistic
three compartment volume conductor forward model (Nolte
and Dassios, 2005) based on the Montreal Neurological Institute
(MNI) head (Evans et al., 1994) to calculate the simulated EEG
sensor signals from the source signals. Each simulated EEG
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recording had 64 channels corresponding to the standard sensor
positions.

In addition, we normalized the signal-to-noise ratios (SNR) of
all our signals, which we define as the ratio of the mean variance
of signals across channels for each projected signal dipole and
the mean variance across channels for the whole projected noise
cumulative. We tested the performance of our algorithm for SNR
values of 0.1, 0.5, 1.0, 2.0, see below.

Then for each simulation we ran the source reconstruction
GCFD algorithm explained in Subsections 2.2–2.4. The resulting
spatial patterns for the recovered sources in f1 frequency band are
then compared to the true patterns which are known a priori by
design.

In addition to these simulations we have also produced
simulations for 2 : 3 case (SNR=0.5) mixing five components at
20 Hz frequency range but the corresponding 30 Hz components
were produced by the frequency warping of another five
10 Hz components which were independent of the first 10 Hz
components. This way we produced five components at 20 and
30 Hz frequency bands which were independent within and
between these frequency bands. Then we performed 100 of such
simulations and calculated the mean pattern divergence (see next
section).

2.8. Pattern Divergence Estimation
2.8.1. Simulated Data
We measured the difference ǫ between the true pattern p̂ and
the reconstructed pattern p using the following pattern divergence
number based on correlation between p, p̂:

ǫ = 1−
|pT p̂|

||p|| · ||p̂||
, 0 ≤ ǫ ≤ 1. (7)

see Nikulin et al. (2012), Equation (20). The value ǫ = 0
corresponds to perfectly collinear p and p̂ while ǫ = 1 stands
for orthogonal p and p̂.

Note that the recovered patterns come in no specific order
related to the original patterns. A sorting procedure is required
to find the actual recovery error for each signal. Namely, we
calculated all the pairwise pattern divergences between all the
recovered patterns and all the original patterns. Then we used
a greedy algorithm to match the recovered patterns with the
original patterns: we first find the pair of a recovered pattern
and an original pattern with the smallest divergence, and then we
remove both of them from the pattern sets. Then we repeat the
procedure with the remaining patterns to find the second best
match et cetera.

Each simulation yields a vector of 5 pattern divergence
numbers. Multiplied by 100 simulations, in the end we have 500
numbers for each frequency ratio p : q and each SNR value. See
Subsection 3.2 and Figure 3 for results and discussion.

2.8.2. Empirical Data
For the empirical data, we lack the information about the
ground truth patterns, and thus we cannot directly measure the
divergences between the ground truth patterns and the estimated
patterns. In this case we rather use pattern divergence as a

measure of similarity between the two patterns relating to cross-
frequency coupled components.

2.9. Real EEG Recordings
2.9.1. Resting State
The GCFD algorithm has been tested on EEG data obtained at
the Centre for Cognition and Decision Making at Higher School
of Economics (HSE, Moscow). All the experimental procedures
were approved by the local Ethics Committee. The participants
signed an informed consent form. 32 healthy subjects (12
men, right-handed, mean age 23 years) participated in the
EEG experiment. The EEG data were recorded with 60 active
electrodes of BrainVision actiCHamp (Brain Products GmbH)
according to the extended version of the 10–20 system. The data
were sampled at 500 Hz. Active channels were referenced against
the mean of two mastoid electrodes. The electrooculogram was
recorded with electrodes placed at the outer canthi and below
the right eye. The EEG recordings were offline filtered in the
frequency range 0.5–40 Hz. Spectral analysis by means of FFT
(fast Fourier transform) was performed with Hammings̀ window
of 3 seconds. Participants were seated comfortably before a dark
screen for 10 minutes while fixating their eyes on the cross in
front of them.

For the consecutive offline analysis the EEG data were
downsampled to 200 Hz, the data length was 10 minutes. We
reduced the dimension of the signal using the 5 strongest SSD
components in both frequency ranges of interest p ∗ f1 ± 1 Hz
and q ∗ f2 ± 1 Hz. The settings for SSD were as follows: cut-off
frequency range for the band-pass filter was p ∗ f1 ± 1 Hz and
q ∗ f2 ± 1 Hz; cut-off frequency range for the lowest and highest
frequencies defining flanking intervals was p ∗ f1 ± 3 Hz and
q ∗ f2 ± 3 Hz; cut-off frequency range for the band-stop filter
was p ∗ f1 ± 2 Hz and q ∗ f2 ± 2 Hz. We looked for the strongest
synchronous components for p : q equal to 2 : 1 and 2 : 3 and and
the base frequencies from the alpha frequency range (8–12 Hz).
For example, the maximum PLV for p : q = 2 : 3 could have been
attained at the base frequency 9.5 Hz which would mean that the
most 2 : 3-synchronized components are at 19 Hz and 28.5 Hz.

2.9.2. Steady State Visual Evoked Potentials
To demonstrate performance of the GCFD we used EEG data
obtained at the Centre for Cognition and Decision Making at
Higher School of Economics (HSE, Moscow) with Steady State
Visually Evoked Potentials (SSVEP), which were recorded for
BCI experiments (Işcan and Nikulin, 2018). All the experimental
procedures were approved by the local Ethics Committee.
The participants signed informed consent form. 24 healthy
subjects (age span 18–41 years) took part in the experiment.
EEG was recorded with the sampling frequency 1 kHz with
ActiCHamp amplifier using PyCorder software (Brain Products)
from 60 channels actiCHamp. The band-pass filter with cut-
off frequencies of 0.53 and 40 Hz was applied to raw data to
remove DC component and high frequency artifacts. During the
experiment the subjects were required to look at a computer
screen with a single periodically flickering circle. This setup is
known to evoke periodic potentials, known as Steady State Visual
Evoked Potentials (SSVEPs) in subjects’ visual cortex at the same
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frequency as the flickering frequency (Friman et al., 2007). The
experiment was split into 3-second segments. For each segment
the flickering frequency was randomly chosen among four fixed
values: 5.45, 8.57, 12, 15 Hz.

For the consecutive GCFD analysis we concatenated all 3-
second trial recordings into a single 75-second multi-channel
signal for each subject and each flickering frequency. Since the
raw data was filtered with high-pass at 0.53 Hz before the
concatenation, there were no offsets between the epochs and
thus the following filtering did not produce artifacts as was also
confirmed by the visual inspection.

We reduced the dimension of the signal using the 15 strongest
SSD components in both frequency ranges of interest p∗ f1±1Hz
and q ∗ f2 ± 1Hz. For SSD we used following settings: cut-off
frequency range for the band-pass filter was p ∗ f1 ± 1Hz and
q ∗ f2 ± 1Hz; cut-off frequency range for the lowest and highest
frequencies defining flanking intervals was p ∗ f1 ± 3Hz and
q ∗ f2 ± 3Hz; cut-off frequency range for the band-stop filter was
p ∗ f1 ± 2Hz and q ∗ f2 ± 2Hz. For computational convenience
in our analysis we approximated the real flickering frequencies
5.45, 8.57, 12, 15 Hz with the integer frequencies 6, 9, 12, 15 Hz
respectively.

2.9.3. Statistical Testing
We used the nonparametric permutation test to evaluate
statistical significance of the results (Maris and Oostenveld,
2007). In our approach a test statistic was obtained from GCFD
applied to randomly permuted data.

We divided recordings and combined segments in random
order from the data relating to finding a spatial filter w while
preserving the order of the segments in the reference signal which
is described in section 2.3.1. Note that this randomization has
been performed before finding spatial filters w so that all other
steps are preserved like in the main analysis.

Next, we ran our algorithm on the permuted recording and
obtained new paired signal for the reference signal. Then we
created permutation distribution by repeating this procedure
1000 times and computing for each pair a corresponding phase
locking value (1). The null hypothesis under this permutation test
was that all permuted pairs and original pair belonged to the same
distribution. Finally we computed the P-value for original pair of
signals and if it was smaller than 0.05 we concluded that the result
was statistically significant.

This is a frequently used approach for non-parametric
permutation testing (Hesterberg et al., 2005; Maris et al., 2007)
which preserves the spectra of the signals and all the optimization
steps thus representing a robust procedure for controlling effects
of the overfitting.

3. RESULTS

3.1. Detached XPF Test
First we tested how accurately the detached XPF procedure (recall
Subsection 2.3.3) recovers source spatial patterns in the scenario
when true sources are provided as reference signals and thus we
only have to find cross-frequency coupled components in the fit

FIGURE 2 | Pattern reconstruction accuracy of detached XPF.
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band. Note that this is also a valid simulation of an experiment
when the entraining signal is known from other sources such as a
cardiogram, a myogram, oscillatory signal from the transcranial
alternating current stimulation, a visual or an auditory input etc.
Recall Subsection 2.5 for details. For each pair

p : q = 1 : 2, 1 : 3, 1 : 4, 2 : 1, 2 : 3, 3 : 1, 3 : 2, 3 : 4, 4 : 1, 4 : 3

(8)
and each SNR = 1.0, 0.5, 0.1 we performed 100 simulations
similar to the ones described in Subsection 2.7. The results are
presented on Figure 2. We see a remarkably good performance
for all SNRs and for all pairs p : q with the corresponding pattern
divergence being < 0.05.

In this test we essentially eliminated all the errors which
relate to the performance of SSD algorithm at the step of the
initial extraction of the reference components. As we will show
later, insufficiently clean extraction of SSD components can
lead to reconstruction errors for the GCFD algorithm, compare
Figures 2, 4.

In general the results of this test demonstrate that the core
optimization procedure performs well for all tested frequency

ratios which are often met in E/MEG signal synchronization
studies.

3.2. Simulations for GCFD Algorithm
Simulations based on realistic head modeling showed that GCFD
algorithm reliably recovers cross-frequency coupled components
at different frequencies, relating to each other through rational
numbers p : q up to, at least, p, q ≤ 4. This is a significant
improvement over the baseline Cross-Frequency Decomposition
(CFD) algorithm (Nikulin et al., 2012) which was only capable of
dealing with the case p = 1 and q ≤ 3.

Figure 3 shows an example of reconstruction of 5 simulated
30 Hz sources synchronized to 5 other 20 Hz sources. In
this example, p : q = 3 : 2 and SNR = 0.1 for both 30 and
20 Hz frequency bands. Figure 3 demonstrates that the recovered
topographies of 30 and 20 Hz sources were very similar to the
simulated patterns.

To measure the overall pattern recovery quality
of GCFD algorithm, we performed series of 100
simulations for each of frequency ratios (6) p : q =

1 : 2, 1 : 3, 1 : 4, 2 : 1, 2 : 3, 3 : 1, 3 : 2, 3 : 4, 4 : 1, 4 : 3

FIGURE 3 | Source patterns (SP) and recovered patterns (RP) for 5 pairs of simulated synchronized sources at 20 and 30 Hz. SNR = 0.1. The color-scale is in

arbitrary units.

Frontiers in Neuroinformatics | www.frontiersin.org 9 October 2018 | Volume 12 | Article 72

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Volk et al. Cross-Frequency Synchrony Analysis

and SNRs = 1.0, 0.5, 0.1. The results are shown on
Figure 4.

Naturally, as the SNR decreased, for each fixed ratio p : q we
observed a gradual decrease in the pattern recovery accuracy.
However, for all the frequency ratios even at SNRs ≥ 0.1 the
median error was still very small, no greater than 0.08. The results
of detached XPF test, see Subsection 3.1, indicate that a major
source of the accuracy decay is due to insufficient performance
of SSD.

Overall we concluded that for all tested frequencies and SNRs
≥ 0.1 the pattern recovery accuracy is sufficient for the analysis
of synchronized sources in real E/MEG recordings.

When simulating uncoupled sources we observed that at SNR
= 0.5 pattern divergence was on average 0.33 which was at least
15 times larger than the pattern divergence typical for coupled
sources. Such values of pattern divergence indicate that the
extracted topographies were very different from the topographies
of the original uncoupled sources. This in turn indicates that in
simulations where the sources are not coupled, GCFD is not able
to recover simulated components.

3.3. Real EEG Recordings
3.3.1. Resting State
First we tested how the GCFD works for the resting state EEG
recordings described in 2.9.1. We chose 8 subjects with the most
pronounced power peaks in the alpha, beta and gamma frequency
range and ran GCFD analysis to identify cross-frequency coupled

synchronous sources. The base frequencies were taken from the
alpha range 8–12Hz. Figure 5A shows results for a typical subject
for which we performed 2 : 1 and 2 : 3 searches with the base
frequency equal to 9.9 Hz. Figure 6A represents all pairs of
signals restored by the GCFD across all the participants.

For the frequency ratio 2 : 1 most (92%) computed phase
locking values were statistically significant. However, the
correlation between PLV and pattern divergence was not
particularly strong (R2 = 0.49) thus indicating that only part of
the data is likely to represent a coupling due to non-sinusoidal
shape of neuronal oscillations.

For the frequency ratio 2 : 3 only 20% of the PLVs were
statistically significant. We also analyzed the relationship
between the strength of phase coupling and relevant pattern
divergence. We observed a negative correlation for the case of
2 : 1 (p-value = 7 · 10−6) and no correlation for 2 : 3 (p-value =
0.11).

3.3.2. Steady State Visual Evoked Potentials
We also tested the GCFD on the Steady State Visual Evoked
Potentials (SSVEP) signals described in 2.9.2. The goal was to
demonstrate that our approach is able to find cross-frequency
phase synchronized harmonics of SSVEP signals with frequencies
relating to each other through a rational relationship p : q for
p, q ≤ 4. We performed GCFD analysis across 24 subjects
with flicker frequencies 5.45, 8.57, 12, and 15 Hz. We used
the visual stimulation frequency as base frequency and fitted

FIGURE 4 | Pattern reconstruction accuracy for the whole GCFD.
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p : q relationship according to investigated harmonics of SSVEP
signal. Figure 5B shows results from a typical subject with visual
stimulation frequency 12 Hz, where 2 : 1 and 2 : 3 searches were
performed. We observed pairs of signals with similar spatial
patterns which suggest that the corresponding neuronal sources
are both in the visual cortex. Moreover, we observed significantly
high PLVs between components with different frequencies. The
significance of the results was examined with permutation
tests described earlier in Subsection 2.9.3. Permutation tests
revealed that 44 and 28% of pairs were significant for 2 : 1
and 2 : 3 interactions, respectively. Figure 6B shows all pairs of
signals found by GCFD in EEG recordings with stimulation
frequency 12 Hz for 2 : 1 and 2 : 3 search. Pattern divergence was
calculated according to the 7. It indicates similarity between the
two topographies. No significant correlation between PLV and
pattern divergence was observed for 2 : 1 (p-value = 0.10) and 2 : 3
(p-value = 0.13).

4. DISCUSSION

We presented a new algorithm for the detection and extraction
of cross-frequency phase-to-phase synchronized neuronal
components. Generalized Cross-Frequency Decomposition
is able to reconstruct both the time courses of synchronized

neuronal components and corresponding spatial filters and
patterns.

We showed that the GCFDwas capable of detecting synchrony
between frequencies related by a rational relationship p:q, for
p, q ≤ 4. The new method extends the previous state of the art,
Cross-Frequency Decomposition (CFD) (Nikulin et al., 2012) to
a more general range of frequency pairs. However, for p, q > 4 a
detection of cross-frequency synchronization is difficult because
the phase-locking region is very narrow and a possible synchrony
is likely to be obscured by noise. This is a general problem of
cross-frequency interactions’ detection which is not specific to
the GCFD algorithm (Pikovsky et al., 2001).

4.1. Limitations of Previous Methods
The most common approach is to calculate cross-frequency
synchronization in sensor space (Schanze and Eckhorn, 1997;
Tass et al., 1998; Carlqvist et al., 2005; Palva et al., 2005; Nikulin
and Brismar, 2006; Sauseng et al., 2008; Darvas et al., 2009;
Siebenhühner et al., 2016). One of the pitfalls of the analysis in
sensor space is that the source topographies cannot be identified
due to a mixing problem related to volume conduction. Another
approach (Tass et al., 2003) is based on the inverse modeling of
source signals which are then pair-wise checked for the presence
of cross-frequency synchrony by computing Phase Locking
Values across all the brain voxel pairs. This approach requires

FIGURE 5 | Examples of cross-frequency coupled synchronous oscillations detected with the GCFD algorithm for 2:1 and 2:3 search. (A) For resting state data.

(B) For recordings with SSVEP 12 Hz.
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FIGURE 6 | All components’ pairs (2:1 and 2:3) from all subjects extracted with GCFD for 2:1 (left) and 2:3 (right) search. (A) For resting state data. (B) For recordings

with SSVEP 12 Hz.

extensive corrections for type I statistical errors. Furthermore,
these comparisons generate great complexity of the neuronal
relationships which, however, does not necessary relate to the
true neuronal complexity. In case of the inverse modeling it is
also important to pay attention to the general ambiguity of the
inverse reconstruction.

4.2. Advantages and Limitations of GCFD
Numerical simulations showed that GCFD can recover
interacting sources even when they are masked by a very strong
noise (SNR = 0.1), see Figure 4. The extraction of the non-
linearly interacting components was remarkably good showing
only a small error (< 0.08) in recovered patterns even at a very
challenging situation of SNR = 0.1. In this study we use SSD that
is one of the best methods for the extraction of signals with low
signal-to-noise ratio (Nikulin et al., 2011). The GCFD depends
on the performance of SSD, in the way that SSD extraction
errors for reference signals might influence final pattern
reconstruction quality, see Subsections 2.3.2, 3.1. The GCFD has
also performance asymmetry with respect to p and q swap due
to its dependence on initial SSD. We showed in simulations that
the detached XPF, which uses already available reference signals,
performs significantly better compared to the whole GCFD, see
the section 3. However, GCFD is not limited to the use of SSD
to obtain reference signals. Here one can utilize components
extracted with other decomposition approach such as ICA or
directly available signals such as a cardiogram, myogram, visual

or auditory signal etc. This can be particularly useful when
analyzing cross-frequency corticomuscular interactions where
reference signals are obtained with the surface EMG. In fact in a
recent review, an importance of cross-frequency interactions was
emphasized for a better understanding of cortical-spinal motor
control (Yang et al., 2017). We believe that GCFD method can be
a valuable approach in this regard.

4.3. Genuine and Spurious
Cross-Frequency Interactions
While looking for cross-frequency synchronization, there is
always a possibility to detect CFS not due to genuine neuronal
interactions, but also due to non-sinusoidal shape of oscillations
(Gaarder and Speck, 1967; Jürgens et al., 1995; Nikulin and
Brismar, 2006). This is due to the fact that non-sinusoidal
waveforms represent a sum of sine waves at the fundamental and
harmonic frequencies (which are integer-multiples of the base
frequency), and these sine waves would then demonstrate cross-
frequency synchronization. For example, (Nikulin and Brismar,
2006) have shown in a numerical experiment that when the EEG
signal is non-sinusoidal, it exhibits spurious alpha-beta phase
coupling.

In order to control for this side-effect, we calculated the
pattern divergence between the spatial patterns of the reference
signal and the synchronized rhythmic components. If the
patterns were similar we considered them to be harmonics. For
2 : 1 case we observed many similar patterns with high PLV. This
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was not the case for 2 : 3 coupling where we observed a smaller
number of similar patterns and the average PLV was lower.

We showed that GCFD can be applied to find phase coupling
in cases when we use pre-selected peaks on the basis of the spectra
as shown for resting state Figure 5A, and also for cases when a
priori information is known about the reference spectra, which
is the case for SSVEP experiment, Figure 5B. All pairs found by
GCFD are presented in Figure 6. In EEG experiments we did
not find particularly strong correlation between pattern similarity
and the strength of cross-frequency phase synchrony. This in
turn indicates that the extracted cross-frequency interactions are
unlikely to be due to the presence of harmonics since in that case a
correlation between the pattern similarity and PLV values would
be very strong. Moreover, a sensitivity of GCFD both to genuine
and “harmonic-like” cross-frequency interactions has further
advantages, since it might allow amore precise extraction of non-
sinusoidal neuronal oscillations important for Brain-Computer
Interface systems based on mu-rhythm known to have second
and even third harmonics. The presence of cross-frequency
interactions in the resting state dynamics, as we observed in
the present study, is particularly interesting case as this might
indicate computational readiness of the neuronal networks to
be engaged in the processing of information distributed across
different cortical areas producing oscillatory activity at different
frequencies.

As the direction for the future research, it would be interesting
to apply GCFD to investigate the role of cross-frequency
phase synchrony between different networks, demonstrating

strong within-frequency coupling, in a variety of cognitive tasks
suggested to engage such integration, e.g., in visual working

memory (Siebenhühner et al., 2016). Our work demonstrates that
the GCFD algorithm can be readily utilized for the investigation
of such complex cross-frequency interactions.
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