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We analyze strong correlation effects and topological properties of interacting fermions with a
Falicov-Kimball type interaction in circularly shaken hexagonal optical lattices, which can be ef-
fectively described by the Haldane-Falicov-Kimball model, using the real-space Floquet dynamical
mean-field theory (DMFT). The Haldane model, a paradigmatic model of the Chern insulator, is
experimentally relevant, because it has been realized using circularly shaken hexagonal optical lat-
tices. We show that in the presence of staggering a charge density wave emerges, which is affected
by interactions and resonant tunneling. We demonstrate that interactions smear out the edge states
by introducing a finite life time of quasiparticles. Even though a general method for calculating
the topological invariant of a nonequilibrium steady state is lacking, we extract the topological in-
variant using a Laughlin charge pump set-up. We find and attribute to the dissipations into the
bath connected to every lattice site, which is intrinsic to real-space Floquet DMFT methods, that
the pumped charge is not an integer even for the non-interacting case at very low reservoir temper-
atures. Furthermore, using the rate equation based on the Floquet-Born-Markov approximation,
we calculate the charge pump from the rate equations for the non-interacting case to identify the
role of the spectral properties of the bath. Starting from this approach we propose an experimental
protocol for measuring quantized charge pumping.

I. INTRODUCTION

Time periodically driven ultracold atoms in optical
lattices are a versatile and powerful platform to simu-
late models with non-trivial topological properties [1, 2].
Two paradigmatic models, the Hofstadter model and the
Haldane model have been realized with Raman laser as-
sisted tunneling [3–5] and circularly shaken hexagonal
lattices [6–8], respectively. Different techniques have
been developed in setups with ultracold atoms in op-
tical lattices to detect topological properties. Using a
drift measurement, the topology of the lowest band of
the Hofstadter model was determined [5]. By measuring
the shift of atom clouds in a one-dimensional superlattice,
the Thouless charge pump was realized in bosonic [9, 10]
and fermionic [11] systems. A two-dimensional version of
the topological charge pump was demonstrated by map-
ping a four-dimensional quantum Hall system to a two-
dimensional square superlattice using dimensional reduc-
tion [12]. Using the tomographic technique that was first
proposed in Ref. [13], the Berry curvature of the Hal-
dane model was mapped out in momentum space [7].
Also, dynamical vortices due to quenching into the Flo-
quet Hamiltonian were observed [8], which are a non-
equilibrium signature of topology. The trajectories of
the dynamical vortices in momentum space were used to
determine the linking number [14], which can be directly
related to the Chern number of the Hamiltonian after a
quench [15].

Introducing two-particle interactions into a time-

periodically driven system is a highly non-trivial problem
from the point of view of both experiment and theory. In
experiments one needs to overcome the problem of heat-
ing. It was shown that an interacting time-periodically
driven closed system will heat up to a trivial state with
infinite temperature [16, 17], with only a few exceptions
like many-body localized systems [18, 19], integrable sys-
tems [20] and the prethermalization plateau [21, 22].
Multi-photon interband heating has been observed in a
shaken 1D optical lattice [23]. Resonant tunneling, which
happens when interactions are integer multiples of the
driving frequency and magnetic correlations have been
measured for strongly correlated fermions in hexagonal
optical lattices with periodic driving in one direction [24].
Floquet evaporative cooling was shown to reduce heat-
ing for interacting bosons in a one-dimensional optical
lattice [25]. However, there are no artificial gauge fields
in these setups. Further efforts are needed to go into
the interacting regime and realize an interacting system
with artificial gauge fields. Theoretically, in the high-
frequency limit, where the time periodically driven sys-
tem is supposed to be in a prethermalized regime [21], the
system can be described by an effective Hamiltonian in
high-frequency approximation [26–28]. With interactions
turned on, the interacting Haldane model can be stud-
ied with the static mean-field approximation [29, 30] and
exact diagonalization [31]. The possible drawback of the
effective Hamiltonian approach is that it cannot describe
the non-equilibrium properties of the system. In the
strongly correlated regime, one can obtain the effective
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low-energy Hamiltonian in the limit of large interaction
using a high-frequency expansion, which is equivalent to
a Schrieffer-Wolff transformation [32]. With it one can
qualitatively analyze the properties of near-resonant and
resonant tunneling. However, to solve the low energy ef-
fective Hamiltonian is still a very non-trivial many-body
problem. Numerical tools such as quantum Monte-Carlo
and density matrix renormalization method need to be
adopted to solve it.

Based on the experimental progress [7, 8, 14], we inves-
tigate non-equilibrium steady states (NESS) of fermions
with Falicov-Kimball type interactions in a circularly
shaken hexagonal optical lattice in a non-perturbative
way using the method of real-space Floquet dynamical
mean field theory (DMFT) [33–37], which can deal with
driving, interactions and dissipation on equal footing. We
study the strong correlation effects and topological prop-
erties of the system. We investigate the charge density
wave (CDW) induced by the staggered potential as a
function of increasing interactions. To study topological
properties, we use a Laughlin charge pump setup [38],
where a flux is inserted in the direction of the axis of a
cylinder geometry. We observe how the edge states are
smeared out by interactions. Furthermore, we calculate
the charge pump due to insertion of flux quanta for dif-
ferent interactions. The dissipation into the bath makes
the pumped charge non-integer. In addition, we study
the role of dissipation for the non-interacting case in the
presence of a heat bath using rate equations based on
the Floquet-Born-Markov approximation. We start from
an initial state which is close to equilibrium, and ramp
up the flux adiabatically to calculate the pumped charge.
By comparison with the equilibrium case we believe our
procedure is experimentally practical.

We include a bath in all our calculations. While the
bath prevents serious heating of the driven system, it
causes dissipation which smears the integer charge pump,
at least within our theoretical approaches for dealing with
the bath. Whether it is possible to recover the integer
charge pump by bath engineering will be a future direc-
tion.

The manuscript is organized as follows. In Sec. II, we
present the model and methods used in our calculations.
We outline the real-space Floquet DMFT method for the
interacting and driven system, and the rate equation for
the non-interacting case. In Sec. III, we present our re-
sults on the charge density wave and charge pump for
the interacting system. For the non-interacting case, we
show calculations from rate equations. We conclude in
Sec. IV.

II. MODEL AND METHODS

A. The model

We start with a model for fermions in circularly shaken
hexagonal optical lattices which can describe the experi-

mental setups described in Refs. [7, 8, 14, 39]

H0 = −J
∑
〈ll′〉

c†l′cl+
∑
l

νl (t)nl+α (Ω + ∆)
∑
l

λlnl, (1)

where l and l′ label lattices sites, and nl = c†l cl. Ω is
the driving frequency and ∆ is the detuning between
the driving frequency and the AB-offset in the static
lattice. λA(B) = 0 (1) for A and B sites in the unit-
cell. α = ±1 which is the sign of the staggered poten-
tial. We consider a near-resonant driving, which reestab-
lishes resonant tunneling between A and B sites. The
driving term is given by νl (t) = −rl · F (t) = −rl ·
F [cos (Ωt) êx + τ sin (Ωt) êy], where τ = ±1 corresponds
to counter-clockwise (clockwise) shaking. In the follow-
ing, we choose α = 1 and τ = 1. We set the hopping am-
plitude |J | = 1 as the energy unit. For the Schrödinger
equation of the system id|ψ〉dt = H0 |ψ〉, with the unitary

transformation |ψ〉 = U
∣∣∣ψ̃〉 and U = ei

∑
l χ̃l(t)nl , where

χ̃l (t) = −
∫ t

0

ν̃l (t) dt+
1

T

∫ T
0

dt′′
∫ t′′

0

dt′ν̃l (t
′) , (2)

ν̃l (t) = νl (t) + αΩλl, (3)

and T = 2π
Ω , we have H̃0 = U†H0U − iU† ddtU . Therefore,

H̃0 = −J
∑
〈ll′〉

eiθ̃l′l(t)c†l′cl + α∆
∑
l

λlnl (4)

where θ̃l′l (t) = K
Ω sin (Ωt− τφl′l) + αεl′lΩt− αεl′lπ. φl′l

is defined by rl′−rl = cos (φl′l) êx+sin (φl′l) êy for near-
est neighbors. The corresponding effective Hamiltonian
in second-order high-frequency approximation has been
shown to be a Haldane-type Hamiltonian [14]. We then
transform the Hamiltonian (4) to the Floquet space with
cl =

∑∞
n=−∞ e−inΩtcln, so

H̃m1m2
0 = −J

∑
〈ll′〉
Jm2−m1−εl′l

(
K

Ω

)
e−iΦ

m1m2
l′l c†l′m1

clm2

(5)
where Φm1m2

l′l = (m2 −m1 − εl′l) τφl′l + πεl′l. We set
εl′l = λl′ − λl. Jm2−m1−εl′l

(
K
Ω

)
is the Bessel function of

the order m2−m1− εl′l. m1 and m2 are Floquet indices.
We consider a Falicov-Kimball interaction, where the

mobile atoms interact with localized atoms:

Hint = U
∑
l

c†l clf
†
l fl. (6)

U is the interaction strength. fl (f
†
l ) is the annihilation

(creation) operator for localized atoms.

B. Real-space Floquet DMFT

We outline the real-space Floquet DMFT method that
we adopt to deal with the Falicov-Kimball interaction [33,
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34, 40, 41]. It is a method to study the NESS in an
inhomogeneous system. To reach the NESS, every lattice
site is coupled to a bath. We use a free-fermion bath in
our implementation [37, 42]. The full Green’s function of
the lattice system satisfies Dyson’s equation,(

Ĝ−1
)
ll′,mn

(ω) =
(
Ĝ−1

0

)
ll′,mn

(ω)− Σ̂l,mn (ω) δll′

− Σ̂bath,l,mn (ω) δll′ (7)

where every part is defined on the Keldysh contour [43]
and in Floquet space

Ĝ (ω) =

(
GR GK

0 GA

)
(ω) . (8)

ω ∈
[
−Ω

2 ,
Ω
2

)
is in the first Brillouin zone of Ω. For the

non-interacting part we have

GR−1
0ll′,mn (ω) =

(
ω + nΩ + i0+

)
δmnδll′ − H̃0ll′,mn, (9)

and GA0 (ω) = GR†0 (ω), as well as
(
G−1

0 (ω)
)K

= 0 [37,
42]. Σbath,l,mn (ω) is the correction to the self-energy on
site l due to dissipation to the bath

Σbath,l,mn (ω) =

(
iΓδmn −2iΓFn (ω) δmn

0 −iΓδmn

)
, (10)

assuming that the density of states (DOS) of the bath is
constant. Γ is a phenomenological dissipation rate to the
bath, and Fn (ω) = tanh ω+nΩ

kBT
where T is the tempera-

ture of the bath [37]. Σl,mn (ω) is the lattice self-energy
due to two-particle interactions and is obtained from the
impurity solver for every lattice site l:

Gl (ω) = w0G0,l (ω) + w1

[
G−1

0,l (ω)− U
]−1

(11)

where w1 is the probability of one site being occupied by
immobile atoms and w0 = 1 − w1. In the following, we
focus on the case of half filling, for which w1 = 1

2 and
w0 = 1

2 . The self-consistent loop is closed by

G−1
0,l (ω) = G−1

l (ω) + Σl (ω) . (12)

C. Rate Equations in presence of heat bath

Here we present a method of studying the NESS using
rate equations for the non-interacting gas. Using this ap-
proach we will investigate the impact of the spectral prop-
erties of the bath on the non-equilibrium steady state of
the system and the quantization of charge pumping.

In order to access situations where the particle num-
ber N of fermions in the system is conserved and there
is only heat exchange with a thermal environment, we
here present an alternative treatment using rate equa-
tions. This method only applies to the noninteracting
Fermi gas, where U = 0.

Here, the total Hamiltonian reads

H(t) = H̃0(t) +
√

Γv
∑
α

κα(b†α + bα) +
∑
α

ωαb
†
αbα, (13)

where the bath is modeled by a collection of harmonic
oscillators bα, corresponding frequencies ωα and dimen-
sionless coupling constants κα, and some system coupling
operator v. Note that we have separated the strength

√
Γ

of the system–bath coupling from the coefficients κα. It
turns out that the magnitude of the dissipation rate is
given essentially by Γ.

In the weak system–bath coupling limit, Γ → 0, we
may perform the usual Born-Markov [44] and the full ro-
tating wave approximation [45–47] in which we average
over the long relaxation time scales ∝ 1/Γ (rather than
just one period of the driving). For a single fermion,
N = 1, one then finds that the reduced system density
matrix is asymptotically diagonal in the Floquet states
|a(t)〉, i.e. %(t) =

∑
a pa(t)|a(t)〉〈a(t)|, and the asymp-

totic dynamics is governed by a Pauli rate equation,

∂tpa(t) =
∑
b

[Rabpb(t)−Rbapa(t)] , (14)

that describes the transfer between populations pa(t) of
the Floquet states. This happens at a rate

Rab = 2πΓ
∑
m∈N
|v(m)
ab |2g(εa − εb −mΩ), (15)

involving the quasienergy εa of Floquet state a and the
m-th component of the Fourier transform of the coupling,

v
(m)
ab =

1

T

∫ T
0

dt〈a(t)|v|b(t)〉eimΩt. (16)

It also enters the bath-correlation function g that reads
for the phonon bath

g(E) =

{
J(E)nB(E), E > 0,

J(−E)(1 + nB(−E)), E < 0,
(17)

with the occupation function nB(E) = 1/(eE/T − 1) and
the spectral density of the bath J(E) =

∑
α κ

2
αδ(E−ωα),

for E ≥ 0. Typical baths with a continuum of modes α
obey

J(E) ∝ Ede−E/Ec , (18)

where the exponent d controls the low-frequency be-
haviour of J(E). Here d = 1 denotes the ohmic case and
d < 1 (d > 1) is sub-(super-)ohmic. The high-frequency
cutoff parameter Ec basically is set by the correlation
time τB ∝ 1/Ec of the bath [44]. In order to be consis-
tent with the Markov approximation, this time τB must
be small when compared to the typical time scale of re-
laxation τR ∝ 1/Γ, which is always valid in the weak
coupling limit Γ→ 0 that we aim at.

The non-interacting Fermi gas may be considered in
the same framework, however, one has to additionally
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implement quantum statistics. This leads to the many
particle version of the Pauli rate equation [48],

∂t〈na〉 =
∑
b

Rab(1−〈na〉)〈nb〉−Rba(1−〈nb〉)〈na〉, (19)

where 〈na〉 is the mean occupation of the Floquet state a
and where we have applied the mean field approximation
〈nanb〉 ≈ 〈na〉〈nb〉 discussed in Ref. [49]. The nonequi-
librium steady state is found by solving for steady occu-
pations, ∂t〈na〉 = 0.

III. RESULTS AND DISCUSSIONS

A. Charge density wave

In this section, we focus on the effects of interac-
tions and resonant tunneling on the charge density wave
(CDW) induced by the staggered potential. We con-
sider a two-dimensional hexagonal optical lattice with
9 × 9 unit cells and periodic boundary conditions in
both x and y directions. The charge densities are dif-
ferent on A and B sites, with the definition of the charge
density on site A (B) N c

i = 1
2π

∫ Ω/2

−Ω/2
dω
∑
nG

<
nn,i (ω),

where i = A (B), n is the Floquet index for the Flo-
quet Green’s function G<A(B) (ω) on site A (B), and
G<nn,i (ω) = 1

2 (GKnn,i (ω) − GRnn,i (ω) + GAnn,i (ω)). Be-
cause of the periodic boundary conditions, there are only
two different sites in the hexagonal optical lattice. Our
study is different from those in Ref. [50–52], where the
CDW order parameter is defined as ∆f

CDW = Nf
A − Nf

B
because a finite density difference of localized f -atoms
is needed to spontaneously break the symmetry between
sublattice sites A and B. However, in our case of the real
space implementation of DMFT calculations, we choose
w1 = 1

2 for all sites. We nevertheless have a CDW also
for ∆ = 0. Namely, for an integer α, i.e. in the presence
of the staggered potential αΩ

∑
l λlnl, will cause an ef-

fective energy offset between A and B sites (appearing
in the second-order high-frequency expansion of the ef-
fective Hamiltonian [14]). It results from virtual second-
order processes where a particle tunnels from an A (B)
site to a neighboring B (A) site and back. In Fig. 1,
we show a comparison calculation to prove this. We can
see a perfect symmetry of the spectral functions for both
A and B sites for the case without staggered potential,
in contrast to a broken symmetry for the case when the
staggered potential is present.

There is a rich relation between charge density and
interactions. We show the charge density NA(B) with
increasing interactions in Fig. 2. (i) When U = 0, the
detuning ∆ is the factor that affects occupation of A and
B sites, and one can tune the occupations by changing
∆. (ii) We next discuss the case where 0 < U > 3. The
repulsive interaction U counteracts the effect of ∆, and
the density difference is reduced. In this region, the res-
onant tunneling is suppressed because the bandwidth is

0

0.1

0.2

0.3

0.4

0.5

0.6

−1.5 −1 −0.5 0 0.5 1 1.5

U = 3, without staggered potential

A
(ω

′ )

ω′/Ω

A
B

0

0.1

0.2

0.3

0.4

0.5

0.6

−1.5 −1 −0.5 0 0.5 1 1.5

U = 3, with staggered potential

A
(ω

′ )

ω′/Ω

A
B

Figure 1: Spectral functions A (ω′) = − 1
π

ImGRnn (ω) with
ω′ = ω+nΩ for the case without staggered potential (upper),
and the case with staggered potential Ω

∑
l λlnl (lower). For

both panels, the driving frequency Ω = 7, K
Ω

= 1.28, and
∆ = 0. Bath parameters are Γ = T = 0.05.

smaller than the driving frequency. We show the spectral
functions for U = 3 in the lower panel of Fig. 1, and we
observe that the band width is approximately Ω. The
bandwidth is smaller than Ω for a smaller U. (iii) When
U ? 3, resonant tunneling plays an important role. We
define N+

B(A) = 1
2π

∫ Ω/2

−Ω/2
dω
∑
n,ω+nΩ>0 ImG<nn,B(A) (ω),

which corresponds to the faction of atoms occupying
the upper Mott band. The reason for these excita-
tions is the resonant tunneling induced by the hopping
〈F | eiθ̃BA(t)c†BcA |I〉 between A and B sites in the corre-
lated regime. If there were no such resonant tunneling,
the fraction of atoms on A site would be estimated as
NA − N+

A + N+
B , and similarly for B site it would be

NB+N+
A−N+

B . If the estimation were accurate, we would
have NA−N+

A +N+
B ≈ NB +N+

A −N+
B ≈ 0.5 for interac-

tions U ? 3. As shown by blue and red dots in Fig. 2, we
note that bothNA−N+

A +N+
B andNB+N+

A−N+
B are close
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0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 2 4 6 8 10

Ω = 7, K = 1.28Ω, ∆ = −0.6

U

NA

NB

NA −N+
A +N+

B

NB +N+
A −N+

B

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 2 4 6 8 10

Ω = 7, K = 1.28Ω, ∆ = 0

U

NA

NB

NA −N+
A +N+

B

NB +N+
A −N+

B

Figure 2: Charge density wave (CDW) versus interactions
U for a two-dimensional hexagonal optical lattice with 9 × 9
unit cells and periodic boundary conditions in both x and y
directions. Bath parameters are Γ = T = 0.05. N+

A(B) is
shown in Fig. 3.

to 0.5 when U ? 3. This demonstrates that the resonant
tunneling between A and B sites is the main contribution
to the difference between the atom densities on A and B
sites when U is relatively large. This shows the charac-
teristic difference between the NESS and an equilibrium
state. On the other hand, it offers a way to estimate the
resonant tunneling. Suppose it is possible to measure
the charge density NA and NB for different interactions.
One can then estimate the contribution of the resonant
tunneling by calculating NA− 0.5 or 0.5−NB for U ? 3.
(iii) There is some deviation from 0.5 for NA−N+

A +N+
B

and NB +N+
A −N+

B . It shows that there are high-order
contributions, from the hopping A-B-A (or equivalently,
B-A-B), toN+

A andN+
B . These contributions do not affect

the number of atoms on A and B sites, but create exci-
tations. This is also evidence for that the next-nearest
neighbor hopping is effectively generated by lattice shak-

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

Ω = 7, K = 1.28Ω, ∆ = −0.6

U

N+
A

N+
B

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

Ω = 7, K = 1.28Ω, ∆ = 0

U

N+
A

N+
B

Figure 3: Charge density with positive frequency induced by
resonant tunneling, plotted versus interactions U . The peak
is due to one-photon resonant tunneling when U = Ω. Other
parameters are the same as in Fig. 2.

ing, even though in this calculation we cannot show that
it comes with a phase in this calculation.

We have a short comment regarding the case in the
upper panel of Fig. 1. When the staggered potential is
absent, there are still resonant tunnelings. However, they
are the same for A and B sites, in contrast to the case
with staggered potentials.

In Fig. 3, the charge density with positive frequency
(N+

A(B) = 1
2π

∫ Ω/2

−Ω/2
dω
∑
n,ω+nΩ>0 ImG<nn,A(B) (ω)) is

shown. It is corresponding to the effect of resonant tun-
neling [53]. The peak is at U = Ω = 7, where the one-
photon resonant tunneling is dominant. As we have dis-
cussed above, the contribution N+

A (N†B) is due to the
direct hopping from B (A) sites, plus higher-order con-
tributions from A (B) sites. Generally, N+

A > N+
B , and

atoms prefer to hop to A sites due to the higher staggered
potential on B sites.
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B. Edge states

In this section, we present topological properties of a
circularly shaken hexagonal optical lattice. We investi-
gate edge states in a cylinder geometry of a hexagonal op-
tical lattice, with a flux Φ insertion (Fig. 4) [54–56]. This
is the setup in the Laughlin gedanken experiment [38].
The insertion of flux is equivalent to a twisted boundary
condition in the direction with periodic boundary condi-
tion [57, 58]. It is a general setup with the potential to
be generalized to disordered cases [58].

With insertion of one flux quantum, we demonstrate
the change of topological properties of the system. Edge
states are hallmarks of nontrivial topological properties.
Using real-space Floquet DMFT, we study the interplay
between interactions and edge states. We show the spec-
tral functions in Fig. 5. For finite detuning ∆, the cylin-
der geometry can host edge states when U = 0. With
increasing interactions, the edge states as a function of
the inserted flux Φ are smeared out as can be seen in
Fig. 5. This corresponds to a finite lifetime of quasi-
particles. The sharp spectral peak of a quasiparticle is
gradually expanded due to increasing interactions. When
U = 3, we see a simple Mott gap. We observe three dif-
ferent phases: Chern insulator with edge states present,
pseudogap metallic phase with gap closed, and Mott in-
sulator with gap open again. According to the effec-
tive Hamiltonian [14], the ratio between the next-nearest
neighbor hopping t2 and nearest neighbor hopping t1 is
|t2/t1| = 0.1 with |t1| = 0.5. The pseudogap metallic
phase exists approximately when U ≈ 2. This is consis-
tent with DMFT calculations in Ref. [52] for the Haldane-
Falicov-Kimball model. The difference is that here we are
considering a non-equilibrium driven system connected
to a bath. The largest interaction U = 3 we have shown
is much smaller than driving frequency Ω = 7. It can
therefore be expected that resonant tunneling is greatly
suppressed. The dissipation rate Γ into the bath has ef-
fects on the spectral functions especially for small U . It
introduces an iΓ correction to the self-energy and this
term is equivalent to an interaction effect.

Figure 4: A cylinder geometry of a circularly shaken hexago-
nal optical lattice with a flux Φ insertion. This is the setup in
the Laughlin gedanken experiment [38]. The zigzag boundary
condition is used in the calculation.

Figure 5: Spectral functions versus the flux Φ for different
interactions. It shows interaction effects on edge states in
a cylinder geometry of 3 × 10 unit cells with 3 unit cells in
the direction with a periodical boundary condition. Other
parameters are Ω = 7, K

Ω
= 1.28, and ∆ = −0.35. Bath

parameters are Γ = 0.005 and T = 0.01. ω′ indicates a general
frequency which can be outside the first Brillouin zone of Ω.

C. Charge pump

A second topological quantity which can be investi-
gated in Laughlin’s setup is the charge pump, which is
closely related to edge states. For an equilibrium system,
when well-defined edge states are present in the cylinder
geometry of a hexagonal optical lattice, a change of one
flux quantum will induce an integer number of atoms to
transfer from one edge of the cylinder to the other [38].
The number of transferred atoms depends on the num-
ber of edge states. An integer charge pump is a signature
of non-trivial topological phase. Following Ref. [54], we
define the charge pump with insertion of flux Φ as

QΦ = QR,Φ −QL,Φ (20)

which is the charge density difference between two halves
of the cylinder (see Fig. 6: left and right of the cylin-
der). Qα,Φ = 1

2π

∫ Ω/2

−Ω/2
dω
∑
i∈α,n ImG<i,Φ,nn (ω) with

α = R,L, and Floquet index n. ImG<i,Φ,nn (ω) =
1
2 Im

[
GKi,Φ,nn (ω)−GRi,Φ,nn (ω) +GAi,Φ,nn (ω)

]
, where i is

the site index in the left or right half. The flux is im-
plemented according to Ref. [56]. Using the sum rule
1
π

∫ Ω/2

−Ω/2
dωIm

∑
nG

R/A
i,Φ,nn = 1, we have

QΦ =

∫ Ω/2

−Ω/2

dω
∑
n

1

2π
Im
[
GKR,Φ,nn (ω)−GKL,Φ,nn (ω)

]
.

(21)
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Figure 6: The charge pump with insertion of a flux Φ is de-
fined as charge density difference QΦ = QR,Φ−QL,Φ between
the two halves of the cylinder, as indicated by different back-
ground colors. When there are well-defined edge states, they
are expected to be present in the left or the right half.

1. An isolated equilibrium system

We show that Q can indeed be a topological in-
variant to distinguish non-trivial and trivial topologi-
cal phases for an non-interacting equilibrium state. For
this case, no bath is needed for energy dissipation.
We can determine the Keldysh Green’s function us-
ing the fluctuation-dissipation theorem [43]: GK (ω) =

tanh β0ω
2

(
GR (ω)−GA (ω)

)
, where β0 = 1

kBT0
with T0

the equilibrium temperature of the system. We choose
T0 as a very small number close to 0. The charge pump
can be calculated as:

QΦ =− 1

π
Im

∫ Ω/2

−Ω/2

dω
∑
n

f (ω + nΩ)

× Im
[
GRR,Φ,nn (ω)−GRL,Φ,nn (ω)

]
. (22)

QΦ can be calculated directly or using the technique of
the contour integral. In Fig. 7, we show the charge pump
versus flux insertion Φ for topologically non-trivial and
trivial cases. In the upper panel of Fig. 7, we observe a
sharp jump of the charge density differenceQ at the point
Φ, where two edge states intersect each other. It means
that one atom is transferred from one edge of the cylinder
to the other. In contrast, in the topologically trivial case,
we only observe a smooth change in the charge density.
Therefore, QΦ can serve as a topological invariant for
distinguishing topologically non-trivial and trivial cases.

2. System coupled to a free fermion bath

We present the charge pump Q for a NESS obtained
from the real-space Floquet DMFT in Fig. 8. Corre-
sponding to edge states in Fig. 5, we show that there is
a jump in the charge pump in Fig. 8. However, the jump
is not an integer even for very small interactions. With
increasing interactions, the jump becomes very smooth.
We explain why the jump is not integer even for U = 0.
It does not contradict to what we show in Fig. 7. In real-
space Floquet DMFT, there is a bath coupled to every
lattice site. With the approximation of constant DOS of
the bath, the dissipation into the bath introduces a finite

Figure 7: Charge pump QΦ with insertion of a flux for a
cylinder hexagonal lattice with 3 × 10 unit cells in an non-
interacting equilibrium state. There are 3 unit cells in the
direction with periodic boundary conditions. Other param-
eters are Ω = 7, K

Ω
= 1.28, ∆ = −0.35 (upper panel), and

∆ = 0.35 (lower panel).

self-energy to the system. This is equivalent to an inter-
action effect. In fact, it is this effective interaction which
destroys the integer charge pump when U = 0. When
the system couples to the environment (the bath) and
becomes open, the unavoidable dissipation plays a role
in the topological properties. Even though the dissipa-
tion is rather small, the interaction effect induced by it
can be pronounced because the effective hopping is heav-
ily dressed by the driving.

3. System coupled to a heat bath

To further identify the role of dissipation to the bath
in the charge pump for a non-interacting system, we here
study the NESS that forms when the driven system at
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Q
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Φ

Figure 8: Charge pump QΦ with insertion of a flux Φ for
a cylinder hexagonal lattice, obtained by real-space Floquet
DMFT for different interactions. The parameters are the
same as those in Fig. 5. For the non-interacting case, we
obtain the charge pump by a direct calculation of the non-
interacting Floquet Green’s function with the bath correc-
tions. It is different from the method of rate equations.

half filling is coupled to an ohmic heat bath, using the
rate equations.

Similar to the fermionic reservoir, we couple one heat
bath at temperature T to every site of the lattice. This
is mediated by a coupling operator v(l) = c†l cl for a given
site l. Note that we assume this form of the coupling for
the direct frame. However, if we transform the coupling
to the co-moving frame, it still obeys the same form since
the unitary rotation U commutes with the coupling c†l cl.
From Eq. (15) one then infers rates R(l)

ab that result from
coupling this site l to the heat bath. The total rates for
coupling the system globally to an external heat bath
result from the incoherent sum of all of these processes,
implying Rab =

∑
lR

(l)
ab .

With these rates we solve the kinetic equation (19) for
the NESS. Just to remind the reader, the resulting state
is the long-time steady state that results when the system
is under a constant driving and weakly coupled to the
bath, meaning that the coupling constant is small when
compared to all quasi-energy splittings in the system,√

Γ� (εk − εq), for k 6= q.
We observe that for frequencies Ω which are large when

compared to the bandwidth, the distributions 〈na〉 that
we observe in the NESS are still close to thermal distribu-
tions with an effective temperature Teff , cf. the examples
in Fig. 9(a) and (b). This effective temperature is ob-
tained by fitting the closest thermal distribution to the
occupations such that 〈na〉 ≈ 1/(e(εa−µ)/Teff + 1), and
therefore assuming what was called a “Floquet-Gibbs”
state in the literature [59]. Note that in Fig. 9, the
temperature of the bath is T = 0.001J , but still, due
to the driving, in the long-time limit the system heats

(a)

−1 0 1
0.0

0.5

1.0

εa/J

〈na〉
(b)

−1 0 1
0.0

0.5

1.0

εa/J

〈na〉

(c)

0.25 0.50 0.75 1.00
5

10

15

20

K
Ω

Ω

Teff/J

0.05

0.55

(d)

0.25 0.50 0.75 1.00
5

10

15

20

K
Ω

Ω

Teff/J

0.11

0.59

Figure 9: NESS that forms when the system is coupled to an
ohmic heat bath (no cutoff, Ec = ∞) at T = 0.001J . (a, b)
We obtain effective temperatures by fitting the distribution
〈na〉 (red dots) of the NESS with a Fermi-Dirac distribution
with temperature Teff (blue line), where (a) ∆ = −0.1, Ω = 5,
K/Ω = 0.05 and (b) ∆ = −0.3, Ω = 13.33, K/Ω = 1. (c, d)
Teff as a function of driving parameters, for (c) ∆ = −0.1J
and (d) ∆ = −0.3J . We show states for a 3 × 7 lattice, but
we observe that Teff is almost independent of the size of the
lattice.

up to quite high temperatures that are on the order of
Teff ≈ 0.1J as shown in Fig. 9(c) and (d) for a heat
bath with ohmic spectral density and no spectral cutoff,
J(E) ∝ E. Interestingly, in this frequency regime, the
effective temperature of the steady state seems to depend
only on the relative strength K/Ω of the driving. Note
that this is in contrast to the analytic formula that was
presented in Ref. [60], where in addition to the K/Ω de-
pendence they find a term that scales as 1/Ωd (where d is
the exponent of the spectral density). In our calculations
we also observe that Teff is practically independent of the
size of the lattice.

Even by further decreasing the temperature T of the
bath, we are not able to reach lower effective tempera-
tures Teff . We checked this by comparing to the NESS
for a hypothetic T = 0 bath, where there are no bath
occupations nB = 0, so that there is only spontaneous
emission. These relatively large effective temperatures
are detrimental for the observation of quantized charge
pumping, since they correspond to a significant occupa-
tion of the "upper" Floquet band.

Note that this heating is due to the population transfer
between Floquet states that is induced due to the pres-
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(b)
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Figure 10: Like in Figure 9(d), but (a) with J(E) ∝ E0.5

and (b) with J(E) ∝ E exp(−E/5J).

ence of the coupling to the higher Floquet sidebands. As
was pointed out in the literature [60–62], this heating
can be suppressed by engineering the bath such that the
spectral density J(E) at large quasi-energy differences
becomes smaller. For example if we suppose the bath is
sub-ohmic with J(E) ∝ E0.5, as shown in Fig. 10(a), then
at large frequencies Ω we find that heating is suppressed,
leading to lower effective temperatures Teff in the NESS.
Similar suppression of heating is found in Fig. 10(b) for
an ohmic bath, but with a finite cutoff Ec = 5J in the
spectral density J(E) ∝ E exp(−E/Ec). Note that it has
been argued in the literature that in the limit Ω� Ec res-
onances are suppressed and one an expects an effectively
thermalized “Floquet-Gibbs” state [59]. Such a finite fre-
quency cutoff is the manifestation of bath correlation
times τR ∝ 1/Ec that are on the order of the time scales
of the system dynamics τS ∝ 1/J . Note that such finite
correlation times are tunable e.g. in the case where the
bath is a weakly interacting Bose-Einstein condensate in
a trap. There, excitations are nicely described by Bogoli-
ubuv quasiparticles (phonons) and the bath correlation
times can be controlled by the trap frequency [63, 64].
Also, sympathetic cooling of fermions in Bose-Einstein
condensates is a well established experimental technique,
however there, typically a relatively strong coupling Γ is
favorable, while here we target weak couplings.

If we now use a NESS that was prepared in pres-
ence of such a heat bath, one again may ask whether
one can observe the underlying topological nature of the
model. Similar to the DMFT calculations in presence of
the fermionic reservoir, in Fig. 11(a) we show the charge
difference QΦ of the right and lefthand side of the sys-
tem in the NESS that was prepared for a given value of
the flux Φ. However, even though for these parameters
the model is topological and the effective temperatures
are relatively low, especially in the case with a finite cut-
off in the spectral density (green line), we do not see a

(a)

0 2 4 6

−0.50

−0.25

0.00

0.25

Ec = ∞ Ec = 5J

Φ

QΦ

(b)

0 10 20 30 40 50

−2

−1

0

T = 0

Ec = ∞
Ec = 5J

tJ

QΦ

Figure 11: (a) Charge Pump QΦ with insertion of a flux Φ
for parameters Ω = 20,∆ = −0.1,K/Ω = 0.25 in a 3 × 10
lattice where we expect the system to be topological. For
given flux Φ we let the system relax to the NESS in presence
of a heat bath with J(E) ∝ E exp(−E/Ec) and T = 0.001J .
Using this procedure the signal is very weak, even though the
effective temperature in the NESS are quite low. (b) However,
there is a large transport signal if we prepare the NESS at
Φ = 0 and then ramp (at constant speed) one flux quantum
within a finite ramp time τ ≈ 50/J . Here, the solid lines show
snapshots of the system at integer multiples of T neglecting
the micromotion. The green line (with some cutoff in the
spectral density) features a relatively large charge transport
that is close to the (almost) integer transport behavior that
we expect for hypothetic thermal T = 0 populations of the
quasienergies (dashed line).

pronounced peak in the charge difference.
In order to overcome this problem, we propose a differ-

ent strategy to probe topology in the model. Namely, in
Fig. 11(a) it is assumed that the ramp time τ is big when
compared to the relaxation times τR, i.e. we follow the
system adiabatically in the thermodynamic sense. Here,
since we are in the weak coupling regime where τR is
large, we propose to perform a ramp on a much shorter
time scale τ � τR, such that during the ramp one may
neglect the action of the bath. However, this ramp should
still be slow when compared to system time scales τs � τ ,
which one might call adiabatic in the closed system (with-
out the presence of the bath). The solid lines in Fig. 11(b)
show the charge transport that one observes in such a
procedure, where we start with a NESS that is prepared
without the presence of an external field, ΦNESS = 0.
There, the values are quite high, for the ohmic bath with
a cutoff. The density difference between two halve of the
cylinder QΦ is up to about 1.4 (green line), correspond-
ing to 0.7 of a charge is transported, which is very close
to the quantized value that we expect for such a ramp
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if we assume a T = 0 population of the quasi-energies
(dashed line).

D. Experimental relevance

We discuss the possibilities to observe the physical
quantities we have explored in an experiment. To detect
the CDW, one can measure the local densities on A and
B sites either in situ in a quantum gas microscope, af-
ter time of flight via adiabatic band mapping techniques,
or via the double occupancy [65]. For the charge pump,
one needs to compare the local particle density between
two parts of the cylinder geometry. The extra flux, in
fact, relaxes the requirement to have a periodic bound-
ary condition in one direction. For a hexagonal lattice
which is finite in both directions, if it is possible to con-
nect the sites at the ends of one direction with a complex
long-range hopping, we can realize this cylinder geome-
try with a flux. This might be easier using a synthetic
dimension [66]. A second possible way is discussed in
Ref. [67]. It proposes to use Laguerre-Gauss beams to
create a cylinder optical lattice. Another possibility is
to engineer a ring shaped system with the central hole
pierced by a tunable magnetic flux, as it can be real-
ized using the scheme proposed in Ref. [68]. For the
charge pump measurement, as we have shown for the
non-interacting case with rate equations, there is the pos-
sibility to couple the system weakly to a low-temperature
heat bath to prepare the system in a state close to equilib-
rium. Bath engineering can be used to reach sufficiently
low effective temperatures in the NESS. Then, the flux
can be adiabatically ramped up to have a pronounced
charge pump.

We have a comment on the bath. To study NESS in
a driven system, it is necessary to connect the system
to a bath to dissipate the extra energy. Most setups for
cold atoms in optical lattices are isolated systems, but
they can be in the prethermal regime when the driving
frequency is sufficiently large. We may expect that the
NESS in our setup may share some similarities for an
isolated system in the prethermal regime [69].

IV. CONCLUSION

In conclusion, we have studied the charge density wave
and charge pump of fermions with Falicov-Kimball inter-

actions in a circularly shaken hexagonal optical lattice.
We show that the charge density wave is induced by the
staggered potential and is dramatically changed because
of resonant tunneling. We also show interaction effects
on the topological properties. An increase of the Falicov-
Kimball interaction tends to smear out the edge states,
and finally makes the system enter the Mott insulator
phase.

Furthermore, we study non-equilibrium steady states
in a Laughlin charge pump setup which is coupled to
either a fermionic reservoir or a heat bath. In the in-
teracting case, we show that the charge pump is not in-
teger for insertion of one flux quantum. Also for the
non-interacting case, we find that it is not integer due to
dissipation into a bath. We confirm this by detailed cal-
culations via rate equations based on the Floquet-Born-
Markov approximation. Moreover, we explored possibili-
ties to lower the effective temperature characterizing the
NESS of the driven system by engineering the spectral
properties of the bath. Our calculations suggest that in
theory one can indeed use the presence of a bath to cool
down the system, e.g. after a quench where in the closed
system typically there are excitations in the upper band,
and also to some extent one can overcome the heating
that is inherent in the interacting Floquet system. We
propose an experimentally feasible procedure to ramp up
the flux for the measurement of the charge pump.

In the future, the approaches developed here can also
be applied to the Haldane-Hubbard model, where both
spin states are mobile, and which is naturally realized
with cold atoms in optical lattices.
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