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Supplementary Figures: 
 

 
 
Supplementary Fig. 1 | General procedure of the metabolic pulsing of mice. a, Mice were pulsed with a 
SILAC diet, containing 13C6-lysine, for different lengths of time (5, 14 or 21 days), followed by cortex 
dissection and mass spectrometry analyses, to reveal relative incorporation rates. These, in turn, are 
interpreted to provide protein lifetimes (see also Supplementary Fig. 3 and 5). b, Exemplary MS1 scan of 6 
peptides. The blue peaks indicate the 13C6-lysine-containing peptides while the ones shown in black 
represent the regular unlabeled peptide. The ratio between the 13C6-lysine-containing peptides and the 
regular ones is shown in the bar graphs on the right.	Data are presented as mean ± s.e.m.; n = 3. Relative 
incorporation increases steadily during the pulsing, at different rates for the different proteins, indicating that 
they turn over with different speeds.  
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Supplementary Fig. 2 | 13C6-lysine-containing peptides are detected accurately. a, To test whether the 
13C6-lysine-containing peptides were detected as accurately as the normal ones, we prepared a mock 
experiment. We mixed cortices from a 12C6-lysine control mouse and from a full SILAC mouse, in different 
ratios, and measured the resulting mixture by mass spectrometry. b, The measured contents of 13C6-lysine-
peptides was virtually identical to the one expected from the mixture ratios (r = 0.99, P-val < 0.001).  
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Supplementary Fig. 3 | Model for the availability of lysine during protein turnover. a, Pulsing strategy 
for the study of protein turnover in vitro (left) and in vivo (right). In vitro essential amino acids can be 
substituted by a rapid medium change, and the t1/2 of proteins (referred to in this work as lifetime) can be 
measured directly from the labeling of different proteins (see examples in the left plot). In vivo the situation is 
more complicated. Animals absorb essential amino acids from the diet, just as the cells do, but the way the 
amino acid levels change in the body depends on the metabolism of the entire proteome, since amino acids 
can be recycled following protein degradation, and re-enter the amino acid pool available for protein neo-
synthesis. As a consequence, in order to determine protein lifetimes in vivo it is necessary to study the 
behavior of the amino acid pool. b, Same as in a, but for a chase strategy. c, Lysine is present in at least two  
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Supplementary Fig. 3 legend continuing from the previous page: 
pools in the mammal organism: the soluble (free) lysine pool, which is in equilibrium with food intake, and the 
pool immobilized into proteins. Initially all lysines are light (12C6) in the mice fed with normal food. SILAC food 
intake delivers 13C6-lysines (heavy lysines, H) into the soluble lysine pool (Hsol), which is used for protein 
synthesis, thereby placing the heavy lysines into proteins (Hprot). At the same time, protein degradation 
delivers light lysines (L) from the protein pool (Lprot) to the soluble pool (Lsol). Eventually, lysines are 
eliminated by excretion from the soluble pool. We solved the model represented here (see methods for 
details). d, Graphical representation of the free lysine pool. For simplicity only Hsol is plotted (since its 
temporal behavior is sufficient to determine the protein lifetimes). Hsol is influenced by the fast rise of 13C6-
lysines from the food intake and by the slower exchange with the protein pool, resulting in a double-
exponential behavior. Assuming a constant rate of production and degradation, each protein is likely to be 
turned over in a single exponential process. It is important to point out that the availability of 13C6-lysines in 
the soluble pool determines the apparent labeling of proteins. This renders the interpretation of the turnover 
of the proteins more complex, and therefore their lifetimes cannot be derived from single exponential fits. 
Instead we have to fit a function that takes into account the double exponential behavior of the soluble lysine 
pool (see online Methods). This function is shown here for three exemplary proteins of interest (POIs) with 
different turnover rates. e-f, Strategy for parameter optimization. We also included a chase step to make sure 
that our model presented in c is correct. While the lifetime of each POI is different, all POIs are synthetized 
from the same Hsol. We optimized for Hsol by fitting all POIs using the same double-exponential parameters. 
Using various parameter combinations and minimizing the sum of square errors (SSE), the most likely 
soluble pool Hsol is eventually found. g, Graphical representation of the minimum in the SSE as a function of 
the parameters of the Hsol (see online Methods for details). The red arrow indicates the minimum. The inset 
above the surface shows slices through the minimum of the SSE for all three parameters of the double-
exponential function. h, Equation and graphic representation describing Hsol, as obtained from the parameter 
optimization. The light blue area indicates the standard errors of the optimization. Please note that t1 =  𝜏! ∙
ln 2. i, Single lysine incorporation percentages, across different pulse times vs. the calculated lifetimes. Each 
point represents a single protein from the cortex homogenate dataset. The light gray lines indicate the 
respective fittings of the points. The pulse-chase data are represented in purple, and the red line indicates 
the predicted labeling for this dataset. Although the pulse-chase data were only used for the refinement of 
the lysine pool, their distribution is in agreement with the predicted lifetimes obtained with the pulse only 
strategy (see also Supplementary Fig. 10 for the analysis of proteins that deviate from the prediction). To test 
the reliability of our model we used the comparison method, where we compared the two-pool model with a 
single exponential pool model, as shown in the inset. Here, the Hsol pool dynamics are disregarded, and are 
instead assumed as being 100% and 0% during pulse and chase phases, respectively (as in the left sides of 
panels a and b). Individual POI fit results show generally longer lifetimes, but also large fit residuals towards 
shorter lifetimes. For the global comparison of the two models we used the probability of the selected model 
(Akaike weight), based on the Akaike information criterion (AIC)1. The Akaike weight is a number comprised 
between 0 and 1, where 0 indicates the least probable model and 1 indicates the most probable model. This 
measure takes into account the complexity of the model, by adding penalties to the more complex models. 
The Akaike weight from our two lysine pool is indistinguishable from 1, indicating that this model is far better 
than a model assuming a single exponential change of lysine availability (which has an Akaike weight 
indistinguishable from 0).  
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Supplementary Fig. 4 | In vivo confirmation of the reliability of the lysine pool model presented in 
Supplementary Fig. 3. a, A result of the optimization presented in Supplementary Fig. 3 is that the food- 
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Supplementary Fig. 4 legend continuing from the previous page: 
derived lysine pool is rapidly saturated with 13C6-lysine (within ~1 day). To test this notion, we pulsed mice 
with 13C6-lysine food, and isolated the free lysines from the blood plasma following precipitation of the blood 
proteins (to avoid contamination from lysines immobilized into proteins). In this fraction we measured the 
content of labeled lysines (Hsol) after derivatization using gas-chromatography mass spectrometry (GC-MS). 
b, The kinetics of free 13C6-lysine enrichment in the deproteinized plasma (dots) are close to the estimated 
behavior of free 13C6-lysine in our model (line). N = 33 independent experimental measures, corresponding 
to one animal each. c, A second notion deriving from the model is that the lysine pool resulting from the 
degradation of previously existing proteins is very slowly replaced by 13C6-lysine, and provides normal 
lysines for incorporation into newly synthesized proteins for a long time period. In simple terms, even after 
our longest pulse (21 days), the mouse proteome would “release” unlabeled lysines, which would mix with 
the labeled ones and contribute to new protein synthesis. An elegant, although laborious way to test this 
specifically in the brain is to induce the expression of a protein for a very short time, after the metabolic 
labeling of the mice. To test this, we measured the 13C6-lysine incorporation in a protein expressed on cue, 
after 4, 13 or 20 days of feeding with the heavy lysine. We generated a CaMKCreERT2 R26R reporter mouse 
line by crossing the R26R LacZ reporter mouse line2 to the tamoxifen-inducible neurospecific CaMKCreERT2 
driver line, which is specific for excitatory neurons of the forebrain3. We injected these reporter mice with 
tamoxifen thereby inducing the expression of the exogenous β-galactosidase (β-gal) reporter in neurons for 
one day. The cortex was then extracted, β-gal was immunoprecipitated and analyzed by mass spectrometry. 
d, Low levels of β-gal are expressed after 1 day of induction, and they become clearly visible after 3 days of 
induction by Western Blotting (the positive control in the left lane indicates a mouse injected with tamoxifen 
for 5 days, twice daily, and sacrificed 10 days later, for comparison purposes). e, Since we aim at inducing β-
gal in mice for a short period (1 day only), we needed to rely on an immunoenrichment strategy to obtain 
sufficient amount of β-gal that can be analyzed by targeted-MS. The protein is evident in Western Blotting 
after enrichment. f, Measured β-gal labeling overlaid with the labeling predicted by our model. Even after 20 
days of SILAC diet feeding, the labeling of β-gal is ~70%, since about 30% of the lysines used in 
biosynthesis are still normal lysines, coming from the degradation of previously existing proteins. This value 
was virtually identical to the measured levels of 13C6-lysine in β-gal. Data are presented as mean ± s.e.m. N 
= 9 independent biological measurements, corresponding to one mouse each. 
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Supplementary Fig. 5 | Determination of the protein lifetimes. Using the optimized parameters 
(Supplementary Fig. 3) and after confirming the reliability of our model in vivo (Supplementary Fig. 4), we 
performed precise fits to the 13C6-lysine amounts measured from the spectra, as shown here for the 
exemplary proteins presented in Supplementary Fig. 1b. These provide the protein lifetimes (expressed as 
t1/2 of each POI, see also Supplementary Data 1). 
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Supplementary Fig. 6 | Systematic quality evaluation of the brain protein lifetime datasets. a, Table 
resuming size and quality of the protein lifetime datasets presented in this work (for individual r2 and 95% 
confidence intervals refer to Supplementary Data 1). The minimum r2 of the fitting that was used for 
bioinformatic analyses was 0.7. b, Dependency of the average r2 on the number of points used for the fitting. 
The graph includes the measurements of all datasets (for a more detailed analysis refer to Supplementary 
Fig. 7 a-i). If 10 or more independent datapoints are used in the fitting, the results become inherently 
reliable.  c, Same as in b but for the 95% confidence interval (c.i.) in the determination of the lifetime 
(expressed as a % of each measured lifetime; for a more detailed analysis refer to Supplementary Fig. 7 j-
r). As a small technical note, the 95% c.i. is the most reliable measure of the error for this typology of data. 
When more than 15 datapoints are used in the fitting, the confidence interval becomes ~10% of the lifetime 
(meaning that a protein with a lifetime of ~3 days will have a confidence interval of ~0.3 days in the 
determination of the lifetime). 
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Supplementary Fig. 7 | Detailed quality evaluation of the lifetime datasets. a-i, Distribution of  lifetimes 
vs. r2 expressed as cumulative histograms. The large majority of datasets have lifetime determinations with r2 

> 0.7, indicating reliable curve fitting. j-r, Same as in previous panels but for the confidence interval 
(expressed as a % of each lifetime). The large majority of lifetimes is determined with confidence intervals 
lower than 30% for each lifetime.  
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Supplementary Fig. 8 | In vivo analysis of the peptides containing two lysines (mis-cleavage analysis) 
confirms the validity of the lifetime measurements. a, Schematic representation of the possible labeling 
status of peptides containing either two unlabeled lysines (12C6 ; zero-13C-lysine), one unlabeled and one 
labeled lysine (12C6  and 13C6; one-13C-lysine) or two labeled lysines (13C6 ; two-13C-lysine). b, Exemplary 
spectrum of one peptide from mice pulsed for 21 days showing the three possible labeling forms. c, Relative 
abundance of the zero-, one- and two-13C-lysine form of two peptides from mice labeled for 21 days (N = 3 
independent biological replicates). d, Predicted distribution of the three labeling profiles at 21 days versus 
the determined protein lifetimes based on the lysine pool availability (from Supplementary Fig. 3-4). e, 
Measured labeling profiles of double-lysine peptides from mice pulsed for 21 days versus the lifetimes that 
were determined as in the strategy explained in Fig. 1 and Supplementary Fig. 1, 3 and 5. f, Overlay of the 
predicted and the measured lysine abundance in measured peptides. While initially the differences in 
labeling seemed difficult to interpret (see panel c), we realized that the labeling depended on the lifetimes of 
the respective proteins, and therefore could be easily explained if these were taken into account. The 
miscleavage analysis is therefore an additional confirmation of the validity of the model we used for the 
determination of the lifetimes.  
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Supplementary Fig. 9 | An in vivo pulse-chase approach combined with a second pulse confirms the 
validity of the lifetime measurements. a, Double-labeling strategy used in the experiment. Mice were first 
pulsed for 14 days with Lys6 (13C6 lysine) and were then pulsed for 7 days with Lys0 (12C6 lysine). This chase 
was combined with the pulse of Arg10 (13C6-15N4 arginine). Please note that even if Arg is an amino acid 
whose dietary deprivation can cause growth deficits4, it is not an essential amino acid and in vivo it can be 
metabolized to proline. Thus we restricted any analysis from this experiment to peptides containing one 
lysine and one arginine but devoid of proline. b, Exemplary spectrum for a peptide deriving from the in vivo 
labeling described in a. c, Scatter plot distribution of Lys6-labelling in the analyzed peptides where only 
lysine is labeled (Lys6-only; dark blue peaks in panel b) versus the lifetimes of the proteins determined as 
explained in Supplementary Fig. 1, 3 and 5. The percentage relates to the total amount of the respective 
peptides, taking into account all four possible labeling profiles (light, Lys6-only, Arg10-only, Lys6-Arg10; as 
exemplified in panel b). d, Predicted distribution of this labeling profile. Since we have not measured the pool 
of arginine, we estimated its labeling efficiency from optimizing the associated parameter b (1 / tausol) for the 
arginine model, while constraining all other parameters to those found in the lysine-only model. e-f, As in a-b, 
although in this case the Arg10-only containing peptides are shown (red peaks in panel b). g, Scatter plot 
deriving from the combination of panels c and e (measured labeling of single labeled Arginine on the y-axis 
and of single labeled Lysine on the x-axis). h, Predicted distribution of the data presented in g. The double 
pulse approach confirms once more the validity of the model used for the determination of the lifetimes. 
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Supplementary Fig. 10 | Analysis of the pulse-chase data, and lifetimes in protein families and 
complexes. a, The pulse-chase data is represented in purple and is ordered by the lifetime measured from 
the pulse data, as in Supplementary Fig. 3i. Each data point corresponds to the average of the biological 
replicates for a particular protein. b, Zoom of the pulse-chase data from panel a. The purple line represents 
the weighted average behavior of the data, using Gaussian weighting (sigma = 2 days). In green we have 
highlighted the data with values higher than the 95th percentile (with the highest lysine incorporation in the 
chase) while in red the values lower than the 5th percentile (with the lowest lysine incorporation). We checked 
if the difference of incorporation for these values is significant, and we realized that there are no significantly 
different values with respect to the mean, and the data scattering corresponds to noise. In any case, we 
reasoned that some of the proteins in these two groups might behave differently than the rest of the 
proteome. We performed the gene ontology categorization of these two groups, and we found only a single 
biological process that is enriched in the lower 5th percentile (protein maturation, GO:0051604; including 12 
proteins: O08915, P30999, P05132, P68181, P05480, Q61330, P13020, Q8BHG1, O08663, Q99JB2, 
Q9D924, Q9CYN9). This is a rather general protein category since GO:0051604 is related to "any process 
leading to the attainment of the full functional capacity of a protein". c, The lifetimes of proteins from the 
class-II aminoacyl-tRNA synthetase protein family. Albeit not identical, the lifetimes of the proteins in this 
family are all between 4 and 10 days. d, The lifetimes of proteins from the 40S (small) ribosomal subunit, as 
a representative macromolecular complex. e, We analyzed the coefficient of variation of the lifetimes in 119 
protein families and macromolecular complexes, expressed as percentages of the coefficient of variation 
obtained when selecting random proteins. Data are presented as mean ± s.e.m.; n ≥ 20; *** = ANOVA P-
value < 0.001. The coefficient of variation of the lifetimes is smaller than that of randomly selected proteins 
for both protein families and complexes, indicating that even if the lifetimes are not the same within these two 
groups, they are statistically closer to each other than a random group of proteins as might be expected.  
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Supplementary Fig. 11 | Comparison between our brain cortex homogenate dataset and Price and 
collaborators5. a, Venn diagram and basic statistics of the proteins identified in the two datasets. b, A first 
example comparing the incorporation of 13C6-lysine at different time points in one protein, in our own work 
(left), and the incorporation of 15N labeling in the same protein, from Price and collaborators. For most 
proteins the measurements from the two studies are extremely similar, and the resulting lifetimes are also 
similar. c, Same as in b, showing one of the measurements where there is a substantial difference. Please 
note that in Price and collaborators the authors have decided in their fitting strategy to allow the population to 
have a variable delay in the emergence of the labeling (t0) which results in inherently good fitting results (r2), 
albeit this strategy is difficult to explain in physiological terms. d, Scatter plot showing the lifetimes of 
common proteins. The proteins that were determined with a single peptide in Price et al. are shown in red. 
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Supplementary Fig. 12 | Number of peptides used for the lifetime calculation in the dataset from Price 
and collaborators5, and average difference between the two datasets depending on the number of 
peptides used in the measurements. a, Histogram of the number of protein lifetimes calculated in Price 
and collaborators, depending on the number of peptides used in the determination of the lifetimes. Note that 
for 37% of the proteins the lifetimes are calculated on a single peptide determination. b, Average lifetime 
difference between the two datasets (expressed as % of the respective lifetimes) subdivided for the peptide 
number used for the lifetime determination by Price et al. Note that the highest difference has been observed 
for the measures based on a single peptide in Price et al., suggesting that the measurements based on at 
least two peptides are more consistent across different datasets. Adjusted P-values for ANOVA with 
Bonferroni post hoc test vs. single peptide (* ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001). 
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Supplementary Fig. 13 | Comparison between our brain cortex homogenate dataset and the in vitro 
results from other studies. a, Scatter plot comparing the lifetimes of proteins in vitro with our cortex in vivo 
data. The in vitro data come respectively from the Schuman laboratory (Dörrbaum et al., 2018)6, the Savitski 
laboratory (Mathieson et al., 2018)7 and the Huganir laboratory (Heo et al. 2018)8. b, Scatter plot comparing 
the in vitro data from the Ziv laboratory (Cohen et al., 2013)9 with the other in vitro data introduced in panel a. 
c, Histograms of protein lifetimes in the different datasets showing the distribution of lifetimes. Note that in 
vitro all lifetimes are clustered together. d, Histograms of protein lifetimes in the different datasets for 
synaptic vesicle proteins. e, Same as in panel e, following median normalization (division of the vesicle 
protein lifetimes by the median of all measured lifetimes). The lifetimes measured in cultured are still all 
clustered tightly together. 
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Supplementary Fig. 14 | Fuzzy c-means clustering of the protein lifetimes and functional enrichment 
analysis of the clusters. a, The lifetimes were divided in classes with the fuzzy c-means algorithm10. The  
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Supplementary Fig. 14 legend continuing from the previous page: 
optimal number of clusters was determined to be 11, based on the negligible improvement (<1%) of the 
within-cluster sum of squares by increasing the number of clusters over 11. Clusters have been ordered by 
increasing lifetimes, with Cluster 1 corresponding to the lowest and Cluster 11 to the highest lifetimes. b-d, 
Summary of the functional analysis for all the 11 clusters, detailing the cluster features (number of proteins, 
mean lifetime and lifetime boundaries). The analysis was performed with WebGestalt 201711. Only non-
redundant significant terms are represented (with a false discovery rate lower than 0.05). The P-values are 
reported as –log10 (where the higher numbers color-coded in darker shades of red correspond to the most 
significant terms). In brief, Cluster 1, which has the shortest lifetimes, corresponds to nuclear proteins 
implicated in mRNA metabolism and translation. Cluster 2 contains some proteins that are part of the nuclear 
envelope. Cluster 3 is implicated in protein folding and is linked to ER and ER-Golgi transition functional 
processes. Cluster 4 is related to protein production and intracellular signaling. Cluster 5 includes several 
ribosomal proteins and is linked to adhesion and carbohydrate metabolism. Cluster 6 has similar features to 
Cluster 5. Cluster 7 is implicated in actin binding. Cluster 8 is not enriched for any term (for any cellular 
pathway). Cluster 9 includes terms implicated in the modulation of synaptic transmission and in mitochondrial 
metabolism. Cluster 10 is clearly mitochondrial. Cluster 11, the most stable, includes several mitochondrial 
processes, axon and neuron development, myelin components and neuronal nuclear development. This 
analysis is in good agreement with the specific lifetime differences reported in Fig. 1 and 2. 
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Supplementary Fig. 15 | Classification and string analysis of the Extremely Long Lived Proteins 
(ELLPs). a, Pie chart representation of the classification of ELLPs (corresponding to the  98th-100th 
percentile of the most stabilized proteins). The majority of ELLPs are nuclear. There is also a clear over-
representation of myelin and extracellular matrix proteins. b, String analysis12 of ELLPs reveals a large 
nuclear cluster including histones and Nups, as well as a myelin and an ECM cluster, confirming the 
distribution represented in a. c-e, Detailed functional classification of ELLPs, deriving from the string analysis 
confirms the overrepresentation of nucleosomes, myelin, extracellular matrix, nuclear pore and the related 
biological processes. 
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Supplementary Fig. 16 | Classification and string analysis of the Long Lived Proteins (LLPs). a, Pie 
chart representation of the classification of LLPs (corresponding to the  95th-98thpercentile of the most 
stabilized proteins). The majority of LLPs are mitochondrial. There is also a clear over-representation of 
cytoskeletal proteins. b, String analysis12 of LLPs reveals a large nuclear cluster including mitochondrial 
proteins, as well as a cytoskeletal cluster, confirming the distribution represented in a. c-e, Detailed 
functional classification of LLPs, deriving from the string analysis indicates an overrepresentation of the 
mitochondrial and of the cytoskeletal clusters (neurofilaments), and it also detects that among these proteins 
there are components of myelin, extracellular matrix and extracellular exosomes. 
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Supplementary Fig. 17 | Clustering of protein lifetimes based on protein and mRNA level 
quantifications. a,  3D scatter of protein lifetimes versus protein and mRNA abundance obtained as detailed  
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Supplementary Fig. 17 legend continuing from the previous page: 
in the Online Methods. The data was subdivided in 27 groups of proteins depending on the percentile 
distribution of these proteins in three dimensions (protein lifetime, mRNA abundance and protein 
abundance), as schematized on the right side of the graph. This results in 27 groups or clusters, ranging 
from “low protein abundance, low mRNA abundance, and low lifetime” to “high protein abundance, high 
mRNA abundance, and high lifetime”. b, Table resuming the results of the functional enrichment analysis of 
the 27 clusters11. Some of the most interesting results (further detailed in panel c) are highlighted in color. c, 
Detailed functional analysis for the groups highlighted in b. Group 3, which corresponds to proteins with a 
low abundance and a short lifetime that have relatively high mRNA levels, includes regulatory proteins that 
presumably need to be fast produced on demand, when needed. Group 9 corresponds to proteins that are 
abundant and have high mRNA levels, but have short lifetimes, and is functionally associated with auto-
phagosomal function, late endosomes and microtubule turnover. Group 15, with a medium lifetime and 
protein abundance but high mRNA is linked to protein signaling, vesicle transport and several developmental 
processes. Group 18. with long lifetimes, abundant proteins but with low mRNAs, includes processes 
associated with nucleotide metabolism and regulation of DNA synthesis. Group 25, with long lifetimes, 
abundant proteins, but low mRNA levels, is associated with the ribosome and with some specific 
mitochondrial functions. There are also several biological processes that require high mRNA and protein 
abundance, coupled to long lifetimes (group 27). These include mitochondrial functions and brain 
components such as axon and myelin structural proteins. 
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Supplementary Fig. 18 | Detailed string analysis categorization of the proteins with differentially 
regulated lifetimes in Glia and neuron nuclei. a, String analysis representation12 of the proteins 
significantly longer-lived in neuronal nuclei (NeuN+) with respect to Glia nuclei (NeuN-). Only proteins with an 
adjusted P < 0.001 were included in the analysis. K-mean clustering of the identified clusters reveals two 
large clusters of ribosomal proteins corresponding to ribosomes enriched in the nuclear envelope (red and 
yellow, as also detailed in the right side of the panel). The green and the blue clusters include several mRNA 
binding proteins and nuclear components. b, As in a for the proteins longer lived in Glial nuclei (NeuN-). The 
largest cluster (red) includes RNA polymerase II components and several regulators of mRNA splicing. In 
glial cells there is a less clear functional association of the proteins that seem to be preferentially stabilized 
(as seen from the lower number of links in the cluster graph), although the study of the specific pathways 
highlighted here might reveal specific regulatory mechanisms. 
  



	 24	

 
 
Supplementary Fig. 19 | Protein lifetimes in different brain cell subtypes. a, Protein lifetimes grouped in 
accordance to their enrichment in different cellular populations of the brain, as defined elsewhere13. We 
considered a protein enriched in a cell type when its amounts were >10-fold more abundant in one cell type 
compared with all the others cell types (following the same principle that was used by Sharma and 
collaborators13). Each data point corresponds to a single protein lifetime, and the black lines indicate the 
mean and the standard error of the mean (SEM) for each group. Oligodendrocytes are the only cell type that 
with a significantly higher mean lifetime (*** = P-value < 0.001). This difference is accountable to the fact that 
these cells produce myelin, which is an extremely long-lived structure in the brain. If the proteins that are 
characteristic for myelin are excluded, the mean protein lifetime of Oligodendrocytes is not significantly 
longer than the one of the other cell populations (see the ANOVA P-value summary on the right side of the 
panel for significances). b, Protein lifetimes in glutamatergic vs. GABAergic neurons. For the specificity of the 
glutamatergic/Gabaergic enrichment we relied on data published elsewhere14. The data is represented as a 
scatter plot where the log2 ratio of the enrichment has a positive value on the x-axis when the protein is 
more abundant in the glutamatergic population vs. the GABAergic one. The specific GABAergic and 
glutamatergic vesicular transporters (respectively vGlut and vGAT) are highlighted. There is trend for the 
Glutamatergic population of neurons to have shorter lifetimes (not statistically significant), but it is only due to 
the high abundance of CamK subunits in these neurons, which are short-lived (also detailed in the graph).  
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Supplementary Fig. 20 | Protein lifetime changes in the cerebellum versus the brain cortex, organized 
by protein groups. a, The lifetime changes in the cerebellum (Fig. 5; expressed as a percentage) are 
subdivided using the classification from Fig. 1 and detailed in Supplementary Data 1. A positive change 
corresponds to a longer lifetime in the cerebellum, while a negative change indicates a longer lifetime in the 
brain cortex. Each data point corresponds to a single protein lifetime and the black lines indicate the mean 
and the standard error of the mean (SEM) for each group. The results are in agreement with the functional 
enrichment analysis presented in panel b. Briefly, endocytic proteins and the clathrin endocytosis apparatus 
are shorter-lived in the cerebellum, while nuclear binding proteins and histones are longer-lived in the 
cerebellum. b, Non redundant gene ontology analysis11 of the lifetime changes in the cortex compared to the 
cerebellum. Exo-endocytosis pathways and cell adhesions are more stable in the cortex, while proteins 
implicated in chromatin assembly and nuclear organization are stabilized in the cerebellum. 
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Supplementary Fig. 21 | The procedure for preparing synaptosomes and synaptic vesicles. a, 
Graphical view of the centrifugation steps in this procedure. b, Western Blots of several synaptic proteins in 
the important fractions: cortex homogenate (Hom), post-nuclear pellet (P2’, containing the synaptosomes), 
and presynaptic pellet (LS2, containing the crude synaptic vesicles). The blots present four synaptic vesicle 
proteins (VAMP2, synaptotagmin 1, synaptophysin, and VGLUT1/2), four soluble synaptic proteins (Rab3a, 
RIM1/2, synapsin 1, and the clathrin light chain, clc), and four control proteins: post-synaptic NMDA 
receptors, the Golgi marker GM130, the glia marker GFAP, and tubulin. As a graphic aid, the enrichment of 
different proteins in these fractions, compared to the cortex homogenate, is shown in the graphs on the right. 
Both postsynaptic and glia markers are de-enriched from the presynaptic fraction. c-f, Non redundant gene 
ontology analysis11 of the lifetime changes among different fractions. The cellular components that are 
stabilized in most of the fractions belong to myelin, clathrin coated pits, actin and the microtubule 
cytoskeleton (d). The same trend is observed specifically in the cortex (e). In the cerebellum, several 
mitochondrial proteins are also stabilized in the synaptic fractions. Panel (g) analyzes proteins whose 
lifetimes are not changed in synaptosomes vs. brain homogenates, but are significantly different in synaptic 
vesicle fractions. This analysis shows that actin and microtubule structures live longer when they are 
associated to vesicles (g). 
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Supplementary Fig. 22 | Protein lifetimes appear to be correlated to their functional interactions, and 
may reveal functionally related groups of proteins. a, The lifetimes of 5 randomly selected proteins, 
shown in 7 different tissues or compartments. Note the variation in their behaviors across tissues. b, A 
similar plot, for the lifetimes of 9 Rab proteins. Their behaviors are similar. c, A quantification of the variation 
in protein lifetimes across tissues and organs. We calculated the correlation coefficient between the lifetime 
curves (such as those from panels a-b) for the different proteins we detected in all of the 7 tissues or 
compartments we analyzed. The dashed line indicates the overall correlation of all proteins. The first 12 bars 
indicate the correlation among functional complexes. The following 8 bars test protein groups whose 
functional relations are not perfectly understood. Note that some of the correlations are even stronger than 
those of known functional complexes. 
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Supplementary Fig. 23 | Processes influencing protein lifetimes. a, We compared lifetimes from the 
brain cortex with a measurement in which proteasomal protein degradation was inhibited in rat in vitro 
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Supplementary Fig. 23 legend continuing from the previous page: 
neuronal cultures15. The graph plots the brain lifetimes versus the log2 of the ratio between the amounts of 
heavy (H) proteins, obtained in cultures treated with a proteasome inhibitor (Lactacystin), and the medium 
(M) proteins, obtained in control, untreated cultures (the H and M labels are arbitrary, and derive solely from 
the experimental design of this publication15). Due to the noisy nature of the data, two-day bins are reported 
(± s.e.m). The graph suggests that the inhibition of protein degradation enables the accumulation mainly of 
proteins with short lifetimes. b,  Schematic representation of the experiments performed on primary 
hippocampal neurons by either blocking the proteasomal function with Lactacystin, or blocking protein 
translation with Cycloheximide. Primary hippocampal neurons were cultured as previously described 16, were 
grown in vitro for 15 days, and were subjected to the two drugs for 24h. At the end of the experiments 
proteins were extracted and quantified by MS as described in the methods. This reveled protein level 
changes in culture that were compared to the lifetimes measured in the brain. c, Scatter plot of the protein 
lifetimes in the cortex versus the protein abundance change (expressed as a percentage of the protein 
abundance ratio between treatment and control). Positive values indicate increase in the protein abundance 
upon treatment and vice versa. The protein degradation block increases the levels of shorter-living proteins, 
reinforcing the results shown in panel a. Also in this case two-day bins are reported (± s.e.m). d, As in a, for 
the samples treated with the protein synthesis blocker Cycloheximide. The block of protein translation 
decreases most significantly the level of short-living proteins, while longer-living proteins appear relatively 
more abundant, as shown by the positive association, calculated on the binned data. e, Analysis of the 
lifetime of 72 proteins (or protein complexes), versus the size of the exposed surfaces (as detailed in the 
online methods). We separated the proteins in soluble or membrane presynaptic proteins (cyan and pink, 
respectively), mitochondria proteins (purple), and postsynaptic proteins (dark gray). Negative correlations 
between surface and lifetime were determined for all four groups (see line fits). 
  



	 30	

Supplementary Tables: 
 

 
Supplementary Table 1 | List of long-living proteins, divided by subcellular localization. The list 
contains the proteins that are in the 95th percentile of most stable proteins identified in the brain cortex 
homogenate sample from this study. We also report the position of the specific protein with respect of the 
entire proteome as “Unlabeled percentile rank”. This is close to the type of measurement performed in 
previous studies of ELLPs, in which this was the only major parameter measured. In the last three columns 
we also indicate long living proteins that have been reported in previous works8,17. 
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Supplementary Table 2 | Protein lifetime differences upon chronic environmental enrichment. a, A 
precise analysis of the proteins with significantly different lifetimes identifies synaptic components that are 
turned over at a higher speed following environmental enrichment, such as the presynaptic adhesion 
molecule Neurexin-4, the scaffold molecule CASK, the phosphoprotein synapsin-1 and the neuronal 
RasGAP SynGAP1 (See also Fig. 7). Some mitochondrial components implicated in the metabolism of 
glutamate and acetyl-CoA are also turned over at a higher speed following environmental enrichment. On 
the contrary, two myelin components (PLP1 and Claudin 11) are stabilized upon environmental enrichment. 
b, Details of the string analysis of the 20 common proteins presented in Fig. 7. Three functional protein 
clusters are changed upon environmental enrichment. The analysis indicates that the most important 
differences between these two cohorts of mice are at the level of myelin, the mitochondrial inner membrane 
and the synapse. 
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Supplementary Table 3 | Gene ontology analysis of lifetime changes across different cells or tissues 
Associated to Fig. 8. a, Analysis of the lifetimes in the  cortex homogenate versus the lifetimes of primary 
rat neurons (published elsewhere7). b, Analysis of the lifetimes in the cortex homogenate versus the lifetimes 
in heart samples. c, Analysis of the lifetimes in the cortex homogenate versus the lifetimes of skeletal muscle 
(gastrocnemius). Please note that all these analysis take into account the average differences, and point to 
the “especially short-lived” or “especially long-lived” proteins. 
 
 
 

Target Antibody/company Origin Concentration 
VAMP2  SySy 104211 or 69.1 mouse monoclonal 1:1000 
Synaptotagmin1 SySy 105011 mouse monoclonal 1:1000 
Synaptophysin SySy 101011 or 7.2 guinea pig 1:1000 
VGlut1/2 SySy 135503 rabbit polyclonal 1:1000 
Rab3a BD Clone 9 - 610379 mouse monoclonal 1:1000 
Rim1/2 SySy 140003 rabbit polyclonal 1:500 
Synapsin  clone M10.22 from Jahn R mouse monoclonal 1:1000 
clathrin light chain SySy 113001 mouse monoclonal 1:5000 
NMDA receptor BD clone 54.2 - mouse monoclonal 1:1000 
GM130 BD 610822 mouse monoclonal 1:1000 
GFAP NB300-141 rabbit polyclonal 1:1000 
alpha-Tubulin SySy 302203 rabbit polyclonal 1:2000 

 
Supplementary Table 4 | Antibodies used in this study for WB  
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