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We show that strongly correlated photon transport can be observed in waveguides containing
optically dense ensembles of emitters. Remarkably, this occurs even for weak coupling efficiencies.
Specifically, we compute the photon transport properties through a chirally coupled system of N
two-level systems driven by a weak coherent field, where each emitter can also scatter photons out
of the waveguide. The photon correlations arise due to an interplay of nonlinearity and coupling
to a loss reservoir, which creates a strong effective interaction between transmitted photons. The
highly correlated photon states are less susceptible to losses than uncorrelated photons and have a
power-law decay with N . This is described using a simple universal asymptotic solution governed
by a single scaling parameter which describes photon bunching and power transmission. We show
numerically that, for randomly placed emitters, these results hold even in systems without chirality.
The effect can be observed in existing tapered fiber setups with trapped atoms.

Describing the dynamics of quantum systems that are
far from equilibrium is currently one of the main chal-
lenges of physics. Considerable effort is put into un-
derstanding these systems, e.g., in quantum many-body
physics and nonlinear dynamics [1, 2], as well as devel-
oping quantum simulators to investigate them [3]. In
the field of mesoscopic physics such dynamics are es-
pecially studied through quantum transport [4–6]. Re-
cently, quantum transport of photons has emerged as an
analogous system to study non-equilibrium quantum dy-
namics in optical systems [7–9]. Most notably this has
been investigated in weakly driven strongly interacting
Rydberg gasses, where effective photon–photon interac-
tions at the few-photon level have been observed [10–15].
This has led to the demonstration of fascinating new phe-
nomena such as correlated two- [16, 17] and three-photon
[18–20] bound states. Similar photon–photon interac-
tions are also investigated for quantum emitters strongly
coupled to optical waveguides or cavities. Here the intrin-
sic nonlinearity of a single emitter plays the role of a non-
linear medium [21–23]. Significant effort has therefore
been put into creating light–matter interfaces between an
emitter and a single optical mode with near-unity cou-
pling efficiency β ∼ 1 so that dissipation is minimized
[24, 25]. Contrary to this, we consider quantum trans-
port through a strongly dissipative system consisting of
N � 1 quantum emitters coupled to a waveguide. We
analytically compute the dynamics of this system in the
case of chiral coupling [26–36], where emitters only cou-
ple to photons propagating to the right (Fig. 1(a)). Sur-
prisingly, we find that the interplay of weak nonlinearity
and strong dissipation leads to the emergence of highly
nonlinear transmission and strongly correlated photon

FIG. 1. (a) N chirally coupled two-level emitters (red circles)
driven by an external coherent field |αin〉 with a corresponding
strongly correlated output photon state |out〉. Each emitter
is coupled to the waveguide with a decay rate Γ = βΓtot and
to external loss modes with a decay rate Γtot(1 − β). The
output state is probed by measuring (b) power 〈â†â〉 or (c)

the normalized second-order correlation function g(2).

states at the output. Previously, such dissipatively in-
duced photon correlations have been studied for strong
optical nonlinearities [12, 37, 38]. Since these dynamics
can occur even for weakly coupled emitters β � 1, they
are readily observable in a larger range of systems, e.g., in
experiments on atoms coupled to nanofibers [27, 39–42].

The phenomena we investigate is based on dissipation
and can thus only be observed in optically dense ensem-
bles. Specifically, when two resonant photons interact
with the same atom, they can exchange energy, creating
correlated red- and blue-detuned photons (sidebands).
Since losses are strongest on resonance, resonant uncorre-
lated photons suffer strong loss (exponential scaling with
N), while off-resonant correlated photons incur reduced
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loss. The smallest detunings are lost first, so that the
decay rate constantly decreases with subsequent atoms
since the remaining photons have larger detunings. This
leads to a power-law decay of the transmission and the
output being dominated by strongly correlated (bunched)
photons. Such power-law decay is ubiquitous in critical
[43] or chaotic [44] systems and is linked to scale invari-
ance and the absence of a characteristic length scale, so
that the microscopic details of the system becomes ir-
relevant. Analogously, we find that in the limit of large
optical depth, the dynamics attains a universal scaling
relation, which becomes independent of the precise value
of the coupling efficiency. In the following we derive these
results analytically assuming chiral interactions, but we
show numerically that these conclusions are robust and
also apply to bidirectional interactions, i.e. non-chiral,
for weakly coupled randomly placed emitters.

We consider a system of N -chirally coupled two-level
emitters continuously driven by a weak coherent field
while dissipatively coupled to a loss reservoir (Fig. 1(a)).
The emitters are coupled to the waveguide with a decay
rate Γ = βΓtot and radiate to the reservoir with the de-
cay rate Γtot(1 − β), where Γtot is the total decay rate
of the emitters. Solving for the dynamics of this system
can be approached in a variety of ways: it constitutes
a cascaded quantum system [45, 46] for which a master
equation can be derived [31, 34, 46], but it is challeng-
ing to obtain general solutions as the number of emit-
ters increases. Other approaches use a Green function
to treat photon propagation, but generally require nu-
merical solutions [47, 48]. Here we develop an approach
based on scattering matrices. We assume that the emit-
ters are driven at a level well below saturation such that
the dynamics of the system can be described by the one-
and two-photon Fock states, and we thus compute the
N -emitter scattering matrix for these manifolds. Com-
puting the single-photon transmission is straightforward
[49]. Significant research has been put in developing two-
photon scattering matrices for a single emitter [50–55],
and generalizations to N -emitters have also been devel-
oped in the absence of loss [56–60]. Here we compute
the N -emitter two-photon scattering matrix by project-
ing the input two-photon state on the scattering eigen-
states, which can be determined using the Bethe ansatz
technique as described in Ref. [52]. Computing the N -
emitter scattering matrix then simply requires raising the
eigenvalues to the N -th power.

The single frequency input coherent state is ex-
pressed up to the two-photon state as |αin〉 =

e−
|α|2

2

[
1 + α â†k0

+ α2

2 â
†
k0
â†k0

]
|0〉. We linearize and

rescale the waveguide dispersion and set the group ve-
locity vg = 1, such that wavenumber and frequency, as
well as distance and time, have the same units. Reso-
nant photons correspond to k0 = 0 and â†k0

creates a
photon with detuning k0. Unlike bidirectional systems

[61], in a chiral system the propagation phase between
the emitters amounts to an overall phase in the Marko-
vian limit and does not affect the dynamics [31, 46].
The N -emitter scattering matrix for up to two photons

is ŜN =
[
Ŝ11 + Ŝ22 + Ŝ12

]N
. Here, Ŝ11 and Ŝ22 are

the one- and two-photon scattering matrices, and Ŝ12

describes scattering of two input photons where one is
transmitted and the other is lost. This term is required
when β < 1. Note that to ensure that different decays
add up incoherently, Ŝ12 contains the state of the photons
which are lost. Using the orthogonality of the one- and
two-photon subspaces, the scattering matrix restricted to
one and two-photons is

ŜN = ŜN11 + ŜN22 +

N−1∑
M=0

ŜN−M−1
11 Ŝ12Ŝ

M
22 , (1)

and we define contributions to the output state as
ŜN |αin〉 ≡ |out〉1 + |out〉2 + |out〉21. Here, we only con-
sider the part of the scattering with outgoing photons.
Computing ŜN11|αin〉 is simple: since the scattering ma-
trix must conserve the photon energy, it simply multi-
plies the creation operator by a transmission coefficient:
a†k → tNk a

†
k with tk = 1 − 2β/(1 − 2ik/Γtot) [54]. This

is equivalent to scattering off a single-sided cavity. Con-
sequently, the linear contribution to the output power
scales exponentially with N , 〈a†a〉1 = |tk0 |2N |α|2/L,
where L is a quantization length. Thus the linear single-
photon response yields the usual exponential decay with
N when |tk0

| < 1.
Computing ŜN22|αin〉 is more involved. We do this

by projecting the input state on the orthonormal set
of two-photon scattering eigenstates computed in [52].
These consist of a set of extended states |WE,∆〉,
with position space representation WE,∆(xc, x) =√

2eiExc [2∆ cos ∆x− Γ sgn (x) sin ∆x] /(2π
√

4∆2 + Γ2),
where for two photon positions x1 and x2, the centre of
mass and difference coordinates are xc = (x1 + x2)/2,
and x = x1 − x2 [52]. The two indices of W are
a two-photon detuning E = k + p and a frequency
difference of the two-photons ∆ = k−p

2 , where k and
p are the detunings of the two photons. The remain-
ing eigenstates are a set of bound states |BE〉 with

BE(xc, x) =
√

Γ
4π e

iExce−Γ/2|x|, which only vary with

the two-photon detuning E.
The two-photon scattering matrix operating on the in-

put state gives [52]

|out〉2
A

= t̃N2k0
c1|B2k0

〉 −
∫
d∆ tNk0+∆t

N
k0−∆

∆
√

1 + 4∆2

Γ2

|W2k0,∆〉,

(2)

where, henceforth, integrals range over R, c1 =
√

8π
Γ ,

and t̃E = 1 − 4β/(1 + β − iE/Γtot). Additionally, A =
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FIG. 2. (a) Normalized second-order correlation function

g(2)(x) for different numbers of emitters N and coupling effi-
ciencies β. As the optical depth increases the correlation func-
tion becomes strongly bunched. (b) Second-order correlation

function G̃(2)(x) scaled by 4πξ2N/β
2. The emitter numbers are

chosen so that the linear transmission is (1− 2β)2N ∼ 10−6.

α2/L e−
|α|2

2 ∼ Pin where the input power is Pin = α2/L,
and we henceforth take α to be real. Using these eigen-
states, we obtain a position representation of the full two-
photon output state by performing the integral over ∆
in (2). The special case of β = 1 has previously been
treated and leads to a parity effect in the output state
for a resonant drive [32, 60]. The full two-photon output
state is

|out〉2 =
A

2

∫
dx1dx2 â

†(x1)â†(x2)|0〉ψN (xc, x), (3)

with ψN (xc, x) = e2ik0xc
[
t2Nk0
− φN (x)

]
. The t2Nk0

term
corresponds to uncorrelated photons interacting individ-
ually with all N emitters while φN (x) contains the pho-
ton correlations induced by the interactions. We calcu-
late the correlations φN (x) analytically, but for brevity,
we leave the exact form to the Supplementary Material
(SM) and only show its asymptotic form below. The
correlations induced by the photon–photon interactions
are quantified by the normalized second-order correla-
tions function g(2)(x) = 〈â†(0)â†(x)â(x)â(0)〉/〈â†â〉 =
|ψN (xc, x)|2/|tk0 |4N + O( Pin

Psat
), where the saturation

power is Psat = Γtot/β. Throughout the remainder of
this manuscript we consider a resonant drive k0 = 0 as it
generates the most interesting physics.

Figure 2(a) shows g(2)(x) for different β and N . As
N increases, g(2)(x) becomes strongly bunched even for
β � 1. This signifies that the output contains strong
photon–photon correlations and happens because the lin-
ear component of the transmitted power ∼ |tk0

|2N de-
cays exponentially with N while φN (x) does not. We
can understand this by considering the Fourier trans-
form of the correlated part of the two-photon wavepacket
φN (∆k), where ∆k = (k1 − k2)/2, which we show in
Fig. 3(a). Nonlinear interactions generate correlated fre-
quency sidebands with ∆k 6= 0. Meanwhile the loss of the
system is strongest on resonance and thus frequency com-
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FIG. 3. (a) The normalized magnitude squared of the
Fourier Transform of the correlated part of the two-photon
wavepacket φN for β = 0.05 with the asymptotic expression
plotted for N = 80 in red. (b) Normalized output intensity
〈â†â〉/Pin versus emitter number N . Broken lines show the
linear output intensity (1 − 2β)2N for uncorrelated photon
transport while the solid lines show the asymptotic scaling.
For large optical depths the transmitted power shows a power-
law decay N−3/2. The input power is Pin = 0.1Psat.

ponents ∆k ∼ 0 suffer strong loss. This leads to a two-
lobed shape in Fourier space whose inverse Fourier trans-
form determines the shape of g(2)(x). The detuning of the
peaks of φN (∆k) increase with N , and thus loss due to
each subsequent emitter decreases and the scaling of φN
is sub-exponential. We highlight that this occurs for all
β < 1 provided the optical depth is large. The slow decay
of φN and the resulting large values g(2)(0) reveal that
the transmission of the system is dominated by events
where two simultaneously incident photons form a corre-
lated state. For sufficiently large optical depth, photons
interacting individually will be completely blocked and
the transmission is therefore dominated by two-photon
events leading to strong photon bunching.

We now derive an asymptotic expression for the non-
exponentially decaying parts of φN . Since detuned
Fourier components dominate, we expand the second
term in (2) to second order in Γtot/∆ and get tN∆t

N
−∆ ∼

exp
[
−Γ2

totξ
2
N/∆

2
]
, where ξN =

√
Nβ(1− β). This gives

us a compact expression for the output state in Fourier
space (see SM)

|out〉2 ∼ −
AΓ

2

∫
dk â†(k)â†(−k)|0〉e

−ξ2
NΓ2

tot/k
2

k2
. (4)

The detuned Fourier components thus dominate when
ξ2
N � 1. The functional form of this result determines

the shape of the curves in Fig. 3(a) and its inverse Fourier
Transform gives the shape of g(2)(x) shown in Fig. 2(b).
Importantly, it also reveals that the dynamics of two-
photon transport is governed universally by ξN . This is
closely related to the optical depth for a resonant drive
which is log

[
(1− 2β)2N

]
∼ 4ξ2

N when β ∼ 0 or β ∼ 1.
We highlight this in Fig. 2(b) which shows the correla-
tion function G̃(2)(x) = 〈â†(0)â†(x)â(x)â(0)〉/P 2

in. This
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is given by

G̃(2)(x) ∼ β2

4π2ξ2
N

[
G̃(ξNΓtotx)

]2
, (5)

where G̃(x) =
∫
dk cos (kx)e−1/k2

/k2. The correlation

function G̃(2)(x) then has the same form for all values
of β and N as long as the optical depth is large. The
value G̃(2)(0) = β2/4πξ2

N and the width of G̃(2)(x) scales

∝ 1/
√
N . The correlations arising from the complex in-

terplay between nonlinear photon interactions and dissi-
pation can therefore be expressed in a compact universal
form with a simple scaling parameter.

We now turn to the output power. This requires us to
compute the contribution due to the last term in (1).
Here we construct Ŝ12 by transforming from our pic-
ture of a chiral scattering process to one that contains
transmission and reflection, where the coupling to the
backward mode is given by our decay rate to the loss
reservoir Γtot(1− β). In this picture we simply compute
the scattering amplitude for one photon transmitted and
one reflected. This is done by adapting standard two-
photon scattering matrices for a single emitter (see SM)
[54]. We do this independently for each emitter such that
there are no collective effects through the loss reservoir,
which is a good approximation for randomly positioned
non-subwavelength emitter separations [62]. Using this
scattering matrix we obtain a state which can be com-
pactly written as

|out〉21 =
A

2

N−1∑
M=0

∫
dkâ†R(k)â

†(M+1)
L (k)|0〉tN−M−1

k bM (k),

(6)

where â†R(k) and â
†(M+1)
L (k) create right and left going

photons and the superscript M + 1 ensures there are no
collective effects. The function bM (k1) depends on ψM
and for brevity we leave its exact form for the SM. Impor-
tantly, with the state |out〉21 at hand we can compute the
power 〈â†â〉. Using our exact expressions for ψN (xc, x)
and bM (k) we obtain an expression for 〈â†â〉 containing
integrals which we evaluate numerically. These results
are shown in Fig. 3(b) for different β and N . Here, uncor-
related photon transport suffers exponential decay with
N . Interestingly, we observe that the transmitted power
deviates from exponential decay and for large N follows
a power law. The nonlinear power transmission therefore
dominates for large optical depths.

We use (4) and (6) to compute a simple asymptotic
expression for the transmitted power (see SM for details)

〈â†â〉
Pin

∼ (1− 2β)2N +
Pin

Psat

β

4
√
πξ3
N

3− 2β(1− β)

1− 2β(1− β)
, (7)

implying a nonlinear power scaling of 1/N3/2. Fig-
ure 3(b) shows excellent agreement between the full cal-
culation and the asymptotic scaling. Finally we note
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〈â†â〉
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FIG. 4. (a) Normalized second order correlation function
for β = 0.05 and N = 30. Curves show asymptotic theory

g
(2)
Asymp(x), exact theory g(2)(x), and mean of numerical simu-

lation with βL = 0.005 and βL = 0.05, 〈g(2)10:1(x)〉 and 〈g(2)1:1(x)〉
respectively. All curves, but the asymptotic theory, lie on top

of another. Shading shows the standard deviation ∆g
(2)
1:1(x)〉

for βL = β. (b) Normalized output power vs emitter number
for β = 0.05 and Pin/Psat = 0.02 showing the analytic theory
〈â†â〉, asymptotic theory 〈â†â〉Asymp, and exponential damp-
ing 〈â†â〉linear. Mean of the numerical results with βL = β/10
and βL = β are 〈〈â†â〉10:1〉 and 〈〈â†â〉1:1〉 respectively.

that the nonlinear power has contributions from Ŝ22 and
Ŝ12, i.e., photon pairs and single photons, the nonlinear
power contribution of pairs relative to single photons is
〈â†â〉2/〈â†â〉21 ∼ 1/(2

√
2−1 + 4

√
2/(1−2β(1−β))) (see

SM), which is largest for β ∼ 0 and β ∼ 1 giving ∼ 0.13,
and smallest for β = 1/2 giving ∼ 0.08.

The physics presented here can be observed experimen-
tally by measuring g(2) and 〈â†â〉 of the transmitted light.
The nonlinear scaling of the output power and strong
photon bunching are clear signals of nonlinear dynamics.
State-of-the-art experimental systems that exhibit chiral
light–matter interaction include quantum dots (QD) and
atoms coupled to photonic nanostructures [27, 28, 63]. In
quantum dot systems the emission can be close to uni-
directional and β ∼ 1 [28, 63–65], however it is difficult
to tune several QDs into resonance. On the other hand,
hundreds of atoms can be trapped in the evanescent field
of a nanofibre and exhibit chiral light-matter interaction
[27, 39–42] albeit with β � 1. These have a directional-
ity of ∼ 90% and thus couple residually to the backward
propagating mode, which has not been taken into account
in the analytics here.

We numerically model a system with parameters sim-
ilar to a nanofiber with coupling to the forward prop-
agating mode β = 0.05 and coupling to the backward
mode βL = 0.005, where the total emission rate to the
waveguide is Γtot(β+βL). We additionally model a fully
bidirectional system with βL = β. We use a wave func-
tion formalism where we restrict to two excitations in the
system [66, 67], and consider N = 20, 30, 50, 100 emit-
ters. The emitters are positioned randomly such that
backscattering does not add up coherently. For each pa-
rameter set we consider 100 realizations. Figure 4(a)
shows the mean 〈g(2)(x)〉 for N = 30 when considering
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the ensemble. The mean agrees quantitatively with the
exact unidirectional theory, while the standard deviation
for βL = β shows minor discrepancies near x ∼ 0 with

standard deviation ∆g
(2)
1:1(0) = 15. For βL = 0.005 the

standard deviation is negligible and is not shown. The
asymptotic theory has a slight discrepancy because the
parameters do not fall in this limit since ξ2

N = 1.425. Fig-
ure 4(b) shows the mean output power which is also in
excellent agreement with the unidirectional theory. The
standard deviation of the power is insignificant on this
scale and is not shown. The effects of backscattering can
thus be ignored provided the number of emitters is suffi-
ciently large and the emitters are positioned randomly.

In order to observe the physics here Pin and N should
be chosen such that the optical depth is sufficiently large,
while the output power should be sufficiently bright to
measure experimentally. We find that for β = 0.05 and
N = 30 one ideally expects a value of g(2)(0) = 47. If we
consider an optical transition with Γtot = 2π × 5 MHz
driven with Pin/Psat = 0.05, we compute an output
power of 〈â†â〉 = 105 kHz with the linear part of the
power being 1.2 times larger than the nonlinear part. We
also compute a coincidence rate of 1.7 kHz, where we de-
fine a coincidence as two photons separated by less than
3/Γtot. These outputs are sufficiently bright for detec-
tion by single photon detectors. Including the nonlinear
power contribution to estimate the second order correla-
tion for this input power gives g(2)(0) ∼ 25. This result
can be rescaled for other β and N using (5) and (7).

In conclusion we have analyzed the dynamics of
photon–photon interactions mediated by an optically
deep ensemble of emitters coupled to a waveguide. The
system exhibits rich out-of-equilibrium physics due to a
combination of highly nonlinear driven systems and dissi-
pation. The emitter-induced photon–photon correlation
reveals itself through the formation of bunched states of
light and a universal power-law scaling of the transmis-
sion for large optical depths. As a consequence, for a
sufficiently large optical depth the transmission becomes
completely dominated by correlated photons. Remark-
ably, the formation of the strongly correlated photon
states happens even for emitters weakly coupled to a
waveguide and can thus be directly observed, e.g., with
atoms near optical nanofibers. The present results thus
open up a new avenue for studying such phenomena.
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Supplementary Material: Chiral waveguide QED: Strongly correlated photon
transport with weakly coupled emitters

COMPUTING Ŝ22

In this section we introduce the scattering matrix Ŝ22 and compute the output state |out〉2. We start from the
input state

|αin〉 = e−
|α|2

2

[
1 + αâ†k0

+
α2

2
â†k0

â†k0
+ . . .

]
|0〉

= e−
|α|2

2

[
1 +

√
2π

L
αâ†(k0) +

2π

L

α2

2
â†(k0)â†(k0) + . . .

]
|0〉,

(S1)

where L is a quantization length, and in the second line we have switched from single-mode operators to operators

â†k0
→
√

2π
L â
†(k0) suitable for taking the continuum limit L→∞. The two-photon scattering matrix in Ref. [52] can

be easily generalized to N chirally coupled emitters giving

ŜN22 =
1

2

∫
dEd∆tNE

2 +∆
tNE

2 −∆
|WE,∆〉〈WE,∆|+

∫
dE t̃NE |BE〉〈BE |, (S2)

where all integrals range from −∞ to∞, and the two-photon scattering eigenstates in a position-space representation
are

|WE,∆〉 =
1√
2

∫
dx1dx2â

†(x1)â†(x2)|0〉WE,∆(xc, x)

|BE〉 =
1√
2

∫
dx1dx2â

†(x1)â†(x2)|0〉BE(xc, x).

(S3)

Here,

WE,∆(xc, x) =
1√

4∆2 + Γ2

√
2

2π
eiExc [2∆ cos (∆x)− Γ sgn (x) sin (∆x)] ,

BE(xc, x) =

√
Γ

4π
eiExc e−

Γ
2 |x|,

(S4)

and

tk =
k + iΓ(1− 2β)/(2β)

k + iΓ/(2β)

t̃E =
E + iΓ(1− 3β)/β

E + iΓ(1 + β)/β
,

(S5)

and xc = x1+x2

2 , x = x1 − x2, E = k + p is a two-photon detuning, and ∆ = k−p
2 is a difference in photon energies,

where k and p are photon detunings. The eigenstates |WE,∆〉 and |BE〉 form an orthonormal basis for the two-photon

subspace [52]. Projecting the input state on the two-photon scattering matrix |out〉2 ≡ ŜN22|αin〉 gives

|out〉2 =
A

2

∫
dx1dx2â

†(x1)â†(x2)|0〉ψN (xc, x),

ψN (xc, x) = 2 t̃N2k0
e2ik0xce−

Γ
2 |x| − Γ

π
e2ik0xc

∫
d∆

tNk0+∆t
N
k0−∆

Γ2 + 4∆2

[
2 cos (∆x)− Γ

∆
sgn (x) sin (∆x)

]
.

(S6)
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These integrals can be computed analytically. For details see the section below. Combining the terms together we
obtain

ψN (xc, x) = e2ik0xc

t2Nk0
− iΓ/2

(N − 1)!

dN−1

dzN−1

[
tNk0+z(z − k0 − iΓ(1− 2β)/2β)Neiz|x|

z2 + Γ2/4

]
z=k0+ iΓ

2β

+
iΓ/2

(N − 1)!

dN−1

dzN−1

[
tNk0−z(z + k0 + iΓ(1− 2β)/2β)Ne−iz|x|

z2 + Γ2/4

]
z=−k0− iΓ

2β

+
Γ2/4

(N − 1)!

dN−1

dzN−1

[
tNk0+z(z − k0 − iΓ(1− 2β)/2β)Neiz|x|

z(z2 + Γ2/4)

]
z=k0+ iΓ

2β

+
Γ2/4

(N − 1)!

dN−1

dzN−1

[
tNk0−z(z + k0 + iΓ(1− 2β)/2β)Ne−iz|x|

z(z2 + Γ2/4)

]
z=−k0− iΓ

2β

 ,

(S7)

which expresses the solution in terms of an (N − 1)th order differential operator. These differential operators can be
evaluated in terms of generalized functions (see section below). Using the results leading up to (S65) we express the
two-photon wavefunction as

ψN (xc, x) = e2ik0xc

{
t2Nk0
− 1

(N − 1)!

N−1∑
n=0

(
N − 1

n

)
Fk0

(N,n)χk0,N−1−n(x)

}
, (S8)

where Fk0(N,n) is given by (S52) and χk0,n(x) by (S66). This is defined in the main text as ψN (xc, x) =
e2ik0xc

[
t2Nk0
− φN (x)

]
.

It is also useful to express the two-photon output state in k-space. We simply rewrite (S6) in terms of creation
operators â†(k1) and â†(k2)

|out〉2 =
A

2

∫
dk1dk2â

†(k1)â†(k2)|0〉ψN (Ek,∆k), (S9)

where Ek = k1 + k2 and ∆k = (k1 − k2)/2 and

ψN (Ek,∆k) = δ(Ek − 2k0)

{
2πδ(∆k)t2Nk0

− 1

(N − 1)!

N−1∑
n=0

(
N − 1

n

)
Fk0

(N,n)χN−1−n,k0
(∆k)

}
. (S10)

We have

χn,k0
(∆k) = n! Γ

{
[−∆k − γ]

−n−1

∆k(∆k + iΓ
2 )

+
[∆k − γ]

−n−1

∆k(∆k − iΓ
2 )
− 2

∆2
k + Γ2

4

(−1

a0

)n+1
}
, (S11)

γ = k0 + iΓ/2β, and a0 = k0 + iΓ(1 − β)/2β. We define in a compact form ψN (Ek,∆k) = δ(Ek −
2k0)

[
2πδ(∆k)t2N2k0

− φN (∆k)
]
.

CONSTRUCTING AND COMPUTING Ŝ12

In this section we compute the term due to one photon being scattered out of the waveguide and the other being
transmitted. Each of the N emitters contributes to this term and we therefore have to sum over all the emitters. We
start by applying the scattering matrix in Eq. (1) on the input state and obtain the k-space result for the two-photon
output state after scattering off M emitters,

2π
A

2

N−1∑
M=0

ŜN−M−1
11 Ŝ12Ŝ

M
22 â
†(k0)â†(k0)|0〉 =

A

2

N−1∑
M=0

ŜN−M−1
11 Ŝ12

∫
dk1dk2 ψM (Ek,∆k) â†(k1)â†(k2)|0〉. (S12)

The task at hand is thus to apply Ŝ12 to each term in the sum.
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FIG. S1. For a single emitter we can map a unidirectional system with losses to a bidirectional system. We can use this to
compute the multi-emitter scattering matrix Ŝ12 by ignoring collective effects.

We construct Ŝ12 by mapping a chiral interaction with losses to a bidirectional waveguide where the emission rate
to the backward propagating mode is the same as the loss rate in the chiral system as illustrated in Fig. S1. From
this we can construct Ŝ12 from the scattering matrix for one photon transmitted and one reflected by adapting the
process outlined in Ref. [54]. This scattering matrix for an arbitrary two-photon wavefunction f(k1, k2) is

Ŝ12

∫
dk1dk2â

†(k1)â†(k2)|0〉f(k1, k2) =

∫
dk1dk2â

†
R(k1)â†L(−k2)|0〉

[
2r̄−k2tk1f(k1,−k2)

+
iβ
√

Γ(1− β)

π
s̄k1 s̄−k2

∫
dp1dp2(s̄p1 + s̄p2)δ(k1 − k2 − p1 − p2)f(p1, p2)

]
,

(S13)

where â†R creates a forward-propagating photon and â†L creates a backward propagating photon, and backwards

photons have negative wavevectors. Here, r̄k = −2i
√
β(1− β)/(1 − 2ik/Γtot) and s̄k =

√
Γtot/(k + iΓtot/2), where

we have used the overbar as these definitions differ from those typically used in the literature. Applying Ŝ12 and S11

in (S12) gives

|out〉21 =
A

2

N−1∑
M=0

∫
dk1dk2 t

N−M−1
k1

â†R(k1)â
†(M+1)
L (−k2)|0〉

[
2 r̄−k2

tk1
ψM

(
2∆k,

Ek
2

)
+
iβ
√

Γ(1− β)

π

× s̄k1 s̄−k2

∫
dEpd∆p

(
s̄Ep

2 +∆p
+ s̄Ep

2 −∆p

)
δ(2∆k − Ep)ψM (Ep,∆p)

]
,

(S14)

where the superscript (M+1) on â† ensures each emitter is coupled to a separate reservoir such that the loss reservoir
does not mediate collective effects. Considering a resonant drive k0 → 0 and using the expression for ψN (Ek,∆k) in
(S9) after some manipulation we obtain

|out〉21 =
A

2

N−1∑
M=0

∫
dk tN−M−1

k â†R(k)â
†(M+1)
L (−k)|0〉

{
4π r̄−ktkt

2M
0 δ(k)− 2r̄−ktkφM (k)

+
iβ
√

Γ(1− β)

π
s̄ks̄−k

[
4πs̄0t

2M
0 − ΦM

]}

≡ A

2

N−1∑
M=0

∫
dk tN−M−1

k â†R(k)â
†(M+1)
L (−k)|0〉bM (k),

(S15)

which gives (6) in the main text. Here, we also define

cM (k) =

{
−2r̄−ktkφM (k) +

iβ
√

Γ(1− β)

π
s̄ks̄−k

[
4πs̄0t

2M
0 − ΦM

]}
, (S16)

which is the correlated part of |out〉21. The term ΦM =
∫
dk (s̄k + s̄−k)φM (k) can be computed analytically (see

section below).
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OUTPUT POWER

In this section we compute the power output after N emitters for a resonant drive. The terms |out〉1, |out〉2, and
|out〉21 all contribute to this, and we write 〈â†â〉 = 〈â†â〉1 + 〈â†â〉2 + 〈â†â〉21. We note that the system is at steady
state so we evaluate the power at x = 0 without loss of generality. Computing 〈â†â〉1 is straightforward and gives

〈â†â〉1 = |α|2e−|α|2
L t2N0 ∼ t2N0 (|α|2/L − |α|4L/L2), where t0 = 1 − 2β. The term |α|4L/L2 is non-physical as it scales

with L (after taking into account that the input power is Pin = |α|2/L). We below show that it cancels with similar
unphysical terms from the two-photon contribution.

Moving to 〈â†â〉2, we compute â(x = 0)|out〉2 and use this to find

〈â†â〉2 =
e−|α|

2 |α|4
L2

[
|t0|4NL+

∫
dx|φN (x)|2 − 2 t2N0

∫
dxφN (x)

]
. (S17)

Again, the first term here is non-physical as it depends on L. This term cancels with the similar non-physical term
from 〈â†â〉21. Using (S14) we compute 〈â†â〉21

〈â†â〉21 =
e−|α|

2 |α|4
L2

N−1∑
M=0

{
r̄2
0t

2(N+M)
0 L+

1

8π

∫
dk|cM (k)|2 + Re

[
r̄0t

N+M
0 cM (0)

]}
, (S18)

where we note that t0 and r̄0 are real-valued on resonance. Combining these together to fourth order in |α| gives

〈â†â〉 =
|α|2
L
|t0|2N +

|α|4
L2

{∫
dx|φN (x)|2 − 2t2N0

∫
dxφN (x) +

N−1∑
M=0

1

8π

∫
dk|cM (k)|2 + Re [r0t

N+M
0 cM (0)]

}
, (S19)

where we have used t4N0 − t2N0 +
∑N−1
M=0 r̄

2
0t

2(N+M)
0 = 0 and thus all the non-physical terms vanish. We note that the

input power is Pin = |α|2/L and has units of photons per length. Since we have set vg = 1 throughout it also has
units of photons per time. We perform the integrals in (S19) numerically to produce the plot in Fig. 3(b).

ASYMPTOTICS

Here we compute the correlation function and the output power in the limit of the dynamics being dominated
by detuned Fourier components. From Fig. 3(a) of the main text we have observed that when the optical depth
becomes large the Fourier spectrum of the two-photon wavefunction is dominated by detuned Fourier components.
By expanding to second order in Γ/∆ we obtain asymptotic expressions for |out〉2, |out〉21 and 〈â†â〉. Starting from
Eq. (3), we assume a resonant drive and ignore terms that decrease exponentially in N and thus write

|out〉2 ∼ −A
∫

d∆ tN∆t
N
−∆

∆
√

1 + 4∆2

Γ2

{
1√
2

∫
dx1dx2â

†(x1)â†(x2)|0〉 1√
4∆2 + Γ2

√
2

2π
[2∆ cos (∆x)− Γ sgn (x) sin (∆x)]

}
.

(S20)

Expanding to second order, we write tN∆t
N
−∆ ∼ exp[−ξ2

N
Γ2

tot

∆2 ], with ξN =
√
Nβ(1− β) and thus our assumption of

detuned frequencies dominating implies Nβ(1− β) = ξ2
N � 1. We thus have

|out〉2 ∼ −A
Γ

4π

∫
dx1dx2â

†(x1)â†(x2)|0〉
∫
d∆

e−ξ
2
NΓ2

tot/∆
2

∆2
cos (∆x), (S21)

and we define

FN (x) =

∫
d∆

e−ξ
2
NΓ2

tot/∆
2

∆2
cos (∆x) =

√
π

ΓtotξN
0F2

(
1

2
,

1

2
;
ξ2
NΓ2

totx
2

4

)
− π|x| 0F2

(
1,

3

2
;
ξ2
NΓ2

totx
2

4

)
, (S22)

where 0F2 is the generalized hypergeometric function. From this we obtain g(2)(x) ∼ Γ2

4π2

|FN (x)|2
(1−2β)4N . We furthermore

obtain a k-space representation of (S21) as

|out〉2 ∼ −A
Γ

2

∫
dk1dk2â

†(k1)â†(k2)|0〉δ(Ek)
e−ξ

2
NΓ2

tot/∆
2
k

∆2
k

, (S23)
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where we define φasymp
N (∆k) = Γ/∆2

k exp [−ξ2
NΓ2

tot/∆
2
k]. With the two-photon wavefunction at hand we easily obtain

the two-photon contribution to the nonlinear part of the power

〈â†â〉2 ∼
Pin

Psat

1

8
√

2π

β

ξ3
N

. (S24)

We now compute the output power 〈â†â〉21 using (S18) and φasymp
N (∆k). We do this by first obtaining an asymptotic

expression for |out〉21. We consider terms scaling sub-exponentially in N , and thus drop the terms that are exponential
in N . This leaves the contribution which is proportional to cM (k) (see (S16)). Within the asymptotic limit, the
contribution here from ΦM is smaller than the other terms. This term contains processes where one photon is
scattered out of the waveguide while the other is transmitted through a correlated nonlinear process. This is unlikely
to occur because the correlated wavefunction φasymp

N (∆k) is dominated by detuned Fourier components and is unlikely
to interact nonlinearly. We are thus left with

|out〉21 =
A

2

N−1∑
M=0

∫
dk â†R(k)â

†(M+1)
L (−k)|0〉 tN−M−1

k

{
−2r̄−ktkφ

asymp
M (k) +

iβ
√

Γ(1− β)

π
s̄ks̄−k4πs̄0t

2M
0

}
. (S25)

The first term contains the asymptotic form φasymp
M (k) interacting linearly with emitters and the second term quantifies

the correlated interactions, i.e. the two photons interact in an uncorrelated manner for the first M emitters and then
interact in a correlated manner on the M + 1th emitter through the Ŝ12 scattering term. Computing 〈â†â〉21 leads to
three integrals: the modulus square of the first and second terms in (S25) and the cross term. We have found that
the cross term does not contribute to leading order and we thus focus on the other two. First, we have∫

dk|r−k|2|tk|2(N−M)|φasymp
M (k)|2 ∼ β(1− β)Γ2

totΓ
2

∫
dk
e−ξ

2
N+MΓ2

tot/k
2

k6

=
β3(1− β)3

√
π

ξ5
N+MΓtot

,

(S26)

where we have used |tk|2N ∼ exp [−ξ2
N

Γ2
tot

k2 ], and the integral
∫
dke−c

2/k2

/k2n = Γ(n − 1
2 )/c2n−1, where Γ(n) is the

Gamma function. The contribution from the modulus square of the second term in (S25) decays exponentially with
M and is thus dominated by terms M � N . This allows writing to leading order∫

dk|s̄ks̄−k|2|tk|2(N−M−1) ∼
∫
dk e−ξ

2
N−M−1Γ2

tot/k
2 Γ2

tot

k4

∼
√
π

2 ξ3
NΓtot

.

(S27)

Using these integrals and (S25) we get

〈â†â〉21

Pin
∼ Pin

8π

N−1∑
M=0

{
β3(1− β)3

√
π

ξ5
N+MΓtot

+ 64β3(1− β)t4M0

√
π

2 ξ3
NΓtot

}

∼ Pin

Psat

[
2
√

2− 1

8
√

2π
+

1

2
√
π

1

1− 2β(1− β)

]
β

ξ3
N

(S28)

where, for the first term, we have used
∑N−1
M=0 1/(N + M)5/2 = ζ ( 5

2 , N) − ζ ( 5
2 , 2N) ∼

(
2
3 − 1

3
√

2

)
1

N3/2 for N � 1,

where ζ (s, a) is the Hurwitz zeta function, and for the second term we extended the summation to ∞ and computed
the geometric series. Combining (S24), (S28), and the linear contribution gives Eq. 7 in the main text.

COMPUTING THE INTEGRALS

In this section we compute the values of the integrals used throughout the manuscript. The first integral is

I1 =

∫
d∆

tNk0+∆t
N
k0−∆

Γ2 + 4∆2
cos (∆x) =

1

2

∫
d∆

ei∆|x| + e−i∆|x|

Γ2 + 4∆2

(
∆ + k0 + iΓ(1− 2β)/2β

∆ + k0 + iΓ/2β

)N (
∆− k0 − iΓ(1− 2β)/2β

∆− k0 − iΓ/2β

)N
.

(S29)
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By extending the integrand over the entire complex plane and using a contour that is closed in the upper or lower
half of the complex plane the above integral can be computing using the Residue Theorem. This gives

I1 =
π

4Γ

2t̃N2k0
e−

Γ
2 |x| +

iΓ

(N − 1)!

dN−1

dzN−1

[
tNk0+z(z − k0 − iΓ(1− 2β)/2β)Neiz|x|

z2 + Γ2/4

]
z=k0+ iΓ

2β

− iΓ

(N − 1)!

dN−1

dzN−1

[
tNk0−z(z + k0 + Γ(1− 2β)/2β)Ne−iz|x|

z2 + Γ2/4

]
z=−k0− iΓ

2β

 ,

(S30)

where we have used tk0+ iΓ
2
tk0− iΓ2 = t̃2k0 .

The second integral we compute is

I2 = sgn (x)

∫
d∆

∆

tNk0+∆t
N
k0−∆

Γ2 + 4∆2
sin (∆x) =

1

2i

∫
d∆

∆

ei∆|x| − e−i∆|x|
Γ2 + 4∆2

(
∆ + k0 + iΓ(1− 2β)/2β

∆ + k0 + iΓ/2β

)N
×
(

∆− k0 − iΓ(1− 2β)/2β

∆− k0 − iΓ/2β

)N
.

(S31)

Using the same approach as for I1 we obtain

I2 =
iπ

4Γ

−4i

Γ
t2Nk0

+
4i

Γ
t̃N2k0

e−
Γ
2 |x| − iΓ

(N − 1)!

dN−1

dzN−1

[
tNk0+z(z − k0 − iΓ(1− 2β)/2β)Neiz|x|

z(z2 + Γ2/4)

]
z=k0+ iΓ

2β

− iΓ

(N − 1)!

dN−1

dzN−1

[
tNk0−z(z + k0 + Γ(1− 2β)/2β)Ne−iz|x|

z(z2 + Γ2/4)

]
z=−k0− iΓ

2β

 .

(S32)

The third integral, which we compute for a resonant drive, is

ΦN =

∫
dk(s̄k + s̄−k)φM (k) =

1

(N − 1)!

N−1∑
j=0

(
N − 1

j

)
F0(N, j)

∫
dk(s̄k + s̄−k)χN−1−j(k)

= Γ

N−1∑
j=0

F0(N, j)

j!

∫
dk(s̄k + s̄−k)

[
(k − iΓ

2β )j−N

k(k − iΓ
2 )

+
(−k − iΓ

2β )j−N

k(k + iΓ
2 )

− 2

k2 + Γ2

4

(
2iβ

Γ(1− β)

)N−j] (S33)

The third term in the square brackets is evaluated easily

Φ
(3)
N =

∫
dk(s̄k + s̄−k)

2Γ

k2 + Γ2

4

=
−16iπ

√
β/Γ

1 + β
. (S34)

The first two terms in the square brackets of (S33) can be combined to give an integral of the form

Φ
(1)
N + Φ

(2)
N =

∫
dk

Γ(s̄k + s̄−k)

k(k2 + Γ2

4 )(k2 + Γ2

4β2 )N−j

{
k

[(
k +

iΓ

2β

)N−j
+ (−1)N−j

(
k − iΓ

2β

)N−j ]

+
iΓ

2

[(
k +

iΓ

2β

)N−j
− (−1)N−j

(
k − iΓ

2β

)N−j]}
.

(S35)

Using a binomial series to expand the powers in the bracers, the entire expression can be written as

Φ
(1)
N + Φ

(2)
N =

N−j∑
m=0

(
N − j
m

)(
iΓ

2β

)N−j−m
Im,N−j , (S36)

where

Im,N−j =


∫
dk 2Γ(s̄k+s̄−k)km(

k2+ Γ2

4

)(
k2+ Γ2

4β

)N−j if m ∈ even∫
dk iΓ2(s̄k+s̄−k)km−1(

k2+ Γ2

4

)(
k2+ Γ2

4β

)N−j if m ∈ odd,
(S37)
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which can be evaluated to give

Ik,j =


64π(−1)j+1ik+122j−kβ

3
2 +2jΓ−

5
2−2j

[
β(−1 + β2)−2−jΓk − Γktot

Γ ( k+1
2 )

Γ (j+2) 2F̃1

(
1, 1+k

2
1
2 (−1−2j+k)

; 1
β2

)]
if k ∈ even

64Γ
− 5

2−2j
tot 22j−k

[
Γktot Γ

(
2 + j − k

2

)
Γ
(
k
2

)
2F1

(
1 k

2
1
2 (−2−2j+k)

; 1
β2

)
+ (−1)

2j+k−1
2 π(−1 + β2)−2−jΓk

]
if k ∈ odd,

(S38)
where 2F1 is Gauss’s Hypergeometric function and 2F̃1 is Gauss’s regularized Hypergeometric function. Putting
everything together we get

ΦN =

N−1∑
j=0

F0(N, j)

j!

[
16iπ

√
β/Γ

1 + β

(
2iβ

Γ(1− β)

)N−j
+

N−j∑
m=0

(
N − j
m

)(
iΓ

2β

)N−j−m
Im,N−j

]
(S39)

COMPUTING THE DIFFERENTIALS

In this section we compute the differentials that emerge from the evaluation of the residue of the Nth order poles
in integrals I1 and I2. In total there are four differentials in (S7). Here we detail the steps we use to evaluate these
in terms of generalized functions.

In this section we make extensive use of the general Leibniz rule of differentiation

dn

dxn
[f(x)g(x)]x=x0

=

n∑
i=0

(
n

i

)
dif(x)

dxi

∣∣∣∣
x=x0

dn−ig(x)

dxn−i

∣∣∣∣
x=x0

. (S40)

We start with the first differential in (S7) and write it in a compact form

1

(N − 1)!

dN−1

dzN−1

[
tNk0+z

(
z − k0 −

iΓ

2β
(1− 2β)

)N
eiz|x|

z2 + Γ2/4

]
z=k0+ iΓ

2β

≡ 1

(N − 1)!

dN−1

dzN−1

[
[f(z)]

N
g(z, x)

]
z=γ

, (S41)

where γ = k0 + iΓ/2β, f(z) = tk0+z(z − k0 − iΓ
2β (1− 2β)), and g(z, x) = eiz|x|/(z2 + Γ2/4). Using Leibniz’s rule this

becomes

1

(N − 1)!

dN−1

dzN−1

[
[f(z)]

N
g(z, x)

]
z=γ

=
1

(N − 1)!

N−1∑
m=0

(
N − 1

m

)
dm [f(z)]

N

dzm

∣∣∣∣∣
z=γ

dN−1−mg(z, x)

dzN−1−m

∣∣∣∣
z=γ

(S42)

We start by evaluating

Fk0
(N,m) =

dm [f(z)]
N

dzm

∣∣∣∣∣
z=γ

=
dm

dzm

[
z2 − a2

z + γ

]N ∣∣∣∣∣
z=γ

, (S43)

where a = k0 + iΓ(1− 2β)/2β. In order to compute this we first compute

dn

dzn

[
z2 − a2

z + γ

]∣∣∣∣
z=γ

= (−1)nn! (2γ)−n
(
γ2 − a2

2γ
− 2γ δn−1

)
, (S44)

where δi is the Kronecker delta and takes values δi = 0 for i 6= 0 and δi = 1 for i = 0. We can now use Leibniz’s rule
recursively to express

Fk0
(N,m) =

m∑
i1=0

m−i1∑
i2=0

. . .

m−i1−i2−...−iN−2∑
iN−1=0

(
m

i1

)(
m− i1
i2

)
. . .

(
m− i1 − i2 − . . .− iN−2

iN−1

)

× f (m−i1−i2−...−iN−1)(γ)

N−1∏
j=1

f (ij)(γ),

(S45)
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where f (n)(x0) is the nth derivative of f evaluated at x0. We now substitute (S44) into (S45), which, after some
manipulation gives

Fk0
(N,m) = (−1)m(2γ)−mm!

m∑
i1

m−i1∑
i2=0

. . .

m−i1−i2...iN−2∑
iN−1=0

[
γ2 − a2

2γ
− 2γ δi1−1

] [
γ2 − a2

2γ
− 2γ δi2−1

]

× . . .×
[
γ2 − a2

2γ
− 2γ δiN−1

] [
γ2 − a2

2γ
− 2γ δm−i1−i2−...−iN−1−1

]

= (−1)m(2γ)−mm!

m∑
i1

m−i1∑
i2=0

. . .

m−i1−i2...iN−2∑
iN−1=0

γ2 − a2

2γ

[
γ2 − a2

2γ
− 2γ δi1−1

] [
γ2 − a2

2γ
− 2γ δi2−1

]

× . . .×
[
γ2 − a2

2γ
− 2γ δiN−1

]

+ (−1)m(2γ)−mm!

m∑
i1

m−i1∑
i2=0

. . .

m−i1−i2...iN−2∑
iN−1=0

−2γ δm−i1−i2−...−iN−1−1

[
γ2 − a2

2γ
− 2γ δi1−1

] [
γ2 − a2

2γ
− 2γ δi2−1

]

× . . .×
[
γ2 − a2

2γ
− 2γ δiN−1

]
,

(S46)

where in the last equality we have split the expression into two terms. These two terms can be written compactly as
polynomials using the binomial theorem. We write the first as

γ2 − a2

2γ

N−1∑
k=0

(
N − 1

k

)(
γ2 − a2

2γ

)N−1−k
(−1)k(2γ)kV (N,m, k), (S47)

and

V (N,m, k) =

m∑
i1=0

m−i1∑
i2=0

. . .

m−i1−i2−...−iN−1∑
iN−1=0

δix1−1δix2−1 . . . δixk−1, (S48)

where there are k δ factors, and the subscript xj refers to any of the δ terms when writing the above as a polynomial.
Importantly, we can write the form using a binomial expansion only because the value of V (N,m, k) is independent
of the subscript of the δ functions and only depends on the total number of them k. We have found that

V (N,m, k) = θ(m− k)
(N − 1 +m− 2k)!

(m− k)!(N − 1− k)!
, (S49)

where θ(j) is the unit step function where θ(j) = 1 for j ≥ 0 and θ(j) = 0 otherwise, and m ≤ N − 1 and k ≤ N − 1.
We can similarly write the second term of (S46) as

− 2γ

N−1∑
k=0

(
N − 1

k

)(
γ2 − a2

2γ

)N−1−k
(−1)k(2γ)kD(N,m, k), (S50)

where

D(N,m, k) =

m∑
i1=0

m−i1∑
i2=0

. . .

m−i1−i2−...−iN−1∑
iN−1=0

δm−i1−i2−...iN−1−1δix1
−1 δix2

−1 . . . δixk−1

= θ(m− k − 1)
(m+N − 3− 2k)!

(m− 1− k)!(N − k − 2)!
,

(S51)

and again we can use this form because the value of the sum only depends on the number of δ factors k. Using (S46)
and combining the two terms together we get

Fk0(N,m) = (−1)m(2γ)−mm!

m∑
k=0

N

N − k

(
N − 1

k

)(
γ2 − a2

2γ

)N−k
(−1)k(2γ)k

(N − 1 +m− 2k)!

(N − k − 1)!(m− k)!

= (−1)m(2γ)−m
(
γ2 − a2

2γ

)N
(N +m− 1)!

(N − 1)!
3F2

( −m, 1−N,−N
1−m−N

2 , 2−m−N
2

;
γ2

γ2 − a2

)
,

(S52)
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where 3F2 is the generalized Hypergeometric function.

We now move to computing the derivative

dm

dzm

[
eiz|x|

z2 + Γ2/4

]
z=γ

=
eiγ|x|

iΓ

m∑
j=0

(
m

j

)
(i|x|)m−j(−1)jj!

[(
γ − iΓ

2

)−1−j
−
(
γ +

iΓ

2

)−1−j]

=
1

iΓ

{
e

Γ
2 |x|

(
− iΓ

2
− γ
)−m−1

Γm+1

[
−i
(
γ +

iΓ

2

)
|x|
]

−e−Γ
2 |x|

(
iΓ

2
− γ
)−m−1

Γm+1

[
−i
(
γ − iΓ

2

)
|x|
]}

≡ 1

iΓ
ξ

(1)
k0,m

(x),

(S53)

where Γm(x) is the incomplete Gamma function. We finally thus have

1

(N − 1)!

dN−1

dzN−1

[
[f(z)]

N
g(z, x)

]
z=γ

=
1

iΓ(N − 1)!

N−1∑
m=0

(
N − 1

m

)
Fk0

(N,m)ξ
(1)
k0,N−1−m(x). (S54)

The process for evaluating the remaining three differentials is almost identical to the first. The second differential
in (S7) is

1

(N − 1)!

dN−1

dzN−1

[
tNk0−z(z + k0 +

iΓ

2β
(1− 2β))N

e−iz|x|

z2 + Γ2/4

]
z=−k0− iΓ

2β

≡ 1

(N − 1)!

dN−1

dzN−1

[
[f2(z)]

N
g2(z, x)

]
z=−γ

,

(S55)
One can show that

dm

dzm
[f2(z)]

N

∣∣∣∣
z=−γ

= (−1)(N−m)Fk0(N,m), (S56)

and that

dm

dzm

[
e−iz|x|

z2 + Γ2/4

]
z=−γ

= (−1)m
1

iΓ
ξ

(1)
k0,m

(x), (S57)

and therefore

1

(N − 1)!

dN−1

dzN−1

[
[f2(z)]

N
g2(z, x)

]
z=−γ

=
−1

iΓ(N − 1)!

N−1∑
m=0

(
N − 1

m

)
Fk0

(N,m)ξ
(1)
k0,N−1−m(x). (S58)

The third differential has the same function raised to the Nth power as the first, but the other factor differs, ie.,

1

(N − 1)!

dN−1

dzN−1

[
tNk0+z(z − k0 −

iΓ

2β
(1− 2β))N

e−iz|x|

z(z2 + Γ2/4)

]
z=k0+ iΓ

2β

≡ 1

(N − 1)!

dN−1

dzN−1

[
[f(z)]

N
g3(z, x)

]
z=γ

.

(S59)
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We therefore are only required to compute

dm

dzm

[
e−iz|x|

z(z2 + Γ2/4)

]
z=γ

=
eiγ|x|

iΓ

m∑
k=0

(
m

k

)
(i|x|)m−k d

k

dzk

[ −1

z(z + iΓ/2)
+

1

z(z − iΓ/2)

]

=
eiγ|x|

iΓ

m∑
k=0

(
m

k

)
(i|x|)m−k(−1)kk!

k∑
l=0

γl−k−1

[(
γ − iΓ

2

)−1−l
−
(
γ +

iΓ

2

)−1−l]

=
eiγ|x|

iΓ

m∑
k=0

(
m

k

)
(i|x|)m−k(−1)kk!

γ−k−1

iΓ/2

[
−2 +

(
γ − iΓ/2

γ

)−k−1

+

(
γ + iΓ/2

γ

)−k−1
]

=
1

Γ2

{
−4(−γ)−m−1Γm+1(−iγ|x|) + 2 e−

Γ
2 |x|

(
−γ +

iΓ

2

)−m−1

Γm+1

[
−i
(
γ − iΓ

2

)
|x|
]

+

+ 2 Γm+1

[
−i
(
γ +

iΓ

2

)
|x|
](
−γ − iΓ

2

)−j−1

e
Γ
2 |x|
}
≡ 1

Γ2
ξ

(3)
k0,m

(x),

(S60)

and thus

1

(N − 1)!

dN−1

dzN−1

[
[f(z)]

N
g3(z, x)

]
z=γ

=
1

Γ2(N − 1)!

N−1∑
m=0

(
N − 1

m

)
Fk0

(N,m)ξ
(3)
k0,N−1−m(x). (S61)

Finally the fourth differential in (S7) is

1

(N − 1)!

dN−1

dzN−1

[
tNk0−z(z + k0 +

iΓ

2β
(1− 2β))N

e−iz|x|

z(z2 + Γ2/4)

]
z=−k0− iΓ

2β

≡ 1

(N − 1)!

dN−1

dzN−1

[
[f2(z)]

N
g4(z, x)

]
z=−γ

.

(S62)
One can show that

dm

dzm

[
e−iz|x|

z(z2 + Γ2/4)

]
z=−γ

=
(−1)m+1

Γ2
ξ

(3)
k0,m

(x), (S63)

and thus

1

(N − 1)!

dN−1

dzN−1

[
[f2(z)]

N
g4(z, x)

]
z=−γ

=
1

Γ2(N − 1)!

N−1∑
m=0

(
N − 1

m

)
Fk0

(N,m)ξ
(3)
k0,N−1−m(x). (S64)

We can finally combine all four differentials together to get an expression for ψN (xc, x), which after some manipu-
lation yields

ψN (xc, x) = e2ik0xc

{
t2Nk0
− 1

(N − 1)!

N−1∑
n=0

(
N − 1

n

)
Fk0(N,n)χk0,N−1−n(x)

}
, (S65)

where

χk0,n(x) = ξ
(1)
k0,n

(x)− 1

2
ξ

(3)
k0,n

(x)

= 2(−γ)−n−1Γn+1 (−iγ|x|)− 2e−
Γ
2 |x|

(
−γ +

iΓ

2

)−n−1

Γn+1

[
−i
(
γ − iΓ

2

)
|x|
]
,

(S66)

giving (S8).
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