Supplementary Information of the manuscript:

Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions

Fornasiero et al., 2018

Supplementary Figures:

Supplementary Fig. 1 | General procedure of the metabolic pulsing of mice. a, Mice were pulsed with a SILAC diet, containing ¹³C₆-lysine, for different lengths of time (5, 14 or 21 days), followed by cortex dissection and mass spectrometry analyses, to reveal relative incorporation rates. These, in turn, are interpreted to provide protein lifetimes (see also **Supplementary Fig. 3 and 5**). **b**, Exemplary MS1 scan of 6 peptides. The blue peaks indicate the ¹³C₆-lysine-containing peptides while the ones shown in black represent the regular unlabeled peptide. The ratio between the ¹³C₆-lysine-containing peptides and the regular ones is shown in the bar graphs on the right. Data are presented as mean ± s.e.m.; n = 3. Relative incorporation increases steadily during the pulsing, at different rates for the different proteins, indicating that they turn over with different speeds.

Supplementary Fig. 2 | ¹³C₆-lysine-containing peptides are detected accurately. **a**, To test whether the ¹³C₆-lysine-containing peptides were detected as accurately as the normal ones, we prepared a mock experiment. We mixed cortices from a ¹²C₆-lysine control mouse and from a full SILAC mouse, in different ratios, and measured the resulting mixture by mass spectrometry. **b**, The measured contents of ¹³C₆-lysine-peptides was virtually identical to the one expected from the mixture ratios (*r* = 0.99, *P*-val < 0.001).

Supplementary Fig. 3 | Model for the availability of lysine during protein turnover. a, Pulsing strategy for the study of protein turnover *in vitro* (left) and *in vivo* (right). *In vitro* essential amino acids can be substituted by a rapid medium change, and the $t_{1/2}$ of proteins (referred to in this work as lifetime) can be measured directly from the labeling of different proteins (see examples in the left plot). *In vivo* the situation is more complicated. Animals absorb essential amino acids from the diet, just as the cells do, but the way the amino acid levels change in the body depends on the metabolism of the entire proteome, since amino acids can be recycled following protein degradation, and re-enter the amino acid pool available for protein neosynthesis. As a consequence, in order to determine protein lifetimes *in vivo* it is necessary to study the behavior of the amino acid pool. **b**, Same as in **a**, but for a chase strategy. **c**, Lysine is present in at least two

Supplementary Fig. 3 legend continuing from the previous page:

pools in the mammal organism: the soluble (free) lysine pool, which is in equilibrium with food intake, and the pool immobilized into proteins. Initially all lysines are light (¹²C₆) in the mice fed with normal food. SILAC food intake delivers ${}^{13}C_6$ -lysines (heavy lysines, H) into the soluble lysine pool (H_{sol}), which is used for protein synthesis, thereby placing the heavy lysines into proteins (H_{prot}). At the same time, protein degradation delivers light lysines (L) from the protein pool (L_{prot}) to the soluble pool (L_{sol}). Eventually, lysines are eliminated by excretion from the soluble pool. We solved the model represented here (see methods for details). d, Graphical representation of the free lysine pool. For simplicity only H_{sol} is plotted (since its temporal behavior is sufficient to determine the protein lifetimes). H_{sol} is influenced by the fast rise of ${}^{13}C_{6}$ lysines from the food intake and by the slower exchange with the protein pool, resulting in a doubleexponential behavior. Assuming a constant rate of production and degradation, each protein is likely to be turned over in a single exponential process. It is important to point out that the availability of ¹³C₆-lysines in the soluble pool determines the apparent labeling of proteins. This renders the interpretation of the turnover of the proteins more complex, and therefore their lifetimes cannot be derived from single exponential fits. Instead we have to fit a function that takes into account the double exponential behavior of the soluble lysine pool (see online Methods). This function is shown here for three exemplary proteins of interest (POIs) with different turnover rates. e-f, Strategy for parameter optimization. We also included a chase step to make sure that our model presented in c is correct. While the lifetime of each POI is different, all POIs are synthetized from the same H_{sol} . We optimized for H_{sol} by fitting all POIs using the same double-exponential parameters. Using various parameter combinations and minimizing the sum of square errors (SSE), the most likely soluble pool H_{sol} is eventually found. g, Graphical representation of the minimum in the SSE as a function of the parameters of the H_{sol} (see online Methods for details). The red arrow indicates the minimum. The inset above the surface shows slices through the minimum of the SSE for all three parameters of the doubleexponential function. **h**, Equation and graphic representation describing H_{sol} , as obtained from the parameter optimization. The light blue area indicates the standard errors of the optimization. Please note that $t_1 = \tau_1$. ln 2. i, Single lysine incorporation percentages, across different pulse times vs. the calculated lifetimes. Each point represents a single protein from the cortex homogenate dataset. The light gray lines indicate the respective fittings of the points. The pulse-chase data are represented in purple, and the red line indicates the predicted labeling for this dataset. Although the pulse-chase data were only used for the refinement of the lysine pool, their distribution is in agreement with the predicted lifetimes obtained with the pulse only strategy (see also Supplementary Fig. 10 for the analysis of proteins that deviate from the prediction). To test the reliability of our model we used the comparison method, where we compared the two-pool model with a single exponential pool model, as shown in the inset. Here, the H_{sol} pool dynamics are disregarded, and are instead assumed as being 100% and 0% during pulse and chase phases, respectively (as in the left sides of panels a and b). Individual POI fit results show generally longer lifetimes, but also large fit residuals towards shorter lifetimes. For the global comparison of the two models we used the probability of the selected model (Akaike weight), based on the Akaike information criterion (AIC)¹. The Akaike weight is a number comprised between 0 and 1, where 0 indicates the least probable model and 1 indicates the most probable model. This measure takes into account the complexity of the model, by adding penalties to the more complex models. The Akaike weight from our two lysine pool is indistinguishable from 1, indicating that this model is far better than a model assuming a single exponential change of lysine availability (which has an Akaike weight indistinguishable from 0).

Supplementary Fig. 4 | *In vivo* confirmation of the reliability of the lysine pool model presented in Supplementary Fig. 3. a, A result of the optimization presented in Supplementary Fig. 3 is that the food-

Supplementary Fig. 4 legend continuing from the previous page:

derived lysine pool is rapidly saturated with ${}^{13}C_6$ -lysine (within ~1 day). To test this notion, we pulsed mice with ¹³C₆-lysine food, and isolated the free lysines from the blood plasma following precipitation of the blood proteins (to avoid contamination from lysines immobilized into proteins). In this fraction we measured the content of labeled lysines (H_{sol}) after derivatization using gas-chromatography mass spectrometry (GC-MS). **b**, The kinetics of free ¹³C₆-lysine enrichment in the deproteinized plasma (dots) are close to the estimated behavior of free ${}^{13}C_{6}$ -lysine in our model (line). N = 33 independent experimental measures, corresponding to one animal each. c, A second notion deriving from the model is that the lysine pool resulting from the degradation of previously existing proteins is very slowly replaced by ¹³C₆-lysine, and provides normal lysines for incorporation into newly synthesized proteins for a long time period. In simple terms, even after our longest pulse (21 days), the mouse proteome would "release" unlabeled lysines, which would mix with the labeled ones and contribute to new protein synthesis. An elegant, although laborious way to test this specifically in the brain is to induce the expression of a protein for a very short time, after the metabolic labeling of the mice. To test this, we measured the ${}^{13}C_6$ -lysine incorporation in a protein expressed on cue, after 4, 13 or 20 days of feeding with the heavy lysine. We generated a CaMKCreER^{T2} R26R reporter mouse line by crossing the R26R LacZ reporter mouse line² to the tamoxifen-inducible neurospecific CaMKCreER^{T2} driver line, which is specific for excitatory neurons of the forebrain³. We injected these reporter mice with tamoxifen thereby inducing the expression of the exogenous β -galactosidase (β -gal) reporter in neurons for one day. The cortex was then extracted, β -gal was immunoprecipitated and analyzed by mass spectrometry. d, Low levels of β -gal are expressed after 1 day of induction, and they become clearly visible after 3 days of induction by Western Blotting (the positive control in the left lane indicates a mouse injected with tamoxifen for 5 days, twice daily, and sacrificed 10 days later, for comparison purposes). e, Since we aim at inducing β gal in mice for a short period (1 day only), we needed to rely on an immunoenrichment strategy to obtain sufficient amount of β -gal that can be analyzed by targeted-MS. The protein is evident in Western Blotting after enrichment. f, Measured β-gal labeling overlaid with the labeling predicted by our model. Even after 20 days of SILAC diet feeding, the labeling of β -gal is ~70%, since about 30% of the lysines used in biosynthesis are still normal lysines, coming from the degradation of previously existing proteins. This value was virtually identical to the measured levels of ${}^{13}C_6$ -lysine in β -gal. Data are presented as mean \pm s.e.m. N = 9 independent biological measurements, corresponding to one mouse each.

Supplementary Fig. 5 | **Determination of the protein lifetimes**. Using the optimized parameters (**Supplementary Fig. 3**) and after confirming the reliability of our model *in vivo* (**Supplementary Fig. 4**), we performed precise fits to the ¹³C₆-lysine amounts measured from the spectra, as shown here for the exemplary proteins presented in **Supplementary Fig. 1b**. These provide the protein lifetimes (expressed as $t_{1/2}$ of each POI, see also **Supplementary Data 1**).

tissue	fraction	treatment	number of measured lifetimes	median r ² of fitting	median 95% conf. interval (% of lifet.)	median data points for fitting	lifetimes r² > 0.7	lifetimes c.i. < 10%
cortex	homogenate	control	2398	0.98	6.19	13	1918	1432
cortex	synaptosome	control	2312	0.88	8.67	10	1541	1188
cortex	syn. ves.	control	2705	0.94	7.36	17	2066	1615
cerebellum	homogenate	control	2693	0.97	9.25	9	1977	1299
cerebellum	synaptosome	control	1926	0.97	8.24	10	1434	975
cerebellum	syn. ves.	control	2413	0.95	8.05	13	1812	1296
cortex	homogenate	environ. enr.	2471	0.96	11.95	8	1657	962
cortex	synaptosome	environ. enr.	1419	0.96	9.12	10	1068	683
cortex	syn. ves.	environ. enr.	2212	0.96	9.54	11	1583	983
all	all	all	3559	0.81	1.45	8	2143	1077

Supplementary Fig. 6 | Systematic quality evaluation of the brain protein lifetime datasets. **a**, Table resuming size and quality of the protein lifetime datasets presented in this work (for individual r^2 and 95% confidence intervals refer to Supplementary Data 1). The minimum r^2 of the fitting that was used for bioinformatic analyses was 0.7. **b**, Dependency of the average r^2 on the number of points used for the fitting. The graph includes the measurements of all datasets (for a more detailed analysis refer to Supplementary Fig. 7 a-i). If 10 or more independent datapoints are used in the fitting, the results become inherently reliable. **c**, Same as in **b** but for the 95% confidence interval (c.i.) in the determination of the lifetime (expressed as a % of each measured lifetime; for a more detailed analysis refer to Supplementary Fig. 7 j-r). As a small technical note, the 95% c.i. is the most reliable measure of the error for this typology of data. When more than 15 datapoints are used in the fitting, the confidence interval becomes ~10% of the lifetime (meaning that a protein with a lifetime of ~3 days will have a confidence interval of ~0.3 days in the determination of the lifetime).

Supplementary Fig. 7 | Detailed quality evaluation of the lifetime datasets. a-i, Distribution of lifetimes *vs. r*² expressed as cumulative histograms. The large majority of datasets have lifetime determinations with $r^2 > 0.7$, indicating reliable curve fitting. **j-r**, Same as in previous panels but for the confidence interval (expressed as a % of each lifetime). The large majority of lifetimes is determined with confidence intervals lower than 30% for each lifetime.

Supplementary Fig. 8 | *In vivo* analysis of the peptides containing two lysines (mis-cleavage analysis) confirms the validity of the lifetime measurements. a, Schematic representation of the possible labeling status of peptides containing either two unlabeled lysines (${}^{12}C_6$; zero-13C-lysine), one unlabeled and one labeled lysine (${}^{12}C_6$ and ${}^{13}C_6$; one-13C-lysine) or two labeled lysines (${}^{13}C_6$; two-13C-lysine). b, Exemplary spectrum of one peptide from mice pulsed for 21 days showing the three possible labeling forms. c, Relative abundance of the zero-, one- and two-13C-lysine form of two peptides from mice labeled for 21 days (N = 3 independent biological replicates). d, Predicted distribution of the three labeling profiles at 21 days *versus* the determined protein lifetimes based on the lysine pool availability (from Supplementary Fig. 3-4). e, Measured labeling profiles of double-lysine peptides from mice pulsed for 21 days *versus* the lifetimes that were determined as in the strategy explained in Fig. 1 and Supplementary Fig. 1, 3 and 5. f, Overlay of the predicted and the measured lysine abundance in measured peptides. While initially the differences in labeling seemed difficult to interpret (see panel c), we realized that the labeling depended on the lifetimes of the respective proteins, and therefore could be easily explained if these were taken into account. The miscleavage analysis is therefore an additional confirmation of the validity of the model we used for the determination of the lifetimes.

Supplementary Fig. 9 | An in vivo pulse-chase approach combined with a second pulse confirms the validity of the lifetime measurements. a, Double-labeling strategy used in the experiment. Mice were first pulsed for 14 days with Lys6 (¹³C₆ lysine) and were then pulsed for 7 days with Lys0 (¹²C₆ lysine). This chase was combined with the pulse of Arg10 (¹³C₆-¹⁵N₄ arginine). Please note that even if Arg is an amino acid whose dietary deprivation can cause growth deficits⁴, it is not an essential amino acid and *in vivo* it can be metabolized to proline. Thus we restricted any analysis from this experiment to peptides containing one lysine and one arginine but devoid of proline. b, Exemplary spectrum for a peptide deriving from the in vivo labeling described in a. c, Scatter plot distribution of Lys6-labelling in the analyzed peptides where only lysine is labeled (Lys6-only; dark blue peaks in panel b) versus the lifetimes of the proteins determined as explained in Supplementary Fig. 1, 3 and 5. The percentage relates to the total amount of the respective peptides, taking into account all four possible labeling profiles (light, Lys6-only, Arg10-only, Lys6-Arg10; as exemplified in panel b). d, Predicted distribution of this labeling profile. Since we have not measured the pool of arginine, we estimated its labeling efficiency from optimizing the associated parameter b (1 / tau_{sol}) for the arginine model, while constraining all other parameters to those found in the lysine-only model. e-f, As in a-b, although in this case the Arg10-only containing peptides are shown (red peaks in panel b). q. Scatter plot deriving from the combination of panels c and e (measured labeling of single labeled Arginine on the y-axis and of single labeled Lysine on the x-axis). h, Predicted distribution of the data presented in g. The double pulse approach confirms once more the validity of the model used for the determination of the lifetimes.

Supplementary Fig. 10 | Analysis of the pulse-chase data, and lifetimes in protein families and complexes. a, The pulse-chase data is represented in purple and is ordered by the lifetime measured from the pulse data, as in Supplementary Fig. 3i. Each data point corresponds to the average of the biological replicates for a particular protein. b, Zoom of the pulse-chase data from panel a. The purple line represents the weighted average behavior of the data, using Gaussian weighting (sigma = 2 days). In green we have highlighted the data with values higher than the 95th percentile (with the highest lysine incorporation in the chase) while in red the values lower than the 5th percentile (with the lowest lysine incorporation). We checked if the difference of incorporation for these values is significant, and we realized that there are no significantly different values with respect to the mean, and the data scattering corresponds to noise. In any case, we reasoned that some of the proteins in these two groups might behave differently than the rest of the proteome. We performed the gene ontology categorization of these two groups, and we found only a single biological process that is enriched in the lower 5th percentile (protein maturation, GO:0051604; including 12 proteins: 008915, P30999, P05132, P68181, P05480, Q61330, P13020, Q8BHG1, 008663, Q99JB2, Q9D924, Q9CYN9). This is a rather general protein category since GO:0051604 is related to "any process leading to the attainment of the full functional capacity of a protein". c, The lifetimes of proteins from the class-II aminoacyl-tRNA synthetase protein family. Albeit not identical, the lifetimes of the proteins in this family are all between 4 and 10 days. d, The lifetimes of proteins from the 40S (small) ribosomal subunit, as a representative macromolecular complex. e, We analyzed the coefficient of variation of the lifetimes in 119 protein families and macromolecular complexes, expressed as percentages of the coefficient of variation obtained when selecting random proteins. Data are presented as mean \pm s.e.m.; n \geq 20; *** = ANOVA Pvalue < 0.001. The coefficient of variation of the lifetimes is smaller than that of randomly selected proteins for both protein families and complexes, indicating that even if the lifetimes are not the same within these two groups, they are statistically closer to each other than a random group of proteins as might be expected.

Supplementary Fig. 11 | Comparison between our brain cortex homogenate dataset and Price and collaborators⁵. **a**, Venn diagram and basic statistics of the proteins identified in the two datasets. **b**, A first example comparing the incorporation of ${}^{13}C_{6}$ -lysine at different time points in one protein, in our own work (left), and the incorporation of ${}^{15}N$ labeling in the same protein, from Price and collaborators. For most proteins the measurements from the two studies are extremely similar, and the resulting lifetimes are also similar. **c**, Same as in **b**, showing one of the measurements where there is a substantial difference. Please note that in Price and collaborators the authors have decided in their fitting strategy to allow the population to have a variable delay in the emergence of the labeling (t_0) which results in inherently good fitting results (r^2), albeit this strategy is difficult to explain in physiological terms. **d**, Scatter plot showing the lifetimes of common proteins. The proteins that were determined with a single peptide in Price et al. are shown in red.

Supplementary Fig. 12 | Number of peptides used for the lifetime calculation in the dataset from Price and collaborators⁵, and average difference between the two datasets depending on the number of peptides used in the measurements. a, Histogram of the number of protein lifetimes calculated in Price and collaborators, depending on the number of peptides used in the determination of the lifetimes. Note that for 37% of the proteins the lifetimes are calculated on a single peptide determination. **b**, Average lifetime difference between the two datasets (expressed as % of the respective lifetimes) subdivided for the peptide number used for the lifetime determination by Price *et al.* Note that the highest difference has been observed for the measures based on a single peptide in Price *et al.*, suggesting that the measurements based on at least two peptides are more consistent across different datasets. Adjusted *P*-values for ANOVA with Bonferroni *post hoc* test *vs.* single peptide (* ≤ 0.05 , ** ≤ 0.01 , *** ≤ 0.001).

Supplementary Fig. 13 | Comparison between our brain cortex homogenate dataset and the *in vitro* results from other studies. **a**, Scatter plot comparing the lifetimes of proteins in vitro with our cortex in vivo data. The in vitro data come respectively from the Schuman laboratory (Dörrbaum et al., 2018)⁶, the Savitski laboratory (Mathieson et al., 2018)⁷ and the Huganir laboratory (Heo et al. 2018)⁸. **b**, Scatter plot comparing the in vitro data from the Ziv laboratory (Cohen et al., 2013)⁹ with the other in vitro data introduced in panel **a**. **c**, Histograms of protein lifetimes in the different datasets showing the distribution of lifetimes. Note that in vitro all lifetimes are clustered together. **d**, Histograms of protein lifetimes in the different datasets for synaptic vesicle proteins. **e**, Same as in panel **e**, following median normalization (division of the vesicle protein lifetimes by the median of all measured lifetimes). The lifetimes measured in cultured are still all clustered tightly together.

	Cluster features	lifetime boundaries	lifetime boundaries Cellular component (non redundant; FDR < 0.05)	-log10 p-value
Cluster 1	number of proteins = 156 mean t1/2 = 2.87 days	0.33 to 3.74 days	nuclear body (GO:0016604)	5.65
Cluster 2	number of proteins = 296 mean t1/2 = 4.67 days	3.74 to 5.41 days	nuclear envelope (GO:0005635)	3.62
Cluster 3	number of proteins = 345 mean t1/2 = 6.21 days	5.42 to 7.07 days	ER-Golgi intermediate compartment (GO:0005793) peptidase complex (GO:1905368) endoplasmic reticulum lumen (GO:0005788)	3.71 3.27 3.14
Cluster 4	number of proteins = 277 mean t1/2 = 7.98 days	7.08 to 8.92 days		
Cluster 5	number of proteins = 213 mean t1/2 = 9.86 days	8.93 to 10.8 days	ribosome (GO:0005840) cytosolic part (GO:004445)	5.50 3.42
Cluster 6	number of proteins = 173 mean t1/2 = 11.6 days	10.8 to 12.8 days	rhoseme (SO:0005440) cytesolic part (SO:0004445) cell-substrae junction (SO:0003055) esel-cell antreems junction (SO:0005913)	9.10 8.47 4.16 2.83
Cluster 7	number of proteins = 117 mean t1/2 = 13.9 days	12.8 to 15.4 days		Ι
Cluster 8	number of proteins = 82 mean t1/2 = 16.8 days	15.4 to 18.5 days		
Cluster 9	number of proteins = 97 mean 11/2 = 20.4 days	18.7 to 22.4 days	respiratory chain (GO:007/0489) oxidoreale imme manicarae (GO:0019866) oxidoreaductase complex (GO:1990204) mitochondrial matherane part (GO:004455) plasma membrane protein complex (GO:0098797) plasma membrane protein complex (GO:0098797)	6.32 6.21 5.35 5.35 4.01 2.75
Cluster 10	number of proteins = 108 mean 112 = 25.6 days	22.5 to 29.8 days	mito-chondrial membrane (2000) (2009) mito-chondrial membrane par (50:004455) mito-chondrial protein complex (50:008799) mito-chondrial matrx (30:000759) mito-chondrial matrx (30:000759) myein sheath (30:0002329) sytechtrome complex (50:0070069) unie almedid (30:0002329) colat membrane (20:001687)	16.0 15.7 15.1 11.0 8.50 8.08 6.40 5.01 3.56 3.26
Cluster 11	number of proteins = 54 mean 11/2 = 43.7 days	29.9 to 133 days	myelin sheath (COD43208) myelin sheath (COD43208) proten-transporting two-sector/TTase complex (GC:0016489) mit-chondrial membrane part (GC:00641455) mit-chondrial protein complex (GC:00661789) oxidoreetuctase complex (GC:0080204) intermediate filament cytoskeleton (GC:0045111)	9.60 6.56 5.65 4.87 3.80 3.35

0

-log10 p-value

Molecular function (non redundant; FDR < 0.05) helcase activity (GO:0004386)

lifetime boundaries 0.33 to 3.74 days 3.74 to 5.41 days 5.42 to 7.07 days 7.08 to 8.92 days

Cluster features

σ

number of proteins = 156 mean t1/2 = 2.87 days number of proteins = 296 mean t1/2 = 4.67 days number of proteins = 345 mean t1/2 = 6.21 days number of proteins = 277 mean t1/2 = 7.98 days

Cluster 1 Cluster 2 Cluster 3

4.18 9.02 4.93 3.41

ifolded protein binding (GO:0051082

5.29 4.12

5.06

reonine-type peptidase activity (GO: 0070003) rotein serine/threonine knase activity (GO: 0004674) ndopentidase activity (GO: 0004175) tructural constituent of ribosome (GO:0003735)

rotein

uctural constituent of ribosome A binding (GO:0019843) binding (GO:0003779)

> 10.8 to 12.8 days 12.8 to 15.4 days

> > mean t1/2 = 11.6 days mean t1/2 = 13.9 days

8.93 to 10.8 days

number of proteins = 213 mean t1/2 = 9.86 days

> Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Cluster 4

5.68 4.62 3.83 3.48 3.48 4.69 4.17

xidoreductase activity, acting on NAD(P)H (GO:0016651) tetal cluster binding (GO:0051540) fructural constituent of cytoskeleton (GO:0005200)

18.7 to 22.4 days

number of proteins = 97 mean t1/2 = 20.4 davs

22.5 to 29.8 days

number of proteins = 108 mean t1/2 = 25.8 days

Cluster 10

15.4 to 18.5 days

number of proteins = 82 mean t1/2 = 16.8 days

xidoreductase activity (GO:0016675) organic cation transmembrane transporter (GO:0022890 norganic cation transmembrane transporter (50:0022804) active transmembrane transporter activity (G0:0022804)

29.9 to 133 days

number of proteins = 54 mean t1/2 = 43.7 days

Cluster 11

terminal oxidase activity (GO:0015002)

Supplementary Fig. 14 | Fuzzy c-means clustering of the protein lifetimes and functional enrichment analysis of the clusters. a, The lifetimes were divided in classes with the fuzzy c-means algorithm¹⁰. The

Supplementary Fig. 14 legend continuing from the previous page:

optimal number of clusters was determined to be 11, based on the negligible improvement (<1%) of the within-cluster sum of squares by increasing the number of clusters over 11. Clusters have been ordered by increasing lifetimes, with Cluster 1 corresponding to the lowest and Cluster 11 to the highest lifetimes. b-d, Summary of the functional analysis for all the 11 clusters, detailing the cluster features (number of proteins, mean lifetime and lifetime boundaries). The analysis was performed with WebGestalt 2017¹¹. Only nonredundant significant terms are represented (with a false discovery rate lower than 0.05). The P-values are reported as -log₁₀ (where the higher numbers color-coded in darker shades of red correspond to the most significant terms). In brief, Cluster 1, which has the shortest lifetimes, corresponds to nuclear proteins implicated in mRNA metabolism and translation. Cluster 2 contains some proteins that are part of the nuclear envelope. Cluster 3 is implicated in protein folding and is linked to ER and ER-Golgi transition functional processes. Cluster 4 is related to protein production and intracellular signaling. Cluster 5 includes several ribosomal proteins and is linked to adhesion and carbohydrate metabolism. Cluster 6 has similar features to Cluster 5. Cluster 7 is implicated in actin binding. Cluster 8 is not enriched for any term (for any cellular pathway). Cluster 9 includes terms implicated in the modulation of synaptic transmission and in mitochondrial metabolism. Cluster 10 is clearly mitochondrial. Cluster 11, the most stable, includes several mitochondrial processes, axon and neuron development, myelin components and neuronal nuclear development. This analysis is in good agreement with the specific lifetime differences reported in Fig. 1 and 2.

а	Other Cytoskeleton (2.5%) (7.5%) Mitochondrion (7.5%)	b	P- Nucleus Hist1h1e Hist3h2bz	H33b Cytoskeleton Tubb2a Hist1h1d Tubb2b Sirt2 ECM	Known interactions
	ECM (20.0%) Myelin (20.0%)	(42.5%)	Mitochondr	Colda2 Colda1 Lanc1 Colda1 Vcan Trr HapIn1 Cldn11 Mbp Mog Myelin Mobp Cnp Enge Tspan2 Eln Not clustered	Predicted interactions
<u>_</u>			d		
	Cellular component	-log10 FDR		Biological process	-log10 FDR
nuc	cleosome (GO:0000786)	16.41	nucleosome	assembly (GO:0006334)	6.47
nuc	cleosome (GO:0000786) tein complex (GO:0043234)	16.41 7.52	nucleosome protein comp	assembly (GO:0006334) lex assembly (GO:0006461)	6.47 6.02
nuc pro chr	Leosome (GO:0000786) tein complex (GO:0043234) omatin (GO:0000785)	16.41 7.52 6.67	nucleosome protein comp protein comp	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271)	6.47 6.02 6.02
nuc pro chr my	Leosome (GO:0000786) tein complex (GO:0043234) omatin (GO:0000785) elin sheath (GO:0043209)	16.41 7.52 6.67 6.47	nucleosome protein comp protein comp cellular macr	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622)	6.47 6.02 6.02 4.87
nuc pro chr my chr	Leosome (GO:0000786) tein complex (GO:0043234) omatin (GO:0000785) elin sheath (GO:0043209) omosomal part (GO:0044427)	16.41 7.52 6.67 6.47 5.80	nucleosome protein comp protein comp cellular macr protein comp	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822)	6.47 6.02 6.02 4.87 3.77
nuc pro chr my chr	Leosome (GO:0000786) tein complex (GO:0043234) omatin (GO:0000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578)	16.41 7.52 6.67 6.47 5.80 4.94	nucleosome protein comp protein comp cellular macr protein comp chromatin as	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497)	6.47 6.02 6.02 4.87 3.77 3.27
nuc pro chr my chr pro ma	cleosome (GO:0000786) tein complex (GO:0043234) ormatin (GO:0000785) elin sheath (GO:0043209) ormosomal part (GO:0044427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991)	16.41 7.52 6.67 6.47 5.80 4.94 4.86	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromolect	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003)	6.47 6.02 6.02 4.87 3.77 3.27 3.27 3.27
nuc pro chr my chr pro ma ext	cleosome (GO:0000786) itein complex (GO:0043234) omatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86	nucleosome protein comp protein comp celiular macr protein comp chromatin as macromolect substantia ni	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) lar complex assembly (GO:0065003) gra development (GO:0021762)	6.47 6.02 6.02 4.87 3.77 3.27 3.27 3.27 3.25
nuc pro chr my chr pro ma ext	cleosome (GO:0000786) tein complex (GO:0043234) omatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:000790)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86 4.62	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromoleci substantia ni nucleosome	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728)	6.47 6.02 4.87 3.77 3.27 3.27 3.25 3.22
nuc pro chr my chr pro ma ext	cleosome (GO:0000786) tein complex (GO:0043234) omatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:0000790) clear chromosome (GO:0000228)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86 4.62 4.45	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromolect substantia ni nucleosome cellular comp	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) lar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728) onent assembly (GO:0022607)	6.47 6.02 6.02 4.87 3.77 3.27 3.27 3.25 3.22 3.22 3.20
nuc pro chr my chr pro ma ext nuc ext	cleosome (GO:0000786) tein complex (GO:0043234) omatin (GO:0000785) elin sheath (GO:0043209) ornosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:004421) clear chromatin (GO:0000790) clear chromosome (GO:0000228) racellular region (GO:0005576)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86 4.62 4.45 3.96	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromolect substantia ni nucleosome cellular comp DNA packag	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) llar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728) onent assembly (GO:0022607) ng (GO:0006323)	6.47 6.02 6.02 4.87 3.77 3.27 3.25 3.22 3.20 2.82
nuc pro chr pro chr pro ma ext nuc ext ext	cleosome (GO:0000786) itein complex (GO:0043234) ormatin (GO:000785) elin sheath (GO:0043209) ornosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:0000790) clear chromosome (GO:0000228) racellular region (GO:0005576) racellular exosome (GO:007062)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86 4.62 4.45 3.96 3.20	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromoleci substantia ni nucleosome cellular comp DNA packag cellular comp	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0024762) organization (GO:0024607) ng (GO:0006323) onent biogenesis (GO:0044085)	6.47 6.02 4.87 3.77 3.27 3.27 3.25 3.22 3.20 2.82 2.82
nuc pro chr my chr pro ma ext nuc ext	cleosome (GO:0000786) itein complex (GO:0043234) ornatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:0000790) clear chromosome (GO:0005076) racellular region (GO:0005576) racellular is region (GO:0005576) cracellular is region (GO:0005576) cracellular is region (GO:0005076) clear chromatin (GO:0005776) cracellular is exosome (GO:0070062) clear euchromatin (GO:0005719)	16.41 7.52 6.67 5.80 4.94 4.86 4.86 4.85 3.96 3.20 3.10	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromolect substantia ni nucleosome cellular comp DNA packag cellular comp midbrain dev	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728) onent assembly (GO:0022607) ng (GO:0006323) onent biogenesis (GO:0044085) elopment (GO:0030901)	6.47 6.02 4.87 3.77 3.27 3.25 3.22 3.20 2.82 2.82 2.25
nuc pro chr my chr pro ma ext nuc ext ext	cleosome (GO:0000786) tein complex (GO:0043234) omatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromosome (GO:0000790) clear chromosome (GO:000028) racellular region (GO:000576) racellular exosome (GO:007062) clear euchromatin (GO:0005719) racellular matrix component (GO:0044420)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86 4.62 4.45 3.96 3.20 3.10 2.51	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromolect substantia ni nucleosome cellular comp DNA packag cellular comp midbrain dev axon enshea	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0024762) organization (GO:0024607) ng (GO:0006323) onent biogenesis (GO:0044085)	6.47 6.02 4.87 3.77 3.27 3.27 3.25 3.22 3.20 2.82 2.82
nuc pro chr my chr pro ma ext nuc ext nuc ext	cleosome (GO:0000786) tein complex (GO:0043234) omatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromosome (GO:000790) clear chromosome (GO:0000228) racellular region (GO:0005576) racellular exosome (GO:00070062) clear euchromatin (GO:0005719) racellular matrix compoent (GO:004420) clear pore (GO:0005643)	16.41 7.52 6.67 5.80 4.94 4.86 4.86 4.86 3.96 3.20 3.10 2.51 2.30	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromolect substantia ni nucleosome cellular comp DNA packag cellular comp midbrain dev	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) lar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0021762) organization (GO:0034728) onent assembly (GO:0022607) ng (GO:0006323) onent biogenesis (GO:0044085) elopment (GO:0008366)	6.47 6.02 6.02 4.87 3.77 3.27 3.27 3.22 3.20 2.82 2.82 2.25 2.09
nuc pro chr my chr pro ma ext ext ext nuc ext nuc ext nuc	cleosome (GO:0000786) tein complex (GO:0043234) ormatin (GO:000785) elin sheath (GO:0043209) ormosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:004421) clear chromatin (GO:000790) clear chromosome (GO:0000228) racellular region (GO:0005576) racellular matrix component (GO:004420) clear port (GO:0005719) racellular matrix component (GO:004420) clear port (GO:000563) mbrane-bounded organelle (GO:0043227)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86 4.62 4.45 3.96 3.20 3.10 2.51 2.30 2.18	nucleosome protein comp cellular macr protein comp chromatin as macromoleci substantia ni nucleosome cellular comp DNA packag cellular comp midbrain dev axon enshea	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) llar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728) onent assembly (GO:0022607) ng (GO:0006323) onent biogenesis (GO:0044085) elopment (GO:0008366) Molecular function	6.47 6.02 4.87 3.77 3.27 3.25 3.22 3.20 2.82 2.82 2.82 2.09 -log10 FDR
nuc pro chr my chr pro ma ext nuc ext nuc ext nuc ext	cleosome (GO:0000786) tein complex (GO:0043234) ormatin (GO:000785) elin sheath (GO:0043209) ormosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:0000278) racellular region (GO:000028) racellular region (GO:0005576) racellular exosome (GO:0070062) clear euchromatin (GO:0005719) racellular matrix component (GO:004420) clear pore (GO:0005643) mbrane-bounded organelle (GO:0043227) clear pore outer ring (GO:0031080)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.86 4.62 4.45 3.96 3.20 3.10 2.51 2.30 2.18 2.08	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromoleci substantia ni nucleosome cellular comp DNA packag cellular comp midbrain dev axon enshea	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728) onent assembly (GO:002607) ng (GO:0006323) onent biogenesis (GO:0044085) elopment (GO:0030901) thment (GO:0008366) Molecular function lecule activity (GO:0005198)	6.47 6.02 4.87 3.77 3.27 3.27 3.25 3.22 3.20 2.82 2.82 2.82 2.99 -log10 FDR 4.98
nuc pro chr my chr pro ma ext ext nuc ext ext nuc ext nuc ext	cleosome (GO:0000786) itein complex (GO:0043234) ormatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:0000790) clear chromosome (GO:000028) racellular region (GO:0005576) racellular region (GO:0005576) racellular region (GO:000576) clear exosome (GO:0070062) clear euchromatin (GO:0005719) racellular matrix component (GO:004420) clear pore (GO:0005643) mbrane-bounded organelle (GO:0043227) clear pore outer ring (GO:0031080) crotubule (GO:005874)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.62 4.45 3.96 3.20 3.10 2.51 2.30 2.18 2.08 1.82	nucleosome protein comp protein comp cellular macr protein comp chromatin as macromoleci substantia ni nucleosome cellular comp DNA packag cellular comp midbrain dev axon enshea	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728) onent assembly (GO:0022607) ng (GO:0006323) onent biogenesis (GO:0044085) elopment (GO:0003901) thment (GO:000366) Molecular function lecule activity (GO:0005198) IA binding (GO:0031490)	6.47 6.02 4.87 3.77 3.27 3.27 3.25 3.20 2.82 2.82 2.25 2.09 -log10 FDR 4.98 2.33
nuc pro chr my chr pro ma ext nuc ext nuc ext nuc ext nuc ext nuc	cleosome (GO:0000786) tein complex (GO:0043234) ormatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:0000790) clear chromosome (GO:0000576) racellular region (GO:000576) racellular region (GO:000576) racellular region (GO:000576) racellular matrix component (GO:004420) clear euchromatin (GO:0005719) racellular matrix component (GO:0043227) clear proc Quter ring (GO:0031080) rotubule (GO:0005874) clear nucleosome (GO:000788)	16.41 7.52 6.67 5.80 4.94 4.86 4.86 4.86 3.96 3.20 3.10 2.51 2.30 2.18 2.08 1.82 1.66	e structural mod hyaluronic adv notein comp protein comp cellular macr nucleosome cellular comp midbrain dev axon enshear chromatin Di hyaluronic adv hyaluronic adv	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0065003) gra development (GO:0021762) organization (GO:0034728) onent assembly (GO:0022607) ng (GO:0006323) onent biogenesis (GO:0044085) elopment (GO:0003901) thment (GO:0008366) Molecular function lecule activity (GO:0005198) vA binding (GO:0005540)	6.47 6.02 4.87 3.77 3.27 3.27 3.27 3.25 3.22 3.20 2.82 2.82 2.25 2.09 -log10 FDR 4.98 2.33 2.11
nuu proo chr my chr pro ma exttra extra extra extra extra nuu extra extra nuu extra extra nuu extra ex	cleosome (GO:0000786) itein complex (GO:0043234) ormatin (GO:000785) elin sheath (GO:0043209) omosomal part (GO:004427) teinaceous extracellular matrix (GO:0005578) cromolecular complex (GO:0032991) racellular region part (GO:0044421) clear chromatin (GO:0000790) clear chromosome (GO:000028) racellular region (GO:0005576) racellular region (GO:0005576) racellular region (GO:000576) clear exosome (GO:0070062) clear euchromatin (GO:0005719) racellular matrix component (GO:004420) clear pore (GO:0005643) mbrane-bounded organelle (GO:0043227) clear pore outer ring (GO:0031080) crotubule (GO:005874)	16.41 7.52 6.67 6.47 5.80 4.94 4.86 4.62 4.45 3.96 3.20 3.10 2.51 2.30 2.18 2.08 1.82	e structural mod chromatin Di hyaluronic ad extracellular	assembly (GO:0006334) lex assembly (GO:0006461) lex biogenesis (GO:0070271) omolecular complex assembly (GO:0034622) lex subunit organization (GO:0071822) sembly (GO:0031497) ilar complex assembly (GO:0021762) organization (GO:0021762) organization (GO:0024763) onent assembly (GO:0022607) ng (GO:0006323) onent biogenesis (GO:0044085) elopment (GO:0003901) thment (GO:000366) Molecular function lecule activity (GO:0005198) IA binding (GO:0031490)	6.47 6.02 4.87 3.77 3.27 3.27 3.25 3.20 2.82 2.82 2.25 2.09 -log10 FDR 4.98 2.33

Supplementary Fig. 15 | Classification and string analysis of the Extremely Long Lived Proteins (ELLPs). a, Pie chart representation of the classification of ELLPs (corresponding to the 98th-100th percentile of the most stabilized proteins). The majority of ELLPs are nuclear. There is also a clear over-representation of myelin and extracellular matrix proteins. **b**, String analysis¹² of ELLPs reveals a large nuclear cluster including histones and Nups, as well as a myelin and an ECM cluster, confirming the distribution represented in **a. c-e**, Detailed functional classification of ELLPs, deriving from the string analysis confirms the overrepresentation of nucleosomes, myelin, extracellular matrix, nuclear pore and the related biological processes.

С

Molecular function	-log10 FDR
hydrogen ion transmembrane transporter activity (GO:0015078)	6.85
structural molecule activity (GO:0005198)	3.41
proton-transporting ATP synthase activity, rotational mechanism (GO	3.16
transmembrane transporter activity (GO:0022857)	2.46
transporter activity (GO:0005215)	2.44
ion transmembrane transporter activity (GO:0015075)	2.44
substrate-specific transporter activity (GO:0022892)	2.44
catalytic activity (GO:0003824)	2.44
pyruvate dehydrogenase (acetyl-transferring) activity (GO:0004739)	2.18
ubiquinol-cytochrome-c reductase activity (GO:0008121)	1.74
nucleoside-triphosphatase activity (GO:0017111)	1.36

d

Cellular component	-log10 FDR
myelin sheath (GO:0043209)	30.60
mitochondrion (GO:0005739)	14.75
mitochondrial part (GO:0044429)	14.42
mitochondrial membrane (GO:0031966)	12.45
mitochondrial envelope (GO:0005740)	12.21
organelle envelope (GO:0031967)	12.21
organelle inner membrane (GO:0019866)	12.08
mitochondrial inner membrane (GO:0005743)	11.43
mitochondrial proton-transporting ATP synthase complex, coupling fa	8.98
extracellular exosome (GO:0070062)	7.05
protein complex (GO:0043234)	6.80
oxidoreductase complex (GO:1990204)	6.67
membrane-bounded vesicle (GO:0031988)	6.65
mitochondrial membrane part (GO:0044455)	6.56
neurofilament (GO:0005883)	6.37
extracellular region part (GO:0044421)	6.04
mitochondrial protein complex (GO:0098798)	5.92
organelle membrane (GO:0031090)	5.69
respiratory chain (GO:0070469)	5.54
inner mitochondrial membrane protein complex (GO:0098800)	5.40
extracellular region (GO:0005576)	4.78
mitochondrial respiratory chain complex III (GO:0005750)	4.71
mitochondrial matrix (GO:0005759)	4.57
intracellular organelle part (GO:0044446)	4.54
pyruvate dehydrogenase complex (GO:0045254)	4.52
mitochondrial proton-transporting ATP synthase complex (GO:00057	4.00
organelle part (GO:0044422)	3.73
cytoplasmic part (GO:0044444)	3.53
intermediate filament (GO:0005882)	3.40
cytoskeletal part (GO:0044430)	3.39

е

Biological process	-log10 FDR
ATP metabolic process (GO:0046034)	11.80
cellular respiration (GO:0045333)	11.32
ATP synthesis coupled proton transport (GO:0015986)	10.22
nucleotide metabolic process (GO:0009117)	9.61
organophosphate metabolic process (GO:0019637)	7.73
tricarboxylic acid cycle (GO:0006099)	7.70
generation of precursor metabolites and energy (GO:0006091)	7.40
hydrogen ion transmembrane transport (GO:1902600)	6.33
small molecule metabolic process (GO:0044281)	6.24
aerobic respiration (GO:0009060)	5.97
neurofilament cytoskeleton organization (GO:0060052)	5.57
oxidation-reduction process (GO:0055114)	5.32
carbohydrate derivative metabolic process (GO:1901135)	5.12
respiratory electron transport chain (GO:0022904)	4.51
intermediate filament bundle assembly (GO:0045110)	4.38
organonitrogen compound metabolic process (GO:1901564)	4.19
acetyl-CoA metabolic process (GO:0006084)	4.15
mitochondrial ATP synthesis coupled electron transport (GO:004277	4.15
acetyl-CoA biosynthetic process from pyruvate (GO:0006086)	4.11
single-organism biosynthetic process (GO:0044711)	4.07
single-organism metabolic process (GO:0044710)	3.92
mitochondrial electron transport, ubiquinol to cytochrome c (GO:000	3.54
oxidative phosphorylation (GO:0006119)	3.52
organophosphate biosynthetic process (GO:0090407)	3.38
neuron projection morphogenesis (GO:0048812)	3.32
neuron development (GO:0048666)	3.12

Supplementary Fig. 16 | Classification and string analysis of the Long Lived Proteins (LLPs). a, Pie chart representation of the classification of LLPs (corresponding to the 95th-98thpercentile of the most stabilized proteins). The majority of LLPs are mitochondrial. There is also a clear over-representation of cytoskeletal proteins. **b**, String analysis¹² of LLPs reveals a large nuclear cluster including mitochondrial proteins, as well as a cytoskeletal cluster, confirming the distribution represented in **a**. **c-e**, Detailed functional classification of LLPs, deriving from the string analysis indicates an overrepresentation of the mitochondrial and of the cytoskeletal clusters (neurofilaments), and it also detects that among these proteins there are components of myelin, extracellular matrix and extracellular exosomes.

а

mid RNA abundance (33rd to 66th pctl) mid lifetime (33rd to 66th pctl) 10 13 low RNA abundance (< 33rd pctl) 16 high RNA abundance (> 66th pctl) mid RNA abundance (33rd to 66th pctl) high lifetime (> 66th pctl) 26

mid RNA abundance (33rd to 66th pctl) low lifetime (< 33rd pctl)

low protein abundance (< 33rd pctl) mid protein abundance (33rd to 66th pctl) high protein abundance (> 66th pctl) high RNA abundance (> 66th pctl)

high RNA abundance (> 66th pctl)

low RNA abundance (< 33rd pctl)

12 15 18

11 14 17

21

24

23

22 25 low RNA abundance (< 33rd pctl)

Groupser Interime abundance bundace bundace bundance bundance bundance bundance bundance bundance		Group lifetime protein mRNA EDD			Biol	ogical	process	Cellular c	omponent	Molecular function	
2 low low how hoy n=n n=n n=n n=n 3 low medium low 1 n=n 1 1 4 low medium low 1 n=n n=n n=n 5 low medium high n=n n=n n=n n=n 6 low high nedum n=n n=n n=n n=n n=n n=n n=n n=n <n< td=""> n=n <</n<>		lifetime			FDR < 0	0.05	p-val < 0.001	FDR < 0.05	p-val < 0.001	FDR < 0.05	p-val <
3 low hop 2 4 1 1 4 low medium low 1 5 low medium high low 7 low high high 1 1 7 low high high 1 1 9 low high high 1 1 10 medium low high 1 1 11 medium medium medium 1 1 1 1 1 1 1 1 1 1 1 1 1 1									1		-
4 low medium low 1 1 5 low medium high 1											-
5 low medum medum 1 2 1 1 6 low high low 1 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>									-		
6 low medium high 1 7 low high low high medium 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1	1		
7 Iow high Tow 1 8 Iow high medum Iow											-
6 low high medium 1 1 9 low high 1 1 10 medium low medium 1 1 11 medium low medium 1 1 12 medium low 1 1 14 medium low 1 1											-
9 low high main 3 5 5 10 medum low wo 1 1 11 medum low migh 1 1 13 medum medum medum medum						-		1	1		-
10 medium low low <thlow< l<="" td=""><td>9</td><td>low</td><td></td><td></td><td></td><td></td><td>3</td><td>5</td><td>5</td><td></td><td>1</td></thlow<>	9	low					3	5	5		1
12 medium low high 1 1 13 medium medium medium	10	medium	low	low				1	2		
13 medium			low	medium				1	1		
14 medium medium 15 medium high 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1	1		
15 medium medium high 55 6 1 1 16 medium high low 1 1 1							2				
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
17 medium high medium high medium high medium high medium high medium high medium medium <th< td=""><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td>1</td><td>-</td></th<>					5					1	-
18 medium high high 4 6 4 19 high low medium 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								1			
19 high low low											
20 high low medium 1 21 high low high 1							4	6			
21 high low high 1 22 high medium low 1							1				
22 high medium low 1 1 23 high medium high medium high <td></td> <td>-</td>											-
23 high medium high 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									1		-
24 high medium high 2 2 25 high high high high nodu 1 3 7 10 27 high high <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>						-					-
25 high high high bigh medium 1 3 7 10 26 high high high high high high high 10 27 high high high high 10 12 9 6 27 high							2		2		
26 high high high high high high 16 21 12 9 6 group 3 (low lifetime, low protein, high mRNA) p-value group 1 group 25 (high lifetime, high protein, low mRNA) protein polyubiquitination (GO 0000209) 3.84 group 3 (low lifetime, low protein, high mRNA) p-value group 25 (high lifetime, high protein, low mRNA) positive regulation of CO 0003214) 3.40 crysolic part (GO 0004445) organelle inner membrane (GO 0003735) biguitur-like protein transferase activity (GO 001787) 3.61 mitochondrial protein of mole alongation (GO 00006785) group 9 (low lifetime, high protein, high mRNA) p-value group 27 (high lifetime, high protein, high mRNA) protubule associated complex (GO 0005875) 6.43 microtubule (GO 0005770) 3.01 microtubule (GO 0005770) 3.01 nucleoside triphosphate metabolic process (GO 0005770) 3.01 unfolded protein inding (GO 0051082) 3.39 microtubule (GO 0005770) 3.01 unfolded protein inding (GO 0051082) 3.39 microtubule (GO 0005770) 3.01 unfolded protein inding (GO 0051082) 3.39 microtubule (GO 0005770) 3.01 unfolded prot								8		2	3
group 3 (low lifetime, low protein, high mRNA) -log10 p-value protein polyubiquitination (GO:000209) 3.84 cellular response to ligid (GO:0071396) 3.84 response to radiation (GO:0003214) 3.40 positive regulation of GT pase activity (GO:0043547) 3.17 thromatin (GO:0000785) 3.27 ubiquitin-like protein transferase activity (GO:0019787) 3.61 group 9 (low lifetime, high protein, high mRNA) -log10 p-value -group 27 (high lifetime, high protein, high mRNA) regulation of gene expression (GO:0006814) 3.17 microtubule associated complex (GO:0005875) 6.43 microtubule associated complex (GO:0005876) 3.08 autophagosme (GO:0005770) 3.01 unfolded protein inding (GO:0051082) 3.39 ribonucleoprotein complex binding (GO:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) -log10 p-value -log10 pairubulo (GO:0007770) 3.01 unfolded protein inding (GO:0043021) 3.08 ribonucleoprotein complex binding (GO:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) -log10 p-ptidyl-se	26	high		medium	1		3	7	10		1
group 3 (tow interime, low protein, nigh mckey) protein polyubiquitination (GO:0000209)3.84group 3 (tow interime, low mckey)3.84response to lipid (GO:0071396)3.84response to radiation (GO:0009314)3.40positive regulation of GTPase activity (GO:0019787)3.61group 9 (low lifetime, high protein, high mRNA)-log10group 9 (low lifetime, high protein, high mRNA)-log10p-value-log10group 9 (low lifetime, high protein, high mRNA)-log10regulation of gene expression (GO:0006814)3.17translational elongation (GO:0005776)3.08microtubule (GO:0005776)3.08autophagosome (GO:0005776)3.01unfolded protein inding (GO:0015776)3.08indotap protein inding (GO:0015776)3.08indotap aroformation (GO:0005776)3.08indotap rotein inding (GO:001820)3.39ribonucleoprotein inding (GO:001820)3.39ribonucleoprotein inding (GO:001820)4.96animal organ formation (GO:001764)3.15group 15 (med. lifetime, med. protein, high mRNA)-log10peptidyl-serine modification (GO:004764)3.15group 18 (high lifetime, high protein, low mRNA)-log10protein serine/threonine kinase activity (GO:000474)3.16group 18 (high lifetime, high protein, low mRNA)-log10protein serine/threonine kinase activity (GO:0007252)3.76group 18 (high lifetime, high protein, low mRNA)-log10protein serine/threonine kinase activity (GO:0007252)3.76	27	high	high	high	16		21	12	9	6	8
group 2 (row intertime, nign protein, nign mRNA) p-value regulation of gene expression (GO:0010608) 3.77 mutti-organism cellular process (GO:0044764) 3.15 translational elongation (GO:0005814) 3.09 microtubule associated complex (GO:0005875) 6.43 muto-organism cellular process (GO:0044764) 4.26 autophagosome (GO:0005776) 3.08 morovalent inorganic cation transport (GO:0001627) 3.01 nufolded protein binding (GO:0051082) 3.39 ribonucleoprotein inding (GO:001820) 3.39 ribonucleoprotein complex binding (GO:001820) 4.96 animal organ formation (GO:0018209) 4.96 animal organ formation (GO:0018209) 4.96 animal organ formation (GO:0007369) 3.69 vesicle-mediated transport in snapse (GO:009003) 3.48 neuron migration (GO:001764) 3.01 protein serime/threonine kinase activity (GO:0004674) 3.69 rotein serime/threonine kinase activity (GO:0004764) 3.61 protein serime/threonine kinase activity (GO:00072524) 3.76 neural mucleus development (GO:0018865) 4.25 gastrulation (GO:0001764) 3.61 ne		in (GO:0000785) 3.27 mitochondrial matrix (GO:0005759) -like protein transferase activity (GO:0019787) 3.61 structural constituent of ribosome (GO:0003735) rRNA binding (GO:0019843)									
multi-organism cellular process (GO:0044764) 3.15 translational elongation (GO:0006414) 3.09 microtubule (GO:0005875) 6.43 microtubule (GO:0005874) 4.26 autophagosome (GO:0005776) 3.08 late endosome (GO:0005770) 3.01 unfolded protein binding (GO:0051082) 3.39 ribonucleoprotein complex binding (GO:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) log10 petidyl-serine modification (GO:0018209) 4.96 animal organ formation (GO:0018209) 4.96 aminal organ formation (GO:0018209) 4.96 vesicle-mediated transport (GO:0004645) 4.25 gastrulation (GO:0007369) 3.69 vesicle-mediated transport (GO:0004645) 3.41 neuron migration (GO:0001764) 3.01 protein serine/threonine kinase activity (GO:0004674) 3.68 axon (GO:0003424) oxon(GO:0003424) produe metabolic process (GO:0072524) 3.76 produe metabolic process (GO:0072524) 3.76 protein senie/threonine kabolic process (GO:0072524) 3.76 produe metabolic process (GO:00072524) 3.76 pro					RNA)	p-val	ue gro				
translational elongation (GC:0006414) 3.09 invorted to the second s											
microtubule associated complex (GO:0005875) 6.43 microtubule (GO:0005770) 4.26 autophagosome (GO:0005770) 3.01 late endosome (GO:0005770) 3.01 unfolded protein binding (GO:0051082) 3.39 ibonucleoprotein complex binding (GO:0043021) 3.09 group 15 (med. lifetime, med. protein, high mRNA) -log10 peptidyLserine modification (GO:001820) 4.96 animal organ formation (GO:00018645) 4.25 gastrulation (GO:00017380) 3.48 negative regulation of cell cycle (GO:0045786) 3.41 protein serine/threonine kinase activity (GO:0004674) 3.68 group 18 (high lifetime, high protein, low mRNA) p-value pyridine-compound metabolic process (GO:0072524) 3.76 microtarial protein serine/threonine kinase activity (GO:002264) active transmembrane transport activity (GO:002804)											
microtubule (GO:0005874) 4.26 autophagosome (GO:0005776) 3.08 late endsoure (GO:0005770) 3.01 unfolded protein binding (GO:0051082) 3.39 ribonucleoprotein complex binding (GO:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) -log10 petidyl-serine modification (GO:0018209) 4.96 aminal organ formation (GO:0018209) 4.96 yestrulation (GO:0007369) 4.25 gastrulation (GO:0007369) 3.69 vesicle-mediated transport in synapse (GO:0099003) 3.48 neuron migration (GO:001764) 3.01 protein serine/threonine kinase activity (GO:00047471) 3.01 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:0072524) 3.76 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:0072524) 3.76 group 18 (high lifetime, high protein, low mRNA) -log10 pyrudite metabolic process (GO:0072524) 3.76 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:0072524) 3.76 group 18 (tricarbo	tricarboxylic acid metabolic process (GO:0072350)			
autophagosome (GO:0005776) 3.08 late endosome (GO:0005776) 3.01 late endosome (GO:0005776) 3.01 unfolded protein binding (GO:0051082) 3.39 ribonucleoprotein complex binding (GO:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) -log10 peptidyl-serine modification (GO:0018209) 4.96 animal organ formation (GO:0007369) 4.25 gastrulation (GO:0007369) 3.68 vesicle-mediated transport in synapse (GO:009003) 3.48 neuron migration (GO:0001764) 3.01 protein serine/threonine kinase activity (GO:0004674) 3.68 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:00172524) 3.76 pyrudine-compound metabolic process (GO:0002524) 3.76 group 18 (high lifetime, high protein, low mRNA) -log10 pyrudine-compound metabolic process (GO:00072524) 3.76 pyrudine-compound metabolic process (GO:00072524) 3.76 protein serine/threonine kabolic process (GO:00072524) 3.76 group 18 (high lifetime, high protein, low mRNA) p-value pyrudite metabolic process (GO:00072524) 3.76 <				5.0003013)			nucleo				
Iate endosome (GO:0005770) 3.01 Iate endosome (GO:00050720) 3.01 unfolded protein binding (GO:0051082) 3.39 ibonucleoprotein complex binding (GO:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) -log10 peptidyLserine modification (GO:0018209) 4.96 animal organ formation (GO:0018209) 4.96 animal organ formation (GO:0018209) 4.96 animal organ formation (GO:0007369) 3.69 vesicle-mediated transport (GO:0007369) 3.69 vesicle-mediated transport (GO:0007369) 3.69 vesicle-mediated transport (GO:00048645) 4.25 inon transport (GO:0007369) 3.69 vesicle-mediated transport (GO:0004867) 3.41 neuron migration (GO:0001764) 3.01 protein serine/threonine kinase activity (GO:0004674) 3.68 sxon (GO:003424) oxin (GO:003424) oxin (GO:007069) 3.12							nucleo				
unfolded protein binding (GC:0051082) 3.39 unfolded protein binding (GC:0051082) 3.39 ribonucleoprotein complex binding (GC:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) -log10 petidyl-serine modification (GC:0018209) 4.96 animal organ formation (GC:0018209) 4.96 vesicle-mediated transport (GC:0007369) 4.96 vesicle-mediated transport (GC:00048645) 4.25 ingorun migration (GC:001764) 3.69 reuron migration (GC:0001764) 3.01 protein serine/threonine kinase activity (GC:0004674) 3.61 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GC:00072524) 3.76 pyrudeme metabolic process (GC:00072524) 3.76 cytoer metabolic process (GC:00072524) 3.76							monov				
Inbohucleoprotein complex binding (GO:0043021) 3.08 group 15 (med. lifetime, med. protein, high mRNA) -log10 p-value peptidyl-serine modification (GO:0018209) 4.96 animal organ formation (GO:004645) 4.25 gastrulation (GO:0007369) 3.69 vesicle-mediated transport (GO:0004645) 3.41 neuron migration (GO:001764) 3.01 protein serine/threonine kinase activity (GO:0004674) 3.68 group 18 (high lifetime, high protein, low mRNA) -log10 p-value pyridine-compound metabolic process (GO:0072524) 3.76 pyrudine metabolic process (GO:0072524) 3.76 cytop 3.12	unfolded	protein bindir	ng (GO:00510				divcosi				
group 15 (med. lifetime, med. protein, high mRNA) -log10 p-value peptidyl-serine modification (GO:0018209) 4.96 animal organ formation (GO:0048645) 4.25 gastrulation (GO:0007369) 3.69 vesicle-mediated transport in synapse (GO:0099003) 3.48 negative regulation of Cell cycle (GO:0045786) 3.41 protein serine/threonine kinase activity (GO:0004674) 3.01 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:0072524) 3.76 pyridine-compound metabolic process (GO:0072524) 3.12	ribonucle	oprotein com	plex binding (GO:0043021)		3.08					
group 15 (med. lifetime, med. protein, high mRNA) -log10 p-value peptidyl-serine modification (GO:0018209) 4.96 animal organ formation (GO:0048645) 4.25 gastrulation (GO:0007369) 3.69 vesicle-mediated transport in synapse (GO:0099003) 3.48 negative regulation of cell cycle (GO:0045786) 3.41 neuron migration (GO:0001764) 3.01 protein serine/threnine kinase activity (GO:0004674) 3.68 group 18 (high lifetime, high protein, low mRNA) -log10 p-value pyridine-compound metabolic process (GO:0072524) 3.76 pyruyate metabolic process (GO:000009) 3.12							purine-				
p-value p-value peptidyl-serine modification (GC:0018209) 4.96 animal organ formation (GC:0018209) 4.96 animal organ formation (GC:00048645) 4.25 gastrulation (GC:0007369) 3.69 vesicle-mediated transport in synapse (GC:0099003) 3.48 negative regulation of cell cycle (GC:0045786) 3.41 neuron migration (GC:0001764) 3.01 protein seerine/threonine kinase activity (GC:0004674) 3.68 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GC:0072524) 3.76 pyruyate metabolic process (GC:000609) 3.12	group	15 (med. life	time, med, n	rotein, hiah r	nRNA)		10 monov				
animal organ formation (GO:0048645) 4.25 gastrulation (GO:0007369) 3.69 vesicle-mediated transport (GO:0098657) anion transport (GO:0098657) negative regulation of cell cycle (GO:0045786) 3.41 neuron migration (GO:0001764) 3.01 protein serine/threonine kinase activity (GO:0004674) 3.88 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:0072524) 3.76 pyruvate metabolic process (GO:000609) 3.12							ue midbra	in development	(GO:0030901)		
gastrulation (GO:0007369) 3.69 vesicle-mediated transport in synapse (GO:0099003) 3.48 negative regulation of cell cycle (GO:0045786) 3.41 neuron migration (GO:00001764) 3.01 protein serine/threonine kinase activity (GO:0004674) 3.69 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:0072524) 3.76 pyruvate metabolic process (GO:0006090) 3.12	mandi 1.4						Ulyanic				
vesicle-mediated transport in synapse (GO:0099003) 3.48 negative regulation of cell cycle (GO:0045786) 3.41 neuron migration (GO:0001764) 3.01 protein serine/threonine kinase activity (GO:004674) 3.68 group 18 (high lifetime, high protein, low mRNA) -log10 pyridine-compound metabolic process (GO:0072524) 3.76 pyruvate metabolic process (GO:0006090) 3.12							import				
negative regulation of cell cycle (GO:0045786) 3.41 neuron migration (GO:0001764) 3.01 protein serine/threonine kinase activity (GO:004674) 3.68 group 18 (high lifetime, high protein, low mRNA) -log10 p-value pyridine-compound metabolic process (GO:0072524) 3.76 pyruvate metabolic process (GO:0072524) 3.76 cytower metabolic process (GO:0006090) 3.12	animal or			se (GO:00000	03)		anon			0.57)	
neuron migration (GO:0001764) 3.01 intyemin sinear (GO:001264) protein serine/threonine kinase activity (GO:0004674) 3.68 axon (GO:0030424) group 18 (high lifetime, high protein, low mRNA) -log10 respiratory chain (GO:0070469) pyridine-compound metabolic process (GO:0072524) 3.76 cytoprocess (GO:0070690) strue metabolic process (GO:0006090) 3.12 active transmembrane transporter activity (GO:0022804)	animal or gastrulati				00)		nouru			857)	
protein serine/threonine kinase activity (GO:0004674) 3.68 axon (GO:0030424) group 18 (high lifetime, high protein, low mRNA) -log10 -respiratory chain (GO:0070469) pyridine-compound metabolic process (GO:0072524) 3.76 -ytochrome complex (GO:007069) pyruvate metabolic process (GO:0006090) 3.12 active transmembrane transporter activity (GO:0022804)	animal or gastrulati vesicle-m						Intyemi			86)	
group 18 (high lifetime, high protein, low mRNA) -log10 p-value respiratory chain (GO.0070469) pyridine-compound metabolic process (GO.0072524) 3.76 3.12 cylochrome complex (GO.007069)	animal or gastrulati vesicle-m negative	regulation of	0001764)		74		organo	ine inner membr	ane (00.00198)	JU)	
group 18 (high lifetime, high protein, low mRNA) -log10 p-value respiratory chain (GO:0070469) pyridine-compound metabolic process (GO:0072524) 3.76 mitochondrial protein complex (GO:0070069) cytochrome complex (GO:0070069) 3.12 active transmembrane transporter activity (GO:0022804)	animal or gastrulati vesicle-m negative neuron m	regulation of igration (GO		rity (GO:00046	protein serine/threonine kinase activity (GO:0004674)						
group 18 (nign infetime, nign protein, low mKNA) p-value mitochondrial protein complex (GO:0098798) pyridine-compound metabolic process (GO:0072524) 3.76 cytochrome complex (GO:0070069) pyruvate metabolic process (GO:0006090) 3.12 active transmembrane transporter activity (GO:0022804)	animal or gastrulati vesicle-m negative neuron m	regulation of igration (GO		rity (GO:00046	5/4)				ax (GO-1000204)	
pyridine-compound metabolic process (GO:0072524) 3.76 cytochrome complex (GO:0070069) pyruvate metabolic process (GO:0006090) 3.12 active transmembrane transporter activity (GO:0022804)	animal or gastrulati vesicle-m negative neuron m protein se	regulation of igration (GO erine/threonir	e kinase activ			-lon	oxidore	eductase comple)	
pyruvate metabolic process (GO:0006090) 3.12 active transmembrane transporter activity (GO:0022804)	animal or gastrulati vesicle-m negative neuron m protein se	regulation of igration (GO erine/threonir	e kinase activ				oxidore 10 respira	eductase completer	0070469)		
	animal or gastrulati vesicle-m negative neuron m protein se	regulation of igration (GO erine/threonir 0 18 (high lif	e kinase activ etime, high p	rotein, low m	RNA)	p-val	oxidore 10 respira ue mitoch	eductase completory chain (GO: ondrial protein c	0070469) complex (GO:009		
	animal or gastrulati vesicle-m negative neuron m protein se group pyridine-c	regulation of igration (GO prine/threonin 18 (high lif compound me	e kinase activ etime, high p etabolic proce	rotein, low m ss (GO:00725	RNA)	p-val	oxidore respira mitochi cytochi 2 active t	eductase completory chain (GO: ondrial protein c rome complex (transmembrane	0070469) complex (GO:009 GO:0070069) transporter activ	98798) vity (GO:002280	
regulation of DNA metabolic process (GO:0051052) 3.02 structural constituent of cytoskeleton (GO:0005200)	animal or gastrulati vesicle-m negative neuron m protein se group pyridine-c pyruvate nucleosid	regulation of igration (GO prine/threonin 18 (high lif compound metabolic pro- le diphospha	e kinase activ etime, high p etabolic proce press (GO:00 e metabolic p	rotein, low m ss (GO:00725 06090) rocess (GO:0	RNA) i24) 009132)	p-val 3.70 3.11 3.03	oxidore respira mitoche cytoche active t inorgar	eductase completory chain (GO: ondrial protein c rome complex (transmembrane nic cation TM tra	0070469) complex (GO:009 GO:0070069) transporter activity	98798) vity (GO:002280 (GO:0022890))4)
myelin sheath (GO:0043209) 5.80 organic acid TM transporter activity (GO:0005342)	animal or gastrulati vesicle-m negative neuron m protein se group pyridine-c pyrruvate nucleosid regulatior	regulation of igration (GO arine/threonin a 18 (high liff compound me metabolic pro le diphospha n of DNA met	e kinase activ etime, high p etabolic proce ocess (GO:00 te metabolic p abolic proces	rotein, low m ss (GO:00725 06090) rocess (GO:0	RNA) i24) 009132)	p-val 3.70 3.11 3.03 3.03	oxidore 10 respira ue mitoche 6 cytoche 2 active t 3 inorgan 2 structu	eductase completory chain (GO: ondrial protein c rome complex (transmembrane nic cation TM tra ral constituent o	0070469) complex (GO:009 GO:0070069) transporter activity nsporter activity f cytoskeleton (0	- 98798) /ity (GO:002280 (GO:0022890) GO:0005200))4)
neuron projection terminus (GO:0044306) 4.58 anion transmembrane transporter activity (GO:0008509)	animal or gastrulati vesicle-m neuron m protein se group pyridine-c pyruvate nucleosid regulatior myelin sh	regulation of igration (GO prine/threonin 18 (high life compound me metabolic pro le diphospha of DNA met eath (GO:00	e kinase activ etime, high p etabolic proce ccess (GO:00 te metabolic p abolic process 43209)	rotein, low m ss (GO:00725 06090) rocess (GO:0 s (GO:005105	RNA) i24) 009132)	p-val 3.7(3.1) 3.0) 3.0) 5.8(oxidore respira mitocho cytochr active t active t inorgar structu organic	eductase completeductase completeductase complexitory chain (GO: condrial protein c rome complex (transmembrane nic cation TM tra ral constituent o c acid TM transp	0070469) complex (GO:009 GO:0070069) transporter activity insporter activity f cytoskeleton (Goorter activity (Go	98798) vity (GO:002280 (GO:0022890) GO:0005200) O:0005342))4)

Supplementary Fig. 17 | Clustering of protein lifetimes based on protein and mRNA level quantifications. a, 3D scatter of protein lifetimes versus protein and mRNA abundance obtained as detailed

Supplementary Fig. 17 legend continuing from the previous page:

in the Online Methods. The data was subdivided in 27 groups of proteins depending on the percentile distribution of these proteins in three dimensions (protein lifetime, mRNA abundance and protein abundance), as schematized on the right side of the graph. This results in 27 groups or clusters, ranging from "low protein abundance, low mRNA abundance, and low lifetime" to "high protein abundance, high mRNA abundance, and high lifetime". b, Table resuming the results of the functional enrichment analysis of the 27 clusters¹¹. Some of the most interesting results (further detailed in panel c) are highlighted in color. c, Detailed functional analysis for the groups highlighted in **b**. Group 3, which corresponds to proteins with a low abundance and a short lifetime that have relatively high mRNA levels, includes regulatory proteins that presumably need to be fast produced on demand, when needed. Group 9 corresponds to proteins that are abundant and have high mRNA levels, but have short lifetimes, and is functionally associated with autophagosomal function, late endosomes and microtubule turnover. Group 15, with a medium lifetime and protein abundance but high mRNA is linked to protein signaling, vesicle transport and several developmental processes. Group 18. with long lifetimes, abundant proteins but with low mRNAs, includes processes associated with nucleotide metabolism and regulation of DNA synthesis. Group 25, with long lifetimes, abundant proteins, but low mRNA levels, is associated with the ribosome and with some specific mitochondrial functions. There are also several biological processes that require high mRNA and protein abundance, coupled to long lifetimes (group 27). These include mitochondrial functions and brain components such as axon and myelin structural proteins.

Supplementary Fig. 18 | Detailed string analysis categorization of the proteins with differentially regulated lifetimes in Glia and neuron nuclei. **a**, String analysis representation¹² of the proteins significantly longer-lived in neuronal nuclei (NeuN⁺) with respect to Glia nuclei (NeuN⁻). Only proteins with an adjusted P < 0.001 were included in the analysis. K-mean clustering of the identified clusters reveals two large clusters of ribosomal proteins corresponding to ribosomes enriched in the nuclear envelope (red and yellow, as also detailed in the right side of the panel). The green and the blue clusters include several mRNA binding proteins and nuclear components. **b**, As in **a** for the proteins longer lived in Glial nuclei (NeuN⁻). The largest cluster (red) includes RNA polymerase II components and several regulators of mRNA splicing. In glial cells there is a less clear functional association of the proteins that seem to be preferentially stabilized (as seen from the lower number of links in the cluster graph), although the study of the specific pathways highlighted here might reveal specific regulatory mechanisms.

Supplementary Fig. 19 | Protein lifetimes in different brain cell subtypes. a, Protein lifetimes grouped in accordance to their enrichment in different cellular populations of the brain, as defined elsewhere¹³. We considered a protein enriched in a cell type when its amounts were >10-fold more abundant in one cell type compared with all the others cell types (following the same principle that was used by Sharma and collaborators¹³). Each data point corresponds to a single protein lifetime, and the black lines indicate the mean and the standard error of the mean (SEM) for each group. Oligodendrocytes are the only cell type that with a significantly higher mean lifetime (*** = P-value < 0.001). This difference is accountable to the fact that these cells produce myelin, which is an extremely long-lived structure in the brain. If the proteins that are characteristic for myelin are excluded, the mean protein lifetime of Oligodendrocytes is not significantly longer than the one of the other cell populations (see the ANOVA P-value summary on the right side of the panel for significances). b, Protein lifetimes in glutamatergic vs. GABAergic neurons. For the specificity of the glutamatergic/Gabaergic enrichment we relied on data published elsewhere¹⁴. The data is represented as a scatter plot where the log2 ratio of the enrichment has a positive value on the x-axis when the protein is more abundant in the glutamatergic population vs. the GABAergic one. The specific GABAergic and glutamatergic vesicular transporters (respectively vGlut and vGAT) are highlighted. There is trend for the Glutamatergic population of neurons to have shorter lifetimes (not statistically significant), but it is only due to the high abundance of CamK subunits in these neurons, which are short-lived (also detailed in the graph).

b

а

	Biological process (non redundant; FDR < 0.05)	-log10 P-value		Biological process (non redundant; FDR < 0.05)	-log10 P-value
	protein localization to membrane (GO:0072657)	5.43	RN	IA splicing (GO:0008380)	>20
	receptor-mediated endocytosis (GO:0006898)	5.35	mR	RNA metabolic process (GO:0016071)	>20
	protein localization to cell periphery (GO:1990778)	4.79	chr	romatin assembly or disassembly (GO:0006333)	8.23
	endomembrane system organization (GO:0010256)	4.34	chr	romosome organization (GO:0051276)	6.94
	cell morphogenesis involved in neuron diff. (GO:0048667)	4.14	pro	otein-DNA complex subunit organization (GO:0071824)	6.58
	regulation of cell-cell adhesion (GO:0022407)	4.14	cov	valent chromatin modification (GO:0016569)	5.81
F	receptor metabolic process (GO:0043112)	4.00	× per	ptidyl-lysine modification (GO:0018205)	5.61
1	cell junction organization (GO:0034330)	3.75	cortex me	romatin remodeling (GO:0006338)	5.08
cerebellum	negative regulation of transport (GO:0051051)	3.54	S me	thylation (GO:0032259)	4.36
ere	membrane biogenesis (GO:0044091)	3.50	NN prain	A localization (GO:0006403)	3.35
	cell-cell adhesion via plasma-membrane (GO:0098742)	3.50		cleobase-containing compound transport (GO:0015931)	3.35
٧S.	leukocyte cell-cell adhesion (GO:0007159)	3.44		thmic process (GO:0048511)	3.35
Xe	regulation of embryonic development (GO:0045995)	3.14	2 pro	otein alkylation (GO:0008213)	3.33
Ť			ibo	onucleoprotein complex subunit organ. (GO:0071826)	3.08
brain cortex vs.	Cellular component (non redundant; FDR < 0.05)	-log10 P-value	rhy pro ribc n DN ribc ribc qer	IA repair (GO:0006281)	3.02
air	membrane region (GO:0098589)	12.20	e ribo	onucleoprotein complex biogenesis (GO:0022613)	2.98
p	coated membrane (GO:0048475)	4.90	ö ger	ne silencing (GO:0016458)	2.91
higher lifetimes in the	plasma membrane protein complex (GO:0098797)	4.84	the		
Ē	secretory vesicle (GO:0099503)	4.68	i i	Cellular component (non redundant; FDR < 0.05)	-log10 P-value
S	cell leading edge (GO:0031252)	4.60	spl	liceosomal complex (GO:0005681)	>20
Ĕ	axon (GO:0030424)	4.51	E chr	romatin (GO:0000785)	15.11
feti	basolateral plasma membrane (GO:0016323)	4.16	higher lifetimes bin bin bin bin bin bin bin bin bin bin bin	clear body (GO:0016604)	14.70
≞.	anchored component of membrane (GO:0031225)	3.95	l ≞ nuc	clear chromosome (GO:0000228)	10.94
he	dendrite (GO:0030425)	3.52	P DN	IA packaging complex (GO:0044815)	7.42
ηig	presynapse (GO:0098793)	3.40	je me	thyltransferase complex (GO:0034708)	5.69
-	cell projection membrane (GO:0031253)	2.96	- pro	otein-DNA complex (GO:0032993)	5.29
	neuron to neuron synapse (GO:0098984)	2.95	sm	all nuclear ribonucleoprotein complex (GO:0030532)	5.02
	occluding junction (GO:0070160)	2.90		clear periphery (GO:0034399)	3.86
	postsynapse (GO:0098794)	2.89		onucleoprotein granule (GO:0035770)	2.89
	transport vesicle (GO:0030133)	2.75		on-exon junction complex (GO:0035145)	2.60
	vesicle membrane (GO:0012506)	2.53	1 1	VI/SNF superfamily-type complex (GO:0070603)	2.60
	apical junction complex (GO:0043296)	2.41	trar	nscription factor complex (GO:0005667)	2.44

lifetime change (%)

Supplementary Fig. 20 | Protein lifetime changes in the cerebellum versus the brain cortex, organized by protein groups. a, The lifetime changes in the cerebellum (**Fig. 5**; expressed as a percentage) are subdivided using the classification from **Fig. 1** and detailed in **Supplementary Data 1**. A positive change corresponds to a longer lifetime in the cerebellum, while a negative change indicates a longer lifetime in the brain cortex. Each data point corresponds to a single protein lifetime and the black lines indicate the mean and the standard error of the mean (SEM) for each group. The results are in agreement with the functional enrichment analysis presented in panel b. Briefly, endocytic proteins and the clathrin endocytosis apparatus are shorter-lived in the cerebellum, while nuclear binding proteins and histones are longer-lived in the cerebellum. **b**, Non redundant gene ontology analysis¹¹ of the lifetime changes in the cortex, while proteins implicated in chromatin assembly and nuclear organization are stabilized in the cerebellum.

Supplementary Fig. 21 | The procedure for preparing synaptosomes and synaptic vesicles. a, Graphical view of the centrifugation steps in this procedure. b, Western Blots of several synaptic proteins in the important fractions: cortex homogenate (Hom), post-nuclear pellet (P2', containing the synaptosomes), and presynaptic pellet (LS2, containing the crude synaptic vesicles). The blots present four synaptic vesicle proteins (VAMP2, synaptotagmin 1, synaptophysin, and VGLUT1/2), four soluble synaptic proteins (Rab3a, RIM1/2, synapsin 1, and the clathrin light chain, clc), and four control proteins: post-synaptic NMDA receptors, the Golgi marker GM130, the glia marker GFAP, and tubulin. As a graphic aid, the enrichment of different proteins in these fractions, compared to the cortex homogenate, is shown in the graphs on the right. Both postsynaptic and glia markers are de-enriched from the presynaptic fraction. c-f, Non redundant gene ontology analysis¹¹ of the lifetime changes among different fractions. The cellular components that are stabilized in most of the fractions belong to myelin, clathrin coated pits, actin and the microtubule cytoskeleton (d). The same trend is observed specifically in the cortex (e). In the cerebellum, several mitochondrial proteins are also stabilized in the synaptic fractions. Panel (g) analyzes proteins whose lifetimes are not changed in synaptosomes vs. brain homogenates, but are significantly different in synaptic vesicle fractions. This analysis shows that actin and microtubule structures live longer when they are associated to vesicles (g).

Supplementary Fig. 22 | Protein lifetimes appear to be correlated to their functional interactions, and may reveal functionally related groups of proteins. **a**, The lifetimes of 5 randomly selected proteins, shown in 7 different tissues or compartments. Note the variation in their behaviors across tissues. **b**, A similar plot, for the lifetimes of 9 Rab proteins. Their behaviors are similar. **c**, A quantification of the variation in protein lifetimes across tissues and organs. We calculated the correlation coefficient between the lifetime curves (such as those from panels **a-b**) for the different proteins we detected in all of the 7 tissues or compartments we analyzed. The dashed line indicates the overall correlation of all proteins. The first 12 bars indicate the correlation among functional complexes. The following 8 bars test protein groups whose functional relations are not perfectly understood. Note that some of the correlations are even stronger than those of known functional complexes.

Supplementary Fig. 23 | Processes influencing protein lifetimes. a, We compared lifetimes from the brain cortex with a measurement in which proteasomal protein degradation was inhibited in rat *in vitro*

Supplementary Fig. 23 legend continuing from the previous page:

neuronal cultures¹⁵. The graph plots the brain lifetimes versus the log₂ of the ratio between the amounts of heavy (H) proteins, obtained in cultures treated with a proteasome inhibitor (Lactacystin), and the medium (M) proteins, obtained in control, untreated cultures (the H and M labels are arbitrary, and derive solely from the experimental design of this publication¹⁵). Due to the noisy nature of the data, two-day bins are reported (± s.e.m). The graph suggests that the inhibition of protein degradation enables the accumulation mainly of proteins with short lifetimes. b, Schematic representation of the experiments performed on primary hippocampal neurons by either blocking the proteasomal function with Lactacystin, or blocking protein translation with Cycloheximide. Primary hippocampal neurons were cultured as previously described ¹⁶, were grown in vitro for 15 days, and were subjected to the two drugs for 24h. At the end of the experiments proteins were extracted and quantified by MS as described in the methods. This reveled protein level changes in culture that were compared to the lifetimes measured in the brain. c, Scatter plot of the protein lifetimes in the cortex versus the protein abundance change (expressed as a percentage of the protein abundance ratio between treatment and control). Positive values indicate increase in the protein abundance upon treatment and vice versa. The protein degradation block increases the levels of shorter-living proteins, reinforcing the results shown in panel **a**. Also in this case two-day bins are reported (\pm s.e.m). **d**, As in **a**, for the samples treated with the protein synthesis blocker Cycloheximide. The block of protein translation decreases most significantly the level of short-living proteins, while longer-living proteins appear relatively more abundant, as shown by the positive association, calculated on the binned data. e, Analysis of the lifetime of 72 proteins (or protein complexes), versus the size of the exposed surfaces (as detailed in the online methods). We separated the proteins in soluble or membrane presynaptic proteins (cyan and pink, respectively), mitochondria proteins (purple), and postsynaptic proteins (dark gray). Negative correlations between surface and lifetime were determined for all four groups (see line fits).

Supplementary Tables:

	Uniprot ID	Protein	lifetime cortex hom. short pulses (days)	lifetime cortex hom. long pulses (days)	Unlabeled percentile rank	Note	Reported for the first time in this work	Reported in Toyama 2013	Reporte in Heo al 2018
		Histone H2A-2-C		*692.83	0.999	Histone	***		
		Histone H2A-1-H	28.21	*569.02	0.999	Histone	***	***	
	P84244 P43276	Histone H3.3 Histone H1.5	103.86 45.73	*169.42 *110.81	0.997 0.996	Histone Histone	***	***	
		Histone H4	61.68	*87.63	0.990	Histone		***	
		Histone H2B-1-C/E/G		*76.53	0.992	Histone		***	
		Histone H1.1-VAR.3		*35.23	0.989	Histone		***	
		Histone H2B-3-A		*51.57	0.988	Histone	***		
ns		Histone H1.4	30.93	*59.76	0.987	Histone	***	***	
Nucleus		Histone H1.3 Histone H1.0	23.90	*40.54	0.984	Histone Histone		***	
Ę		Nup188 homolog	28.18	*67.95	0.985	Nuclear pore complex		***	
~	Q6PFD9	Nup98-Nup96		*36.89	0.988	Nuclear pore complex		***	
z	Q9Z0W3	Nup160		*35.17	0.986	Nuclear pore complex		***	
	Q99P88	Nup155		*23.46	0.953	Nuclear pore complex		***	
	P14733	Lamin-B1	46.98	*86.17	0.992	Nuclear lamina		***	
		Laminin gamma-1 Lamin-B2	21.47 30.65	*43.71 37.37	0.987	Nuclear lamina Nuclear lamina		***	
		Sirtuin-2	60.34	*98.00	0.979	Nuclear Iamina		***	***
		DNA repair XRCC1		*32.43	0.972	DNA repair enzyme	***		
	Q60771	Claudin-11	133.52	139.17	0.997	Myelin	***		
		MOG	117.80	164.41	0.996	Myelin		***	
		MBP	79.40	*136.70	0.996	Myelin		***	
.⊑	Q8BGN3	Ectonucleotide phosphatase	128.12	157.08	0.994	Probable myelin prot.		***	
Myelin	Q922J6	Tetraspanin-2	91.53	89.46	0.993	Probable myelin prot.	***		
Σ		PLP	102.20	80.36	0.990	Myelin		***	***
		MBP	82.17	70.09	0.988	Myelin Droboblo myelin prot		***	***
		CNPase GLTP	55.64 26.65	53.52 30.31	0.987	Probable myelin prot. Probable myelin prot.	***		*
	Q9JL62 Q62059	Versican core protein	57.77	*687.19	0.997	Extracellular matrix		***	***
F	P54320	Tropoelastin		*158.60	0.999	Extracellular matrix	***		
Extracellular matrix	P08122	Collagen alpha-2(IV)		*89.17	0.995	Extracellular matrix		***	
matrix	Q9QUP5	Proteoglycan link protein 1	82.13	*112.42	0.994	Extracellular matrix			***
nat	Q8BYI9	Tenascin-R	38.72	*51.13	0.988	Extracellular matrix			***
2	Q04857	Collagen alpha-1(VI)		*61.68	0.986	Extracellular matrix		***	
Ц	Q9ESM3 P11087	Proteoglycan link protein 2		*75.95	0.986	Extracellular matrix	***	***	
	1 11001	Collagen alpha-1(I)		*24.72	0.950	Extracellular matrix	***	***	
	Q9DCV4 Q922F4	Regulator of MT dynamics Tubulin beta-6	19.45	*60.38	0.990	Microtubule Microtubule	***		
	070318	Epb41l2	24.94	*59.69	0.978	Actin	***		
		CENP-V	25.61	*30.23	0.970	centromere	***		
		Tubulin beta-2A	32.59	*62.50	0.986	Microtubule			***
5	Q9CWF2	Tubulin beta-2B	25.94	37.20	0.980	Microtubule	***		
ŝ	P08551	Neurofilament light	33.91	39.37	0.979	Microtubule			***
ē		CRMP-1	31.17	32.28	0.969	Microtubule			***
Cytoskeleton		MAP-6	26.96	31.55	0.966	Microtubule			***
¥		CRMP-2	26.13	28.10	0.955	Microtubule			***
с	P68372 Q9EQE6	Tubulin beta-4B CRMP-5	27.20 35.23	28.41 30.26	0.954	Microtubule			***
	P08553	Neurofilament medium	29.47	36.83	0.951	Neurofilament		***	***
	P46660	Neurofilament-66 (internexin)	35.68	37.61	0.974	Neurofilament			***
	Q810U3	Neurofascin	33.45	39.26	0.974	Neurofilament			***
	P19246	Neurofilament heavy	35.06	32.28	0.962	Neurofilament			***
		Mycophenolic esterase	23.79	*68.84	0.993		***		
		Ubiquinone monooxygenase		*68.39	0.991		***		***
		PDCE2 NRBF-1	36.22 29.40	*44.69 35.74	0.984	Inner matrix Inner matrix			***
		Pyruvate dehydrogenase X	33,16	35.17	0.975	Inner matrix			***
		OGDC-E2	34.70	36.05	0.974	Inner matrix			***
		PDHE1-B	34.50	35.56	0.972	Inner matrix			***
	Q9CQQ7	ATP synthase F(0) B1	30.66	32.26	0.971				***
	Q9CQ69	Cytochrome b-c1/8	29.31	37.67	0.970	Complex III	***		
	Q9EP89	LACTB	27.85	30.63	0.969				***
	P62897	Cytochrome c	31.38	31.45	0.966				***
		ATPase subunit d	32.32	32.89	0.965	Complex V			***
		PDHE1-A type I ATP synthase gamma	22.48 31.50	29.05 31.12	0.965	Inner matrix Complex V			***
		Cvtochrome c1	31.50	31.12 31.56	0.964	Complex V Complex III			***
		Dihydrolipoyl dehydrogenase	31.86	31.40	0.962	Inner matrix			***
		ATP synthase subunit O	30.21	30.64	0.962	Complex V			***
E	Q64516	Glycerol kinase	24.73	30.98	0.962				***
drion	P05202	mAspAT	30.34	30.89	0.961	Inner matrix			***
pu		Cytochrome b-c1	30.57	31.54	0.959	Complex III			***
ę		Fumarylacetoacetate hydro.	25.80	30.17	0.959		***		***
Mitochon		TOM40B ATP synthase g	28.70	32.18	0.959	 Complex V			***
Mit		Prohibitin-1	30.11 30.11	30.64 30.32	0.958	Complex V Inner membrane			***
-		Malate dehydrogenase	29.71	29.43	0.956	Inner membrane			***
		ATP synthase subunit alpha	26.63	29.15	0.956	Complex V			***
	Q91V61	Sideroflexin-3	30.02	28.93	0.956	Inner membrane			***
		Cytochrome b-c1	25.71	27.84	0.956	Complex III			***
		BCS1		*29.71	0.955		***		
	P62880	G protein subunit beta-2	27.51	29.46	0.955				***
	Q06185 Q9DCZ4	ATP synthase subunit e MICOS (Mic26)	30.27	28.41	0.954	Complex V			***
	Q9DCZ4 Q99JR1	MICOS (Mic26) Sideroflexin-1	26.97 29.94	30.59 33.05	0.954	Inner membrane			***
		Isocitrate dehydrogenase	29.94	26.74	0.954	 Inner matrix			***
		Samm50	29.20	29.36	0.953	Outer membrane			***
	Q9CZU6	Citrate synthase	28.86	28.39	0.952	Inner matrix			***
		Cytochrome b-c1/7	30.40	31.13	0.952	Complex III			***
		Superoxide dismutase	29.09	28.13	0.952				***
	P63038	Hsp60	25.74	27.15	0.952	Inner matrix			***
		Prohibitin-2	29.35	30.27	0.960	Inner membrane			***
		NipSnap1	33.40	37.49	0.957	Also in synapse			***
		Neuromodulin (GAP-43)	34.60	37.62	0.977	Signalling regulator			***
	P55937	Golgin-160	56.23	48.39	0.981	Golgi structural	***		
ler		NAP-22	28.36	36.43	0.972	Signalling regulator			***
Other		Prkar2b	27.19	28.64	0.961	Signalling regulator			***
0		Gz-alpha Transducin beta chain 1	35.84 29.19	44.26 28.86	0.981	Signalling regulator Signalling regulator			***
	P62874								

Supplementary Table 1 | List of long-living proteins, divided by subcellular localization. The list contains the proteins that are in the 95th percentile of most stable proteins identified in the brain cortex homogenate sample from this study. We also report the position of the specific protein with respect of the entire proteome as "Unlabeled percentile rank". This is close to the type of measurement performed in previous studies of ELLPs, in which this was the only major parameter measured. In the last three columns we also indicate long living proteins that have been reported in previous works^{8,17}.

	lifetime change	adj. <i>P</i> -value	lifetime change	adj. P-value
	EE hom. vs. ctrl	homogenate	EE syn. vs. ctrl	synaptosomes
L1-CAM	-32.06	1.40E-07	-30.88	2.20E-05
OPA1	-26.99	<1E-10	-14.83	9.80E-10
HADNB	-21.46	<1E-10	-13.80	3.30E-10
Neurexin-4 (Cntnap1)	-15.03	<1E-10	-15.67	<1E-10
VDAC2	-15.12	<1E-10	-11.87	<1E-10
PSD3	-15.86	<1E-10	-15.97	2.00E-09
Neurofilament-M	-15.17	<1E-10	-11.79	1.20E-06
SRC	-17.35	<1E-10	-11.26	<1E-10
Mitofilin	-12.54	<1E-10	-9.93	6.10E-09
GPDH-M (Gpd2)	-15.57	<1E-10	-8.82	7.70E-06
CASK	-15.42	<1E-10	-7.65	1.00E-05
Septin-7	-8.80	1.40E-08	-17.02	<1E-10
HADNA	-7.96	<1E-10	-7.44	8.10E-09
SAP97 (Dlg1)	-21.56	2.4-09	-10.14	4.78E-08
Neuroplastin	-7.36	1.3-06	-8.07	2.80E-06
Neuronal RasGAP (SynGap1)	-9.19	5.9-09	-4.87	0.0008
Glut. dehydrog. (Glud1)	-6.94	<1E-10	-5.65	0.0003
Synapsin-1	-8.85	1.3-06	-9.34	0.0001
Myelin proteolipid (PLP1)	4.87	9.8-06	8.93	<1E-10
Claudin-11 (Cldn11)	14.79	<1E-10	21.98	<1E-10

b

String analysis Biological Process	FDR	String analysis Cellular Component	FDR
nervous system development (GO:0007399)	0.0064	myelin sheath (GO:0043209)	4E-11
single-organism cellular process (GO:0044763)	0.0072	mitochondrial inner membrane (GO:0005743)	3E-07
cellular process (GO:0009987)	0.0114	synapse (GO:0045202)	3E-07
single-organism process (GO:0044699)	0.0169	mitochondrial envelope (GO:0005740)	3E-06
regulation of neuronal synaptic plasticity (GO:0048168)	0.0193	membrane (GO:0016020)	1E-05
negative regulation of signal transduction (GO:1902532)	0.0251	neuron part (GO:0097458)	1E-05
anatomical structure development (GO:0048856)	0.0363	synapse part (GO:0044456)	2E-05
small molecule catabolic process (GO:0044282)	0.0408	neuron projection (GO:0043005)	2E-05
system development (GO:0048731)	0.0408	cell projection part (GO:0044463)	2E-05
String analysis Molecular Function	FDR	axon part (GO:0033267)	3E-05
	0.003	axon (GO:0030424)	4E-05
acyl-CoA dehydrogenase activity (GO:0016509) acetyl-CoA C-acyltransferase activity (GO:0003988)	0.003	mitochondrial fatty acid beta-oxid. complex (GO:0016507)	7E-05
acetyl-COA C-acylliansierase activity (GO.0003966)	0.0279	mitochondrial part (GO:0044429)	0 0002
		cell projection (GO:0042995)	0.0002
String analysis KEGG Pathways	FDR	whole membrane (GO:0098805)	0.0003
Fatty acid elongation (62)	0.0293	mitochondrial nucleoid (GO:0042645)	0.0004
Cell adhesion molecules (CAMs) (4514)	0.0293	plasma membrane part (GO:0042043)	0.0005
Tight junction (4530)	0.0293	membrane region (GO:0098589)	0.0007
Fatty acid degradation (71)	0.0418		0.001
Valine, leucine and isoleucine degradation (280)	0.0418	postsynaptic density (GO:0014069)	0.001
Fatty acid metabolism (1212)	0.0418	cell junction (GO:0030054)	0.0024
		plasma membrane region (GO:0098590)	0.0024
Panther pathway analysis for all significantly changed lifetimes	FDR	synaptic membrane (GO:0097060)	
PI3 kinase pathway (P00048)	0.0155	plasma membrane (GO:0005886)	0.003 0.0045
Enkephalin release (P05913)	0.0155	membrane part (GO:0044425)	
Metabotropic glutamate receptor group II pathway (P00040)	0.0155	axon terminus (GO:0043679)	0.0046
Heterotrimeric G-protein signaling (P00026)	0.0337	organelle membrane (GO:0031090)	0.0053
5HT1 type receptor mediated signaling pathway (P04373)	0.0391	postsynapse (GO:0098794)	0.0078
Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043)		mitochondrial outer membrane (GO:0005741)	0.0092

Supplementary Table 2 | Protein lifetime differences upon chronic environmental enrichment. a, A precise analysis of the proteins with significantly different lifetimes identifies synaptic components that are turned over at a higher speed following environmental enrichment, such as the presynaptic adhesion molecule Neurexin-4, the scaffold molecule CASK, the phosphoprotein synapsin-1 and the neuronal RasGAP SynGAP1 (See also Fig. 7). Some mitochondrial components implicated in the metabolism of glutamate and acetyl-CoA are also turned over at a higher speed following environmental enrichment. On the contrary, two myelin components (PLP1 and Claudin 11) are stabilized upon environmental enrichment. b, Details of the string analysis of the 20 common proteins presented in Fig. 7. Three functional protein clusters are changed upon environmental enrichment. The analysis indicates that the most important differences between these two cohorts of mice are at the level of myelin, the mitochondrial inner membrane and the synapse.

GO categories for relatively shorter living in cultured neurons vs. brain cortex (<15th percentile; non redundant; FDR < 0.05)	-log ₁₀ p-value
presynapse (GO:0098793)	9.65
myelin sheath (GO:0043209)	8.64
transport vesicle (GO:0030133)	7.48
secretory vesicle (GO:0099503)	6.68
inorganic cation TM transporter activity (GO:0022890)	6.19
active transmembrane transporter activity (GO:0022804)	6.10
axon (GO:0030424)	5.92
neurotransmitter transport (GO:0006836)	5.88
plasma membrane protein complex (GO:0098797)	5.58
hydrogen transport (GO:0006818)	5.51
regulation of neurotransmitter levels (GO:0001505)	5.31
monovalent inorganic cation transport (GO:0015672)	5.00 5.00 4.64 4.39
neuron projection terminus (GO:0044306)	
synaptic vesicle cycle (GO:0099504)	
membrane region (GO:0098589)	
ATP hydrolysis coupled TM transport (GO:0090662)	4.23
GO categories for relatively longer living in cultured neurons vs. brain cortex (>85th percentile; non redundant; FDR < 0.05)	-log ₁₀ p-value
peptidase complex (GO:1905368)	13.3
ubiquitin-dependent catabolic process (GO:0006511)	5.23
transcription factor binding (GO:0008134)	4.62
endopeptidase activity (GO:0004175)	4.61
threonine-type peptidase activity (GO:0070003)	4.30
proteasomal protein catabolic process (GO:0010498)	4.27
	3.68

	GO categories for relatively shorter living in heart vs. brain cortex (<15th percentile; non redundant; FDR < 0.05)	-log ₁₀ p-value
b	GTPase activity (GO:0003924)	7.50
	guanyl nucleotide binding (GO:0019001)	6.19
	membrane region (GO:0098589)	5.44
	small GTPase mediated signal transduction (GO:0007264)	4.93
	midbody (GO:0030496)	4.69
	cytokinesis (GO:0000910)	4.31
	vesicle membrane (GO:0012506)	4.09
	plasma membrane protein complex (GO:0098797)	3.81
	coated membrane (GO:0048475)	3.78
	extrinsic component of membrane (GO:0019898)	3.66
	positive regulation of component biogenesis (GO:0044089)	3.65
	Golgi membrane (GO:0000139)	3.56
	coated vesicle (GO:0030135)	2.70
	organelle subcompartment (GO:0031984)	2.70
	microtubule (GO:0005874)	2.51
	cell leading edge (GO:0031252)	2.51
	-log ₁₀ p-value	
	fatty acid metabolic process (GO:0006631)	7.68
	oxidoreductase activity (GO:0016627)	6.88
	lipid catabolic process (GO:0016042)	6.47
	lipid modification (GO:0030258)	6.44
	small molecule catabolic process (GO:0044282)	5.72
	lipid homeostasis (GO:0055088)	5.66
	electron carrier activity (GO:0009055)	5.08
	protein-DNA complex (GO:0032993)	4.76
	sulfur compound binding (GO:1901681)	3.91
	DNA packaging complex (GO:0044815)	3.53

3.40

cofactor binding (GO:0048037)

GO categories for relatively shorter living in muscle vs. brain cortex (<15th percentile; non redundant; FDR < 0.05)	-log ₁₀ p-value
DNA biosynthetic process (GO:0071897)	4.26
positive regulation of transferase activity (GO:0051347)	3.69
cellular protein complex assembly (GO:0043623)	3.46
cellular response to nitrogen compound (GO:1901699)	3.29
negative regulation of organelle organization (GO:0010639)	3.20
regulation of DNA metabolic process (GO:0051052)	3.20
GO categories for relatively longer living in muscle vs. brain cortex (>85th percentile; non redundant; FDR < 0.05)	-log ₁₀ p-value
nucleoside diphosphate metabolic process (GO:0009132)	5.24
nucleotide phosphorylation (GO:0046939)	3.67

Supplementary Table 3 | Gene ontology analysis of lifetime changes across different cells or tissues Associated to Fig. 8. a, Analysis of the lifetimes in the cortex homogenate versus the lifetimes of primary rat neurons (published elsewhere⁷). **b**, Analysis of the lifetimes in the cortex homogenate versus the lifetimes in heart samples. **c**, Analysis of the lifetimes in the cortex homogenate versus the lifetimes of skeletal muscle (gastrocnemius). Please note that all these analysis take into account the average differences, and point to the "especially short-lived" or "especially long-lived" proteins.

Target	Antibody/company	Origin	Concentration
VAMP2	SySy 104211 or 69.1	mouse monoclonal	1:1000
Synaptotagmin1	SySy 105011	mouse monoclonal	1:1000
Synaptophysin	SySy 101011 or 7.2	guinea pig	1:1000
VGlut1/2	SySy 135503	rabbit polyclonal	1:1000
Rab3a	BD Clone 9 - 610379	mouse monoclonal	1:1000
Rim1/2	SySy 140003	rabbit polyclonal	1:500
Synapsin	clone M10.22 from Jahn R	mouse monoclonal	1:1000
clathrin light chain	SySy 113001	mouse monoclonal	1:5000
NMDA receptor	BD clone 54.2 -	mouse monoclonal	1:1000
GM130	BD 610822	mouse monoclonal	1:1000
GFAP	NB300-141	rabbit polyclonal	1:1000
alpha-Tubulin	SySy 302203	rabbit polyclonal	1:2000

Supplementary Table 4 | Antibodies used in this study for WB

Supplementary References

- 1. Spiess, A. N. & Neumeyer, N. An evaluation of R2as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. *BMC Pharmacol.* **10**, 1–11 (2010).
- 2. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. *Nat. Genet.* **21**, 70–1 (1999).
- 3. Erdmann, G., Schütz, G. & Berger, S. Inducible gene inactivation in neurons of the adult mouse forebrain. *BMC Neurosci.* **8**, 63 (2007).
- 4. John, A. M. & Bell, J. M. Amino acid requirements of the growing mouse. *J. Nutr.* **106**, 1361–7 (1976).
- 5. Price, J. C., Guan, S., Burlingame, A., Prusiner, S. B. & Ghaemmaghami, S. Analysis of proteome dynamics in the mouse brain. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 14508–13 (2010).
- 6. Dörrbaum, A. R., Kochen, L., Langer, J. D. & Schuman, E. M. Local and global influences on protein turnover in neurons and glia. *Elife* **7**, 1–24 (2018).
- Mathieson, T. *et al.* Systematic analysis of protein turnover in primary cells. *Nat. Commun.* 9, 1–10 (2018).
- Heo, S. *et al.* Identification of long-lived synaptic proteins by proteomic analysis of synaptosome protein turnover. *Proc. Natl. Acad. Sci.* 201720956 (2018). doi:10.1073/pnas.1720956115
- 9. Cohen, L. L. D. *et al.* Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. *PLoS One* **8**, e63191 (2013).
- 10. Bezdek, J. C., Ehrlich, R. & Full, W. FCM: The fuzzy c-means clustering algorithm. *Comput. Geosci.* **10**, 191–203 (1984).
- 11. Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. *Nucleic Acids Res.* **45**, 1–8 (2017).
- 12. Szklarczyk, D. *et al.* The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. *Nucleic Acids Res.* **45**, D362–D368 (2017).
- 13. Sharma, K. *et al.* Cell type- and brain region-resolved mouse brain proteome. *Nat. Neurosci.* **18**, 1819–31 (2015).
- Boyken, J. *et al.* Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. *Neuron* **78**, 285–297 (2013).
- 15. Hakim, V., Cohen, L. D., Zuchman, R., Ziv, T. & Ziv, N. E. The effects of proteasomal inhibition on synaptic proteostasis. *EMBO J.* **9**, e201593594 (2016).
- 16. Kaech, S. & Banker, G. Culturing hippocampal neurons. *Nat. Protoc.* 1, 2406–15 (2006).
- 17. Toyama, B. H. *et al.* Identification of long-lived proteins reveals exceptional stability of essential cellular structures. *Cell* **154**, 971–82 (2013).