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Abstract: We propose an interpolation based projection framework for model reduction of quadratic-
bilinear descriptor systems. The approach constructs projection matrices from the bilinear part of
the original quadratic-bilinear descriptor system and uses these matrices to project the original
system. The projection matrices are constructed by viewing the bilinear system as a linear para-
metric system, where the input associated with the bilinear part is treated as a parameter. The
advantage of this approach is that the projection matrices can be constructed reliably by using
an a posteriori error bound for linear parametric systems. The use of the error bound allows us
to select a good choice of interpolation points and parameter samples for the construction of the
projection matrices by employing a greedy-type framework. The results are compared with the
standard quadratic-bilinear projection methods and it is observed that the approximations through
the proposed methods are comparable to the standard method, but at a lower computational cost
(“offline time”). Furthermore, we extend a one-sided parametric moment matching method to a
two-sided method that doubles the number of moments matched in the reduction method.

1. Introduction

We consider interpolatory model reduction techniques for a single-input single-output quadratic-
bilinear descriptor system of the form:

6]

where £/, A, N € R"™", H € R"X”Q, B, CT € R™ are the coefficient matrices and vectors.
x(t) € R" is the state vector and u(t), y(t) € R are the input and output of the system. A large class
of nonlinear systems can be written in quadratic-bilinear form by using exact transformations [19],
in addition to systems that naturally appear in the quadratic-bilinear form. This includes nonlinear
electrical circuits, biochemical rate equations, reaction diffusion equations and fluid mechanics,
see for example [19, 9]. Note that the notion “quadratic” is due to the term Hx(t) ® x(t) and
the “bilinear” is due to the term Nx(¢)u(t), which is linear in x(¢) and linear in u(¢) separately,
but together it is bilinear. Simulation, control and optimization of such nonlinear systems are
computationally inefficient for large n. A remedy to this issue is the use of model order reduction.
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The goal of model order reduction is to construct a reduced system of dimension r < n:

E () = Ap, () + Nowp (Hu(t) + Hyw, (8) @ 2,(8) + Byu(t),
yr(t) = Cra, (1),

with the output response y,-(t) approximately equal to y(t). Various techniques have been pro-
posed in the literature to compute such reduced-order models, cf. [4, Chapters 7-12] and [10]. In
this paper, we discuss projection-based interpolatory techniques [18, 5] that are well used in the
linear case and are recently extended to quadratic-bilinear systems [19, 9, 2]. Projection involves
approximating the state vector x(¢) in an r-dimensional subspace spanned by the column vectors
of V' € R™ ", so that the residual in the state equation is orthogonal to another r-dimensional
subspace spanned by the column vectors of W' € R™*". That is, we approximate x(t) ~ Vz,(t)
such that the Petrov-Galerkin orthogonality condition holds:

2)

wt (EVybr(t) — (AVz,(t) + NV, (t)u(t) + HVz,(t) @ Vz,(t) + Bu(t))) =0,
§(t) = OV, (1),

It W = V, the projection is orthogonal and is often called one-sided projection, otherwise it
is oblique and called two-sided projection. The oblique projection framework leads to a set of
reduced system matrices of the form:

E,=WTEV, A, =WTAV, H. =W'HV ®V), N,=WTNV,

3
B, =WT'B, C.=CV. ©)

Analogous to the linear case, the basis matrices V' and 1/ can be selected such that the input-
output representation in frequency domain is interpolated at some predefined interpolation points.
However, unlike linear systems, quadratic-bilinear systems involve a series of multivariate transfer
functions, each representing a subsystem of the original system. Thus, the problem is how to con-
struct V' and W such that the first K multivariate transfer functions associated with the reduced
system are interpolating the corresponding original multivariate transfer functions, at multiple fre-
quency shifts. To achieve this, orthogonal projections [19] as well as oblique projections [9] have
been used in the literature with some simplifications. For example, the approach in [9] constructs
V and W such that the reduced system ensures interpolation of the first two subsystems only.
Also the choice of interpolation points for each frequency variable is assumed to be the same. We
discuss these results further in Section 2.

Recently a new interpolation framework [3] for quadratic-bilinear systems has been proposed
that relaxes the restrictions in [9]. The idea is to construct basis matrices V' and W from the
bilinear part of the quadratic-bilinear system and uses these matrices to project the quadratic-
bilinear system. This means that if the projection approach interpolates the first X (K > 2) bilinear
transfer functions, then a major part of each of the first K quadratic-bilinear transfer functions is
exactly interpolated and the remaining parts are well approximated. It is observed in [3] that if the
procedure of selecting the interpolation points is similar to the one used in [9], then the quality of
the reduced model through this new approach is comparable to the direct method.

In this paper, we use this new projection approach for model order reduction (MOR) of quadratic-
bilinear systems and identify a good choice of interpolation points for the bilinear part of the
quadratic-bilinear system by utilizing a greedy type framework on the error bound expressions de-
rived recently in [16]. The error bound expressions in [16] are derived for general linear parametric

2



systems by introducing primal and dual systems for identifying projection matrices and their er-
ror expressions. A similar primal and dual system formulation is also developed in [25], while
greedy procedures to derive sampling points have a long tradition in reduced-basis methods, see
e.g., [23] or [12, Chapters 2, 3]. In our proposed method, we first rewrite the bilinear part of the
quadratic-bilinear system as an equivalent linear parametric system and then iteratively identify a
set of interpolation points corresponding to the maximum value of the error bound, starting from
an initial interpolation point. For each choice of interpolation points, we interpolate not only the
original transfer function and its first derivate, but also higher derivatives, so that the reduced bilin-
ear system is well approximated. The iteration stops when the approximation error is less than the
prescribed tolerance level. Each of the iterations contributes to constructing a better set of basis
matrices, that are then used for oblique projection of the original quadratic-bilinear system.

The remaining part of the paper is organized as follows. Section 2 shows projection techniques,
including direct and indirect approaches, for quadratic-bilinear systems. Section 3 presents mo-
ment matching techniques for the bilinear part of the quadratic-bilinear system. In particular, we
extend the one-sided projection method in [11] to a two-sided method. Section 4 shows the error
bound expression and a greedy type algorithm for selecting the interpolation points. Finally in
Section 5, numerical results are shown for some benchmark examples.

2. MOR for Quadratic-Bilinear Systems

In this section, we briefly review the concept of projection based interpolation for quadratic-
bilinear systems. As discussed in the introduction, analogous to bilinear systems, quadratic-
bilinear systems in frequency domain involve multivariate transfer functions, see [1] for the bi-
linear case and [19, 9] for the quadratic-bilinear case. The structure of the first two multivariate
transfer functions in the so called symmetric form [24, Chapter 3] is given as:

Hi(s)) = C(s1.E — A)'B=:CF(s)'B =: CG1(s1),

Hj(s1,82) = %CF(Sl + 82)_1(N [G1(s1)+ Gi(s2)]+ @
H[G1(81)®G1(82) + G1(82)®G1(81)}),

= CGQ(Sl, 52),

where F'(s) := sFE — A. For general k-variate transfer functions, the problem of interpolation can
be written as:

Hk(ali7-~~70ki) :I:Ik<0-1ia---70'ki>7 (5)

where oy; € C are the interpolation points or shift frequencies fork =1,..., Kand:=1,...,n,.
Since the structure of the multivariate transfer functions is too complex for KX > 2, often in the
literature simplifications are used in the projection framework. The following are the two main
assumptions often employed in the existing projection techniques:

1. The value of K is restricted to 2, so that only the first two transfer functions, as given in (4),
are interpolated.

2. All the frequency variables s;’s are varying in the same way, meaning thats; = ... = s, = s,
so that we need a single set of interpolation points for all multivariate transfer functions.



With these assumptions, the multivariate transfer functions in (4) become

H(s) = C(sE — A)'B=:CF(s)'B,
Ha(s,5) = C(2sE—A) (NG (s) + H[G1(5)2Gi (s)), ©
and the interpolation problem reduces to:
H,(0;) = Hi(0;), Ha(0;,0;) = Ha(0;,0;),
where 0; € Rfor j = 1,...,n,. Based on the results in [19], it is possible to construct the basis

matrix V' for a union of shifted Krylov subspaces that ensure the above interpolation conditions.
Recently, these results were extended in [9] to an oblique projection framework so that the reduced
model also matches the derivatives of the first two transfer functions. In the following, we briefly
review the projection technique introduced in [9].

Notice that H(s; ) is a simple univariate transfer function and interpolating such a linear transfer
function is well investigated in the literature. To ensure, in addition, interpolation of the second
transfer function and its derivatives, the authors in [9] utilized tensor theory to introduce a special
identity for the Hessian H. That is

wHu®v) =u"H® (v o w),

with u,v,w € R™ and where H® is the mode-2 matricization of a 3-dimensional tensor H €
R™*mx" see [21] for details on tensor theory. The mode-1 matricization H = H (1) of the tensor H.
also satisfies the commutativity rule: H(u ® v) = H (v ® u). These observations are used to prove
the main result of [9], that identifies a good choice of V' and W:

Proposition 2.1. [9] Let o; € C be the interpolation points and o; ¢ {A(A, E), A(A, E)}, where
A(A, E) represents the generalized eigenvalues of the matrix pencil A\E — A. Assume that £ =

WTEV is nonsingular and /l, H , N , B’, C are as in (3) with full rank matrices V, W & R™*" such
that

span(V) = span {F(0;)"'B, F(20;) '[H(F(0;) 'B® F(0;) 'B) + NF(0;) " 'B]}

i=1,...np

span(W) = span {F(20;)7TC?, F(ai)’T[H(Q)(F(ai)’lB ® F(20;)7TCT)

i=1,...,np

1
+ 5NTF(Qai)—TCT}}.

Then the reduced quadratic-bilinear differential algebraic equation (QBDAE) satisfies the follow-
ing interpolation conditions:

Hl(ai) = I:II(Ui)a H1<2Uz) = 1211(20'2‘),
. s, 0 - (N
H2(Ui70i) = HQ(UiaOi)> a—SZHQ(UuUi) = a—SZHQ(Ui,Uz‘),

where [ =1,2andi=1,...,n,.

Proposition 2.1 suggests that oblique projection techniques can ensure interpolation as in (7),
but with the two assumptions discussed before. It is also possible to match higher derivatives as
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shown in [8], however in that case the size of the reduced model grows much faster than the number
of derivatives matched.

An alternate oblique projection technique [3] for quadratic-bilinear systems is to interpolate the
bilinear part of the multivariate transfer functions without the restrictions of interpolating only the
first two subsystems with a single set of interpolation points. To see the structure of the bilinear
part, note that each of the multivariate transfer functions associated with the quadratic-bilinear
system can be divided into three parts: the bilinear part, the quadratic part and the quadratic-
bilinear part,

Hi(s1, ..., s6) = Hip(s1,. .., 86) + Hig (51,0, 81) + Higp (515, 88). (8)

The quadratic-bilinear part is nonzero for £ > 2 implicating that the direct interpolation approach
[9] completely ignores this part of the multivariate transfer function. The quadratic part is nonzero
for £ > 1. This means that for £ = 1, the original transfer function is exactly equal to the
bilinear part: H;(s;) = H;,(s;). For k& = 2, we have the bilinear and the quadratic parts,
H2(81, 52) = H23<81, 82) + H2Q<81, 82) where

1
H23<81, 82) = EOF(SI + 82)_1N[G1(81)+ G1<82>] =. CGQB (81, 82),

HQQ(Sl, 52) = %CF(Sl + 82)71Q[G1(81) ® Gl(SQ) + Gl(Sg) & G1<81>] (9)

= CGQQ(817 82)
Similarly for £ = 3, we have to consider all the three parts,
Hi(s1, 52, 83) = Hs (51, 82, 53) + Hs, (51, 52, 83) + Hs, 5 (51, 52, 83),

in which

1
Hs, (51,52, 83) = §CF(81 + S + 53)71N[G23(817 59)+ Gay(51, 53) + Gay(s2, 53)]

1
HgQ(Sl, S92, 83) = §CF(81 + So + 83)_1H[G1(81) & GQQ (82, 83)
+ GQQ (82, 83) ® Gl(Sl) + Gl(SQ) ® GQQ (81, 83) + GQQ(Sl, 83) ® Gl(Sg)
+ G1(s2) ® Gy (51, 53) + Gay (51, 83) ® G1($2)]
1
H3Q3(517 S9, 83) = §CF<81 + S9 + Sg)ilN[GQQQS’l, 82)+ GQQ (81, Sg) + GQQ (52, 83)

+ H[G1(51) @ Gay(52,83) + Gay (52, 53) @ Gi(s1) + Gi(s2) @ Gay(s1, 53)

+ Gy (51,83) © Gi(52) + Gr(s2) ® Gay(s1,83) + Gay(s1,53) © Gi(ss)]
(10)
Thus the general form of the bilinear part for £ > 1 has the following structure:

1 _
Ho (st oos) = 22C(( s E = A) 7 (N[ Groralsryeosean)] ) (D)
S ()

where the second summation with 7(-) is over all (k — 1)! factorials of the integers 1 to & — 1. It
is easy to see that Hy (s1, ..., sx) corresponds to the symmetric form of the multivariate transfer

5



functions associated with a bilinear system as in (1) with H being a zero matrix. This means that
the bilinear part corresponds to the following system

Eiy(t) = Axy(t) + Nay(t)u(t) + Bu(t),
yb(t) = C.l’b(t).

It follows that one can use bilinear interpolatory techniques [13] to identify a choice of projec-
tion matrices Vg € R™"*" and Wy € R™*" such that

(12)

span(Vp) = span {F(0;)'B, F(20;) 'NF(0;)"'B}

i=1,....n,

span(Wp) = span {F(20;)7TCT, %F(Ui)_TNTF(QJi)_TC’T]},

1=1,...,np

satisfying
Hk3(01i7-~~70ki) :Hk3(01i7-~-70ki)7 (13)

where o;; € C are the interpolation points. Here, in the bilinear case we can avoid the restrictions
used in the quadratic-bilinear interpolation. So, if we use V3 and W as the basis matrices to
construct reduced system matrices:

E=WEEVE, A=WELAVy, H=WEHVz®Vs), N=WENVj,

. . (14)
B=WLB, C=CV;g,
then we can not only ensure (13) but also hope to approximate the quadratic and the quadratic-
bilinear parts:

HkQ(Ulia"-aaki) %HkQ(Uu,---,Uki), (15)

HkQB<01i7 . ,Uki) ~ HkQB(O-lia e 70ki)-
Remarks 2.1. In contrast to the projection framework discussed in Proposition 2.1, here the basis
matrices V and Wp are constructed without the n x n? quadratic matrices H and H ), This
saves significant computational cost for each sparse linear system that is to be solved for a fixed
interpolation point. Once Vg and Wy are constructed, only then the quadratic matrix / is used as
in (14) to obtain the reduced model.

It is observed in [3] that a good choice of bilinear basis matrices V3 and Wy improves the
quality of the reduced quadratic-bilinear system. This means that we require a good choice of
interpolation points jy; with which we can identify a reduced model that in addition to ensuring

(13), also matches some higher derivatives of Hp (s, ..., sx). That is

oi Y

8—85Hk3(01i7 o Oki) = a—sg-Hk:B(Uu, C s Oki),s (16)
where [ = 1, ...,k and j is the order of the partial derivatives.

One possibile approach would be to use the two-sided bilinear iterative rational Krylov algo-
rithm (BIRKA) [7] that iteratively updates a set of interpolation points such that the reduced model
satisfies the necessary conditions [26] for an H,-optimal reduced model. The BIRKA method iter-
atively converges to a reduced model that not only ensures (13) but also matches the first derivative
of Hp(sy, ..., sk) with j = 1 in (16). However, the computational cost of BIRKA for large n and
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r values is highly expensive and also it is not possible to match higher derivatives. Regarding the
computational cost of BIRKA, some effort has been done in [17] to reduce the computational cost.
In the next section, we propose to apply error bounds for adaptive selection of interpolation points
or; and identification of projection matrices Vp and Wp that also match some of the higher order
derivatives Hp(s1, ..., Sx), as shown in (16) with j > 2.

3. Moment matching techniques

For the purpose of model reduction, we can consider a linear parametric system instead of the
bilinear system (12) by replacing the control in the bilinear system formally by a parameter.

Ei,(t) = Az,(t) + pNxy(t) + Bu(t),

17
uplt) = Cry(2), a7

The Laplace transform of the linear parametric system in the frequency domain yields the transfer
function
H(s,p) = C(sE — A—pN) 'B. (18)

Since in the linear parametric form, we have a posteriori error bounds on model reduction of
H (s, p), we are interested in using a linear parametric model order reduction (PMOR) method for
computing the projection matrices. Thus the problem is to identify a choice of projection matrices
V, € R™" and W, € R™*" such that

~

H(oi,pi) = H(oi, pi), (19)

where p; € C are some predefined fixed parameters, and construct reduced quadratic-bilinear
system matrices as in (14) using V}, and W), as projection matrices. In this way, the bilinear and
the quadratic state matrices are involved in the reduction process and the reduced system is in the
quadratic-bilinear form.

In the following, we discuss multi-moment matching PMOR techniques for computation of Vg
and W . Multi-moment matching PMOR methods for linear parametric systems are well used in
the literature [15, 20, 11]. In this section, we review a numerically efficient method [11] for multi-
moment matching of a linear parametric system. We extend this framework to oblique projection
which theoretically allows us to double the number of multi-moments being matched. Before
going to the derivation of multi-moment matching, it is important to clarify the following point.

Remarks 3.1. Since the multi-moments are related to the corresponding transfer function or their
derivatives evaluated at the interpolation point, multi-moment matching properties of the reduced
bilinear system correspond to the ability of the reduced model to ensure multivariate interpolation
conditions as discussed before.

As discussed in [18], projection based approximation of H (s, p) can be viewed as the approxi-
mation of two shifted linear systems given as:

(sE—A—pN)"y(s,p) = C7, (21)



since H(s,p) = y(s,p)T(sE — A — pN)x(s, p). The state x(s,p) can be expanded into a Taylor
series at an expansion point g = (09, po) as

I‘(S,p) = [I — ((51M1 — (52M2)}_1 B]w7

(22)
= BM + ((SlMl - (52M2)BM -+ (51M1 - (52M2)2BM + ...

where, if £ = (0oF — A — pyN), then M; = E~'E, My = E~'N and By, = E~'B. Also
b = —(s — 0p) and 6 = —(p — po). The coefficient matrices in the above series multiplied by
C from the left are called the multi-moments of the parameterized system at io. Now by defining
some auxiliary variables as

x(s,p) =xo+x1+22+...+2;+ ..., wherezs = By,
x1 = (61 My — 0o Ma)wg, w9 = (01 My — o My)xy, . ..
Xy = ((51M1 — (SQMQ)xj_l, ceey

we can easily find a recursive method to compute the coefficient matrices implicitly. An orthonor-
mal projection matrix V},, ~of the subspace spanned by the coefficient matrices can then be identi-
fied as below,

range (Vpuo) = span{Ro, R1,..., Ry} .0,
where RO = BM, Rl = [M]_RQ, MQR()], Rg = [MlRl, MgRl], e
Rq - [Mqu_l, MgRq_l].

Likewise, projection matrices corresponding to other interpolation points z;, 2 = 1, ..., m, can be
computed. The final projection matrix V,, becomes

Vp =orth{V,, .-, Vp. 1} (23)

where “orth” means orthogonalization of the columns in V,, ..., V,, . Itis shown in [11] that
the above choice of projection matrix V3 ensures that the multi-moments of the linear parametric
system are implicitly matched by the reduced system. In the following, we extend these results by
showing multi-moment matching properties in the oblique projection framework.

To see this, we now do a Taylor series expansion for y(s,p) in (21) at an expansion point
to = (00, po):

y(s,p) = [I — (51L1 — 62 L2)] " CL,

(24)
= O+ (61L1 — 03L)Cp + (01 Ly — 62L2)*Cr + .. .,
where, Ly = E-TET, Ly, = E-"NT and C}, = E-TCT. Also §; = —(s—0g) and 6, = —(p—po).
This implies that analogous to the computation of V,,, we can compute the oblique projection matrix
W, as

W, = orth{W,

where, range{W,, } = span{Ty, T1,...,T,},, in which

W } (25)

R

T() == OL, T1 == [LlT(), LQT()], T2 == [LlTl, LQTl], ceey
Tq - [Lqufl, LQqul]-



Using V), and I¥/,,, we can construct a reduced-order model of the parametric system (17) as,
(26)
with transfer function A o X X

H=C(s£ - A—pN)'B. (27

To show that 1, and W, ensure moment matching, i.e., ﬂ(s, p) matches multi-moments of H(s, p),
we consider the basis matrices corresponding to a fixed interpolation point 1. We first define
coefficient matrices for the two reduced shifted linear systems:

Ro = BM; R1 = [M1R07M2é0]7 R2 = [Mlpol,Mle]’ s
R, = [M\Ry1, MyRy ], My = (WIEV,)'E, My = (W/EV,)"'N,
T

et T e (28)
0= CLa Tl = [LITOa LQTOL T2 = [L1T17 L2Tl]7 EIR)
Aq == [iljjqfla [A/Q,qufl], lA-/l - (WEE‘/p)iTEA‘T, l’\;z - (WEE‘/p)iTNT,
where By = (WTEV,)"'B and C;, = (WIEV,)"TCT. Now since
range{V,} = span{ Ry, Ry, ..., R,} =V, 29)
range{W,} = span{Ty, T}, ..., T,} =1 W,
we can use the following results to show the moment matching properties.
Lemma 3.1. Let V,, and W, be defined as in (29), then for any v € V and w € W,
v=V,(WIEV,)"WIEv, w=W,(V;E"W,)'VIETw. (30)
Proof. See [18] for a proof. [
Lemma 3.2. Let all variables be defined as in (28) and (29), then the following holds:
V,Ri =R, W,T,=T, 31)
Proof. We begin withi = 0. As By = (WX EV,)'W B and E"'B = R, € V, we have
V,Ro = V,(WIEV,)'"WIEE™'B 2

= E'B,

where the last equation follows from Lemma 3.1. Also, since Ty = (V. ETW,)"'VICT and
E-TCT =T, € W, we have

W,To = W, (VL ETW,) VI ETE-TCT

. (33)
= FETcT (follows from Lemma 3.1).



Thqs Lemma 3.2 is true for + = 0. Next, we assume that the Lemma holds for : < 7, so that
VpR; = R; and WgT; = T;. We will prove that Lemma 3.2 also holds for: = 5 + 1 < g.

VoRj1 = V,[(WIEV,) "W EV,R;, (WIEV,)'WINV,R)]
= V(W EV,) W) EE T ER;, V,(W, EV,) "W, EE"'NR/]
= [V,(W]EV,) "W EM\R;, V(W EV,) W EMR;]

= [MiR;, MyR;] (follows from Lemma 3.1)
-
Similarly,
W, Ty = W[V ETW,) VI ETW, 1, (VI ETW,) VINTW, T

[ (vTETWP)—I‘/;)TETE—TETE7 Wp(‘/;)TETWp)_I%TETE_TNTE]
— W (VT ETW,) BT LAT, WV ETW,) VT ET LT
= [L1T;, Ly T] (follows from Lemma 3.1)

jH1-
O

Theorem 3.1. If V,, and W, satisfy (29), then the reduced system implicitly matches all the multi-
moments of the original system that are of the form CTR; = CTR; and TZ-TWPT EV,R; = TZ-TE R;
fort =0,...,q

Proof. 1t follows from Lemma 3.2 that by multiplying C' from the left, we have CVpRi = CR;
and by multiplying BT from the left, we have BYW,T; = BTT, fori = 0,...,m. Also, using
V,R; = R; and W, T, = T;, we have TZ»TWPT EV,R; = TTER;, which proves that additional
multi-moments are also matched. [

Remarks 3.2. The above moment-matching property is the property of the reduced model in (26),
which in turn matches the multi-moments of the transfer function Hg in (11), the bilinear part of
the quadratic-bilinear system in (1). The link between the linear parametric system and the bilinear
system is also discussed in [6]. The overall reduced model of the original system in (1) produced
by the PMOR method should be in the form of (3), with W, V being replaced by ¥/, and V,,.

In the above theorem, we used a single expansion point to show the moment matching property
of the reduced model, but the same framework can also be used to obtain moment matching at mul-
tiple expansion points. The problem, however, is the selection of these expansion or interpolation
points so that the reduced model accurately approximates the behaviour of the original system. In
the next section, we present an algorithm for efficient selection of these interpolation points.

4. Selection of Interpolation Points using Error Bound

In this section, we address the problem of adaptively selecting the multiple expansion points using
the error bound expression derived in [16] and show its use in the proposed two-sided projection
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framework. The error bound estimates the error between H (s, p) (18) and H(s,p) (27). To this
end, we define the primal and dual systems as:

(SE—A—pN)ZL’pT(S,p) = Bv (34)
(sE — A—pN)z™(s,p) = —C", (35)

respectively, where * denotes the conjugate transpose. The primal system is the same as the shifted
system in (20), whereas the dual system defined here has a minus sign on the right hand side, and
the left-hand side is the complex conjugate of the one in (21). The error bound is constructed based
on two residuals, which result from model reduction of the primal and dual systems, respectively.
The primal system is reduced using the matrix pair IV, and V,,. Due to the dual relation between
(34) and (35), we exchange W, with V}, and vice versa to reduce the dual system. As a result, the
reduced primal system is,

~

(sE— A~ pN)i#"(s.p) = B
where F = WEEV;,, A= WpTAV;,, N = WpTNVp, B = WpTB and the reduced dual system is

(sE— A—pN)*i®(s,p) = —CT,

where £ = V;,TEWP, A = VpTAWp, N = VPTNWP, C = VPTC’T. The residuals associated with
the reduction of the primal and dual systems can be written as

(s,p) = B = (sE — A= pN)V,i" (s, p),

36
Td“(s,p) =0T — (s — A —pN)*Wpfd“(s,p). (36)

With these quantities, the following result provides an a posteriori upper bound on the approxima-

A

tion error, |H(s,p) — H(s,p)|:
Theorem 4.1. [16] The upper bound on the approximation of H(s,p) = C(sE — A — pN)™'B

A

can be written as |H (s,p) — H(s,p)| < A(s, p), where

riu(s o||TP" (s, 9
M) o D0l

in which 3(s,p) = omin(G(s,p)), where o, indicates the smallest singular value of G(s,p) =
sE— A —pN.

(37)

The error bound can be used iteratively to identify a good choice of interpolation points in a
predefined sample space, starting from an initial choice. The selection criteria is to choose the
points in the sample space for which the error bound is maximized. The selected interpolation
points are then used to construct and update the required basis matrices V,, and W,,, by using the
multi-moment matching technique described before. This means that we are seeking a model that
satisfies the bound pointwise, but globally in the whole considered (s, p) domain. Such a greedy
framework for selection of interpolation points is shown in Algorithm 1.

Remarks 4.1. Notice that the proposed framework can also deal with multi-input multi-output
(MIMO) systems, as the ik-th entry of the transfer matrix associated with the MIMO system cor-
responds to a single-input single-output transfer function. This is demonstrated by an example in
the numerical results.
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Algorithm 1 Greedy framework for selection of interpolation points

Inputs: 0y, po, E, A, N, B, C and Sgmpie: a set of the samples of 1 := (s, p), which covers the
frequency and the parameter domain.
Outputs: /i, V,, W, V.5 and W

Initialization: V, = [|; W, = [;e=1;i = —1; 6 < 1, u° = (00, po)-
WHILE € > ¢

1=141;

compute Vpl( Yy and W, (p ) following (29)

Vo= Vi, Vials Wy = [Wy, Wy ils Wit = Vs Vil = Wy

= A

o o, Al

e=A();
END WHILE.

Fig. 1. RC Circuit Diagram.

5. Numerical Results

We use three benchmark examples to test the proposed approach. The results are compared with
the direct interpolatory methods [19, 9] reviewed in Section 2 both, in the one-sided and two-sided
projection frameworks. For reference, we use 1s-gbmor and 2s-gbmor to refer to the one-sided
and two-sided direct methods. Similarly, 1s-pmor and 2s-pmor denote the indirect parametric
model order reduction (PMOR) method without error estimation and 1s-pmor-ee and 2s-pmor-ee
the proposed PMOR method with error estimation. A version of our MATLAB implementation
is published at https://doi.org/10.5281/zenodo.1249930. All time-domian simulations of the full-
and reduced-order systems were performed with the MATLAB function ode15s.

5.1. Nonlinear RC circuit

The nonlinear RC circuit (as shown in Figure 1) was first considered in [14] and since then it has
been used as benchmark in many papers for nonlinear model reduction. The nonlinearity is due
to the nonlinear resistor with I-V characteristics given as: g(v) = ¢ 4+ v — 1, where g(v) is the
current function and v is the voltage across the resistor. All the capacitances are scaled to C' = 1.

It is shown in [19] that the nonlinearity in the RC circuit example can be written in the quadratic-
bilinear form as in (1) by introducing some auxiliary variables. The transformation is exact, but
the dimension of the system increases to n = 2 - [, where [ is the number of nodes in Figure 1, and
is also the dimension of the original nonlinear system.
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For our results, we fixed the number of nodes to [ = 500, so that the size of the quadratic-
bilinear model (full order model (FOM)) is n = 1000. We randomly choose 9 candidate expansion
points for s:

o; ={0.1,0.5,1,2,5,10, 25,50, 100}. (38)

and 7 candidate expansion points of p:
p; ={0.15,1,1.2,1.8,4,7,10}, (39)
to constitute Ssqmpre in Algorithm 1.

5.1.1. One-sided projection: We first consider the one sided projection method. Here, the
direct interpolatory method (1s-gbmor) uses all the 9 candidates o; as interpolation points and con-
structs a reduced quadratic-bilinear system of size 18. The other two methods, PMOR with error
estimation (1s-pmor-ee) and without error estimation (1s-pmor), select the interpolation points and
parameter values from o; and p;, such that the size of the reduced model is fixed to 18. In 1s-pmor,
the value of ¢ in (29) is fixed to 2 and the combination of the interpolation points and the parameter
values are fixed to the following 8 possibilities:

S, = {(50,4); (1,1); (2,1.2); (5, 10); (25, 4); (10,1.8); (100, 7); (0.5,0.15)}

The 1s-pmor-ee method uses ¢ = 6 in (29) and the initial expansion point for Algorithm 1 is
o = (0.001, 0.001) with Ssmple being defined as a set including all possible combinations of o;
and p; in (38) and (39), respectively.

Table 1 shows the iterative results of Algorithm 1, where 3 sets of expansion points are adap-
tively selected from the candidates in Sg4mpie. The error bound A, accurately reflects the true
€ITOT €ppay.

Table 1 Nonlinear RC-circuit, ¢ = 6, € = 1073, n = 1000, r = 18

iteration 1 €max A ax

1 (0.001, 0.001) 18.03 1.76 x 10°
2 (10, 1.2) 0.26 438

3 (0.5, 0.05) 1.08x 107 | 1.14 x 10~*

The results for all the three methods are shown in Figure 2. It is easy to see that the 1s-pmor-ee
method produces much better results as compared to Is-pmor and 1s-gbmor. We believe that a
better set of selection samples Ssqmpie can further improve the quality of the reduced-order model.
The results also show that, in addition to the use of error estimation, matching multi-moments
corresponding to higher derivatives is also crucial for better reduced-order models.

5.1.2. Two-sided projection: Next, we show our results for two-sided projection of the nonlin-
ear RC circuit. Here we used 2s-gbmor, 2s-pmor and 2s-pmor-ee with starting parameters similar
to those used in the one-sided projection case. As shown in Figure 3, the quality of the reduced
model is much better in the case of two-sided projection.

Note that the relative error for the proposed 2s-pmor-ee method is smaller as compared to the
other approaches but not at all time instants. We believe that the results will further improve with
a good choice of initial interpolation points and parameter values, the sample set Sgqmpre and the
number of elements in Ssqp.. To show the savings in the computational time, it is observed that

13
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Time(t)

(b) Relative error e(t) = £0—9(0)

Fig. 2. Nonlinear RC-circuit with u(t) = e~*; FOM of size n = 1000 (—) ; ROM via 1s-gbmor
of size r = 18(----) ; ROM via 1s-pmor of size r = 18 (------) and ROM via Is-pmor-ee withr = 18
(~=-)

the simulation time of the full order nonlinear RC circuit is 13.4287s while the time for simulation
as well as computation of the reduced model through the three techniques 2s-gbmor, 2s-pmor and
2s-pmor-ee are 1.4804s, 0.9862s and 0.5732s, respectively.

5.2. One-Dimensional Burgers’ Equation

As a second example, we consider the one-dimensional Burgers’ equation, which is again well
used for testing nonlinear model reduction techniques [22, 9]. The Burgers’ equation with domain,

102
1.5 T
1 . PP
= 5 K *
05) . |
i
]
!
O | | | —11 | | |
0 05 1 15 2 1077 0.5 1 15 2

Time(t) Time(t)

(a) Transient response (b) Relative error e(t) = £0-9(1)

y(t)

Fig. 3. Nonlinear RC-circuit with u(t) = e~*; FOM of size n = 1000 (—) ; ROM via 2s-gbmor
of size r = 18(-----) ; ROM via 2s-pmor of size r = 18 (------) and ROM via 2s-pmor-ee with r = 18
(---)
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I' =(0,1) x (0,T) along with boundary conditions can be written as:

Uy + VU =V - Ugy, in [,
av(0,t) + Bx(0,t) = u(t), v.(1,t) =0, t € (0,7),
U(.T,O) = UO(‘IL UO(‘r) = 07 x € (07 1)7

where v is the vicosity and vy(z) is the initial condition. Semi-discretization of such partial dif-
ferential equations naturally leads to a quadratic-bilinear system as given in (1). For our results,
we set the state dimensions to n = 1000 and the viscosity to v = 0.05. The size of the reduced
model in the proposed indirect projection method is based on convergence of the error bound and
number of higher moments being matched. To compare our results with the direct method, we vary
the number of higher moments and sample of interpolation points such that the size of the reduced
model is the same for each method. This however results in different sizes of the reduced model
for one sided and two sided projections.

5.2.1. One-Sided Projection: Here we use the first 7 elements of ¢; given in (38) as interpola-
tion points. The direct interpolatory method uses these interpolation points to construct a reduced
quadratic-bilinear system of size 14. For the proposed error estimation approach, we use a sample
space that includes all the combinations of the o; and p; (given in (38) and (39)) along with some
other random choices (mainly to ensure that the resulting reduced system is also of size 14 for error
tolerance tol = 107%). With ¢ = 4 and starting from the first combination of Ssample, Algorithm 1
iteratively converges to the actual error, as shown in the following table:

Table 2 Burgers’ equation, ¢ = 4, € = 1076, n = 1000, r = 14

iteration i Emaz Aoz

1 (50, 4) 4.22 1072 [ 7.66 x 102
2 (0.1, 0.05) 419 %1072 | 3.43x 107!
3 (5, 0.05) 1.57x107% | 1.96 x 1076
4 (1, 10) 1.20x 1077 | 1.20 x 1077

Time(t)

(a) Transient response (b) Absolute error e(t) = |y(t) — y(t)|

Fig. 4. Burgers’ equation with u(t) = cos(mt); FOM of size n = 1000 (—) ; ROM via 1s-gbmor
of size r = 14(-----) and ROM via ls-pmor-ee withr = 14 (---)
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The reduced system obtained from Algorithm 1 is compared with that obtained from the direct
projection technique in Figure 4. The performance of the proposed approach is better or compa-
rable to the direct method with the advantage that the computations associated with the quadratic
matrix / can be avoided.

5.2.2. Two-sided Projection: Here the interpolation points are predefined as o; = {1,2,3,4}.
The direct two-sided projection technique constructs a reduced system of size 8 and the proposed
approach selects some interpolation points from a sample set Ssqmp1e, Which includes the o;’s and
some other random points along with random values of the parameter samples. Algorithm 1 selects
a set of interpolation points and parameter values as shown in Table 3.

Table 3 Burgers’ equation, ¢ = 2, €;,; = 107%, n = 1000, r = 8

iteration 0 Emaz AN

1 (1, 640) 8.27 x 10° | 8.02 x 10°

2 (0.0001, 80) 7.67x107' | 9.58 x 103

3 (5, 80) 6.31 x 107% | 5.39 x 1072

4 (2, 80) 241 %1077 | 1.23x 1076

5 (0.4, 80) 2.02x 1077 ] 2.39x 1077
0.4 T T A T " 10,25

Time(t)

(a) Transient response (b) Absolute error e(t) = |y(t) — §(?)]

Fig. 5. Burger’s equation with u(t) = cos(rt); FOM of size n = 1000 (—) ; ROM via 2s-pmor
withr = 8 (------) ; ROM via 2s-gbmor of size r = 8(---) and ROM via 2s-pmor-ee with r = 8
(~=-)

We compare the results with the direct two-sided projection approach as shown in Figure 5.
The proposed method is, in particular, accurately approximating the transient response of the sys-
tem. We believe that the results will further improve with the choice of the sample set Sqp1 and
with the initial interpolation point and parameter values for Algorithm 1. Also the error estimation
procedure sometimes computes projection matrices V' and W of different sizes. In such a case, we
simply truncate the extra columns in the V' or W matrix. Though this destroys the theoretic inter-
polation properties, usually the approximation quality of the reduced-order model is not harmed
by this. Regarding savings in the computational time, it is observed that the simulation of full
order Burgers’ equation takes 31.4055s and the time for simulation as well as computation of the
reduced model via the three techniques 2s-gbmor, 2s-pmor and 2s-pmor-ee are 1.9689s, 1.4117s

16



and 1.1487s, respectively.

To obtain a different reduced order model from the proposed 2s-gbmor-ee, we set the tolerance
level to €;,; = 6.5 x 1072, Table 3 shows that this will stop the iterations after selecting the first
three interpolation points. With ¢ = 2 and the selected interpolation points, the size of the reduced
system will change to 6. The resulting reduced system is compared with the direct approach (2s-
gbmor) and the parametric method (2s-pmor) of the same size as shown in Figure 6. Clearly the
performance of the proposed method is better than the direct method, especially in the transient
behaviour, with low computational cost.

0.4

rf‘“".', gy g s anth”

GE1 FH iy "l ‘-_".’\i‘f} ;,»‘;"j
= 02f . T A U A H
< A R
va i
l‘!s. i

13 i

0k : '
| | | | | | | |
0 2 4 6 8 10 0 2 4 6 8 10
Time(t) Time(t)
(a) Transient response (b) Absolute error e(t) = |y(t) — y(t)|

Fig. 6. Burger’s equation with u(t) = cos(rnt); FOM of size n = 1000 (—) ; ROM via 2s-pmor
withr = 6 () ; ROM via 2s-gbmor of size r = 6 (----) and ROM via 2s-pmor-ee with r = 6
(---)

5.3. FitzHugh-Nagumo System

Our last example is the FitzHugh Nagumo system where the activation and deactivation dynamics
of a spiking neuron are modeled by coupled nonlinear PDEs:

evy(z,t) = Evge(,t) + f(v(2, 1)) —w(z,t) + g,

wt(ﬂf,t) = hv(x,t) - 'yw(ajﬂf) +g, (40)

with f(v) = v(v — 0.1)(1 — v) and boundary conditions

v(z,0) =0, w(z,0) =0, z€]0,1],
v:(0,t) = —ip(t), wv.(1,¢t)=0, t>0,

where € = 0.015, h = 0.5, 7 = 2, g = 0.05 and io(t) = 5 x 10*3exp(—15t). Applying the
standard finite difference method results in a system of ODEs with cubic nonlinearities. The cubic
terms can be represented in quadratic form by introducing a new dynamical variable z; = v?;
z; = 2v;v;. This means that the system in the QBDAE form will involve three dynamical variables
v;, w; and z;. So if the coupled PDE in (40) is discretized using 7 points, the system of QBDAEs
will be of size n = 3n. Note that the QBDAE system has to have two inputs and two outputs in
order to incorporate the effect of the variable g and the initial stimulus iy(¢) in the model. This
means that 1s-gbmor (and 2s-gbmor) for computing the basis matrices V' and W has to be repeated
for each column of the input (and output) matrix. For our results, we set . = 750, so that n = 2250.
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Fig. 7. FitzHugh-Nagumo system with u(t) = 5 x 10%3¢=15t; FOM of size n = 1000 (—) ; ROM
via 1s-gbmor of size r = 16 (-:-:-) (Left) and ROM via 1s-pmor-ee with r = 30 (---) (Right)

5.3.1. One-sided Projection: We used linear IRKA to identify 10 interpolation points of s and
appended them with the elements of o; given in (38) as the candidates of the expansion points of s
in Sgampie of Algorithm 1. The samples of p in Sqmpie are all randomly selected. For the proposed
error estimation approach, we use the complete sample space that includes all the combinations of
the samples of s and p. With ¢ = 6 and starting from the first combination, Algorithm 1 iteratively
converges to the actual error, as shown in the following table:

Table 4 Fitzhugh Nagumo System, g = 6, €;,; = 1078, n = 2250, r = 30

NO' l’[/ emax Amam

1 | (1.75 10%, 0.1210) 5.012310°° 1.2016 x 102
2 | (1.4276, 0.8213) 7.6401 x 1077 8.1028 x 1077
3| (4.3261 —i5.2842, 0.0631) | 2.1685 x 1078 2.1698 x 1078
4 | (50, 0.9841) 5.45850 x 10~ | 5.45855 x 1011

At each iteration of Algorithm 1, the interpolation point 1 := (o, p;) that corresponds to the
maximized estimated error is used for construction of the basis matrices and therefore for reduction
of the quadratic-bilinear system. The result is a reduced system of size 30 with transient response
as shown in Figure 7b. To compare these results with the direct interpolatory method, we used 10
shift frequencies obtained through the linear IRKA to compute the reduced system using the direct
method. The direct method leads to an unstable reduced system. However when we used only the
first 4 interpolation points obtained through the linear IRKA, the result is a stable reduced system
of size 16. The transient response of the computed reduced model is shown in Figure 7a. While
the sizes of the two reduced models are different, the comparison clearly motivates the use of error
estimation for the selection of interpolation points.

A 3-D plot for the limit cycle behavior of the original and the reduced system is presented
in Figure 8. Note that in this case we used the MIMO version of the error estimator A(u) as
discussed in [16]. In the MIMO case, the error estimation process is implemented on each element
of the transfer matrix and corresponds to the maximized estimated error among all the elements,
according to which, the sample points are selected, see [16] for details.
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Fig. 8. FitzHugh-Nagumo system with u(t) = 5 x 10*3e~1%"; FOM of size n = 1000 (—) and
ROM via 1s-pmor-ee withr = 30 (---)

6. Conclusions

A projection based model reduction technique for quadratic-bilinear systems is proposed, where
the projection matrices are identified from an associated linear parametric system and interpola-
tion points are selected such that an a posteriori error bound for the linear parametric system is
minimized. Two-sided multi-moment matching properties are also derived for this framework. A
better choice of the sample set Sqmpie used for the error bound is an important task, since Sqmpie
varies with the original system to be reduced, and requires further research.
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