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Abstract

The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range
of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio
telescope. The SKA will address many important topics in astronomy, ranging from planet formation to distant
galaxies. However, in this work, we consider the perspective of the SKA as a facility for studying physics. We
review four areas in which the SKA is expected to make major contributions to our understanding of fundamental
physics: cosmic dawn and reionisation; gravity and gravitational radiation; cosmology and dark energy; and
dark matter and astroparticle physics. These discussions demonstrate that the SKA will be a spectacular physics
machine, which will provide many new breakthroughs and novel insights on matter, energy and spacetime.
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1 INTRODUCTION

The Square Kilometre Array (SKA) is a large international
collaboration, with the goal of building the world’s largest
and most powerful radio telescope (REF). The first phase of
the SKA (“SKA1”) will begin operations in the early 2020s,
and will comprise two separate arrays: SKA1-Low, which
will consist of around 130 000 low-frequency dipoles in
Western Australia, and SKA1-Mid, which will be composed
of ∼200 dishes in the Karoo region of South Africa (Dewd-
ney et al., 2016; Braun, 2017). The second phase, SKA2 will
be an order of magnitude larger in collecting area than
SKA1, and will take shape in the late 2020s.

The science case for the SKA is extensive and diverse: the
SKA will deliver spectacular new data sets that are expected
to transform our understanding of astronomy, ranging from
planet formation to the high-redshift Universe (Bourke
et al., 2015). However, the SKA will also be a powerful ma-
chine for probing the frontiers of fundamental physics. To
fully understand the SKA’s potential in this area, a focused
workshop on “Fundamental Physics with the Square Kilo-
metre Array”1 was held in Mauritius in May 2017, in which
radio astronomers and theoretical physicists came together
to jointly consider ways in which the SKA can test and ex-
plore fundamental physics.

This paper is not a proceedings from this workshop, but
rather is a white paper that fully develops the themes ex-
plored. The goal is to set out four broad directions for pur-
suing new physics with the SKA, and to serve as a bridging
document accessible for both the physics and astronomy

1See http://skatelescope.ca/fundamental-physics-ska/.
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communities. In §2 we consider cosmic dawn and reionisa-
tion, in §3 discuss strong gravity and pulsars, in §4 we exam-
ine cosmology and dark energy, and in §5 we review dark
matter and astroparticle physics. In each of these sections,
we introduce the topic, set out the key science questions,
and describe the proposed experiments with the SKA.

2 COSMIC DAWN AND REIONISATION

Cosmic Dawn represents the epoch of formation of the
first stars and galaxies that eventually contributed to the
reionisation of the universe. This period is potentially ob-
servable through the 21-cm spin-flip transition of neutral
hydrogen, redshifted to radio frequencies. In this section,
we provide an overview of the ways in which we can use up-
coming SKA observations of cosmic dawn and of the epoch
of reionisation (EoR) to place constraints on fundamental
physics. These include the possible effects of warm dark
matter on the 21-cm power spectrum during cosmic dawn,
variations of fundamental constants such as the fine struc-
ture constant, measurements of the lensing convergence
power spectrum, constraints on inflationary models, and
cosmic microwave background (CMB) spectral distortions
and dissipation processes. We describe foreseeable chal-
lenges in the detection and isolation of the fundamental
physics parameters from the observations of cosmic dawn
and reionisation, possible ways towards overcoming them
through effective isolation of the astrophysics, synergies
with other probes, and foreground removal techniques.

2.1 Introduction

Cosmologists seek to use the Universe as an experiment
from which to learn about new physics. There has al-
ready been considerable success in extracting fundamental
physics from the CMB and from large-scale structure (LSS)
measurements from large galaxy surveys. These CMB and
LSS observations cover only a small fraction of the total
observable Universe, both in terms of cosmic history and
observable volume. A promising new technique for pro-
viding observations over the redshift range z = 3−27 is by
measurements of the 21-cm hyperfine line of neutral hydro-
gen, which can be observed redshifted to radio frequencies
detectable by the SKA (Koopmans et al., 2015).

Since hydrogen is ubiquitous in intergalactic space, 21-
cm observations offer a route to mapping out fluctuations
in density, which contain information about cosmological
parameters. As the 21-cm line is affected by various types
of radiation, observing it gives a way to detect and study
some of the first astrophysical objects, including stars and
black holes. Once detected, the 21-cm signal might also
provide information about the high-redshift Universe that
can constrain other physics, such as the effects of warm
dark matter, annihilation or scattering of dark matter, the
variation of fundamental constants, and possibly also tests
of inflationary models (Pritchard et al., 2015).

These are exciting times for cosmic dawn and reioni-
sation, as the pathfinder experiments LOFAR (Patil et al.,
2017), MWA (Dillon et al., 2015), PAPER (Ali et al., 2015),
and HERA (DeBoer et al., 2017) have begun to collect data
and set upper limits on the 21-cm power spectrum, while
EDGES has reported a tentative detection (Bowman et al.,
2018). It is likely that in the next few years the cosmologi-
cal 21-cm signal will open a new window into a previously
unobserved period of cosmic history.

The rest of this section is organised as follows. In §2.2 we
present a brief overview of the theory and observations re-
lated to cosmic dawn and the epoch of reionisation, and the
various physical processes that influence the magnitude of
the signal from these epochs. We summarise the status of
observations in the field, including the upper limits to date
from various experiments. We also provide a brief overview
of the upcoming observations and modelling of the reion-
isation epoch. In §2.3 we review aspects of fundamental
physics that can be probed with the SKA, and in §2.4 we
discuss some of the challenges to doing this. We provide a
summary in §2.5.

2.2 Cosmic Dawn and Reionisation : theory and
observations

2.2.1 Overview of the 21 cm signal

The 21-cm line of neutral hydrogen corresponds to the
transition between the singlet and triplet hyperfine levels
of its electronic ground state, resulting from the interac-
tion of proton and electron spins. The resulting transition
has a rest frame frequency of 1.4 GHz, i.e., a wavelength of
21 cm. The electric dipole transition between the ground
and excited hyperfine levels is forbidden due to parity; the
lowest order transition occurs via a magnetic dipole, owing
to which the triplet level has a vacuum lifetime of ' 11 Myr.
Due to this long lifetime, the dominant channels for the
decay of the excited levels are either non-radiative (atomic
collisions; Allison & Dalgarno, 1969; Zygelman, 2005), or
depend on the existing radiation field (stimulated emis-
sion by CMB photons, or optical pumping by UV photons;
Wouthuysen, 1952; Field, 1958). This makes the relative
population of the hyperfine levels a sensitive probe of the
thermal state and density of the high-redshift intergalactic
medium (IGM) and of early sources of ultraviolet radiation
(Sunyaev & Zeldovich, 1975; Hogan & Rees, 1979; Madau
et al., 1997).

Radio observations of this line are frequently used to map
the velocity of neutral hydrogen (HI) gas in the Milky Way
or in nearby galaxies, but currently it has not been detected
in emission at redshifts z > 1. When considering the 21-cm
line as a cosmological probe, it is standard to describe the
measured intensity in terms of a brightness temperature
and to consider the observed brightness temperature rela-
tive to some background source, typically either the CMB or
a radio-bright point source. For cosmology, it is most useful
to consider the case of the CMB backlight, for which the
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Figure 1. Evolution of spin temperature TS , gas temperature TK and CMB
temperature Tγ. This figure is taken from Mesinger et al. (2011).

21-cm signal will then take the form of a spectral distortion
over the whole sky.

The observable quantity is the brightness temperature
δTb of the 21-cm line against the CMB, which is set by
radiative transfer through HI regions. The brightness tem-
perature of 21 cm radiation can be expressed as

δTb(ν) = Ts −Tγ
1+ z

(1−e−τν0 )

≈ 27xHI(1+δb)

(
H

d vr /dr +H

)(
1− Tcmb

Ts

)
×

(
1+ z

10

0.15

Ωmh2

)1/2 (
Ωbh2

0.023

)
mK, (1)

where TS is the gas spin temperature, τν0 is the optical
depth at the 21-cm frequency ν0, δb(x, z) ≡ ρ/ρ̄−1 is the
evolved (Eulerian) density contrast of baryons, H(z) is the
Hubble parameter, d vr /dr is the comoving gradient of the
line of sight component of the peculiar velocity, and all
quantities are evaluated at redshift z = ν0/ν−1. Therefore,
the brightness temperature of the 21 cm line is very sen-
sitive to the spin temperature of the gas and to the CMB
temperature (Mesinger et al., 2011).

The 21-cm line is a unique window into cosmological
epochs at which the universe is dominantly composed of
neutral hydrogen atoms. These encompass the period from
cosmological recombination (a redshift of z = 1100, or a
proper time of 0.38 Myr after the Big Bang) to the end of
the reionisation era (a redshift of z ' 6, or a proper time of
' 1.2 Gyr after the Big Bang). Except for the last epoch, the
rest of this period is unconstrained by current observations,
and is fertile ground for exploration with new observations.

There are several processes that contribute to the evolution
of the brightness temperature of the 21-cm radiation. Ob-
servations of the brightness temperature, either through
direct imaging or statistical measures of its fluctuations,
can then inform us about the physical state of the neutral
gas and the nature of its perturbations (Koopmans et al.,
2015).

1. During the period from z ' 1100 to z ' 200, the gas
temperature is kept close to that of the CMB by Thom-
son scattering of residual free electrons (Chluba & Sun-
yaev, 2012). Atomic collisions, and optical pumping
by Lyman-α photons from the epoch of cosmological
recombination, can lead to a small brightness temper-
ature in the 21-cm line (Fialkov & Loeb, 2013; Breysse
et al., 2018).

2. The epoch from z ' 200 to z ' 30 is known as the Dark
Ages; through this period, the CMB temperature and
the gas temperature differ substantially, and atomic
collisions are sufficiently fast to set the spin temper-
ature to the latter and lead to a 21-cm signal at a de-
tectable level. The amplitude of the signal is set by the
linear evolution of fluctuations on large scales (Loeb
& Zaldarriaga, 2004; Lewis & Challinor, 2007), and
the bulk flows that set the baryonic Jeans scale (Tseli-
akhovich & Hirata, 2010; Ali-Haïmoud et al., 2014). If
detected, the 21-cm signal from this epoch would be
the ultimate probe of primordial cosmological fluctu-
ations. Assuming cosmic variance limits, the 21-cm
signal could probe extremely faint inflationary gravi-
tational wave backgrounds (down to tensor-to-scalar
ratios of r ∼ 10−9; Masui & Pen, 2010; Book et al., 2012)
and low levels of primordial non-gaussianities (down
to parameters fNL ' 0.03; Cooray, 2006; Pillepich et al.,
2007; Joudaki et al., 2011; Muñoz et al., 2015). Due to
the low frequencies of the signal from this epoch, the
observational prospects are not promising in the short
to medium term.

3. The period covering redshifts z ' 30−15 is called the
Cosmic Dawn epoch, owing to the birth of the first
stars (in sufficient numbers to affect 21 cm observa-
tions). The radiation emitted by these first sources
significantly changes the nature of the mean and fluc-
tuating 21-cm signal due to two main reasons: optical
pumping of the hyperfine levels due to Lyman-α pho-
tons (the so-called Wouthuysen-Field effect; Hirata,
2006), and heating of the gas by X-rays (Furlanetto,
2006; Pritchard & Furlanetto, 2007; Fialkov et al., 2014).
In addition, non-linear structure formation (Ahn et al.,
2006; Kuhlen et al., 2006) and baryonic bulk flows (Vis-
bal et al., 2012; McQuinn & O’Leary, 2012; Fialkov et al.,
2013) imprint their effects on the signal. Primordial
magnetic fields can also lead to features in the cos-
mological 21 cm signal during these epochs (Shiraishi
et al., 2014).

4. Finally, during the epochs covered by z ' 15−6, the
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Figure 2. The 21 cm global signal as a function of redshift, for the 193
different astrophysical models discussed in Cohen et al. (2017). The colour
(see the colour bar on the right) indicates the ratio between the Lyα in-
tensity (in units of erg s−1 cm−2 Hz−1sr−1) and the X-ray heating rate (in
units of eV s−1 baryon−1) at the minimum point. Grey curves indicate
cases with τ> 0.09, and a non-excluded fX = 0 case is in black; these cases
are all excluded from the colour bar range. Figure taken from Cohen et al.
(2017).

ionising photons from the radiation sources lead to the
permeation of HII regions, and the mean signal drops,
reaching close to zero as reionisation is completed.

Significant progress has been made in condensing these
rich astrophysical effects into simple semi-analytical pre-
scriptions that capture the large-scale features of the 21-
cm signal during this period (Furlanetto et al., 2004a,b;
Mesinger & Furlanetto, 2007; Mesinger et al., 2011; Visbal
et al., 2012). For a fiducial model described by Mesinger
et al. (2011) and developed with the publicly available code
21CMFAST, the various evolutionary stages of the signal are
illustrated in Figure 1. The terms in the figure denote the
spin temperature of the gas Ts , the CMB temperature Tγ,
and the gas kinetic temperature TK ; the Figure illustrates
astrophysical effects on the signal that include decoupling
from the CMB, the Wouthuysen-Field coupling, and X-ray
heating. Figure 2 from Cohen et al. (2017) shows the wide
range of possibilities for the sky-averaged signal (“the 21
cm global signal”). Its characteristic structure of peaks and
troughs encodes information about global cosmic events.
Cohen et al. (2017) discussed 193 different combinations
of astrophysical parameters, illustrating the great current
uncertainty in the predicted 21 cm signal.

The most robust purely cosmological probe of the bright-
ness temperature may be redshift-space distortions (RSDs;
Barkana & Loeb, 2005a; Furlanetto et al., 2009); see however
Shapiro et al. (2013) and Fialkov et al. (2015). Alternatively,
a discussion of the bispectrum is provided by Saiyad Ali
et al. (2006). More futuristic possibilities include probing ex-
tremely weak primordial magnetic fields (∼ 10−21 G scaled
to z = 0) using their breaking of the line-of-sight symmetry
of the 21-cm power spectrum (Venumadhav et al., 2017),

and inflationary gravitational waves through the circular
polarisation of the 21-cm line (Hirata et al., 2018; Mishra &
Hirata, 2018).

2.2.2 Status of 21 cm experiments

Observational attempts to detect the cosmological 21 cm
signal have made significant progress in the last few years,
with upper limits from interferometers beginning to make
contact with the space of plausible models. Broadly speak-
ing, there are two classes of 21 cm experiments: those at-
tempting to measure the sky averaged “global” 21 cm sig-
nal, and those attempting to measure the 21 cm brightness
temperature fluctuations. A natural comparison is to the
CMB, where some experiments target either spectral distor-
tions to the CMB black body, while others measure CMB
anisotropies.

Experiments targeting the global signal include EDGES
(Bowman et al., 2008), SARAS (Patra et al., 2013), LEDA2,
SCI-HI (Voytek et al., 2014), and a proposed lunar experi-
ment DARE (Burns et al., 2012). To detect the 21 cm global
signal, in principle, only a single radio dipole is necessary,
as its large beam will average over fluctuations to probe the
averaged all sky signal. For these experiments, raw sensitiv-
ity is typically not the limiting factor; the main challenges
are two-fold — ensuring absolute calibration of the dipole
and removing foregrounds.

In Bowman et al. (2008), EDGES reported a first lower
limit on the duration of reionisation by searching for a
sharp step in the 21 cm global signal, which is, in principle,
distinguishable from the smooth foregrounds (Pritchard
& Loeb, 2010). More sophisticated techniques have been
developed based upon forward modelling the signal, fore-
grounds, and instrument response in a Bayesian framework
and prospects appear to be good (Harker et al., 2012).

Recently, EDGES reported a detection of the global 21
cm signal in absorption at a frequency of 78 MHz, corre-
sponding to the redshift z ∼ 17 (Bowman et al., 2018). The
absorption profile was flattened, with an amplitude about
twice that predicted by several current models. The sig-
nal amplitude could possibly be evidence of interactions
between (a subcomponent of) dark matter and baryons
(e.g., Barkana, 2018; Barkana et al., 2018; Muñoz & Loeb,
2018), which may have led to cooling of the IGM prior to
reionisation. Further investigation, as well as independent
confirmation from other facilities, would lead to exciting
prospects for constraining fundamental physics.

In parallel, several new radio interferometers — LOFAR,
PAPER, MWA, HERA — are targeting the spatial fluctuations
of the 21 cm signal, due to the ionised bubbles during cos-
mic reionisation as well as Lyman-α fluctuations (Barkana
& Loeb, 2005b) and X-ray heating fluctuations (Pritchard
& Furlanetto, 2007) during cosmic dawn. These telescopes
take different approaches to their design, which gives each
different pros and cons. LOFAR in the Netherlands is a gen-

2http://www.tauceti.caltech.edu/leda/
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Figure 3. Summary of current constraints on the 21 cm power spectrum
as a function of redshift. Since constraints are actually a function of both
redshift and wavenumber k, only the best constraint for each experiment
has been plotted. Here are plotted results for GMRT (Paciga et al., 2013),
PAPER32 (Parsons et al., 2014; Jacobs et al., 2015), MWA128 (Dillon et al.,
2015; Beardsley et al., 2016) and LOFAR (Patil et al., 2017). Two comparison
21 cm signals calculated using 21CMFAST are shown to give a sense of the
target range - one with fiducial values (solid blue curve) and a second with
negligible heating (dashed orange curve).

eral purpose observatory with a moderately dense core and
long baselines (in the case of the international stations, ex-
tending as far as Ireland). The MWA in Western Australia
is composed of 256 tiles of 16 antennas distributed within
about 1-km baselines. PAPER (now complete) was com-
posed of 128 dipoles mounted in a small dish and focussed
on technological development and testing of redundant
calibration. HERA in South Africa will be a hexagonal ar-
ray of 330 x 14m dishes and, like PAPER, aims to exploit
redundant calibration.

These experiments have begun setting upper limits on
the 21 cm power spectrum that are summarised in Fig-
ure 3. At present, the best constraints are about two orders
of magnitude above the expected 21 cm power spectrum.
However, as noted earlier, there is considerable uncertainty
in these predictions, and in the case of an unheated IGM
a much larger signal can be produced. Pober et al. (2015)
interpreted now-retracted upper limits from Ali et al. (2015)
as a constraint on the IGM temperature, ruling out an en-
tirely unheated universe at z = 8.4. The current upper limits
typically represent only a few tens of hours of integration
time, compared to the ∼ 1000 hours needed for the desired
sensitivity. Systematic effects, especially instrumental cali-
bration, currently limit the amount of integration time that
can be usefully reduced. Overcoming these limitations is
the major goal of all these experiments and steady progress
is being made.

2.3 Fundamental Physics from the Epoch of
Reionisation

In the previous section, we listed the main astrophysical
and cosmological processes that contribute to the bright-
ness temperature evolution of the 21 cm signal, and the
status of the EoR 21 cm experiments. In this section, we
provide glimpses into the details of some of the important
constraints on fundamental physics that may be garnered
from the epoch of reionisation and cosmic dawn.

2.3.1 Cosmology from the EoR

A key advantage of 21 cm observations is that they open
up a new epoch of cosmological volume containing many
linear modes of the density field, which can greatly increase
the precision of cosmological parameter constraints. Typi-
cally, cosmology enters into the 21 cm signal through its de-
pendence on the density field, so that the 21 cm signal can
be viewed as a biased tracer in a similar way to low redshift
galaxy surveys. The challenge is that obtaining fundamen-
tal physics from the 21 cm signal requires disentangling the
“gastrophysics” from the signature of physics. This is not an
easy challenge, since the effect of astrophysics is typically
dominant over that of fundamental physics effects, which
are often subtle and desired to be measured at high pre-
cision. At this moment in time, our understanding of the
nuances of both the 21 cm signal and the observations is
still relatively limited, but there are reasons for some opti-
mism.

Broadly speaking, there are several routes to fundamen-
tal physics from the 21 cm signal:

1. Treat the 21 cm signal as a biased tracer of the density
field, and via joint analysis, constrain cosmological
parameters.

2. Look for the direct signature of energy injection by
exotic processes in the 21 cm signal, which is sensitive
to the cosmic thermal history.

3. The clustering of ionised regions or heating will re-
flect the underlying clustering of galaxies, and so will
contain information about the density field, e.g., non-
gaussianity signatures or the lack of small scale struc-
ture due to warm dark matter.

4. Line of sight effects, such as weak lensing or the in-
tegrated Sachs-Wolfe (ISW) effect, where the 21 cm
signal is primarily just a diffuse background source.

5. Look for unique signatures of fundamental physics,
e.g., the variation of the fine structure constant, which
do not depend in detail upon fluctuations in the 21 cm
brightness.

21 cm observations may also be useful in breaking de-
generacies present in other data sets (Kern et al., 2017). For
example, measurements of the reionisation history may al-
low the inference of the optical depth to the CMB, breaking
a degeneracy with neutrino mass (Liu et al., 2016).
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2.3.2 Exotic energy injection

As discussed in Section 2.2.1, the 21 cm signal is sensitive
to the underlying gas temperature through the 21 cm spin
temperature. This makes the 21 cm line a rather unique
probe of the thermal history of the Universe during the
epoch of reionisation and the cosmic dawn. Provided that
the IGM temperature is not too much larger than the CMB
temperature (so that the 1−TCMB/TS term retains its de-
pendence on TS ), we can use the Universe as a calorimeter
to search for energy injection from a wide range of pro-
cesses. Distinguishing different sources of heat will depend
upon them having unique signatures in how that energy is
deposited spatially or temporally.

After thermal decoupling at z ∼ 150, the gas tempera-
ture is expected to cool adiabatically, with a phase of X-ray
heating from galaxies warming the gas, before the photoion-
isation heating during reionisation raises the temperature
to ∼ 104 K (e.g. Furlanetto, 2006; McQuinn & O’Leary, 2012).
There is considerable uncertainty in these latter stages,
which depend upon poorly known properties of the galax-
ies and the cosmic star formation history.

Many authors have put forward possible sources of more
exotic heating including annihilating dark matter (e.g.,
Furlanetto et al., 2006; Valdés et al., 2013), evaporating
primordial black holes (Clark et al., 2017; Mack & Wesley,
2008), cosmic string wakes (Brandenberger et al., 2010), and
many more. In many cases, these might be distinguished
from X-ray heating by (a) occurring before significant galaxy
formation has occurred or (b) by depositing energy more
uniformly than would be expected from galaxy clustering.
Incorporation of dark matter annihilation models into sim-
ulations of the 21 cm signal suggests that plausible dark
matter candidates might be ruled out by future 21 cm ob-
servations (Valdés et al., 2013). Ultimately the physics of
how dark matter annihilation produces and deposits energy
as heating or ionisation is complex and requires considera-
tion of the decay products and their propagation from the
decay site into the IGM (Schön et al., 2015).

Note that dark matter candidates may modify the ther-
mal history through their effect on the distribution of galax-
ies too, as discussed in the next section.

2.3.3 Warm dark matter effects

Warm dark matter (WDM) is an important alternative to
the standard cold dark matter candidate. Although there
have been a series of studies on the constraints on the
mass of the warm dark matter, a large parameter space is
still unexplored and is possible in principle. These existing
constraints include the lower limit on the mass of a ther-
mal WDM particle (mX ≥ 2.3keV) from Milky Way satellites
(Polisensky & Ricotti, 2011) and from Lyman alpha forest
data (Narayanan et al., 2000; Viel, 2005; Viel et al., 2008).

A possible effect of warm dark matter during the reionisa-
tion and cosmic dawn epochs is distinguishable from both
the mean brightness temperature and the power spectra.
The key processes that are altered in the WDM model are

the Wouthysen-Field coupling, the X-ray heating and the
reionisation effects described in Sec. 2.2.1. This is because
the WDM can delay the first object formation, so the ab-
sorption features in the δTb evolution could be strongly
delayed or suppressed. In addition, the X-ray heating pro-
cess, which relies on the X-rays from the first generation of
sources, as well as the Lyman-alpha emissivity, can be also
affected due to the delayed first objects (see also Fig. 7 of
Pritchard & Loeb, 2012). Of course, the magnitude of the
effects depends on the scale of interest. Finally, reionisation
is also affected because the WDM can delay the reionisa-
tion process and therefore affect the ionisation fraction of
the Universe at redshift ∼ 10 (Figs. 8 and 9 of Barkana et al.,
2001).

Examples of the effects of WDM models on the spin tem-
perature of the gas will be discussed in §5.2.3. For the case
of WDM, the spin temperature TS stays near the CMB tem-
perature Tγ for a longer time, and the lowest point in the
absorption trough, where the X-ray heating rate first sur-
passes the adiabatic cooling rate, occurs at a later stage.
Although the mean collapse fraction is lower in WDM mod-
els, it grows more rapidly, and this is reflected in the heating
of the gas.

The evolution of the mean brightness temperatures for
such WDM models with mX = 2,3,4keV respectively is con-
sidered by Sitwell et al. (2014) and elaborated on in §5.2.3.
It is shown that having WDM with a WDM particle mass of
a few keV can substantially change the mean 21 cm bright-
ness temperature evolution.

Sitwell et al. (2014) considered the evolution of the
power spectrum for the modes k = 0.08Mpc−1 and
k = 0.18Mpc−1, showing a three peak structure, where
the peaks are associated with inhomogeneities in the
Wouthuysen-Field coupling coefficient xα, the kinetic tem-
perature TK, and the ionisation fraction xHI, from high to
low redshifts. As discussed in detail in §5.2.3, the power at
these specific modes can be boosted depending upon the
mass of the WDM particle.

Current and next generation interferometric radio tele-
scopes may be used to detect the above boost in power
associated with different WDM models. Forecasts for the
1σ power spectrum thermal noise levels for 2000 hours of
observation time have been computed by Mesinger et al.
(2014) and Sitwell et al. (2014), for the Murchison Wide-
field Array (MWA)3, the Hydrogen Epoch of Reionisation
Array (HERA)4, and for SKA1-Low. On the other hand, there
are major uncertainties in the evolution of star formation
at high redshift (in low-mass halos in particular), with a
potentially complex history due to various astrophysical
feedbacks (including photo-heating, Lyman-Werner radia-
tion, and supernova feedback; the latter includes hydrody-
namic and radiative feedback as well as metal enrichment).
The estimates do indicate that next generation radio ob-

3http://www.mwatelescope.org/
4http://reionization.org
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servations may be able to measure the excess of power for
mX = 2−4keV models over a wide range of redshifts. The
SKA, in particular, will provide a unique prospect of measur-
ing the mean brightness temperature and the 21 cm power
spectrum out to z ' 20, but distinguishing warm dark mat-
ter from cold dark matter will require a clear separation
from possible astrophysical effects.

2.3.4 Measuring the fine structure constant with the SKA
using the 21 cm line

The standard model of particle physics fails to explain the
values of some fundamental “constants”, like the mass ratio
of the electron to the proton, the fine structure constant,
etc. (see, e.g., Uzan, 2011). Dirac (1937) hypothesised that
these constants might change in space as well as in time.
Studies using the optical spectra of distant quasars indi-
cated, controversially, the existence of temporal (e.g., Webb
et al., 2001) and spatial (e.g., Webb et al., 2011) variations in
the fine structure constant, α (but see also Srianand et al.,
2004). However, these results are in tension with terrestrial
experiments using optical atomic clocks, which set a very
stringent limit on the temporal variation of α (Rosenband
et al., 2008). Investigation along these lines has great sig-
nificance to our understanding of gravitation through the
underlying equivalence principle (Shao & Wex, 2016), as
well as fundamental (scalar) fields and cosmology (Damour
et al., 2002). It could also provide an intriguing clue to the
outstanding ‘cosmological constant problem’ (Parkinson
et al., 2004).

In the case that α varies as a function of time (for exam-
ple as a cosmologically evolving scalar field), the evolution
could be non-monotonic in general. Therefore, it would be
greatly beneficial if we could measureα at various redshifts.
The quasar spectra and optical atomic clocks mentioned
previously only probeα at moderate redshifts, 0.5. z . 3.5
and z ' 0, respectively. Hence, reionisation and cosmic
dawn provide an interesting avenue to probe the possibil-
ity of a varying α at large z. Because of its high resolution
in radio spectral lines, SKA1-Low has good prospects to
use them (e.g., lines from HI and the OH radical) to deter-
mine α (Curran, 2007; SKA Science Working Group , 2011).
The covered redshifts for SKA1-Low will be, e.g., z . 13 for
the HI 21 cm absorption and z . 16 for the ground-state
18 cm OH absorption (Curran et al., 2004). Khatri & Wandelt
(2007) proposed another method to measure α, through
the 21 cm absorption of CMB photons. They found that the
21 cm signal is very sensitive to variations in α, such that a
change of 1% in α modifies the mean brightness temper-
ature decrement of the CMB due to 21 cm absorption by
& 5% over the redshift range 30. z . 50. It also affects, as a
characteristic function of the redshift z, the angular power
spectrum of fluctuations in the 21 cm absorption; however,
the measurement of the angular power spectrum at these
redshifts (corresponding to the Dark Ages) would require
lower-frequency observations than those from the SKA. In
summary, constraints on the variation of α at various red-

shifts will significantly advance our basic understanding of
nature, and might provide clues to new physics beyond the
standard model (Uzan, 2011).

2.3.5 Cosmic Shear and the EoR

Weak lensing of the 21 cm signal could provide useful infor-
mation on the matter distribution along the line of sight to
the EoR (Pritchard et al., 2015). Zahn & Zaldarriaga (2006)
and Metcalf & White (2009) showed that a large area survey
at SKA sensitivity might be able to measure the lensing con-
vergence power spectrum via the non-gaussianity of 21 cm
maps. It remains to be seen over what area SKA-Low surveys
might have the sensitivity to measure cosmic shear, but the
proposed deep EoR survey over 100 deg2 should be suffi-
cient. This would measure the distribution of dark matter
in a typical region of the sky, something that is only possi-
ble with galaxy lensing around very atypical, large galaxy
clusters. This might offer an opportunity to correlate visible
objects with mass and test the dark matter paradigm.

The convergence power spectrum can be estimated us-
ing the Fourier-space quadratic estimator technique of Hu
(2001), originally developed for CMB lensing observations
and generalised to three dimensional observables, i.e., the
21 cm intensity field I (θ, z) discussed by Zahn & Zaldarriaga
(2006) and Metcalf & White (2009).

The convergence estimator and the corresponding lens-
ing reconstruction noise are calculated assuming that the
temperature (brightness) distribution is gaussian. This will
not be strictly true during the EoR, as reionisation intro-
duces considerable non-gaussianity, but serves as a reason-
able approximation for these purposes.

The advantage of 21 cm lensing is that one is able to com-
bine information from multiple redshift slices. In Fourier
space, the temperature fluctuations are divided into wave
vectors perpendicular to the line of sight k⊥ = l/r , with r
the angular diameter distance to the source redshift, and a
discretised version of the parallel wave vector k∥ = 2π j /L,
where L is the depth of the observed volume. Consider-
ing modes with different values of j to be independent, an
optimal estimator can be found by combining the individ-
ual estimators for different j modes without mixing them.
The three-dimensional lensing reconstruction noise is then
found to be (Zahn & Zaldarriaga, 2006):

N (L,ν) =
[∑ jmax

j=1
1

L2

∫ d 2`
(2π)2

[l·LC`, j +L·(L−l)C|`−L|, j ]2

2C tot
`, j C tot

|l−L|, j

]−1

. (2)

Here, C tot
`, j = C`, j +C N

`
, where C`, j = [T̄ (z)]2P`, j with T̄ (z)

the mean observed brightness temperature at redshift z
due to the average HI density, and P`, j the underlying dark
matter power spectrum (Zahn & Zaldarriaga, 2006).

Figure 4 gives a sense of the sensitivity to the conver-
gence power spectrum that might be achieved with SKA-
Low after 1000 hours integration on a 20-deg2 field. It
should be possible to map the lensing signal over a range
of angular scales. Increasing the survey area would allow
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Figure 4. The lensing convergence field power spectrum, Cκκ
L , for sources

at z = 8 is shown as a solid black line, and the lensing reconstruction
noise NL are shown as dashed lines. The blue dashed line is for SKA1-
Low with 10 8 MHz frequency bins around z = 8 which span the redshift
range z ' 6.5−11. The red dashed line is for SKA2-Low, and with the same
frequency bins. The vertical line is approximately the lowest L accessible
by a 5-by-5 degree field. Where the noise curves are below Cκκ

L , the typical
fluctuations in the lensing deflection should be recoverable in a map.
Figure taken from Pritchard et al. (2015).

access to large angular scales, where the signal-to-noise
is greatest. This measurement would be significantly im-
proved with the larger sensitivity of SKA2 (Romeo et al.,
2018). The weak lensing power spectrum can be better mea-
sured for redshifts after reionisation using SKA-Mid and the
same 21 cm intensity mapping technique discussed, but
over a much larger area of sky (Pourtsidou & Metcalf, 2014).

2.3.6 Integrated Sachs-Wolfe effect

In §2.2.1, we provided an overview of the 21 cm brightness
temperature fluctuation and its dependence on cosmo-
logical and astrophysical parameters. While we have thus
far focused on high redshifts, 21 cm measurements from
after reionisation can also be used to constrain various
cosmological parameters. In this case, the 21 cm emission
comes from hydrogen atoms within galaxies. The intensity
(or equivalently temperature) fluctuations can be mapped
on large scales, without resolving individual galaxies; this
measurement is known as 21 cm intensity mapping (IM). In
this section, we consider using the post-reionisation power
spectrum of the temperature brightness as measured by the
SKA, and the cross-correlation of SKA IM measurements
with SKA galaxy number counts, in order to detect the inte-
grated Sachs-Wolfe effect. As examples of measurements
that can be obtained with this observable, we look at the
IM constraining power to test statistical anisotropy and
inflationary models.

The possibility to detect the ISW effect by cross-
correlating 21 cm surveys at high redshifts with galaxy num-
ber counts was investigated by Raccanelli et al. (2016a);
the formalism and methodology is described in that pa-
per. Using the 21 cm temperature brightness instead of the
(standard) CMB would provide a further check of the de-

tection of the ISW effect, as it would then be measured by
different instruments at different frequencies, and there-
fore influenced by different systematics.

The ISW effect (Sachs & Wolfe, 1967; Crittenden & Turok,
1996; Nishizawa, 2014) is the gravitational redshift due to
the evolution of the gravitational potential as photons pass
through the matter under- and over-densities in their path
from the last scattering surface to the present observer.
This effect translates into temperature anisotropies that are
proportional to the variation of the gravitational potentials.

The ISW effect has been detected (Nolta et al., 2004;
Pietrobon et al., 2006; Ho et al., 2008; Giannantonio et al.,
2008a; Raccanelli et al., 2008; Giannantonio et al., 2012;
Planck Collaboration et al., 2014a, 2016f) through cross-
correlation of CMB maps at GHz-frequencies with galaxy
surveys. It has also been used to constrain cosmological pa-
rameters (Giannantonio et al., 2008b; Massardi et al., 2010;
Bertacca et al., 2011; Raccanelli et al., 2015).

Similar to the CMB, the 21 cm background at high-
redshifts, described by the brightness temperature fluc-
tuation in §2.2.1, will also experience an ISW effect from
the evolution of gravitational potential wells (see Fig. 5).
The dominant signal present is that of unscattered CMB
photons, and therefore its late-time ISW signature is highly
correlated with the signature at the peak CMB frequencies.
A complementary measurement at 21 cm frequencies is
promising as it represents an independent detection of
the ISW effect, measured with different instruments and
contaminated by different foregrounds. As the 21 cm back-
ground is set to be observed across a vast redshift range
by upcoming experiments, there should be ample signal-
to-noise for this detection. The ISW effect on those CMB
photons that do interact with the neutral hydrogen clouds
at high redshifts provide a source of observable signal. As-
suming the CMB fluctuations can be efficiently subtracted
from the 21 cm maps, this signal can potentially be detected
in the data as well.

To detect the ISW effect, one would cross-correlate the
brightness temperature maps with galaxy catalogues. In
the case when the photons are unscattered, the detection is
more difficult to obtain. The detection depends on a series
of parameters of the 21 cm detecting instrument, such as
the observing time, the frequency bandwidth, the fractional
area coverage and the length of the baseline. The results
weakly depend on the details of the galaxy survey used. Dif-
ferent surveys give slightly different results, but do not lead
to a dramatic change in the overall signal-to-noise ratio.
Targeting specific redshift ranges and objects could help.
The main advantage for detecting the ISW effect is due to
the large area of the sky covered. If we assume the standard
general relativity (GR) and Λ – cold dark matter (ΛCDM)
cosmology, the ISW effect is mostly important during the
late-time accelerated phase, so low-redshift galaxies are
to be targeted. The use of a tomographic analysis in the
galaxy catalogue and the combination of different surveys
(see, e.g., Giannantonio et al., 2008a; Bertacca et al., 2011)
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can improve the detection of the signal in the case of the
LSS-CMB correlation.

2.3.7 Statistical Anisotropy

Most inflationary models predict the primordial cosmo-
logical perturbations to be statistically homogeneous and
isotropic. CMB observations, however, indicate a possible
departure from statistical isotropy in the form of a dipo-
lar power modulation at large angular scales. A 3σ detec-
tion of the dipolar power asymmetry, i.e., a different power
spectrum in two opposite poles of the sky, was reported
based on analysis of the off-diagonal components of an-
gular correlations of CMB anisotropies with WMAP and
Planck data on large scales (Hansen et al., 2004; Gordon
et al., 2005; Eriksen et al., 2007; Gordon, 2007; Planck Col-
laboration et al., 2014b; Akrami et al., 2014; Planck Collab-
oration et al., 2016e,c; Aiola et al., 2015). The distribution
of quasars at later times was, however, studied by Hirata
(2009), and showed an agreement with statistical isotropy
on much smaller angular scales.

A significant detection of deviation from statistical
isotropy or homogeneity would be inconsistent with some
of the simplest models of inflation, making it necessary to
postulate new physics, such as non-scalar degrees of free-
dom. It would, moreover, open a window into the physics of
the early Universe, thus shedding light upon the primordial
degrees of freedom responsible for inflation.

The off-diagonal components of the angular power spec-
trum of the 21 cm intensity fluctuations can be used to
test this power asymmetry, as discussed in detail by Shi-
raishi et al. (2016). One can also constrain the rotational
invariance of the universe using the power spectrum of

CMB

HI

scattered photons

unscattered photons

Figure 5. Illustration: Radiative transfer of CMB photons through neutral
hydrogen gas clouds induces fluctuations at 21 cm frequencies (due to
absorption or emission, depending on the relative temperatures of the in-
tergalactic medium and the CMB). The majority of the signal is comprised
of unscattered CMB photons at the Rayleigh-Jeans tail of its blackbody
spectrum. These photons later undergo line-of-sight blue- or red-shifting
as they travel through the evolving gravitational potential wells. Figure
taken from Raccanelli et al. (2016a).

21 cm fluctuations at the end of the Dark Ages. The po-
tential ability to access small angular scales gives one the
opportunity to distinguish the dipolar asymmetry gener-
ated by a variable spectral index, below the intermediate
scales at which this vanishes. One can compute the angu-
lar power spectrum of 21 cm fluctuations sourced by the
dipolar and quadrupolar asymmetries, including several
non-trivial scale dependencies motivated by theories and
observations. By the simple application of an estimator for
CMB rotational asymmetry (Pullen & Kamionkowski, 2007;
Hanson & Lewis, 2009), we can forecast how well 21 cm sur-
veys can constrain departures from rotational invariance.
Results for dipolar and quadrupolar asymmetries, for dif-
ferent models and surveys, are discussed by Shiraishi et al.
(2016), who show that the planned SKA may not reach the
same precision as future CMB experiments in this regard;
however, an enhanced SKA instrument could provide the
best measurements of statistical anisotropy, for both the
dipolar and quadrupolar asymmetry.

The SKA could, though, provide some constraining
power for asymmetry parameters since 21 cm measure-
ments have different systematics and come from an entirely
different observable compared to the CMB. Moreover, 21
cm surveys provide an independent probe of broken rota-
tional invariance, and as such, would help in disentangling
potential biases present in previous CMB experiments.

2.3.8 Tests of inflation

Measurements of IM from SKA can be used to constrain in-
flationary models via limits on the matter power spectrum,
in particular the spectral index and its ‘running’.

Single-field slow-roll inflation models predict a nearly
scale-invariant power spectrum of perturbations, as ob-
served at the scales accessible to current cosmological ex-
periments. This spectrum is slightly red, showing a non-
zero tilt. A direct consequence of this tilt are nonvanish-
ing runnings of the spectral indices, αs = dns /dlogk, and
βs = dαs /dlogk, which in the minimal inflationary sce-
nario should reach absolute values of 10−3 and 10−5, re-
spectively. This is of particular importance for primordial-
black-hole (PBH) production in the early universe, where
a significant increase in power is required at the scale cor-
responding to the PBH mass, which is of order k ∼ 105

Mpc−1 for solar-mass PBHs (Green & Liddle, 1999; Carr,
2005). It has been argued that a value of the second running
βs = 0.03, within 1σ of the Planck results, can generate fluc-
tuations leading to the formation of 30 M¯ primordial black
holes if extrapolated to the smallest scales (Carr et al., 2016),
which could make up the dark matter (Bird et al., 2016).

The measurements of 21 cm intensity mapping can
be used to measure these runnings. A fully-covered 1-
kilometre-baseline interferometer, observing the epoch of
reionisation, will be able to measure the running αs with
10−3 precision, enough to test the inflationary prediction.
However, to reach the sensitivity required for a measure-
ment of βs ∼ 10−5, a dark-ages interferometer, with a base-
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line of ∼ 300 km, will be required. Detailed analyses of
21 cm intensity mapping experiments forecasts for this
(including comparisons with CMB and galaxy surveys) mea-
surements have been made recently (Muñoz et al., 2017;
Pourtsidou et al., 2017; Sekiguchi et al., 2018).

2.3.9 Free-free emission from cosmological reionisation

As we know, the CMB spectrum emerges from the ther-
malisation epoch, at z ∼ 106 −107, with a blackbody (BB)
shape thanks to the high efficiency of interaction processes
in the cosmic plasma, which are able to re-establish the
matter-radiation thermal equilibrium. After this phase and
the recombination epoch, the expansion of the Universe
and the decrease of electron and photon number densities
and temperatures reduces the interaction of CMB photons
with the plasma, and the thermodynamical equilibrium is
no longer ensured.

The measurements in the wavelength range between
1 cm and 0.5 mm from the FIRAS instrument on board
the NASA COBE5 satellite are the main source of current
limits on CMB spectral distortions and constraints on en-
ergy dissipation processes in the plasma (Fixsen et al., 1996;
Salvaterra & Burigana, 2002). Recent observations at long
wavelengths have been carried out with the ARCADE-2 bal-
loon (Singal et al., 2011; Seiffert et al., 2011) and the TRIS
experiment (Gervasi et al., 2008). High accuracy CMB spec-
trum observations at long wavelengths (0.5 <∼ λ ∼ 15 cm)

have been proposed for the DIMES (Kogut, 1996) space mis-
sion, with the aim of probing dissipation processes at early
times (z >∼ 105), resulting in Bose-Einstein-like distortions

(Sunyaev & Zeldovich, 1970), and late epochs mechanisms
(z <∼ 104) before or after the recombination era, generat-

ing Comptonisation and free-free (FF) distortions (Bartlett
& Stebbins, 1991), respectively, through the decrement at
intermediate wavelengths and a possible excess at long
wavelengths. The distorted spectrum mainly depends on
the fractional amount of energy exchanged during the inter-
action, the epoch and type of the heating or cooling process,
and the baryon density.

Cosmological reionisation, one of the three main mecha-
nisms predicted to generate departures from a perfect BB
(Sunyaev & Khatri, 2013), produces electron heating which
causes coupled Comptonisation and free-free distortions.
The amplitude of Comptonisation distortion is propor-
tional to the fractional amount of energy exchanged during
the interaction. The Comptonisation parameter that char-
acterises this energy exchange, denoted by u, is expected
to have a typical minimum value of 10−7 from reionisa-
tion (and maximum values up to ∼ few×10−6, achieved by
including various types of sources). For example, for two as-
trophysical reionisation scenarios based on different radia-
tive feedback assumptions (the filtering and the suppression
models) Burigana et al. (2008) found u ' (0.965−1.69)×10−7

(see Fig. 6).

5http://lambda.gsfc.nasa.gov/product/cobe/

Figure 6. Free-free distortion in the SKA2 frequency range by two astro-
physical reionisation histories (a late phenomenological model is also
displayed for comparison). Inset: the models’ absolute differences; verti-
cal lines: ranges of SKA1 configurations. Taken from Burigana et al. (2015).
These curves define the minimal FF signal theoretically expected. For ex-
treme models, like those considered by Oh (1999), the FF excess could be
even ∼ 70 times larger.

The SKA’s high sensitivity and resolution can help set
constraints on CMB spectral distortions and dissipation
processes beyond current limits. SKA can also be used to
model the contribution from Galactic emission and extra-
galactic foregrounds, a fundamental step to accurately ob-
serve these kinds of distortions. The extragalactic source
contribution is small compared to Galactic radio emission,
currently the major astrophysical problem in CMB spec-
trum experiments, but, in contrast to the Galactic emission,
it cannot be subtracted from the CMB by exploiting its angu-
lar correlation properties because of the limited resolution
of experiments devoted to CMB monopole temperature,
particularly at low frequencies. A direct radio background
estimate from precise number counts will certainly improve
the robustness of these kinds of analyses.

Since the SKA will trace the neutral hydrogen distribu-
tion and the neutral-to-ionised transition state at the reion-
isation epoch through the 21 cm line (see, e.g., Schneider
et al., 2008), it could trace the development of ionised mate-
rial directly by looking for FF emission from ionised halos.
The expected signal can be derived by reionisation mod-
els using both semi-analytical methods (Naselsky & Chi-
ang, 2004) and numerical simulations (Ponente et al., 2011).
Dedicated, high resolution observations may allow one to
distinguish the free-free spectral distortions by ionised ha-
los from those by diffuse ionised IGM. SKA2-Low should be
able to detect up to ∼ 104 individual FF emission sources
with z > 5 in 1 deg2, discerning ionised halos or diffuse
ionised IGM FF distortions (more details are provided by
Burigana et al., 2015).

In conclusion, SKA precise number counts, particularly
at frequencies from ∼ 1 to a few GHz, will be crucial for
a precise analysis of dedicated CMB spectrum measure-
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ments. The precise mapping of large and dedicated sky
areas with the excellent imaging capabilities of SKA repre-
sents an interesting opportunity to observe diffuse free-free
emission anisotropies from large to small angular scales
and individual halos. Moreover, implementing SKA with
very compact configurations and ultra-accurate calibrators
could be, in principle, a way to detect the absolute level of
diffuse free-free emission.

2.4 Detection Prospects and Challenges with the SKA

Having provided an overview of various fundamental
physics constraints which may be achievable with the SKA
observations of Cosmic Dawn and Reionisation, we present
here a brief summary of the detection prospects, syner-
gies with other probes at these epochs, and the foreground
mitigation challenges, which are relevant to recover funda-
mental physics constraints from these epochs.

2.4.1 Challenges From EoR Astrophysics

The astrophysics of the 21 cm line necessarily presents a
‘systematic’ in the study of fundamental physics and cos-
mology. This is especially true at the epoch of reionisation
and cosmic dawn, in which the various astrophysical pro-
cesses described in §2.2.1 lead to effects which need to be
isolated effectively for the measurement of cosmological
parameters. Modelling the astrophysics accurately is cru-
cial to be able to distinguish the fundamental physics, and
the power spectrum may need to be convolved with astro-
physical models (e.g., by using codes similar to 21CMFAST
Mesinger et al., 2011, described in §2.2.1), in order to place
competitive constraints on cosmology.

Bayesian inference may be used to interpret the bright-
ness temperature power spectrum in the context of a model,
and to place constraints on cosmological parameters. In
order to do this, analytic or semi-analytic techniques (e.g.,
Furlanetto et al., 2004a; Pritchard & Loeb, 2008) are essen-
tial, since fast and accurate model parameter evaluation
is required. It can be shown that this ‘astrophysical sepa-
ration’ can be effectively achieved in the post-reionisation
universe using a halo model formalism to describe HI and
obtain the uncertainties in the parameters from all the as-
trophysical constraints (Padmanabhan & Refregier, 2017;
Padmanabhan et al., 2017). The combination of astrophys-
ical constraints at these epochs can be shown to lead to
60%–100% uncertainty levels in the measurement of the
HI power spectrum (Padmanabhan et al., 2015), which pro-
vides a measure of the ‘astrophysical degradation’ relevant
for forecasting cosmological and fundamental physics pa-
rameters. Similar modelling techniques applied to the high-
redshift observations, though expected to be significantly
harder, may be used to isolate the astrophysical effects for
accurate constraints on the fundamental physics and cos-
mological parameters as described in the previous sections.

2.4.2 Synergies between 21 cm and galaxy surveys

Cross-correlating different astrophysical probes can elimi-
nate the systematic effects in the measurements, and thus
enable tighter constraints on the fundamental physics
from the epoch of reionisation. Several large-area sur-
veys of galaxies in the epoch of reionisation that over-
lap SKA1 and SKA2 are planned, using, e.g., the Hyper-
SuprimeCam on Subaru (Lyman-α emitters, LAEs), Euclid
(Lyman-break galaxies, LBGs), the Large Synoptic Survey
Telescope (LSST, LBGs), and the Wide-Field Infrared Survey
Telescope (WFIRST, LAEs and LBGs).

Galaxy samples from such surveys will provide impor-
tant calibrations of galaxy-population properties during the
EoR, such as their clustering strength and star-formation-
rate density. During the later stages of reionisation, the
brightness temperature is dominated by fluctuations in the
neutral hydrogen fraction, in turn dependent on the source
properties and their clustering (Mellema et al., 2013). Com-
bining the source population data with the measured SKA
global brightness temperature signal at these epochs, con-
straints can be placed on the fraction of reionisation that is
provided by galaxies (Cohen et al., 2017). Cross-correlation
of the SKA brightness temperatures with the LAE/LBG sam-
ples from galaxy surveys provide additional constraints on
the reionisation history, e.g., to what extent different galaxy
populations contribute to reionisation, the evolution of the
ionisation fraction, and the topology of reionisation (Hut-
ter et al., 2017). The brightness temperature statistics could
also be directly correlated with galaxy properties, e.g., from
the Euclid or LSST wide+deep surveys (Bacon et al., 2015).

Using targeted observations with near/mid-infrared in-
struments such as the James Webb Space Telescope and the
European Extremely Large Telescope, currently uncertain
source properties such as the net ionising flux and escape
fraction can be constrained spectroscopically (e.g., Jensen
et al., 2016). The luminosity function of galaxies within
ionised bubbles identified in the 21 cm brightness tem-
perature maps can also be constrained using these cross-
correlations.

In the post-reionisation universe, cross-correlations can
be used to understand the general life cycle of galaxies,
which is determined by their star-formation activity in rela-
tion to the available gas reservoirs. The star-formation rate
has been observed to peak at redshift 2 (Madau & Dickin-
son, 2014) whereas observations of the HI energy density,
ΩHI, with redshift suggest very subtle to non-existing evo-
lution of the gas densities (Prochaska & Wolfe, 2009). This
could imply that the molecular phase of hydrogen is the
dominant ingredient in galaxy evolution processes (e.g.,
Lagos et al., 2015; Saintonge et al., 2016), though it is also
tightly connected to the atomic as well as the ionised frac-
tions of the hydrogen.

Mapping the intensity fluctuations of the 21 cm
brightness temperature has been attempted in the post-
reionisation universe with the Green Bank Telescope at
z ≈ 0.8 (Switzer et al., 2013). Cross-correlating the data with
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complementary optical galaxy surveys (Masui et al., 2013b)
increases the detectability of the signal as well as giving a
constraint on the average HI contents of the optical objects
(Wolz et al., 2017b).

The SKA provides ample opportunities to extend existing
observations to bigger volumes and higher redshifts (San-
tos et al., 2015). In particular, SKA-Low can supply novel
information via its proposed intensity mapping experiment
in the higher frequencies of the aperture array at 3 < z < 6.
These observations will be crucial to understand the transi-
tioning process of the cold gas after the epoch of reionisa-
tion as well as the distribution of HI gas in relation to the
underlying halo mass and host galaxy properties. Addition-
ally, the cross-correlations of the high-redshift HI datasets
with either galaxy surveys or intensity maps of other spec-
tral lines will reveal universal scaling relations of galaxy
formation and evolution processes.

2.4.3 Foreground Modelling

One of the most significant challenges for an EoR detec-
tion is that of the overwhelming foregrounds. The problem
is typically broken into three independent components –
Galactic synchrotron (GS), which contributes around 70%
of the total foreground emission (Shaver et al., 1999); ex-
tragalactic (EG) sources (predominantly compact) which
contribute about 27% (Mellema et al., 2013); and finally
Galactic free-free emission which constitutes the remaining
∼ 1%. Altogether, these foregrounds are expected to domi-
nate the EoR signal brightness by up to 5 orders of magni-
tude, though this figure reduces to 2–3 when considering
the interferometric observable: angular brightness fluctu-
ations (Bernardi et al., 2009). Furthermore, each source is
expected to predominantly occupy a different region of
angular-spectral space (Chapman et al., 2016).

All foreground mitigation techniques rely on first sub-
tracting measured components, such as bright compact EG
sources in the field-of-view (Pindor et al., 2011), and a dif-
fuse sky model. While significant advances have been made
in deep targeted observations of the foregrounds by various
instruments (Bernardi et al., 2009, 2010; Ghosh et al., 2011;
Yatawatta et al., 2013; Jelić et al., 2014; Asad et al., 2015;
Remazeilles et al., 2015; Offringa et al., 2016; Procopio et al.,
2017; Line et al., 2017), due to their overwhelming domi-
nance, even the residuals (from faint unmodelled sources
and mis-subtraction) necessitate a robust mitigation ap-
proach.

The key to signal extraction lies in its statistical differenti-
ation from the foregrounds, and it is well known that such a
separation occurs naturally in the frequency (line-of-sight)
dimension. While the signal is expected to exhibit structure
on scales of ∼ MHz, the foregrounds are predominantly
broadband emission, creating a smooth spectral signature.
Leveraging this insight, several techniques for foreground
residual mitigation have arisen in the past decade. Broadly,
they may be split into two categories: (i) foreground sub-
traction, in which a smooth spectral model is fit and sub-

tracted, and (ii) foreground avoidance, in which Fourier
modes which are known to be foreground-dominated are
eschewed.

2.4.3.1 Foreground Subtraction Foreground subtraction
utilises the smoothness of the spectral dependence of the
foregrounds in order to fit a smooth model to each angular
pixel along the frequency axis. The best-fit model is sub-
tracted, in the hope that the residuals are primarily the EoR
signal.

Specific methods in this technique have been further
categorised by whether they are ‘blind’: that is, whether
they specify a parametric form to be fit, or whether the
form is blindly identified by a statistical method.

Parametric Methods. The earliest example of foreground
modelling was the fitting of smooth polynomials of varying
order (e.g., McQuinn et al., 2006; Bowman et al., 2006). A
more statistical approach is that of ‘correlated component
analysis’ (CCA) (Ricciardi et al., 2010), which invokes an
empirical parametric form for each of the foreground
components along with a linear mixing algorithm. For an
application of CCA to simulated data, see Bonaldi & Brown
(2015). These methods have the inherent advantage of
simplicity and the ability to impose any physical knowledge
of the foreground structure directly. Conversely, they suffer
from the potential to over-fit and destroy the signal, as well
as from ambiguity in the specification of a parametrisation.

Non-Parametric Methods. One may alternatively propose
a set of arbitrary bases to assume the role of a mixing matrix
in the process of blind source separation. This alleviates
the potential for over-fitting, and removes the ambiguity of
form specification, to the detriment of simplicity and ability
to directly input prior knowledge. The most well-known
implementations of this approach are fast independent
component analysis (FastICA; Chapman et al., 2012) and
generalised morphological component analysis (GMCA;
Chapman et al., 2013). The latter appears to be the most
robust approach in the foreground subtraction category
(Chapman et al., 2015), and has been used as part of the
LOFAR EoR pipeline (Patil et al., 2017).

2.4.3.2 Foreground Avoidance An inherent danger with
foreground subtraction methods is the fact that even post-
subtraction residuals may dominate over the signal, due to
overfitting or mis-subtraction. A more conservative route
lies in first representing the data as a cylindrical power
spectrum, i.e., separating line-of-sight modes, k||, from per-
pendicular modes, k⊥. In this space, the foreground contri-
butions are seen to occupy a low-k|| region known as the
‘wedge’. This region has a reasonably sharp demarcation,
and its complement is designated the EoR ‘window’ (Liu
et al., 2014b,a). In principle, a final averaging purely over
window modes yields a pristine power spectrum of the sig-
nal, and this has been employed by the PAPER project (Ali
et al., 2015) and can inform instrument design (e.g., DeBoer
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et al., 2017).

This approach has the major drawback that a wide range
of high-signal modes are unused (Chapman et al., 2016;
Liu et al., 2014a). A more optimal general approach was
developed by Liu et al. (2014b,a), based on the minimum
variance estimator formalism of Liu & Tegmark (2011). This
method hinges upon defining the data covariance of the
‘junk’ (i.e., the instrumentally distorted foregrounds and
other systematics), either empirically (Dillon et al., 2015)
or parametrically (Trott et al., 2016), and consistently sup-
presses modes which are foreground-dominated, optimally
using all information.

A difficulty with parametric covariance is the suitable
specification of the complex foreground models in the pres-
ence of instrumental effects. Accordingly, the Cosmological
HI Power Spectrum Estimator (CHIPS; Trott et al., 2016), for
example, employs simplistic prescriptions, with EG sources
obeying empirical power-law source counts and uniform
spatial distributions and GS emission obeying an isotropic
power-law angular spectrum. Recent studies have begun to
relax these simplifications, for example, Murray et al. (2017)
define the EG point-source covariance in the presence of
angular clustering.

2.4.3.3 Summary and Outlook A number of systematic
comparisons of foreground mitigation methods have been
performed. Chapman et al. (2015) compared foreground
subtraction methods and found that GMCA proves the most
robust to realistic foreground spectra. Alonso et al. (2015a)
unified a number of subtraction methods under a common
mathematical framework and showed that for a large suite
of fast simulations the methods perform comparably. Chap-
man et al. (2016) compared subtraction with avoidance,
finding that they are complementary: avoidance recovers
small scales well, while subtraction recovers large scales
well. More specifically, Jacobs et al. (2016) compared the
entire data pipelines used for the MWA analysis, including
a basic avoidance technique (εppsilon), empirical covari-
ance (Dillon et al., 2015) and parametric covariance (Trott
et al., 2016). For the MWA data, each was shown to perform
comparably.

Looking to the future, several challenges have been iden-
tified. One such challenge is the potential for polarisation
leakage, which may induce a higher amplitude of small-
scale structure on the foregrounds, obscuring the signal
(Moore et al., 2015; Asad et al., 2015, 2016; Asad et al., 2018).
Another challenge is to improve the fidelity of EG source co-
variances. In particular, to date a distribution of source sizes
has not been considered, and neither is the faint-source
population constrained to any significant degree at EoR-
pertinent frequencies. More theoretically, attempts to con-
sistently unify the avoidance and subtraction approaches
must be furthered in order to extract maximal information
from the data (see, e.g., Ghosh et al., 2015; Sims et al., 2016;
Lentati et al., 2017, for examples of Bayesian frameworks).
Finally, an assortment of instrumental effects such as base-

line mode-mixing (Hazelton et al., 2013) must be overcome.

Despite these challenges, the increasing depth of low-
frequency targeted foreground observations along with the-
oretical advancement of foreground techniques ensures
that the EoR cannot hide forever.

2.5 Summary

We have identified some of the key areas where SKA obser-
vations of the 21 cm signal are likely to impact fundamental
physics as:

1. Cosmological parameters, especially neutrino mass
and constraints on warm dark matter models (and
other possible properties of dark matter).

2. Variations in fundamental constants (e.g., the fine
structure constant).

3. Detecting the integrated Sachs-Wolfe effect in cross-
correlation with galaxy catalogues.

4. Constraints on inflationary models and measurement
of the runnings of the spectral index.

5. Tests of statistical anisotropy.
6. CMB spectral distortions and dissipation processes.

We have indicated the challenges in the detection of the
EoR signal with upcoming experiments, including the sys-
tematic imposed by the uncertainties in the astrophysics
during these epochs, and ways to effectively isolate this
to recover the underlying fundamental physics. We also
briefly described synergies with other surveys during the
same epochs, which allow cross-correlations that eliminate
systematic effects to a large extent. Finally, we commented
on the challenges from foregrounds at these frequencies,
and the techniques for the foreground mitigation by both
subtraction and avoidance methods.

Overall, the combination of (i) accurate astrophysical
modelling of reionisation and the first stars, (ii) advances in
detection techniques and foreground mitigation, and (iii)
synergies with various other cosmological probes promises
an optimistic outlook for observing the epochs of cosmic
dawn and reionisation with the SKA, and for deriving ex-
citing fundamental physics constraints from these as yet
unobserved phases of the universe.

3 GRAVITY AND GRAVITATIONAL RADIATION

Gravity plays a crucial role in astrophysics on all scales.
While Einstein’s General Theory of Relativity is our best
theory, meeting all observational tests to date, there remain
a number of open problems in astrophysics and cosmology
that have, at their heart, the question of whether GR is the
correct theory of gravity. In this section, we consider the
ways in which the SKA will bring new opportunities for tests
of theories of gravity at various length scales.
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3.1 Introduction

3.1.1 General Relativity and Modified Gravity

To date, GR has passed every test with flying colours. The
most stringent of these have been carried out in the solar
system and with binary pulsars (Will, 2014; Stairs, 2003;
Wex, 2014; Shao & Wex, 2016; Kramer, 2016), where a wide
range of deviations from GR have been essentially ruled out
with extremely high precision. The recent direct measure-
ment of gravitational waves by Advanced LIGO/Virgo has
produced a new opportunity to validate GR in a very differ-
ent physical situation, i.e., a highly dynamical, strong-field
spacetime (Abbott et al., 2016c, 2017), and a growing variety
of cosmological tests of gravity are beginning to be carried
out with ever-increasing precision (Joyce et al., 2015; Bull
et al., 2016). These are just a few of the regimes in which
new gravitational phenomena could be hiding, however
(Baker et al., 2015), and most have not yet been tested with
the high precision that is characteristic of solar system tests.
Furthermore, intriguing clues of possible deviations from
GR have been emerging (e.g„ in recent studies of dark mat-
ter and dark energy) but are far from decisive, and remain
open to interpretation. Finally, GR may turn out to be the
low-energy limit of a more fundamental quantum gravity
theory, with hints of the true high-energy theory only aris-
ing in relatively extreme physical situations that we have
yet to probe. As such, testing GR across a broader range
of physical regimes, with increasing precision, stands out
as one of the most important tasks in contemporary fun-
damental physics. The SKA will be a remarkably versatile
instrument for such tests, as we will discuss throughout this
section.

An important tool in extending tests of GR into new
regimes has been the development of a variety of alter-
native gravity theories (Clifton et al., 2012b). These give
some ideas of what possible deviations from GR could
look like, and help to structure and combine observational
tests in a coherent way. While there are many so-called
modified gravity theories in existence, it is possible to cat-
egorise them in a relatively simple way, according to how
they break Lovelock’s theorem (Lovelock, 1971). This is a
uniqueness theorem for GR; according to Lovelock’s the-
orem, GR is the only theory that is derived from a local,
four-dimensional action that is at most second order in
derivatives only of the spacetime metric. Any deviation
from these conditions breaks the theorem, giving rise to
an alternative non-GR theory that may or may not have a
coherent structure. For example, one can add additional
gravitational interactions that depend on new scalar or ten-
sor degrees of freedom (e.g. Horndeski or bigravity models
respectively), add extra dimensions (e.g., Randall-Sundrum
models), introduce non-local operators (e.g. non-local grav-
ity), higher-order derivative operators (e.g., f (R) theory), or
even depart from an action-based formulation altogether
(e.g., emergent spacetimes). Each of these theories tends to
have a complex structure of its own, which is often neces-

sary to avoid pathologies such as ghost degrees of freedom,
derivative instabilities and so forth. Viable theories are also
saddled with the need to reduce to a theory very close to
GR in the solar system, due to the extremely restrictive con-
straints on possible deviations in that regime. The result
is that most viable modified gravity theories predict inter-
esting new phenomena — for example screening mecha-
nisms that shield non-GR interactions on small scales as in
Chameleon gravity (Khoury & Weltman, 2004a,b), — which
in turn inform the development of new observational tests.
Unsuccessful searches for these new phenomena can con-
strain and even rule out specific subsets of these theories,
and test GR in the process.

3.1.1.1 Testing relativistic gravity with radio pulsar timing
Pulsar timing uses large radio telescopes to record the times
of arrival (TOAs) of pulsed signals, produced by the rota-
tion of the pulsar. Millisecond pulsars (MSPs) are especially
stable celestial clocks that allow timing precision at the
nanosecond level (Taylor, 1992; Stairs, 2003). Such precision
enables unprecedented studies of neutron star astronomy
and fundamental physics, notably precision tests of gravity
theories (Wex, 2014; Manchester, 2015; Kramer, 2016).

The TOAs from pulsar timing depend on the rotational
and astrometric parameters of the pulsar, dispersion in
the interstellar medium that the signals have traversed,
and the motion of the radio telescope. If the pulsar is in
a binary, the TOAs also depend on the orbital dynamics of
the binary, which are determined by the underlying grav-
ity theory (Damour & Taylor, 1992; Edwards et al., 2006).
Deviations from GR — if any — will manifest in TOAs, and
different kinds of deviations predict different residuals from
the GR template.

The double pulsar J0737–3039 (Kramer et al., 2006) rep-
resents the state-of-the-art in the field. Five independent
tests have already been made possible with this system. GR
passes all of them. When the SKA is operating, the double
pulsar will provide completely new tests, for example mea-
suring the Lense-Thirring effect (Kehl et al., 2017), which
probe a different aspect of gravitation related to the spin.

What makes the field of testing gravity with pulsar timing
interesting is that, although the double pulsar represents
the state-of-the-art, other pulsars can outperform it in prob-
ing different aspects of gravity (Wex, 2014). For example,
the recently discovered triple pulsar system (with one neu-
tron star and two white dwarfs) is the best system to con-
strain the universality of free fall (UFF) for self-gravitating
bodies (Ransom et al., 2014; Shao, 2016; Archibald et al.,
2018). UFF is one of the most important ingredients of the
strong equivalence principle (SEP; Will, 2014). When UFF
is violated, objects with different self-gravitating energies
could follow different geodesics (Damour & Schaefer, 1991).
When the SEP is violated, for a binary composed of two ob-
jects with different self-gravitating energies, it is very likely
that a new channel to radiate away orbital energy will open.
If dipole radiation exists (in addition to the quadrupole
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radiation in GR), a binary will shrink faster, resulting in a
new contribution to the time derivative of the orbital pe-
riod (Damour & Taylor, 1992). For example, this happens in
a class of scalar-tensor theories (Damour & Esposito-Farese,
1996), and in these theories, the dipole radiation might also
be enhanced due to the strong field of neutron star interi-
ors. Binary pulsars have provided the best constraints for
this phenomenon (Freire et al., 2012; Shao et al., 2017).

Pulsars can be used to test the validity of theories (de Ce-
sare & Sakellariadou, 2017; de Cesare et al., 2016) that lead
to time variation of Newton’s gravitational constant. A time
varying Newton’s constant will contribute to the decay of
the binary orbit as (Damour et al., 1988; Nordtvedt, 1990)

Ṗ

P
=−2

Ġ

G

[
1−

(
1+ mc

2M

)
s
]

, (3)

where P , mc , M stand for the orbital period, the companion
mass, and the sum of the masses of the pulsar and its com-
panion, respectively, and s denotes a sensitivity parameter.
Currently the strongest constraint on the temporal varia-
tion of the gravitational constant results from lunar laser
ranging (LLR) analysis, which sets (Williams et al., 2004)

Ġ

G
= (4±9)×10−13 yr−1 . (4)

Pulsar timing of PSRs J1012+5307 (Lazaridis et al., 2009),
J1738+0333 (Freire et al., 2012) and J1713+0747 (Zhu et al.,
2018) has achieved limits comparable to Equation (4).

Binary pulsars can also be used to test cosmological
models that lead to local Lorentz invariance (LLI) viola-
tion. In particular, some modified gravity models, such as
the TeVeS (Bekenstein, 2004) or the D-material universe (a
cosmological model motivated from string theory that in-
cludes a vector field; Elghozi et al., 2016) imply violation of
LLI. Possible violation of LLI leads to modifications of the
orbital dynamics of binary pulsars (Damour & Esposito-
Farese, 1992; Shao & Wex, 2012; Shao, 2014), as well as
to characteristic changes in the spin evolution of solitary
pulsars (Nordtvedt, 1987; Shao et al., 2013); for the latter,
LLI also leads to spin precession with respect to a fixed di-
rection (Shao & Wex, 2012). Hence, LLI violation implies
changes in the time-derivative of the orbital eccentricity, of
the projected semi-major axis, and of the longitude of the
periastron, while it changes the time-behaviour of the pulse
profile. The strongest current constraints on LLI violation
are set from pulsar experiments, using the timing of binary
pulsars.

There is also the potential for the SKA to search for
the predicted effects of quantum gravity. Specifically, in
a pulsar-black hole (BH) binary system, the disruption
effect due to quantum correction can lead to a different
gravitational time delay and interferometry of BH lensing.
Recently, the discovery of PSR J1745–2900 (Eatough et al.,
2013; Rea et al., 2013; Shannon & Johnston, 2013) orbit-
ing the Galactic centre black hole opens up the possibility

for precision tests of gravity (Pen & Broderick, 2014). The
radio pulses emitted from the pulsar can be lensed by an
intervening black hole that is in between the pulsar and
observer. Therefore, the gravitational time-delay effect and
interferometry between the two light rays can be used to
investigate the possible quantum deviations from standard
Einstein gravity (Pen & Broderick, 2014). According to Pen
& Broderick (2014), the fractal structure of the BH surface
due to quantum corrections can destroy any interference
between the two light rays from the pulsars. In the future,
the SKA will find a large number of pulsar-black hole binary
systems, with which we will be able to perform stringent
tests of gravity.

Finally, binary pulsars haven been used to constrain a
free parameter of a higher-derivative cosmological model,
obtained as the gravitational sector of a microscopic model
that offers a purely geometric interpretation for the Stan-
dard Model (Chamseddine et al., 2007). By studying the
propagation of gravitons (Nelson et al., 2010b), constraints
were placed on the parameter that relates coupling con-
stants at unification, using either the quadrupole formula
for gravitational waves emitted from binary pulsars (Nelson
et al., 2010a) or geodesic precession and frame-dragging
effects (Lambiase et al., 2013). These constraints will be
improved once more rapidly rotating pulsars close to the
Earth are observed. Clearly such an approach can be used
for several other extended gravity models (Capozziello et al.,
2015; Lambiase et al., 2015).

Since the SKA will provide better timing precision and
discover more pulsars, all the above tests will be improved
significantly (Shao et al., 2015).

3.1.1.2 Black-hole physics and Sgr A* Testing black hole
physics is an intriguing and challenging task for modern
astronomy. Relativity predicts that any astrophysical black
hole is described by the Kerr metric and depends solely
on its mass and angular momentum (or equivalently spin).
Sagittarius A* (Sgr A*), which is the closest example of a
supermassive black hole (SMBH), is an ideal laboratory
with which the SKA can test gravity theories and the no-
hair theorem (Kramer et al., 2004).

Pulsars are extremely precise natural clocks due to their
tremendous rotational stability. Thus, a relativistic binary
of a pulsar and Sgr A* binary would be a robust tool for
testing relativity in stronger gravitational fields than is avail-
able from pulsar binaries with stellar mass companions.
Such a test will be important since strong field predictions
can be fundamentally different between GR and a number
of alternative gravity theories (see Johannsen, 2016, for a
review).

The Galactic centre (GC) hosts a large number of young
and massive stars within the inner parsec, which can be the
progenitors of pulsars (e.g., Paumard et al., 2006; Lu et al.,
2013). The population of normal pulsars can be hundreds
within distance of < 4000 AU from Sgr A* (e.g., Zhang et al.,
2014; Pfahl & Loeb, 2004; Chennamangalam & Lorimer,
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Figure 7. The left panel shows the apparent trajectories on the sky: blue
curve for the pulsar and cyan line for the SMBH. The assumed timing and
astrometric measurement errors are σT = 5ms and σp = 10µas, respec-
tively. Seven different observational durations are tested, and the corre-
sponding positions of the pulsar at the end of observation are marked by
numbers. The accuracy on the recovered spin magnitude are shown in the
right panel: green lines show results when only TOAs are used, while blue
lines show results when both the timing and the proper motion are used.
The red filled and empty white circles mark the position where the pulsar
passes pericentre and apocentre respectively (Zhang & Saha, 2017).

2014). The innermost ones could be in orbits as tight as
about ∼ 100–500 AU from the SMBH (Zhang et al., 2014).
The existence of a population of normal pulsars in the
GC has also been strongly suggested by the magnetar re-
cently revealed in this region, since magnetars are rare pul-
sars (e.g., Rea et al., 2013; Eatough et al., 2013).

To reveal pulsars in the GC region, a high frequency (usu-
ally > 9 GHz) radio survey is needed as there is severe radio
scattering by the interstellar medium at low frequencies.
The radio surveys performed so far have not found any
normal pulsars within the inner parsec of GC (e.g., Deneva
et al., 2009; Macquart et al., 2010; Bates et al., 2011). SKA1-
Mid will probably be able to reveal hidden pulsars at as low
as 2.4 GHz with spin periods ∼ 0.5s in this region (Eatough
et al., 2015). The expected timing accuracy of pulsars for
SKA of ∼ 1 hour integration can be down toσT ' 100µs (Liu
et al., 2012) if the frequency can be up to & 15GHz, and
σT ' 0.1–10ms if the frequency is between & 5GHz and
. 15GHz. Besides the timing measurements, proper mo-
tions are feasible for these pulsars. Finally, the SKA is ex-
pected to operate with baselines up to 3000km, and thus its
image resolution could be up to 2mas at 10GHz (Godfrey
et al., 2012). The astrometric accuracy could be even higher,
of order ∼ 10µas (Fomalont & Reid, 2004).

The relativistic effects cause orbital precession of the
pulsars orbiting Sgr A*, in both the argument of pericen-
tre and the orbital plane. A number of previous studies
have focussed on the relativistic effects according to the
orbital averaged precession over multiple orbits (e.g., Wex
& Kopeikin, 1999; Pfahl & Loeb, 2004; Liu et al., 2012; Psaltis
et al., 2016) or the resolved orbital precession within a few
orbits (Angélil & Saha, 2010; Angélil et al., 2010). These stud-
ies implement post-Newtonian techniques based on Bland-
ford & Teukolsky (1976), Damour & Deruelle (1986), and
Hobbs et al. (2006), or a mixed perturbative and numer-
ical approach (Angélil et al., 2010). For a pulsar orbiting

an SMBH, it is also feasible to implement full relativistic
treatments (Zhang et al., 2015; Zhang & Saha, 2017).

The TOAs of pulsars rotating around Sgr A* are af-
fected by a number of relativistic effects, e.g., Einstein de-
lay and Shapiro delay (Damour & Deruelle, 1986; Taylor,
1992). The orbital precession caused by frame-dragging
and quadrupole moment effects also impact the TOAs. Re-
cent studies have found that the frame-dragging effect in
TOAs for a pulsar-Sgr A* binary are quite strong compared
to the timing accuracies of the pulsar (Liu et al., 2012; Psaltis
et al., 2016), i.e., orders of 10–100 s per orbit while the tim-
ing accuracies are typically ∼ 0.1 ms (Zhang & Saha, 2017).
If one simply assumes that the orbital precession increases
linearly with time, current TOA modelling is found to be
inaccurate compared to the TOA accuracy; thus, more so-
phisticated modelling of TOAs are needed, e.g., explicitly
solving the geodesic equation of the pulsars and the propa-
gation trajectories of the photons (Zhang & Saha, 2017).

Frame-dragging and quadrupole momentum effects can
be tightly constrained by observing relativistic pulsar-Sgr
A* binaries. If the orbital period of a pulsar is ∼ 0.3 yr, the
frame-dragging and the quadrupole moment effect of the
SMBH can be constrained down to ∼ 10−2–10−3 and ∼ 10−2

within a decade, respectively providing timing accuracies
of σT ∼ 100µs (Liu et al., 2012). By monitoring a normal
pulsar with an orbital period of ∼ 2.6 yr and an eccentric-
ity of 0.3–0.9, and assuming a timing accuracy of 1–5 ms,
the magnitude, the line of sight inclination and the posi-
tion angle of the SMBH spin can be constrained with 2σ
errors of 10−3–10−2 and 10−1–5◦, 10−1–10◦, respectively, af-
ter ∼8 years (Zhang & Saha, 2017). Even for pulsars in orbits
similar to the currently detected stars S2/S0-2 or S0-102,
the spin of the SMBH can still be constrained within 4–8yr
(Zhang & Saha, 2017); see Figure 7. Thus, any pulsar located
closer than ∼ 1000 AU from the SMBH is plausible for GR
spin measurements and tests of relativity.

Combining timing and proper motion measurements of
GC pulsars, the mass and distance of Sgr A* can be con-
strained with extremely high accuracy. If the proper motion
of pulsars can be determined with an accuracy of 10µas
along with timing measurements, the position, velocity,
mass and the distance of the SMBH can be constrained
to about ∼ 10µas, ∼ 10µas/yr, ∼ 1 M¯ and ∼ 1pc, respec-
tively (Zhang & Saha, 2017).

It is important to note, however, that GC pulsars could
be perturbed by other surrounding gravitational sources,
e.g., stars or other stellar remnants. The effects of the back-
ground perturbation are expected to be important outside
& 100–400 AU (Merritt et al., 2010; Zhang & Iorio, 2017).
Outside this region, how to remove this Newtonian fore-
ground remains an unsolved problem. A possible filtering
strategy using wavelets has been suggested by Angélil &
Saha (2014).

3.1.1.3 Cosmological tests of gravity While GR has proven
robust against all observational and experimental tests



18 Bull et al.

that have been carried out so far, most of these have been
restricted to the solar system or binary pulsar systems –
i.e. firmly in the small-scale, weak field regime. The re-
cent LIGO gravitational wave detection has added a valu-
able strong field test of GR to the roster, but it is the rel-
atively poorly-constrained cosmological regime that has
perhaps the greatest chance of offering a serious challenge
to Einstein’s theory. The application of GR to cosmology
represents an extrapolation by many orders of magnitude
from where the theory has been most stringently tested,
out to distance scales where unexpected new gravitational
phenomena – specifically, dark matter and dark energy –
have been discovered to dominate the Universe’s evolution.
While it may yet be found that these have ‘conventional’ ex-
planations, perhaps in terms of extensions to the Standard
Model of particle physics, the fact remains that they have so
far only been detected through their gravitational influence.
As such, it is of utmost importance to examine whether the
extrapolation of GR out to cosmological distances could
be to blame for the appearance of these effects – perhaps
we are interpreting our observations in the context of the
wrong gravitational theory?

Cosmological tests of GR are still in their infancy, how-
ever. While most ‘background’ cosmological parameters
are now known to better than 1% precision, additional pa-
rameters that describe possible deviations from GR are con-
siderably less well constrained. Recent measurements of
the growth rate of large scale structure have been made at
the 10% level, for example, while many alternative theories
of gravity have never even been subjected to tests beyond a
comparison with background parameter constraints from
(e.g.) the CMB. It is clear, then, that there is some way to
go before constraints on GR in the cosmological regime
approach the accuracy that has been achieved in the small-
scale, weak field limit.

The SKA is expected to play a central role in a multitude
of high-precision tests of GR in cosmological settings, of-
ten in synergy with other survey experiments in different
wavebands. In this section, we consider several examples
of how SKA1 and SKA2 will contribute to precision cosmo-
logical tests of GR, including: growth rate and slip relation
measurements with galaxy clustering and weak lensing ob-
servations; tests of gravity and dark energy using the 21-cm
intensity mapping technique; detecting relativistic effects
on ultra-large scales; peculiar velocity surveys; and void
statistics.

On linear sub-horizon scales, there are two main ways in
which deviations from GR can affect cosmological observ-
ables: by modifying how light propagates, and by modify-
ing how structures collapse under gravity (Amendola et al.,
2013). Both effects can be probed using large statistical sam-
ples of galaxies, for example by measuring the weak lensing
shear and redshift-space distortion signals. At optical wave-
lengths, these observations are the preserve of photometric
(imaging) and spectroscopic redshift surveys respectively,
but radio observations offer several alternative possibilities

for getting at this information.

3.1.1.4 Radio weak lensing: Effective weak lensing surveys
can be performed using radio continuum observations
(Brown et al., 2015), where the total emission from each
galaxy is integrated over the entire waveband to increase
signal-to-noise. SKA1-Mid has excellent u −v plane cover-
age, making it possible to image large numbers of galaxies
and measure their shapes. It will perform a large continuum
galaxy survey over an area of several thousand square de-
grees (Jarvis et al., 2015a), achieving a sky density of suitable
lensed sources of 2.7 arcmin−2 at a mean redshift of ∼ 1.1
(Harrison et al., 2016). This is a substantially lower number
density than contemporary optical surveys; for example,
the Dark Energy Survey (DES) will yield ∼ 12 arcmin−2 at
a mean redshift of 0.6). However, forecasts suggest that
the two surveys should constrain cosmological parame-
ters with a similar level of accuracy — for example, both
SKA1 and DES lensing surveys should produce O(10%) con-
straints on the parameter Σ0, which parametrises devia-
tions of the lensing potential from its GR behaviour (Harri-
son et al., 2016). This is mainly due to the stronger lensing
signal from a significant high-redshift tail of continuum
sources that compensates for the lower source number
density. Corresponding forecasts for SKA2 suggest that a
number density of 10 arcmin−2 will be achievable at a mean
redshift of 1.3, for a survey covering 30 000 deg2, yielding
∼ 4% constraints on Σ0 (Harrison et al., 2016), surpassing
what will be possible with Euclid. While SKA alone will pro-
duce strong constraints on modified gravity lensing param-
eters, the combination of SKA with optical lensing surveys
should be the ultimate goal, as the two different methods
have very different systematics that should mostly drop
out in cross-correlation, producing much ‘cleaner’ lensing
signals with enhanced signal-to-noise (Bonaldi et al., 2016;
Camera et al., 2017).

3.1.1.5 Redshift-space distortions and peculiar velocities
from HI galaxies SKA1 will have the sensitivity and spectral
resolution to perform several different types of spectro-
scopic galaxy surveys, using the 21cm emission line from
HI. The simplest is a redshift survey, where the 21cm line is
detected for as many galaxies as possible, with a signal-to-
noise ratio sufficient only to get a fix on each redshift. Both
SKA1 and SKA2 will be able to perform very large redshift
surveys; the SKA1 version will be restricted to quite low red-
shifts, due to the steepness of the sensitivity curve for HI
(Yahya et al., 2015; Harrison et al., 2017), while the SKA2
version will be essentially cosmic variance limited from red-
shift 0 to∼ 1.4 for a survey covering 30,000 deg2 (Yahya et al.,
2015; Bull, 2016). Precise spectroscopic redshifts allow the
galaxy distribution to be reconstructed in 3D down to very
small scales, where density fluctuations become non-linear,
and galaxies have substantial peculiar velocities due to their
infall into larger structures. These velocities distort the 3D
clustering pattern of the galaxies into an anisotropic pat-
tern, as seen in redshift-space. The shape of the anisotropy
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can then be used to infer the velocity distribution, and thus
the rate of growth of large-scale structure. HI redshift sur-
veys with SKA1 and SKA2 will both be capable of precision
measurements of these RSDs, with SKA1 yielding ∼ 10%
measurements of f σ8 (the linear growth rate multiplied by
the normalisation of the matter power spectrum) in sev-
eral redshift bins out to z ≈ 0.5, and SKA2 yielding . 1%
measurements out to z ≈ 1.7 (Bull, 2016). See Figure 8 for a
comparison with other surveys.

Note that redshift surveys are not the only possibility –
one can also try to spectrally resolve the 21cm lines of galax-
ies with high signal-to-noise ratios, and then measure the
width of the line profile to obtain their rotation velocities.
This can then be used in conjunction with the Tully-Fisher
(TF) relation that connects rotation velocity to intrinsic lu-
minosity to directly measure the distances to the galaxies,
making it possible to separate the cosmological redshift
from the Doppler shift due to the peculiar velocity of the
galaxy. Direct measurements of the peculiar velocity are
highly complementary to RSDs, as they measure the growth
rate in combination with a different set of cosmological
parameters (i.e., they are sensitive to α= f [z]H [z]). The re-
covered velocity field can also be cross-correlated with the
density field (traced by the galaxy positions), resulting in a
significant enhancement in the achievable growth rate con-
straints if the source number density is high enough (Koda
et al., 2014). SKA1 will be able to perform a wide, highly
over-sampled TF peculiar velocity measurement at low red-
shift (cf., the sensitivity curves of Yahya et al., 2015), poten-
tially resulting in better constraints on the growth rate than
achievable with RSDs. The peculiar velocity data would
also be suitable for testing (environment-dependent) sig-
natures of modified gravity due to screening, as discussed
by Hellwing et al. (2014) and Ivarsen et al. (2016).

3.1.1.6 21-cm intensity mapping 21-cm intensity mapping
(Battye et al., 2004; Chang et al., 2008) is an innovative tech-
nique that uses HI to map the three-dimensional large-
scale structure of the Universe. Instead of detecting individ-
ual galaxies like traditional optical or radio galaxy surveys,
HI intensity mapping surveys measure the intensity of the
redshifted 21-cm emission line in three dimensions (across
the sky and along redshift).

The possibility of testing dark energy and gravity with the
SKA using 21-cm intensity mapping has been studied ex-
tensively (Santos et al., 2015). More specifically, it has been
shown that an intensity mapping survey with SKA1-Mid can
measure cosmological quantities like the Hubble rate H (z),
the angular diameter distance DA(z), and the growth rate of
structure f σ8(z) across a wide range of redshifts (Bull et al.,
2015), at a level competitive with the expected results from
Stage IV optical galaxy surveys like Euclid (Amendola et al.,
2018). For example, a very large area SKA1-Mid intensity
mapping survey can achieve sub-1% measurements of f σ8

at z < 1 (Bull, 2016).

However, the intensity mapping method is still in its in-
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Figure 8. Comparison of predicted constraints on the growth rate,
f σ8, from RSD measurements with various SKA and contemporary
optical/near-infrared surveys. ‘GS’ denotes a spectroscopic galaxy sur-
vey, while ‘IM’ denotes an intensity mapping survey. The open circles
show a compilation of recent RSD measurements. Taken from Bull (2016).

fancy, with the major issue being foreground contamina-
tion (which is orders of magnitude bigger than the cos-
mological signal) and systematic effects. These problems
become much more tractable in cross-correlation with op-
tical galaxy surveys, since systematics and noise that are
relevant for one type of survey but not the other are ex-
pected to drop out (Masui et al., 2013a; Pourtsidou et al.,
2016; Wolz et al., 2017a). Therefore, cross-correlating the
21-cm data with optical galaxies is expected to alleviate
various systematics and lead to more robust cosmological
measurements.

As an example, we can consider cross-correlating an HI
intensity mapping survey with SKA1-Mid with a Euclid-like
optical galaxy clustering survey, as discussed by Pourtsi-
dou et al. (2017). Assuming an overlap Asky = 7000deg2,
it was found that very good constraints can be achieved
in ( f σ8,DA, H) across a wide redshift range 0.7 ≤ z ≤ 1.4,
where dark energy or modified gravity effects are important
(see Table 1). Furthermore, it was found that combining
such a survey with CMB temperature maps can achieve
an ISW detection with a signal-to-noise ratio ∼ 5, which is
similar to the results expected from future Stage IV galaxy
surveys. Detecting the ISW effect in a flat Universe provides
direct evidence for dark energy or modified gravity.

3.1.1.7 Relativistic effects on ultra-large scales Thanks to
the unmatched depth of continuum radio galaxy surveys,
the large sky coverage, and the novel possibilities available
with HI intensity mapping, the SKA will probe huge vol-
umes of the Universe, thus allowing us to access the largest
cosmic scales. Scales close to the cosmic horizon and be-
yond carry valuable information on both the primeval
phases of the Universe’s evolution and on the law of gravity.

n the one hand, peculiar inflationary features such as pri-



20 Bull et al.

Table 1 Forecasted fractional uncertainties on { f σ8,DA, H } as-
suming the SKA1-Mid intensity mapping and Euclid-like spectro-
scopic surveys.

z δ( f σ8)/( f σ8) δDA/DA δH/H
0.7 0.04 0.03 0.02
0.8 0.05 0.03 0.02
0.9 0.05 0.03 0.03
1.0 0.06 0.04 0.03
1.1 0.07 0.04 0.03
1.2 0.08 0.05 0.03
1.3 0.10 0.06 0.03
1.4 0.11 0.06 0.04

mordial non-gaussian imprints are strongest on the ultra-
large scales. On the other hand, if we study cosmological
perturbations with a fully relativistic approach, a plethora
of terms appears in the power spectrum of number counts
besides those due to Newtonian density fluctuations and
RSDs (Challinor & Lewis, 2011; Bonvin & Durrer, 2011;
Yoo et al., 2012; Jeong et al., 2012; Alonso et al., 2015b).
For instance, lensing is known to affect number counts
through the so-called magnification bias; but other, yet-
undetected effects like time delay, gravitational redshift and
Sachs-Wolfe and integrated Sachs-Wolfe-like terms also
contribute on the largest cosmic scales. To measure such
relativistic corrections would mean to further thoroughly
confirm Einstein’s gravity, in a regime far from where we
have accurate tests of it. Otherwise, if we found departures
from the well known and robust relativistic predictions,
this would strongly hint at possible solutions of the dark
matter/energy problems in terms of a modified gravity sce-
nario (Lombriser et al., 2013; Baker et al., 2014b; Baker &
Bull, 2015).

Alas, measurements on horizon scales are plagued by cos-
mic variance. For instance, forecasts for next-generation
surveys show that relativistic effects will not be detectable
using a single tracer (Camera et al., 2015e; Alonso & Ferreira,
2015) and primordial non-gaussianity detection is limited
to σ( fNL)& 1 (Camera et al., 2015a; Raccanelli et al., 2015).
This calls for the multi-tracer technique (MT), developed
for biased tracer of the large-scale cosmic structure and
able to mitigate the effect of cosmic variance (Seljak, 2009;
Abramo & Leonard, 2013; Ferramacho et al., 2014). Fonseca
et al. (2015) showed that the combination of two contempo-
raneous surveys, a large HI intensity mapping survey with
SKA1 and a Euclid-like optical/near-infrared (NIR) photo-
metric galaxy survey, will provide detection of relativistic
effects, with a signal-to-noise of about 14. Forecasts for the
detection of relativistic effects for other combinations of
radio/optical surveys are discussed by Alonso & Ferreira
(2015).

3.1.1.8 Void statistics As a particular case for the SKA, we
consider number counts of voids, and forecast cosmologi-

cal parameter constraints from future SKA surveys in com-
bination with Euclid, using the Fisher-matrix method (see
also §5.4.2). Considering that additional cosmological infor-
mation is also available in, e.g., shapes/profiles, accessible
with the SKA, voids are a very promising new cosmological
probe.

We consider a flat wCDM cosmology (i.e., a CDM cosmol-
ogy with a constant equation of state, w) with a modified-
gravity model described by a growth index γ(a) = γ0+γ1(1−
a) (Di Porto et al., 2012). The void distribution is modelled
following Sahlén et al. (2016) and Sahlén & Silk (2018), here
also taking into account the galaxy density and bias for
each survey (Yahya et al., 2015; Raccanelli et al., 2016c).
The results are shown in Figure 9. The combined SKA1-Mid
and Euclid void number counts could achieve a precision
σ(γ0) = 0.16 and σ(γ1) = 0.19, marginalised over all other
parameters. The SKA2 void number counts could improve
on this, down to σ(γ0) = 0.07, σ(γ1) = 0.15. By using the
powerful degeneracy-breaking complementarity between
clusters of galaxies and voids (Sahlén et al., 2016; Sahlén
& Silk, 2018), SKA2 voids + Euclid clusters number counts
could reach σ(γ0) = 0.01, σ(γ1) = 0.07.

3.2 Gravitational-Wave Astronomy

3.2.1 Understanding gravitational-wave sources

Gravitational waves (GWs) may be sourced by an astro-
physical object (compact objects such as neutron stars and
black holes) or they can be of a cosmological origin. Bi-
naries of coalescing compact objects constitute the main
goal of ground-based interferometers. Processes operat-
ing in the early universe may lead to a stochastic gravita-
tional wave background, offering a unique opportunity to
understand the laws that operated at such high energies,
as gravitational waves are out of thermal equilibrium since
the Planck scale. Possible sources of gravitational waves
of cosmological origin are inflation, particle production,
preheating, topological defects like cosmic strings, and first
order phase transitions.

3.2.2 Detection of gravitational waves with SKA galaxy
surveys

Galaxy catalogues can be used to detect GWs; the idea of
looking at the angular motion of sources both in the Milky
Way (Jaffe, 2004; Book & Flanagan, 2011) and on extragalac-
tic scales dates back to the 1980s (see, e.g., Linder, 1986,
1988; Braginsky et al., 1990; Kaiser & Jaffe, 1997).

The possibility of detecting GWs using SKA galaxy sur-
veys has been investigated recently by Raccanelli (2017),
by looking at what has been defined ‘cosmometry’, i.e.,
the high redshift equivalent of astrometry: the passage of
a stochastic gravitational wave background (SGWB) will
cause the angular position of distant sources to oscillate.
The oscillations have a zero average, but the RMS is propor-
tional to the strain of the passing GWs. Therefore, by means
of a statistical analysis of galaxy correlations, it could be
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Figure 9. Forecast 68% parameter confidence constraints for a flat wCDM model with time-dependent growth index of matter perturbations. Note the
considerable degeneracy breaking between the Euclid and SKA1 void samples, and between the SKA2 void and Euclid cluster samples. SKA1-Mid covers
5000 deg2, z = 0−0.43. SKA2 covers 30,000 deg2, z = 0.1−2. Euclid voids covers 15,000 deg2, z = 0.7−2. Euclid clusters covers 15,000 deg2, z = 0.2−2.
The fiducial cosmological model is given by {Ωm = 0.3, w =−1,γ0 = 0.545,γ1 = 0,σ8 = 0.8,ns = 0.96,h = 0.7,Ωb = 0.044}. We have also marginalised over
uncertainty in void radius and cluster mass (Sahlén & Silk, 2018), and in the theoretical void distribution function (Pisani et al., 2015).

possible to detect GWs from the early Universe.

Another possibility comes from using galaxy catalogues
obtained with the SKA and their statistics to detect the pres-
ence of an SGWB from the effect of tensor perturbations;
gravitational waves are tensor perturbations, and so a back-
ground of them will have effects on galaxy clustering and
gravitational lensing statistics (see also Jeong & Schmidt,
2012; Schmidt & Jeong, 2012).

3.2.3 Pulsar timing arrays

Pulsar timing arrays (PTAs) use the ‘quadrupole correla-
tion’ (the Hellings-Downs curve) in the timing residuals
from an array of pulsars, aiming to detect low-frequency
GWs in the frequency range 10−9 − 10−6 Hz (Hellings &
Downs, 1983; Foster & Backer, 1990; Hobbs & Dai, 2017).
The Parkes PTA collaboration (PPTA; Manchester et al.,
2013) was established in 2004, followed in 2007 by the Eu-
ropean PTA (EPTA; Kramer & Champion, 2013), and the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; McLaughlin, 2013). PPTA, EPTA, and
NANOGrav form the International PTA collaboration (IPTA;
Verbiest et al., 2016) to share data and algorithm among
different PTAs. When the SKA is online, it will boost the PTA
efforts to detect low-frequency GWs (Kramer et al., 2004;
Janssen et al., 2015).

There are various GW sources for PTAs (Janssen et al.,
2015). For example, cosmic strings, one-dimensional topo-
logical defects, arise naturally in many field theories as
a particular class of false vacuum remnants (Jeannerot

et al., 2003). A loop of invariant string length `, has a period
T = `/2 and oscillates at a fundamental frequencyω= 4π/`.
Hence, it radiates gravitational waves with frequencies that
are multiples of ω and decays in a lifetime `/(100Gµ). The
loop contribution to the stochastic gravitational wave back-
ground is expressed in terms of the frequency f as,

ΩGW = f

ρc

dρGW

d f
, (5)

where ρc denotes the critical energy density of the universe,
and ρGW depends on the string linear density and there-
fore on the temperature of the phase transition followed
by spontaneous symmetry breaking leading to the cosmic
string production. Pulsar timing experiments are able to
test the spectrum of gravitational waves at nanohertz fre-
quencies, while LIGO/Virgo detectors are sensitive in the
10–1000 Hz band.

For understanding the impact of SKA on pulsar timing
based GW detection, it is important to estimate the total
number of MSPs that can be discovered with the SKA and
the typical root mean square (RMS) noise level of pulsar
TOAs that can be attained.

In one survey scenario (Smits et al., 2011), SKA1-Mid
is expected to detect 1200 MSPs in 53 days of telescope
time, and this number will climb up to 6000 MSPs with
SKA2-Mid (Smits et al., 2009). It is predicted that one timing
observation for 250 MSPs at a signal-to-noise ratio of ∼ 100
each—the level at which GW detection becomes feasible
for anticipated sources—can be obtained with 6 to 20 hours
of telescope time on SKA2-Mid.



22 Bull et al.

The timing precision is determined by the noise budget
of the measured TOAs. The RMS of the pulse phase jitter
noise and the radiometer noise, the most important noise
sources at 100 ns timing precision level, can be estimated
by (Cordes & Shannon, 2010; Wang, 2015)

σj ≈ 0.28W

√
P

t
, (6)

σr ≈ W S

F
√

2∆ f t

√
W

P −W
. (7)

Here P is the pulsar period, t is the integration time, W
is the effective pulse width, F is the flux density, ∆ f is the

bandwidth, and S = 2ηk
Ae

Tsys is the system equivalent flux
density (Wilson et al., 2013), where η is the system efficiency
factor (∼ 1.0), Tsys is the system temperature, Ae is the effec-
tive collecting area, and k is Boltzmann’s constant. Using
the design parameters for SKA2 and the relevant physical
parameters for individual pulsars obtained from simula-
tions (Smits et al., 2009), one finds that for SKA2 the pulse
phase jitter noise will be the dominant noise source, com-
parable to the radiometer noise for most of MSPs. The RMS
of total noise σt for measured TOA is the quadratic summa-
tion of jitter noise and radiometer noise, i.e., σ2

t =σ2
j +σ2

r .

Figure 10 shows the number of MSPs that can achieve
50 ns, 100 ns, 200 ns, and 500 ns timing precisions, respec-
tively, with varying integration time, t . It turns out that if we
choose t = 5 min for SKA2-Mid, then there can be about 900
MSPs (out of 6000 MSPs considered by Smits et al., 2009)
timed to an RMS level of 100 ns or better. One caveat of
our calculation is that we have not considered red timing
noise, which is usually less than 100 ns for MSPs (Shannon
& Cordes, 2010). Assessing the timing noise in terms of am-
plitude and spectral index of individual MSPs is one of the
most crucial tasks in the data analysis for detecting GWs
with PTAs (e.g., Arzoumanian et al., 2016).

Based on these estimates, it appears that a SKA-era PTA
with ∼ 1000 MSPs timed to . 100 ns at a cadence of one
timing observation every two weeks may be feasible. Such
a PTA will reach a sensitivity that will allow, for example,
a 1010 M¯ redshifted chirp mass supermassive black hole
binary (SMBHB) to be detected out to z ' 28 and a 109 M¯
redshifted chirp mass SMBHB to be detected out to z ' 1−2.
This will enable high confidence detection of GWs from
some of the existing optically identified SMBHB candi-
dates (Wang & Mohanty, 2017).

Besides the stochastic GW signal from the unresolved
SMBHB population that may be detected with SKA1 it-
self (Janssen et al., 2015), it is likely that some individual
SMBHBs will stand out above the SGWB and become re-
solvable. The data analysis challenge of resolving multiple
sources from a background population is likely to be a sig-
nificant one given the large number of SMBHBs that will be
uncovered by an SKA-era PTA. The PTA data analysis meth-
ods for resolvable sources (e.g., Ellis et al., 2012; Wang et al.,
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Figure 10. Numbers of MSPs that can archive a certain RMS noise level
(or better) with varying integration time. Colour lines indicate different
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2014; Zhu et al., 2015; Wang et al., 2015, 2017) must be able
to handle multiple sources while taking into account (i) the
SGWB from unresolved sources that acts as an unmodelled
noise source, and (ii) instrumental and timing noise charac-
terisation across ∼ 103 MSPs. Previous studies (e.g., Babak
& Sesana, 2012; Petiteau et al., 2013) of multiple source de-
tection have assumed a simplified model of the GW signal
in which the so-called pulsar term is dropped and the signal
is embedded in white noise with no SGWB. Further devel-
opment of data analysis methods that can work without
these simplifying assumptions is required.

3.3 Primordial gravitational waves (B-modes):
polarised foregrounds with SKA

The angular power spectrum of polarised anisotropies in
the CMB can be decomposed into E-modes, mainly gener-
ated by scalar perturbations in the primordial Universe, and
B-modes that could be mainly contributed at large scales
(i.e., low multipoles, `) by tensor metric perturbations.6 De-
tecting and characterising primordial B-modes is likely the
only way to firmly study the stochastic background of pri-
mordial gravitational waves through the analysis of tensor
perturbations they produce. Although other mechanisms
can produce tensor perturbations, the multipole depen-
dence of primordial B-modes generated by cosmic inflation
is relatively well predicted while their overall amplitude, re-
lated to the ratio, r = T /S, of tensor to scalar primordial
perturbations depends on the inflation energy scale. For
this reason, discovering primordial B-modes is considered
the most ambitious goal of current and future CMB polar-
isation projects (see, e.g., André et al., 2014; Ishino et al.,

6Vector perturbations generate both E- and B-modes, but, except for
particular scenarios, they are expected to be typically subdominant.
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2016; Finelli et al., 2018, and references therein).

Extragalactic radio sources (see, e.g., De Zotti et al., 2018,
and references therein) are an important, if not dominant,
contaminant to the microwave sky in total intensity and in
polarisation at scales smaller than 30 arcmin up to ∼ 100
GHz. A proper characterisation of radio source contribu-
tion to the angular power spectrum at high multipoles is
fundamental for a precise assessment and subtraction of
the lensing B-mode signal. The latter, in turn, improves the
detection and the error bar determination of the primor-
dial B-modes at intermediate and large scales. An accurate
determination of radio source emission is therefore cru-
cial to measure the CMB angular power spectrum and, in
particular, to detect the primordial B-modes, that could
be extremely weak for low values of r , and, in general, to
accurately characterise them. Correcting the CMB angular
power spectrum requires precise measurements of the con-
tribution of radio sources to within several factors below
the detection limit of the CMB experiment, which depends
on the noise, background and foreground levels varying in
different regions of the sky. Indeed, for CMB experiments
with relatively shallow resolution (∼ arcmin) and sensitiv-
ity (of the order of tens to few hundreds of mJy), polarisa-
tion fluctuations come from sources below the detection
threshold of the CMB; these populations are accessible,
however, to interferometric observations that have better
sensitivity and resolution suitable for detecting point-like
sources. Of course, future CMB surveys will benefit from
complementary sensitive polarisation measurements at the
CMB observing frequency, for both generating adequate
masks and statistically characterising source populations to
subtract their statistical contribution to the angular power
spectrum below the detection thresholds. The SKA will al-
low a deep understanding of polarised sources only up to
about 20 GHz, but at the most extreme faint flux densities.
The error on the estimate of the source polarisation fluc-
tuations based on extrapolation from lower to higher fre-
quencies, more suitable for CMB anisotropy experiments,
decreases at decreasing flux density detection threshold.
Thus, combining ultra-sensitive SKA data with observa-
tions at millimetre wavelengths will be very important to
quantify source contribution to CMB polarisation fluctua-
tions at large multipoles, and then to improve lensing and
delensing treatment from high to low multipoles.

SKA continuum surveys are described by Prandoni &
Seymour (2015). Deep and ultra-deep surveys are clearly
the most relevant ones to determine the very faint source
counts, while P (D) methods can be exploited to extract in-
formation on number counts below the survey sensitivity
(Condon et al., 2012), particularly in low frequency contin-
uum surveys dedicated to non-thermal emission in clus-
ters and filaments. The ultra-deep SKA survey dedicated to
studying the star-formation history of the Universe, with
a planned RMS sensitivity of some tens of nJy per beam

and arcsec or better resolution,7 to be compared, for ex-
ample, with the sensitivity levels of tens of µJy of current
measurement of radio source counts at GHz frequencies
(see, e.g., Prandoni et al., 2001; Condon et al., 2012), will
represent a great opportunity for an accurate determina-
tion of source number counts and fluctuations down to
very faint fluxes. Figure 11 shows a comparison between
CMB B-mode angular power spectrum for different values
of r , lensing and residual foregrounds. The B-mode angu-
lar power spectrum of radio sources is shown for different
detection thresholds, adopting the radio source fluctuation
conservative model of Tucci & Toffolatti (2012). In spite of
unavoidable frequency extrapolation errors (generously ac-
counted in the Figure by the very conservative assumed
threshold), we expect that SKA characterisation of polari-
sation properties of radio sources will make their residual
polarisation fluctuations almost negligible.

Moreover, the SKA will allow a better study of the low
frequency tail of Galactic diffuse foregrounds, where po-
larised synchrotron emission peaks, a key point for B-mode
analyses, also because CMB projects are typically focused
on higher frequencies. In particular, this will allow us to test
Galactic synchrotron emission models, 3D physical models
of the Galaxy and the large scale coherent component of
the Galactic magnetic field (Sun et al., 2008; Sun & Reich,
2009, 2010; Fauvet et al., 2011, 2012), based on advanced nu-
merical codes (Strong & Moskalenko, 1998; Waelkens et al.,
2009) and including turbulence phenomena (Cho & Lazar-
ian, 2002). For the accurate treatment of foregrounds in
cosmology it is also important to improve our understand-
ing of the anomalous microwave emission (AME), which is
well-correlated with far-infrared dust emission. AME is pro-
duced by rapidly spinning small dust grains with an electric
dipole moment, and its spectrum is expected to peak in the
range 15–50 GHz. The AME polarisation degree is currently
essentially unknown, although values at the percent level
are typically expected. SKA2 could provide precise mapping
on the low frequency tail of this emission.

Figure 11 compares the CMB B-mode angular power
spectrum for different values of r with examples of po-
tential residuals from Galactic emission (applying a mask
excluding about 27% of the sky highly contaminated by
Galactic emission) based on Planck 2015 results (Planck
Collaboration et al., 2016b,g). As is well known, polarised
dust emission is the most critical foreground for CMB B-
mode analyses (BICEP2/Keck Collaboration et al., 2015;
Planck Collaboration et al., 2016a), but for detecting and
characterising B-modes for r <∼ some ×10−2, the accurate

knowledge of low frequency polarised foregrounds, syn-
chrotron and AME, is also crucial.

In general, a large sky coverage of Galactic radio emission

7According to Condon et al. (2012), considering, as example, frequen-
cies around 1.4 GHz, a natural source confusion limit of about 10 nJy is
derived, thus indicating that, for surveys with RMS sensitivity of tens of
nJy, source confusion will not represent a relevant limitation over a wide
set of frequencies (Burigana et al., 2015).
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Figure 11. The CMB B-mode polarisation angular power spectrum for
different tensor-to-scalar perturbation ratios (from 1 to 3×10−4; solid
black lines), lensing (blue dots), and estimates of potential residual of
Galactic foregrounds (at 70 GHz) and angular power spectrum from po-
larised radio sources (at 100 GHz) below different detection thresholds
(green dashes; from top to bottom, 100 mJy and 10 mJy, representative
of thresholds achievable, respectively, in current and future CMB exper-
iments, and 100 µJy representative of potential improvement discussed
here). Red long dashes show typical potential residuals from Galactic po-
larised dust emission extrapolated from 353 GHz assuming an error of
0.01 in the dust grain spectral index. Blue dashes show typical potential
residuals from Galactic polarised synchrotron emission extrapolated from
30 GHz assuming an error of 0.02 in the synchrotron emission spectral
index. Azure dashes show an estimate of AME angular power spectrum
assuming a polarisation degree of 2%.

is very important for cosmological applications. Among the
SKA1 continuum surveys (Prandoni & Seymour, 2015), we
compare the sensitivity (on the same resolution element) of
the ∼ 75% sky coverage surveys at 1.4 GHz and at 120 MHz,
planned for 1–2 years of integration, with that of radio sur-
veys currently adopted as ancillary maps in CMB experi-
ment analyses (La Porta et al., 2008). The 1.4-GHz survey
will have a sensitivity about 20 times better than the best
available current all-sky radio surveys at 1.4 GHz, while the
120-MHz survey will have sensitivity about 4 times better
than the Haslam map at 408 MHz (Haslam et al., 1982),
thus representing a significant improvement with respect
to current ancillary radio maps.

3.3.1 Multimessenger Astronomy

3.3.2 Galaxy-GW cross-correlation

SKA galaxy maps can be cross-correlated with GW maps
from, e.g., laser interferometers to obtain novel measure-
ments potentially able to probe gravity in new ways. One
such possibility involves the correlation of GW maps with
galaxy catalogues in order to determine the nature of the
progenitors of binary black holes. This can be also used
to obtain ultra-high precision estimation of cosmological

parameters (e.g., Cutler & Holz, 2009), to test cosmological
models (Camera & Nishizawa, 2013), or to constrain the
distance-redshift relation (Oguri, 2016).

In a similar way, Raccanelli et al. (2016b) recently sug-
gested that the cross-correlation of star-forming galaxies
(SFGs) with GW maps can constrain the cosmological sce-
nario in which dark matter is comprised of primordial black
holes.

It is possible to use number count observations in order
to measure the correlation between the host halos of binary
black hole mergers and galaxies. Here we compute what
constraints on the abundance of PBHs as dark matter (DM)
(as in the model of Bird et al., 2016) can be set by cross-
correlating SKA surveys with LIGO and Einstein Telescope
(ET) GW maps. We consider angular power spectra C`, that
can be calculated from the underlying 3D matter power
spectrum by using (see, e.g., Raccanelli et al., 2008; Pullen
et al., 2013):

C X Y
` (z, z ′) = 〈aX

`m(z)aY ∗
`m(z ′)〉

= r
∫

4πdk

k
∆2(k)W X

` (k, z)W Y
` (k, z ′) , (8)

where W {X ,Y }
`

are the source distribution window functions
for the different observables (here X and Y stand for galax-
ies and GWs, respectively), ∆2(k) is the dimensionless mat-
ter power spectrum today, and r is a cross-correlation coef-
ficient.

The window function for the number count distributions
can be written as (see, e.g., Cabre et al., 2007; Raccanelli
et al., 2008):

W X
` (k) =

∫
d NX (z)

d z
bX (z) j`[kχ(z)]d z , (9)

where d NX (z)/d z is the redshift distribution of the species
X; bX (z) is the bias that relates the observed correlation
function to the underlying matter distribution; j`(x) is the
spherical Bessel function of order `; and χ(z) is the comov-
ing distance.

We model radio surveys by using the prescription
of Wilman et al. (2008): catalogues are generated from the
S-cubed simulation8, using the SEX and SAX for continuum
and HI surveys, respectively. We then apply a cut to the
simulated data to reflect the assumed flux limit for differ-
ent cases. More details on the underlying modelling and
planned surveys are provided by Wilman et al. (2008), Jarvis
et al. (2015a) and Abdalla et al. (2015). Finally, for all surveys
we assume fsky = 0.75.

The distribution of GW events can be estimated by:

d NGW (z)

d z
≈R(z)τobs

4πχ2(z)

(1+ z)H(z)
, (10)

where R(z) is the redshift-dependent merger rate, τobs is
the observation time and H(z) is the Hubble parameter.

8http://s-cubed.physics.ox.ac.uk
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The errors in the auto- and cross-correlations are given by
(see, e.g., Cabre et al., 2007):

σC XX
`

=

√√√√√2
(
C XX
`

+ 1
n̄X

)2

(2`+1) fsky
, (11)

and:

σC XY
`

=

√√√√√(
C XY
`

)2 +
[(

C X X
`

+ 1
n̄X

)(
C YY
`

+ 1
n̄Y

)]
(2`+1) fsky

, (12)

where fsky is the fraction of the sky observed and n̄X is the
average number of sources per steradian, in the bin consid-
ered, of the species X .

A key element to determine the nature of the progeni-
tors of black hole – black hole mergers is represented by
the value of the halo bias of the mergers’ hosts. While we
expect that mergers of objects at the endpoint of stellar evo-
lution will be hosted by galaxies that contain the majority
of stars, and therefore be hosted in halos of ∼ 1011−12M¯,
almost all mergers of PBH binaries would happen in halos
of < 106M¯, as shown by Bird et al. (2016). Crucially, these
two types of halos will have very different values of the bias.
In particular, we assume that galaxies that host stellar GW
binaries have similar properties of the SFG galaxy sample.
Hence, we assume that bStellar

GW = bSFG, taking its redshift de-
pendence as discussed by Ferramacho et al. (2014). On the
other hand, the bias of the small halos that host most of the
PBH mergers is expected to be . 0.5, roughly constant with
redshift, within our considered range (Mo & White, 1996).
Hence, considering that the bias of SFGs is predicted to be
b(z) > 1.4, we set, for the threshold granting a detection,
∆b = bSFG −bGW & 1; this value should in reality increase
with redshift, making our choice conservative.

Given the specifications of the proposed future surveys,
we forecast the precision in our measurements using the
Fisher matrix formalism (Tegmark et al., 1998):

Fαβ =
∑
`

∂C`

∂ϑα

∂C`

∂ϑβ
σ−2

C`
, (13)

where ϑα,β are the parameters one wants to measure, the
derivatives of the power spectra C` are evaluated at fiducial
values ϑ̄α and σC`

are measurement errors in the power
spectra.

We compute the amplitude of the cross-correlation
marginalising over the galaxy bias factor, assuming a prior
of 1% precision from external measurements.

We consider four different configurations of GW de-
tectors, all assumed to observe the full sky; Raccanelli
et al. (2016b) showed that the minimum angular scale to
which the GW events can be localised plays an important
role in improving the constraints on the galaxy-GW cross-
correlation, as does the maximum redshift observable. We
choose the following specifications for GW interferometers:
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Figure 12. Forecast fraction of DM in PBH, for different fiducial experi-
ment sets. For details on GW experiments, see text.

• aLIGO: `max = 20, zmax = 0.75;
• LIGO-net: `max = 50, zmax = 1.0;
• Einstein Telescope: `max = 100, zmax = 1.5;

where with LIGO-net we assume a network of interferome-
ters including the current LIGO detectors, VIRGO, and the
planned Indian IndIGO and the Japanese KAGRA instru-
ments, in order to achieve a few square degrees of angular
resolution. For assigning statistical redshifts to radio con-
tinuum catalogues we follow the technique of Kovetz et al.
2017.

In Figure 12 we show our predicted constraints. We show
forecasts (at 1-σ level) for three different GW interferom-
eters setups, after 5 years of collecting data, assuming a
merger rate R = 10Gpc3 yr−1, correlated with SKA radio
surveys. In the cases of aLIGO and the expanded LIGO-net,
correlating with continuum or HI surveys will not make
a difference. When using ET data, on the other hand, the
maximum redshift used for galaxy surveys will make a dif-
ference.

As one can see, in the case of aLIGO, one should be able
to detect the signature of PBHs as DM when correlating
GWs with a survey detecting a few thousand sources per
deg2 (or observing for more years). In the more futuristic
cases of correlations of LIGO-net or ET maps with binned
continuum radio surveys, we can expect to have a few σ

detection in the case of fPBH = 1, or detect the effects of a
small fraction of DM consisting of PBHs.

3.3.2.1 Pulsar timing array The high redshift reach of an
SKA-era PTA based search for SMBHBs implies that multi-
ple resolvable systems may be detectable in the PTA data.
These systems can be followed up in the optical and much
can be learned about the accretion physics in SMBHB sys-
tems by correlating the GW signal with optical variability.
The depth of the search also implies that SMBHB candi-
dates identified in the optical, such as PG 1302–102 (Gra-
ham et al., 2015), can be followed up in GWs. A detection of
the GW signal from a candidate will provide the smoking
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gun evidence of its true nature.
Accretion onto an SMBHB may produce periodic vari-

ability in the light curve of a quasar (Macfadyen & Milosavl-
jevic, 2008; Graham et al., 2015; Hayasaki & Loeb, 2016).
Since the study of quasar optical variability is a key sci-
entific goal for LSST (LSST Science Collaboration et al.,
2009), numerous SMBHB candidates may be discovered
during the survey lifetime. The LSST cadence per object will
yield ∼ 1 measurement of flux per week, which implies that
source variability frequency up to 10−6 Hz can be detected.
This yields a good overlap with SMBHB orbital frequencies
in the [5×10−10,10−6] Hz interval that are observable with
PTAs. Similarly, the LSST coverage of active galactic nuclei
(AGN) will reach a redshift of 7.5, overlapping the SKA era
PTA distance reach for SMBHBs.

LSST full science operation is scheduled to begin around
2023, which coincides with the start date of SKA1. Thus,
LSST and SKA1 will have a substantial overlap in observa-
tion of sources over a common period of time. There will
also be some overlap with SKA2 when it starts around 2030.
In the absence of a significant overlap, SKA2-era PTA-based
GW searches can be correlated against optically identified
candidates in archival LSST data. LSST observations can
help narrow down the parameter space to be searched in
the PTA data analysis. This is especially important if the
source is strongly evolving. The sky location of the source
can tell us which MSPs to time with higher precision and
faster cadence.

There will be significant data analysis challenges in-
volved in linking PTA-based GW searches in the SKA era
with LSST. The sky localisation accuracy of a PTA-based
search for SMBHBs depends on the source brightness and
sky location. Typical error regions for bright GW sources will
be ∼ 100 deg2 (Wang & Mohanty, 2017), which can contain
a large number of variable objects. However, the frequency
of optical variability could be linked strongly to the (highly
accurate) measured frequency of the GW signal and help in
narrowing down optical counterparts.

3.4 Summary

Gravity and gravitational radiation are central topics in
modern astrophysics. The SKA will have a major impact
in this field, via:

1. better timing of binary pulsar systems, in order to
probe new aspects of the gravitational interaction, for
example, measurement of the Lense-Thirring effect;

2. discovery of pulsar binaries orbiting stellar-mass black
holes or Sgr A*, which will enable novel tests such as
the no-hair theorem and even some quantum-gravity
scenarios;

3. galaxy clustering, weak lensing, 21-cm intensity map-
ping, peculiar velocity surveys, and void statistics, with
which we can study gravitational interactions at cos-
mological scales with great precision;

4. cross-correlation of radio weak lensing surveys and
HI intensity mapping with optical lensing surveys and
optical galaxy clustering surveys, respectively, in order
to reduce associated systematics and achieve better
sensitivities;

5. synergies with other gravitational-wave observations
(e.g., the B-modes in the primordial gravitational
waves), using SKA galaxy surveys and polarisation fore-
ground observations;

6. direct detection of gravitational waves at nanohertz
frequencies with pulsar timing arrays.

Studies of gravitation with the SKA will not be limited to
the above items. Various possible synergies with other large
surveys at optical (e.g., with LSST) and other wavelengths
in the SKA era are expected to be highly productive.

4 COSMOLOGY AND DARK ENERGY

As large optical and NIR galaxy surveys like DES, Euclid,
and LSST begin to deliver new insights into various fun-
damental problems in cosmology, it will become increas-
ingly important to seek out novel observables and inde-
pendent methods to validate and extend their findings. A
particularly rich source of new observational possibilities
lies within the radio band, where gigantic new telescope
arrays like the SKA will soon perform large, cosmology-
focussed surveys for the first time, often using innovative
methods that will strongly complement, and even surpass,
what is possible in the optical. We discuss a number of
such possibilities that have the chance to significantly im-
pact problems such as understanding the nature of dark
energy and dark matter, testing the validity of general rel-
ativity and foundational assumptions such as the Coper-
nican Principle, and providing new lines of evidence for
inflation. These include radio weak lensing, 21cm intensity
mapping, Doppler magnification, TF peculiar velocity sur-
veys, multi-tracer searches for primordial non-gaussianity,
full-sky tests of the isotropy of the matter distribution, and
constraints on the abundance of primordial black holes.

4.1 Introduction

Cosmology has blossomed into a mature, data-driven field,
with a diverse set of precision observations now providing a
concordant description of the large scale properties of the
Universe. Through a variety of cosmological observables,
we can examine the expansion history of the Universe,
described by the evolution of the Friedmann-Lemaître-
Robertson-Walker (FLRW) scale factor a as a function of
time; its geometry, given by its spatial curvature; and the
growth history of structures in the Universe, describing the
degree to which overdensities have grown in amplitude over
time due to gravitational collapse. Different types of obser-
vations constrain these aspects of the Universe’s evolution
to a greater or lesser degree; for instance, RSDs constrain
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the growth history only, while distance measurements with
Type Ia supernovae constrain the expansion history only.
The overall picture is highly encouraging, with broad agree-
ment found across a range of very different observables
that probe a number of different eras across cosmic time.

The successes of the precision cosmology programme
have led us to something of a crisis however. Our extremely
successful descriptive model of the Universe —ΛCDM —
fits the vast majority of observations with great precision,
but is mostly constructed out of entities that have so far
defied any proper fundamental physical understanding.
The shakiest theoretical pillars of ΛCDM are dark energy,
dark matter, and inflation. The first two make up around
26% and 69% of the cosmic energy density today respec-
tively, and yet lack any detailed understanding in terms of
high energy/particle theory or conventional gravitational
physics. The latter is responsible for setting the geome-
try of the Universe and for sowing seed inhomogeneities
that grew into the large-scale structure we see today, but
also lacks a specific high-energy theory description. What
is more, these components are all tied together by Gen-
eral Relativity, a tremendously well-tested theory on solar
system scales that we essentially use unchanged in cosmol-
ogy — an extrapolation of some nine orders of magnitude
in distance. The concordance model is therefore built on
a foundation of several phenomenological frameworks —
each of them compelling and well-evidenced, but lacking
in the fundamental physical understanding that, say, the
Standard Model of particle physics provides — and tied
together by an extrapolation of a theory that has only really
been proven on much small scales.

Cosmology, then, has its work cut out for the foresee-
able future. Measuring parameters of theΛCDM model to
ever-increasing precision is not enough if we aspire to an
in-depth physical understanding of the cosmos — we must
develop and test new, alternative theories; seek out novel
observables that can stressΛCDM in new, potentially dis-
ruptive ways; and discover and carefully analyse apparent
anomalies and discordant observations that could expose
the flaws inΛCDM that might lead us to a deeper theory.

This work is well under way, with a series of large optical
and NIR galaxy surveys leading the charge. Experiments
such as DES, Euclid, and LSST will measure multiple galaxy
clustering and lensing observables with sufficiently great
precision to test a number of key properties of dark energy,
dark matter, inflation, and GR on cosmological scales. Their
analyses rely on detailed modelling of the large-scale struc-
ture of the Universe, plus painstakingly-developed analy-
sis tools to recover small signals from these enormously
complex datasets. Over time, they will likely discover a
good many anomalies, some of which may even be hints
of beyond-ΛCDM physics. This is exciting and profound
work, but will probably not be enough to settle cosmology’s
biggest questions on its own. Instead, we will need to in-
dependently confirm and characterise the ‘anomalies’, so
that we can ultimately build a coherent picture of whatever
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Figure 13. The approximate redshift ranges of various current and future
large-scale structure surveys. 21cm intensity mapping surveys are shown
in green (bottom), spectroscopic galaxy redshift surveys in blue (middle),
and photometric/continuum surveys in red (top). WFIRST and SPHEREx
both have secondary samples (with lower number density or photometric
precision), which are shown as paler colours. Taken together, the SKA sur-
veys offer full coverage of the redshift range from 0 to & 6, using multiple
survey methods. The grey bands show an approximate division of the
full redshift range into different eras, corresponding to the dark-energy-
dominated regime, the onset of dark energy, the matter-dominated regime,
and the fully matter-dominated regime.

new physics is behind them. This will require alternative
methods beyond what is provided by optical/NIR surveys,
including different observables, and different analysis tech-
niques.

This is where the SKA arguably has the most to offer cos-
mology. While the SKA will be able to measure many of the
same things as contemporary optical/NIR surveys — galaxy
clustering and lensing, for example — it will do so using
markedly different observing and analysis techniques. This
is extremely valuable from the perspective of identifying
and removing systematic effects, which could give rise to
false signals and anomalies, or otherwise compromise the
accuracy of the measurements. Weak lensing observations
in the radio will have very different systematics compared
with optical surveys, for example, as atmospheric fluctua-
tions and other point spread function uncertainties should
be much reduced, while shape measurement uncertainties
might be quite different for an interferometer. The SKA will
provide a large cosmological survey dataset in the radio to
be compared and cross-correlated with the optical data, al-
lowing the sort of joint analysis that will be able to confirm
anomalies or flag up subtle systematic effects that a single
survey would not be able to on its own.

The fact that radio telescopes work so differently from
their optical counterparts also opens up the possibility of
making novel measurements that would otherwise be dif-
ficult and/or time consuming at higher frequencies. The



28 Bull et al.

intrinsically spectroscopic nature of radiometers makes it
possible to perform efficient intensity mapping surveys,
making it easier to access large-scale structure at higher
redshifts, for example. The flexible angular resolution of ra-
dio interferometers (one can re-weight the baselines on the
fly to achieve different effective resolutions) could also be
useful for, e.g., hybrid lensing studies involving both shape
measurement and galaxy kinematics. While exploitation of
the novel capabilities of radio instrumentation is only just
beginning in cosmological contexts, there is a great deal
of promise in some of the new observables that have been
proposed. Taken together with the precision background
and growth constraints from the SKA and other sources,
perhaps one of these new observables will provide the vital
hint that collapses some of cosmology’s great problems into
a new understanding of fundamental physics.

In this section, we therefore focus on the novel contri-
butions that radio telescopes, and in particular the SKA,
will bring to observational cosmology. For completeness,
we will briefly mention more conventional observations
that are possible with the SKA, such as spectroscopic BAO
measurements, but defer to previous works for detailed
discussions of these.

4.2 Tests of cosmic acceleration

The cause of the accelerating expansion of the Universe is
one of the greatest open questions in fundamental physics.
Possible attempts at explanation include Einstein’s cosmo-
logical constant, often associated with the energy density of
the QFT vacuum; additional very light particle fields such as
quintessence; or some modification to the theory of gravity.
Any one of these explanations requires either the introduc-
tion of exciting new physics beyond the Standard Model, or
a much deeper understanding of the relationship between
quantum field theory and GR.

In order to learn about the phenomenology of this new
energy component, it is useful to try to measure at least
two quantities: the energy density of the dark energy to-
day, quantified by the parameter ΩDE,0, and its equation
of state (pressure to density ratio) as a function of redshift,
w(z). The former has been measured with good precision
by CMB, supernova, and large-scale structure experiments
over the past 15–20 years, which have established extremely
strong evidence that dark energy is the dominant compo-
nent of the cosmic energy density in the late Universe. The
task now is to pin down the latter, as this offers some hope
of being able to differentiate between some of the different
scenarios.

Unfortunately, the space of possible dark energy models
is very large and diverse, and many models can be tuned
to reproduce almost any w(z) that could be observed. De-
termining the equation of state to high precision remains
an important task however, as one can still draw a num-
ber of useful conclusions from how it evolves. The most
important thing to check is whether the equation of state at

all deviates from the cosmological constant value, w =−1.
If dark energy truly is a cosmological constant, then un-
derstanding how the QFT vacuum gravitates, and solving
various severe fine-tuning issues, becomes the key to un-
derstanding cosmic acceleration. If the equation of state is
not constant, however, this points to the presence of new
matter fields or modifications of GR as the culprit.

Beyond this, it is also useful to know whether w ever
dips below −1. An equation of state below this is said to
be in the ‘phantom’ regime (Caldwell, 2002), which would
violate several energy conditions for a single, minimally-
coupled scalar field. A field that has additional interaction
terms (e.g. with the matter sector) can support a phantom
effective equation of state however (Raveri et al., 2017), and
so finding w < −1 would be a strong hint that there are
additional interactions to look for.

Finally, the actual time evolution of the equation of state
can also provide some useful clues about the physics of
dark energy. Many models exhibit a ‘tracking’ behaviour
for example, where w(z) scales like the equation of state
of the dominant component of the cosmic energy density
at any given time (e.g. wm = 0 during matter domination
and wr = 1/3 during radiation domination). Oscillating
equations of state, or those that make dark energy non-
negligible at early times (‘early dark energy’), correspond
to more exotic models.

In this section, we briefly discuss two methods for con-
straining the redshift evolution of dark energy with the
SKA: measuring the distance-redshift relation with 21cm
intensity mapping experiments, and measuring the expan-
sion directly using the redshift drift technique. For more
in-depth forecasts and discussion of distance and expan-
sion rate measurements that will be possible with SKA, see
Bull (2016). See §3 for predictions of typical w(z) functions
for a variety of dark energy and modified gravity models.

4.2.1 BAO measurements with 21cm intensity maps

The baryon acoustic oscillation (BAO) scale provides a sta-
tistical ‘standard ruler’ that can be used to constrain the
distance-redshift relation, and therefore the abundance
and equations of state of the various components of the
Universe. The BAO feature is most commonly accessed
through the 2-point correlation function of galaxies from
large spectroscopic galaxy surveys like BOSS and WiggleZ,
and presents as a ‘bump’ in the correlation function at sepa-
rations of ∼ 100h−1 Mpc. It has been found to be extremely
robust to systematic effects, and can in principle be mea-
sured out to extremely high redshift. Current constraints
are mostly limited to z . 1 however, except for a handful of
datapoints at z ∼ 2.4 from Lyman-α forest observations.

The SKA will add to this picture by providing another
route to BAO measurements — through the 21cm intensity
mapping method. IM uses fluctuations in the aggregate
brightness temperature of the spectral line emission from
many unresolved galaxies to reconstruct a (biased) 3D map
of the cosmic matter distribution. This has the advantage of
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dramatically improving survey speed, since all the flux from
all of the sources (even very faint ones) contributes to the
signal. Galaxy surveys, on the other hand, must apply some
detection threshold in order to reject noise fluctuations
from their catalogue, and so most of the available flux is
therefore thrown away (except for around sufficiently bright
sources).

The SKA will significantly improve upon existing BAO
measurements in two main ways. First, it will be able to
access the BAO signal over significantly larger volumes of
the Universe than current or even future surveys. Existing
BAO measurements are limited in accuracy mostly due to
sample variance, and so can only be improved by increas-
ing the survey area or extending the redshift range. Future
spectroscopic galaxy surveys like DESI and Euclid will also
extend measurements to higher redshifts, over larger sur-
vey areas (see Fig. 13), but 21cm intensity mapping surveys
with the SKA will surpass all of them in terms of raw volume.
A SKA1-Mid Band 1 IM survey will potentially be able to
survey the redshift range 0.4 . z . 3 over ∼ 25,000 deg2,
although resolution considerations will result in slightly
poorer constraints than a spectroscopic galaxy survey with
the same footprint. SKA2 will be able to perform a spec-
troscopic HI galaxy survey over a similar area out to z ≈ 2
(sample variance limited out to z ≈ 1.5), and so is expected
to essentially be the last word in BAO measurement in this
regime. Fisher forecasts for constraints on the expansion
rate with various galaxy and intensity mapping surveys are
shown for comparison in Figure 14.

Secondly, SKA will be capable of detecting the BAO at sig-
nificantly higher redshifts than most galaxy surveys, with
SKA1-Mid Band 2. While dark energy dominates the cos-
mic energy density only at relatively low redshifts, z < 1,
many dark energy models exhibit a tracking behaviour that
means that their equation of state deviates most signifi-
cantly from a cosmological constant at z & 2−3. Precision
determinations of w(z) at z > 2 may therefore be more dis-
criminating than those in the more obvious low redshift
regime that is being targeted by most spectroscopic galaxy
surveys.

4.2.2 Redshift drift as a direct probe of expansion

Most probes of acceleration rely on measuring distances
or the expansion rate, using standard rulers or candles. An
interesting alternative is to observe the so-called redshift
drift, which is the time-variation of the cosmological red-
shift, dz/dt (Sandage, 1962; Loeb, 1998). This allows a very
direct measurement of the expansion rate, as

dz

dt
= (1+ z)H0 −H(z), (14)

and has the advantage of giving a ‘smoking gun’ signal for
cosmic acceleration — the redshift drift can be positive only
in accelerating cosmological models. While the existence of
an apparent cosmic acceleration is well-established, much
of the evidence from probes that are interpreted in a model-

0 1 2 3 4 5 6
z

10-3

10-2

10-1

100

σ
H
/H

BOSS forecast (GS)
Hα survey (GS)
HETDEX (GS)
SKA2 (GS)

MID B2 + MK (GS)
MID B1 + MK (IM)
MID B2 + MK (IM)
LOW (IM)

Figure 14. Forecasts for the fractional error on the expansion rate, H(z),
expected to be achieved with various galaxy surveys (GS) and intensity
mapping surveys (IM), from Bull (2016). SKA surveys will be able to effec-
tively survey volumes at higher redshifts than optical/NIR experiments,
and with SKA2 will ultimately achieve better precision in the 0 . z . 2
regime as well. Figure reproduced with permission, from Bull (2016).

dependent way, i.e., within the context of a (perturbed)
FLRW model. A number of non-FLRW cosmologies have
been proposed in the past that appear to be accelerating
when distance/expansion rate measurements are inter-
ested within an assumed FLRW model, but in which the ex-
pansion of space is actually decelerating locally everywhere
(Clarkson & Maartens, 2010; Andersson & Coley, 2011; Bull
& Clifton, 2012). This effect is normally achieved though the
introduction of large inhomogeneities, which distort the
past lightcone away from the FLRW behaviour, but which
still reproduce the isotropy of the Universe as seen from
Earth. While this kind of model has essentially been ruled
out as a possible explanation for dark energy by other ob-
servables (see, e.g., Bull et al., 2012; Zibin, 2011), the ques-
tion of whether smaller inhomogeneities could cause non-
negligible biases in estimates of background cosmological
parameters is still very much open (e.g., Clarkson et al.,
2012; Bonvin et al., 2015; Fleury et al., 2017). Redshift drift
provides an independent and arguably more direct way of
measuring cosmic acceleration, and so represents a promis-
ing observable for studying these effects and, eventually,
definitively determining their size. The independence of
redshift drift from other probes is also advantageous for
breaking degeneracies in measurements of dark energy ob-
servables such as the equation of state (Martinelli et al.,
2012; Kim et al., 2015; Geng et al., 2014).

In principle, one can measure the redshift drift effect by
tracking the change in redshift of spectral line emission
over some period of time. To get an estimate of the magni-
tude of this effect, we note that H0 = 100h kms−1 Mpc−1 ∼
10−10 yr−1, so observing the redshift drift over a time base-
line of ∆t = 10 years would require a spectral precision
of ∆z ∼ 10−9, corresponding to a frequency shift in, e.g.,
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the 21cm line of ∆ν ∼ 1 Hz. Plugging in exact numbers
forΛCDM, the required spectroscopic precision is actually
more like 0.1 Hz if one wishes to measure the cosmic accel-
eration directly at z ≈ 1 (Klöckner et al., 2015). Achieving
this sort of precision is challenging, as a number of system-
atic effects must be controlled in a consistent manner for
over a decade or more. From a practical standpoint, the best
way forward seems to be to perform differential measure-
ments of the time-dependence of line redshifts over many
thousands, if not millions, of galaxies. SKA2 will provide the
requisite sensitivity and spectral precision to perform this
test for millions of HI galaxies out to z ∼ 1.5. More details,
including an examination of systematics such as peculiar
accelerations, are given by Klöckner et al. (2015).

4.3 Cosmological tests of General Relativity

General Relativity has been exquisitely tested for a wide
range in gravitational potential ∼ GM/r c2 and tidal field
strength ∼ GM/r 3c2 (Psaltis, 2008); this includes tests in
our solar system and extreme environments such as binary
pulsars. Nevertheless, there is a dearth of direct tests of GR
for tidal strengths < 10−50, which also happens to corre-
spond to the domain in which we notice dark matter and
dark energy. It is therefore of great interest to test General
Relativity in a cosmological context.

Now we turn to the other explanation for accelerated
expansion: that we are mistaken about the law of gravity on
very large scales. This can generate acceleration by chang-
ing the geometric part of the Einstein equation by modi-
fying the Einstein-Hilbert action, and so requires no extra
‘dark fluid’. Many such models have been proposed (for a
review, see Bull et al., 2016), but most of these produce a
expansion history similar or identical to those predicted
by dark energy models. Alternative observational tests are
needed to distinguish between dark energy and modified
gravity, through measurement of the growth the growth of
cosmic structures.

Cosmological observations are sensitive to the effects of
gravity in diverse ways. In a Universe described by a per-
turbed FLRW metric, observations such as RSD are sensitive
to the time-part of the metric, while gravitational lensing
is affected by both the time-part and the space-part. These
elements of the metric are themselves related to the density
distribution of matter via the Einstein field equations (or
classically, the Poisson equation).

A simple test of gravity, then, is to examine whether
the combination of different cosmological observations
behaves as expected in General Relativity, or if a simple
modification fits the observations better. If we model the
Universe with a perturbed FLRW model,

ds2 =−(1+2Ψ)dt 2 + (1−2Φ)a2dxi ∧dxi , (15)

where Ψ and Φ are the two gauge-invariant Bardeen po-
tentials and a(t) is the cosmological scale factor. We can
parametrise a range of modifications to gravity by the ratio

η=Ψ/Φ, and an additional factor µ in Poisson’s equation
relatingΨ and overdensity. We can then calculate observ-
ables for various values of η and µ and fit these to the cos-
mological probe data.

A more sophisticated approach is to write down a general
action for linear cosmological perturbations of theories of
gravity (e.g., Lagos et al., 2016) that contains parameters
αi characterising the theories. Again, observables can be
calculated for particular values of αi , and so the permitted
range of gravity theories fitting cosmological data can be
assessed.

4.3.1 Growth rate measurements with peculiar velocities

Many dark energy and modified gravity models are capa-
ble of mimicking aΛCDM expansion history, and so could
be indistinguishable from a cosmological constant based
on the equation of state of dark energy alone. This is not
the case for the growth history, however, which is typically
substantially modified regardless of the background evolu-
tion. This is because modifications to GR tend to introduce
new operators/couplings in the action, which lead to new
terms in the evolution equations with distinct redshift- and
scale-dependences.

A useful illustration can be found in the Horndeski class
of general single scalar field modifications to GR. In the
sub-horizon quasi-static limit (where spatial derivatives
dominate over time derivatives), the linear growth equation
for matter perturbations can be written as (Baker et al.,
2014a; Gleyzes, 2017)

∆̈M +H∆̇M − 3

2
ΩM (a)H2ξ∆M = 0, (16)

where overdots denote conformal time derivatives, H =
aH is the conformal Hubble rate, ∆M is the matter density
perturbation, and ξ(k, a) = 1 in GR. The modification to the
growth source term is restricted to have the form

ξ(k, a) = f1(a)+ f2(a)/k2

f3(a)+ f4(a)/k2 , (17)

where { fn} are arbitrary functions of scale factor that de-
pend on the new terms added to the action. Within Horn-
deski models, all new terms in the action contribute to
ξ(k, a), and will cause deviations from GR growth at some
scale and/or redshift. As such, we see that tests of growth
can be more decisive in searching for deviations from GR
than the equation of state.

The growth history can be constrained through a num-
ber of observables, for example the redshift-dependent nor-
malisation of the matter power spectrum, D(z), as probed
by lensing or galaxy surveys; the ISW effect seen in the
CMB and/or galaxy surveys, and the growth rate, f (z) =
d logD/d log a, primarily measured through probes of the
cosmic peculiar velocity field. In this section we will concen-
trate on the growth rate, as it exhibits fewer degeneracies
with other cosmological parameters than the growth fac-
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tor, D(z), and can be measured with significantly higher
signal-to-noise than the ISW effect.

The most precise growth rate constraints to date come
from the RSD effect, which makes the 3D correlation func-
tion of galaxies anisotropic as seen by the observer. The
effect is caused by the addition of a Doppler shift to the
observed redshift of the galaxies, due to the line-of-sight
component of their peculiar velocities. The growth rate can
only be measured in combination with either the galaxy
bias, b(z), or overall normalisation of the power spectrum,
σ8, using the RSD technique, as these terms also enter into
the quadrupole (or ratio of quadrupole to monopole) of
the galaxy correlation function. As discussed in §3.1.1.5
and by Bull (2016), HI galaxy redshift surveys and 21cm
intensity mapping surveys with SKA are expected to yield
sub-percent level constraints on the combination f σ8 out
to z ∼ 1.7.

The SKA will also provide a more direct measurement of
the peculiar velocity field, through observations of galaxy
rotation curves and the TF relation (Tully & Fisher, 1977).
The TF relation is an empirical relationship between the
intrinsic luminosity of a galaxy and its rotational velocity.
Assuming that it can be accurately calibrated, the TF re-
lation can therefore be used to convert 21cm line widths
— which depend on the rotation velocity — into distances
(which can be inferred from the ratio of the intrinsic lu-
minosity and observed flux of the galaxy). Comparing the
measured distance with the one inferred from the redshift
of the galaxy then gives the peculiar velocity (e.g., Springob
et al., 2007).

This method has the disadvantage of being restricted to
relatively low redshifts — the error on the velocity typically
scales∝ (1+z) — and relying on a scaling relation that must
be calibrated empirically. Nevertheless, direct observations
of the peculiar velocity field are sensitive to the combina-
tion f Hσ8 instead of f σ8, and so can provide complemen-
tary information to the RSD measurements (and help break
parameter degeneracies). The SKA and its precursors will
be able to perform suitable spectrally-resolved surveys of
many tens of thousands of HI galaxies out to z ∼ 0.3−0.4
over most of the sky — essentially the widest and deepest
TF velocity survey possible. As well as providing a valu-
able independent probe of the velocity field, these data can
also be combined with the clustering information from a
traditional redshift survey extracted from the same survey
dataset, resulting in a significant improvement in the preci-
sion on f σ8 compared with either probe individually (Koda
et al., 2014). A full-sky survey with SKA precursor surveys
WALLABY and WNSHS should be capable of putting a joint
RSD+TF constraint of ∼ 4% on f σ8 in a single z ≈ 0 redshift
bin, for example (Koda et al., 2014).

4.3.2 Radio weak lensing

Weak lensing maps the coherent distortions of galaxy
shapes across the sky (see, e.g., Bartelmann & Schneider,
2001, for a review). With the path taken by light from dis-

tant galaxies determined by the matter distribution along
the line of sight, and the response of curvature to that mat-
ter distribution, lensing represents an excellent probe of
the theory of gravity. Dividing sources into tomographic
redshift bins also allows us to track structure growth over
cosmic time.

The SKA will be capable of detecting the high num-
ber densities of resolved, high redshift star-forming galax-
ies over large areas necessary for weak lensing surveys
(Bonaldi et al., 2016), with expected number densities of
∼ 2−3 arcmin−2 over 5000 deg2 for SKA1 and ∼ 12 arcmin−2

over 30,000 deg2 for SKA2, giving comparable raw source
numbers to DES and Euclid, respectively. Doing weak lens-
ing in the radio band also has a number of distinct advan-
tages, including the expectation of a higher redshift source
population (e.g., Brown et al., 2015; Harrison et al., 2016)
and information on intrinsic alignments from polarisation
(Brown & Battye, 2011) and rotational velocity (Huff et al.,
2013) information. Foremost, however, is the advantage
of being able to combine weak lensing measurements be-
tween SKA and optical surveys, forming cross power spec-
tra C X Y

`
(where X ,Y label shear measurements for the two

different experiments and i , j different redshift bins):

C
Xi Y j

`
= 9H 4

0Ω
2
m

4c4

∫ χh

0
dχ

g Xi (χ)g Y j (χ)

a2(χ)
Pδ

(
`

fK (χ)
,χ

)
, (18)

where a(χ) is the scale factor of the Universe at co-moving
distance χ, fK (χ) is the angular diameter distance, Pδ(k,χ)
is the matter power spectrum and g i (χ) are the lensing
kernels.

Using only these cross-experiment power spectra to
form cosmological constraints has been shown to retain
almost all of the statistical power available from the intra-
experiment (i.e. C X X

`
) power spectra (Harrison et al., 2016),

whilst removing wavelength-dependent systematics that
can otherwise cause large biases in the parameter estima-
tion (see Camera et al., 2017; Demetroullas & Brown, 2016,
for a demonstration on real data) .

Figure 15 shows constraints on modified gravity param-
eters as specified by Dossett et al. (2015) (with R = η and
Σ = µ(1+η)/2 in the notation specified here for Eq. 15),
showing the equivalent constraining power of both SKA-
only and SKA×optical to that expected from premier opti-
cal surveys. Similar constraints are available in the w0-wa

plane, with ∼ 30% constraints available from SKA1 and
∼ 10% constraints from SKA2 (both when combined with
Planck CMB measurements).

4.3.3 Doppler magnification

Gravitational lensing consists of shear and convergence, κ.
While the shear is determined only by the matter distribu-
tion along the line of sight, the convergence also has contri-
butions from Doppler effects, Sachs-Wolfe effects, Shapiro
time-delay and the ISW effect (Bonvin, 2008; Bolejko et al.,
2013; Bacon et al., 2014; Kaiser & Hudson, 2015; Bonvin
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Figure 15. SKA1 (left) and SKA2 (right) constraints on modified gravity parameters as described in the text, from optical-only (blue), radio-only (green) and
radio×optical cosmic shear power spectrum measurements. The forecasts were created using Markov chain Monte Carlo forecasts from the C O S M O S I S
toolkit (Zuntz et al., 2015) and are marginalised over the baseΛCDM parameters. Figure reproduced with permission, from Harrison et al. (2016).

et al., 2017). These contributions modify the distance be-
tween the observer and the galaxies at a given redshift and
consequently they change their observed size. The main
contributions are gravitational lensing and a Doppler term:
κ= κg +κv, where

κg = 1

2r

∫ r

0
dr ′ r − r ′

r ′ ∆Ω(Φ+Ψ) ,

κv =
(

1

rH −1

)
V ·n ,

where r = r (z) is the comoving distance, ∆Ω is the 2-sphere
Laplacian which acts on the gravitational potentialsΦ and
Ψ, H is the conformal Hubble rate and V ·n is the peculiar
velocity of a source projected along the line of sight n. Can
we observe κv? This contribution to the convergence has
so far been neglected in lensing studies, but it has been
shown that it can be measured in upcoming surveys (Bacon
et al., 2014; Bonvin et al., 2017), and can improve parameter
estimation as we now discuss. Further details are provided
by Bonvin et al. (2017).

For a given object, its peculiar velocity, V , is induced by
nearby matter clustering, and so we expect the Doppler con-
vergence to be strongly correlated with the observed galaxy
number density, giving a signal in the cross-correlation
ξ = 〈∆(z,n)κ(z ′,n′)〉. For an over-density, objects in front
of it in redshift space will appear disproportionately larger
than those behind, giving a clear dipole in ξ. In general the
correlation between ∆= bδ− 1

H∂r (V ·n), which includes
local bias b(z) and an RSD term, and κv, is given by

ξv(r,d ,β) = H(z)

H0
f (z)

(
1− 1

H(z)r (z)

)
(19)

×
{(

b(z)+ 3 f (z)

5

)
ν1(d)P1(cosβ)− 2 f (z)

5
ν3(d)P3(cosβ)

}
,

where f = d lnD/d ln a denotes the growth rate (D is the
growth function), P` are the Legendre polynomials of or-

der `, and ν` is the power spectrum integrated against
the `’th spherical Bessel function. β is the angle between
the points where ∆ and κ are measured with respect to the
line of sight. Here we have used the plane-parallel approxi-
mation, which makes the multipole expansion transparent –
P1 is a dipole and P3 an octopole. The RSD contribution
alters the coefficient of the second term in dipole. The cor-
relation with RSD also induces an octopole in the P3 term.

Multipole patterns in ξ can be optimally extracted by
integrating against the appropriate Legendre polynomial,
P1(cosβ) in the case of the dipole. This implies we can
optimally measure Doppler magnification in a survey of
volume V using the estimator

ξdip(d) = 3

4π

`5
p

d 2V

∑
i j
∆iκ j cosβi jδK (di j −d)

where we associate to each pair of pixels (i , j ) of size `p a
separation di j (δK (di j −d) selects pixels with separation d)
and an orientation with respect to the line-of-sight βi j . In
one of those pixels we measure the galaxy number count∆i

and in the other we measure the convergence κ j . A similar
estimator can be constructed for the octopole. The dipole
becomes, on average in the continuous limit,

〈ξ̂dip〉(d) ' H(z)

H0
f (z)

(
1− 1

H(z)r (z)

)(
b(z)+ 3 f (z)

5

)
ν1(d) .

In general this estimator also includes a dipole contribution
from the normal lensing term since objects behind over-
densities are magnified, but below z ∼ 1 it is the Doppler
term which dominates, so we neglect it here.

We present an example forecast of the expected signal-
to-noise for the SKA2 galaxy survey in Figure 16. We present
it for a broad range of the expected error on size measure-
ments σκ, and we assume that an intrinsic size correla-
tion will have a negligible dipole. The cumulative signal-
to-noise over the range of separation 12 ≤ d ≤ 180 Mpc/h,
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Figure 16. Signal-to-noise for the dipole in the SKA Phase 2 survey, plotted
as a function of separation. Here, we plot the signal-to-noise calculated
in a thin redshift bin: 0.4 < z < 0.5. The higher bound corresponds to an
intrinsic error on the size measurement of σκ = 0.3, and the lower bound
of σκ = 0.8. For the octopole the signal-to-noise is about an order-of-
magnitude smaller. Figure reproduced with permission, from Bonvin et al.
(2017).

combining redshifts 0.1 ≤ z ≤ 0.5 (assuming that the red-
shift bins are uncorrelated), is 35−93 for the dipole and
5.1−14 for the octopole. The SKA should therefore allow us
to robustly detect both the Doppler magnification dipole
and octopole.

As an example of the improvement to parameter estima-
tion that the Doppler dipole will give, in Figure 17 we show
the constraints on w0−wa (marginalised over the other pa-
rameters with the bias model fixed) from Planck alone and
Planck combined with the SKA. Comparing with the con-
straints from RSDs (see, e.g., Fig. 10 of Grieb et al., 2017) we
see that the Doppler magnification dipole provides slightly
stronger constraints, while similar constraints are expected
for the SKA shear measurements. This is also the case for
constraints on modifications to gravity.

In summary, extracting the dipole of the density-size
cross correlation is a novel new probe which is comple-
mentary to other lensing and RSD measurements. This
will help improve constraints from the SKA2 galaxy sur-
vey. Furthermore, if we measure both the dipole and the
RSD quadrupole, we can test for the scale-independence
of the growth rate, because the quadrupole is sensitive to
the gradient of the velocity whereas the dipole is sensitive
to the velocity itself. In addition, it should be possible to re-
construct the peculiar velocity field directly from measure-
ments of the Doppler magnification dipole (Bacon et al.,
2014).

4.3.4 Cross-correlations with 21cm intensity maps

A very promising way to test dark energy and gravity with
the SKA is using the HI intensity mapping technique (San-
tos et al., 2015). A large sky HI IM survey with SKA1-Mid
can provide precise measurements of quantities like the
Hubble rate, H(z), the angular diameter distance, DA(z),

Figure 17. Joint constraints on w0 − wa , marginalised over the other
parameters, using Planck alone and Planck combined with SKA2. We use
the dipole at separation 12 Mpc/h ≤ d ≤ 180 Mpc/h. Figure reproduced
with permission, from Bonvin et al. (2017).

and f σ8(z), which depends on how dark energy and grav-
ity behave on large scales, across a wide range of redshifts
(Bull et al., 2015). A major challenge for intensity mapping
experiments is foreground contamination and systematic
effects. Controlling such effects becomes much easier in
cross-correlation with optical galaxy surveys, since noise
and systematics that are survey specific are expected to
drop out (Masui et al., 2013a; Wolz et al., 2017a; Pourtsidou
et al., 2016).

Hence, cross-correlating the intensity mapping maps
with optical galaxy data is expected to mitigate various sys-
tematic effects and to lead to more robust cosmological
constraints. As discussed earlier in §3.1.1.6, we follow Pourt-
sidou et al. (2017) by considering cross-correlation of an
SKA1-Mid HI intensity mapping survey with a Euclid-like
optical galaxy survey, assuming an overlap Asky = 7000 deg2.
The results are shown in Table 1: we can expect very good
measurements of the growth of structure, the angular diam-
eter distance and the Hubble rate across a redshift range
where the effects of dark energy or modified gravity are
becoming important. We note again that an additional ad-
vantage of these forecasts is that they are expected to be
more robust than the ones assuming auto-correlation mea-
surements, due to the mitigation of various systematic ef-
fects. Pourtsidou et al. (2017) also showed that a large sky
intensity mapping survey with the SKA, combined with the
Planck CMB temperature maps, can detect the ISW effect
with a signal-to-noise ratio ∼ 5, a result competitive with
Stage IV optical galaxy surveys. The detection of the ISW
effect provides independent and direct evidence for dark
energy or modified gravity in a flat Universe.

Another way to test the laws of gravity on large scales is
using the EG statistic (Zhang et al., 2007; Reyes et al., 2010;
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Pullen et al., 2015, 2016). In Fourier space, this is defined as

EG(k, z) = c2k2(Φ−Ψ)

3H 2
0 (1+ z)θ(k)

, (20)

where θ ≡ ∇·v/H(z) is the peculiar velocity perturbation
field. We can construct a Fourier space estimator for EG as
(Pullen et al., 2015)

ÊG(`, z̄) =
c2Ĉ gκ

`

3H 2
0 Ĉ gθ

`

, (21)

and it can be further written as a combination of the galaxy-
convergence angular cross-power spectrum C gκ

`
, the galaxy

angular auto-power spectrum C gg
`

, and the RSD parameter
β= f /bg . This estimator is useful because it is galaxy bias
free in the linear regime. Using HI instead of galaxies, we
can use 21-cm IM clustering surveys with the SKA in com-
bination with optical galaxy, CMB, or 21-cm lensing mea-
surements to measure ÊG. Pourtsidou (2016b) considered
various survey combinations and found that very precise
(< 1%) measurements can be achieved.

4.4 Tests of inflation

In the ΛCDM model, the Universe is flat, homogeneous,
and has perturbations characterised by an almost-scale-
invariant power spectrum of gaussian perturbations, gener-
ated by a period of accelerated expansion in the early Uni-
verse known as inflation (Bardeen et al., 1983; Mukhanov,
1985; Springel et al., 2005). This primordial power spec-
trum creates overdensities that we can observe through
temperature anisotropies in the CMB (White & Hu, 1997),
through brightness fluctuations in the 21-cm hydrogen line
(Barkana & Loeb, 2001; Loeb & Zaldarriaga, 2004), and with
the cosmological large-scale structure, once these pertur-
bations grow nonlinear (Ma & Bertschinger, 1995).

The simplest model of inflation is slow-roll inflation,
in which the expansion is driven by a single minimally-
coupled potential-dominated scalar field with a nearly flat-
potential. Any deviations from such a simple model, for
example if there are multiple fields contributing to the gen-
eration of fluctuations, or some change in the couplings,
will lead to modified spectrum of density perturbations that
can be detected by large-scale structure surveys. We con-
sider two such modifications: the presence of primordial
non-gaussianity and the production of primordial black
holes.

4.4.1 Primordial non-gaussianity

Standard single-field models of slow-roll inflation lead to
very small departures from gaussianity, but non-standard
scenarios can lead to a somewhat decoupled relation be-
tween the dynamics of inflation, and the perturbations that
are generated (e.g., multi-field inflation). These scenarios
can lead to a larger level of non-gaussianity (see, e.g., Bar-
tolo et al., 2004; Komatsu, 2010; Wands, 2010).

For the local or squeezed limit of the bispectrum, the
gauge-invariant Bardeen potential is given as a perturbative
correction to a gaussian random field φ:

Φ=φ+ fNL
(
φ2 −〈φ2〉) . (22)

The current highest precision measurement of the local
bispectrum amplitude ( fNL) is from the Planck CMB exper-
iment (Planck Collaboration et al., 2016d):

fNL = 0.8±5.0 (1σ). (23)

This result has effectively ruled out models of inflation
that generate a large local non-gaussianity. However, fu-
ture CMB experiments are not expected to significantly
improve the current constraints, and so new data is needed.
The CMB is localised at recombination, giving only 2-
dimensional information about the bispectrum and higher-
order. Galaxy surveys can access the distribution of matter
in three dimensions, and so measure many more modes
than the CMB, thus delivering the next level of precision.

In the linear regime, the primordial non-gaussianity can
generate a scale-dependent modification of the large-scale
halo bias (see, e.g., Dalal et al., 2008):

b(z,k) = b̄(z)+∆b(z,k)

= b̄(z)+ [b̄(z)−1] fNLδec
3Ωm H 2

0

c2k2T (k)D(z,k)
, (24)

where b̄(z) is the usual scale-independent bias, T (k) is the
transfer function (which is unity on large scales) and δec

(≈ 1.45) is the critical value of the matter overdensity for
ellipsoidal collapse. Because of the 1/k2 dependence, such
a signal for non-gaussianity only becomes important on
the very largest scales, which are accessible by a large-area
galaxy clustering survey with the SKA, using either the HI-
21cm emission (Camera et al., 2013a) or the radio contin-
uum emission (Raccanelli et al., 2015, 2017) of galaxies.
With the SKA2 HI galaxy redshift survey, it should be pos-
sible to reach σ fNL close to 1 (Camera et al., 2015a). Even
the best next-generation galaxy surveys will not be able
to bring σ( fNL) below 1, using single tracers of the matter
distribution (Alonso et al., 2015b); this represents a cosmic
variance floor to the capacity of galaxy surveys with a single
tracer.

In order to beat down the problem of cosmic variance, we
can use the multi-tracer method, which combines the auto-
and cross-correlations of the the two tracers in the same
of the Universe, allowing us to the measure the ratio of the
power spectra without cosmic variance (Seljak, 2009). The
MT technique is more effective when the bias and other fea-
tures of the tracers are as different as possible. Ferramacho
et al. (2014) have shown that the identification of radio pop-
ulations in continuum galaxy catalogues allows us to push
the limit on primordial non-gaussianity below fNL = 1, in
particular when redshift information for radio continuum
galaxies is recovered by cross-identification with optical
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Figure 18. Constraints on σ( fNL) against sky area for DES on its own
(solid, green) and for multi-tracer of DES and MeerKAT (dashed, blue: low
redshift band, dot-dashed, red: high redshift band). Figure reproduced
with permission, from Fonseca et al. (2017).

surveys (Camera et al., 2012). Alonso & Ferreira (2015) and
Fonseca et al. (2015) have subsequently shown that an SKA1
IM survey combined with LSST can achieveσ( fNL) < 1. Fon-
seca et al. (2017) have also shown that even the precursor
MeerKAT (intensity mapping) and DES (photometric sur-
vey) can improve on the Planck constraint (23) (see Fig. 18).
Fonseca et al. (2015) also illustrated how detection of pri-
mordial non-gaussianity is tightly related to other relativis-
tic effects important on the scale of the horizon. Failure
in properly accounting for all these ultra-large scale cor-
rections may lead to biased results in future cosmological
analyses (Camera et al., 2015b,c).

4.4.2 Primordial black holes

It is customary to parametrise deviations from perfect scale
invariance by a few variables, which capture the change
in the shape of the power spectrum at some pivot scale
k∗. The first of these numbers is the scalar tilt (1 − ns ),
which expresses a constant offset in the power-law index;
higher derivatives, or runnings, of the power spectrum,
are the scalar αs = dns /dlogk, and the second running
βs ≡ dαs /dlogk.

The scalar perturbations, ζk, have a two-point function
given by 〈

ζkζ
∗
k′

〉= Pζ(k)(2π)3δD (k+k′), (25)

where Pζ(k) is the scalar power spectrum, for which we can
define an amplitude as

log∆2
s (k) ≡ log

[
k3

2π2 Pζ(k)

]
= log As + (ns −1)log

(
k

k∗

)
+ 1

2
αs log2

(
k

k∗

)
+ 1

6
βs log3

(
k

k∗

)
, (26)

where As is the scalar amplitude. At the pivot scale of k∗ =
0.05 Mpc−1, Planck has measured a scalar amplitude As =
2.092× 10−9, with tilt ns = 0.9656 (Planck Collaboration
et al., 2018).

The primordial perturbations, ζ, generated during infla-
tion, create matter overdensities δ≡ ρ/ρ̄−1, where ρ is the
energy density and ρ̄ its spatial average. These matter per-
turbations source the temperature fluctuations in the CMB
and later on grow to seed the large-scale structure of the
universe. In linear theory, matter and primordial perturba-
tions are related to each other through a transfer function
T (k), so that the matter power spectrum is:

Pδ(k) = T 2(k)Pζ(k). (27)

In single-field slow-roll inflation, scale invariance is pre-
dicted to extend over a vast range of scales (Baumann,
2009; Planck Collaboration et al., 2016e). However, we only
have access to a small range of wavenumbers around the
CMB pivot scale k∗ = 0.05 Mpc−1. The amplitude, As , of
the (scalar) power spectrum and its tilt, ns , give us infor-
mation about the first two derivatives of the inflaton po-
tential when this scale, k∗, exited the horizon during in-
flation. Higher-order derivatives of this potential produce
non-zero runnings, which for slow-roll inflation generically
have values αs ∼ (1−ns )2 and βs ∼ (1−ns )3, beyond the
reach of present-day cosmological experiments (Adshead
et al., 2011). Next-generation cosmological experiments,
including SKA galaxy surveys and 21-cm measurements,
can measure these numbers.

Slow-roll inflation models generally predict |αs| ∼ 0.001
and |βs| ∼ 10−5. Any large deviation from these values
would disfavour single-field inflation models. Pourtsidou
(2016a) showed that combining a Stage IV CMB experiment
with a large sky 21-cm IM survey with SKA2-Mid can yield
σ(αs) ' 0.002, while a high redshift (3 < z < 5) intensity
mapping survey with a compact SKA2-Low-like instrument
gives σ(αs) ' 0.0007. Reaching the required precision on
the second running,βs, is difficult and can only be achieved
with very futuristic interferometers probing the Dark Ages
(Muñoz et al., 2017).

A detection of αs , or βs , would enable us to distinguish
between inflationary models with otherwise equal predic-
tions, and would shed light onto the scalar power spectrum
over a wider k range.

In the absence of any salient features in the power spec-
trum, such as small-scale non-gaussianities, the power in
the smallest scales will be determined by the runnings
of the scalar amplitude. This is of particular importance
for primordial black hole production in the early universe,
where a significant increase in power is required at the scale
corresponding to the PBH mass, which is of order k ∼ 105

Mpc−1 for solar-mass PBHs (Green & Liddle, 1999; Carr,
2005). It has been argued that a value of the second running
βs = 0.03, within 1−σ of Planck results, can generate fluctu-
ations leading to the formation of 30 M¯ primordial black
holes if extrapolated to the smallest scales (Carr et al., 2016),
which could make up the dark matter (Bird et al., 2016).

Combining galaxy-clustering SKA measurements to fu-
ture CMB experiments will enhance measurements of these
parameters, so that we will be able to measure significant
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departures from single-field slow-roll inflation. Moreover,
long baseline radio interferometers, observing the epoch
of reionisation, will be able to measure the running αs with
enough precision to test the inflationary prediction. How-
ever, to reach the sensitivity required for a measurement
of βs ∼ 10−5, a Dark Ages interferometer, with a baseline of
∼ 300 km, will be required.

A large positive value of the second running, βs , has con-
sequences for PBH formation. There has been recent in-
terest in PBHs as a dark matter candidate (see, e.g., Carr
& Hawking, 1974; Meszaros, 1974; Carr et al., 2016), since
they could explain some of the gravitational-wave events
observed by the LIGO collaboration (Abbott et al., 2016b;
Bird et al., 2016).

If they are to be the dark matter, PBHs could have formed
in the primordial universe from very dense pockets of
plasma that collapsed under their own gravitational pull.
The scales in which stellar-mass PBHs were formed are or-
ders of magnitude beyond the reach of any cosmological
observable. However, if the inflationary dynamics were fully
determined by a single field, one could extract information
about the potential V (φ) at the smallest scales from V (φ∗)
at the pivot scale (and its derivatives) by extrapolation.

The formation process of the PBHs is poorly understood
(Green & Liddle, 1999), so one can as a first approximation
assume that PBHs form at the scale at which∆2

s (k) becomes
of order unity. It is clear that any positive running, if not
compensated by a negative running of higher order, will
create enough power in some small-enough scale to have
∆2

s (k) = 1. Nonetheless, the mass of the formed PBHs is
required to be larger than ∼ 1015 g, to prevent PBH evapo-
ration before z = 0, which sets a limit on the smallest scale
where PBHs can form of of kpbh = 1015 Mpc−1.

In order to produce PBHs of ∼ 30 M¯, as suggested
by Bird et al. (2016) to be the dark matter, the relevant scale
is k ∼ 105 Mpc−1. This would force the second running to
be as large as βs ≈ 0.03, which will be tested at high signifi-
cance by SKA2 galaxy surveys and IM measurements.

It is interesting to note that the values of βs required for
PBH formation are ∼ 10−3, two orders of magnitude larger
than the standard slow-roll prediction (Kosowsky & Turner,
1995), and are therefore much easier to probe.

Detailed investigations of constraints on inflationary pa-
rameters related to PBH production and observational con-
straints have been performed recently, by authors including
Young & Byrnes (2015); Young et al. (2016); Cole & Byrnes
(2018); Germani & Prokopec (2017); Muñoz et al. (2016);
Pourtsidou (2016a); Sekiguchi et al. (2018). We refer to those
papers for accurate and thorough observational constraints
and predictions.

4.5 Tests of Fundamental Hypotheses

4.5.1 Tests of the Cosmological Principle

Testing the foundations of the standard cosmological
model is an important part of strengthening the status of

this model. One of the basic pillars of cosmology is the
large-scale FLRW geometry, in other words, the cosmolog-
ical principle: on large enough scales the universe is on
average spatially homogeneous and isotropic. This princi-
ple consists of two parts:

Statistical isotropy of the Universe around us: There
is a large body of separate evidence that the Universe
is isotropic, on average, on our past lightcone. The
strongest such evidence comes from the observed level of
anisotropies of the CMB. The observed dipole in the CMB
is consistent with our proper motion with respect to the
CMB rest frame (see Kogut et al., 1993; Aghanim et al., 2014).
Thus, once corrected for this proper motion, the CMB does
indeed appear isotropic around us to one part in 105, a level
perfectly consistent with the standard model of cosmology
supplemented by small fluctuations generated early during
a phase of inflation. In addition, a generic test of Bianchi
models presented by Saadeh et al. (2016) with CMB strongly
disfavours large-scale anisotropic expansion.

The Copernican Principle: we are typical observers of
the Universe; equivalently: we are not at a special spa-
tial location in the Universe. Relaxation of this principle
has sometimes been invoked as a solution to the dark
energy problem (see, e.g., Garcia-Bellido & Haugboelle,
2008; February et al., 2010), but studies of kinetic Sunyaev-
Zeldovich effects have strongly disfavoured such solutions;
see Bull et al. (2012) and Clifton et al. (2012a). However, the
principle itself remains to be tested accurately, irrespective
of the actual solution to the dark energy problem.

It is clear that these two ingredients, which, when com-
bined, imply the cosmological principle, have different sci-
entific statuses. On the one hand, the observed statistical
isotropy around us is easily constrained by direct obser-
vations down our past lightcone. On the other hand, the
Copernican Principle provides a prescription about what
happens off our past lightcone, both in our causal past and
outside of our causal past. Assessing its validity is therefore
much more difficult.

One can find detailed accounts of various ways one can
constrain the large-scale geometry of the Universe from
observations in two recent reviews (Clarkson & Maartens,
2010; Clarkson, 2012). Some detailed discussions of the
prospects of the SKA for future tests of the cosmological
principle are presented by Schwarz et al. (2015). In particu-
lar, the SKA will be ideal to measure the cosmic radio dipole
and to test if it aligns with the CMB dipole, as it should be
the case in standard cosmology. A recent analysis of the
WISE-2MASS optical catalogue by Bengaly et al. (2017) has
not found any significant anisotropy in the large-scale struc-
ture distribution, but the SKA will allow us to pinpoint the
direction and amplitude of the dipole with great accuracy
(e.g., with SKA2, one will be able to determine the direction
of the dipole to within 1 degree; see Schwarz et al., 2015),
and to compare them directly with the CMB measurement,
since the SKA will probe a super-horizon size volume.
Tests of the Copernican Principle, on the other hand, are
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much harder to design, and are usually much less precise.
However, two promising techniques have emerged, which
allow one to get some information on what happens off our
past lightcone. First, a direct comparison of the transverse
and radial scales of BAOs gives one access to a test of possi-
ble anisotropies in the local expansion rate of the Universe
away from us (see Maartens, 2011; February et al., 2013).

Second, direct measurements of the redshift-drift, while
a remarkable probe of the nature of dark energy (see §4.2.2),
can also help constrain the Copernican Principle, as pre-
sented by Bester et al. (2015, 2017). Bester et al. (2017)
use a fully relativistic way of reconstructing the metric of
the Universe from data on our past lightcone, with a mini-
mal set of a priori assumptions on the large scale geome-
try. Focusing on spherically symmetric (isotropic) observa-
tions around a central observer (in theΛ-Lemaître-Tolman-
Bondi class), one can characterise any departure from ho-
mogeneity by the scalar shear of the cosmological fluid,
σ2 = 1

2σi jσ
i j . Figure 19 presents constraints on this shear

from current optical data (label D0), and for a forecast with
radio-astronomy data (labels D1 and D2) generated around
a fiducial ΛCDM model. D0 uses Type Ia supernova data
from Suzuki et al. (2012) to determine the angular distance
D(z), cosmic chronometre data from Moresco et al. (2011);
Moresco (2015) to determine the longitudinal expansion
rate H‖(z), and stellar ages from Sneden et al. (1996) to put
a lower bound on the age of the Universe t0. D1 uses only
Type Ia supernova data from Suzuki et al. (2012) and fore-
cast for SKA2 BAO in intensity mapping for D(z), as well as
forecast for a redshift drift experiment like CHIME, from
Yu et al. (2014). Finally, D2 consists of all the combined in-
puts of D0 and D1. Details of the methods are presented
by Bester et al. (2017) and references therein. One clearly
sees that the redshift drifts are the best data to improve on
current constraints.

Besides, they also allow for a remarkable determination
of the value of the cosmological constant without assuming
the Copernican Principle: as shown in Figure 20, in the class
of spherically-symmetric, but inhomogeneous models, the
inclusion of redshift drift data allows one to constrainΩΛ
at less that 10%.

4.5.2 Tests of local Lorentz invariance

Cosmological models inspired from fundamental theories
may lead to violation of LLI. The strongest constraints on
such proposals will be set by pulsar experiments, as dis-
cussed in §3.1.1.1. These constraints are proportional to
the timing precession of binary pulsars, and hence will be
dramatically improved with the SKA project.

A cosmological model that leads to LLI violation and has
so far passed all other tests is the D-material Universe (El-
ghozi et al., 2016), a model which may appear as the low-
energy limit of certain brane theories (Mavromatos & Sakel-
lariadou, 2007) in the context of string theories with large
extra dimensions. This cosmological model aims at provid-
ing a justification for the phenomenologicalΛCDM model,

Figure 19. Constraints on the matter shear normalised by the angular
distance, D, as a function of redshift on our current past lightcone. The
blue regions, from light to dark, correspond to the upper 2-σ contours
reconstructed from currently available data (i.e., simulation D0), forecast,
D(z) and redshift-drift data (i.e., simulation, D1) and finally all of the
above, including H(z) data from longitudinal BAO measurements (i.e.,
simulation, D2). The hatched region corresponds to the intrinsic shear
present in a perturbed FLRW model with a uv-cutoff of 100 Mpc. For
comparison we also show two spherically symmetric but inhomogeneous
models, one with a homogeneous bang time tB (r ) = 0 (labelled LTB1) and
one without (labelled LTB2).

which relies on the existence of two unknown quantities,
namely a positive cosmological constant,Λ, and CDM com-
ponent, both introduced in order to fit current astrophysi-
cal data.

According to string theory, matter consists of one-
dimensional objects, the strings. Different vibrations of
a string represent different particle types, while splitting
and joining of elementary strings represent particle inter-
actions. String ends live on a surface that can be thought
of as a large massive object, a Dirichlet brane (D-brane),
in spacetime. Branes of different dimensionality, depend-
ing on the particular string theory, are thought to be em-
bedded within a higher dimensionality background, the
bulk. In this framework, let us consider a compactified
(3+1)-dimensional brane propagating in a higher dimen-
sional bulk populated by zero-dimensionality (point-like)
D-branes, called D-particles, since they have all their spatial
dimensions wrapped around compact space. As the (3+1)-
dimensional brane moves in the bulk, D-particles cross it,
resulting in foamy structures. Since branes are by defini-
tion the collection of the end points of open strings, parti-
cle excitations (described by open strings) propagate in a
medium of D-particles. Thus, brane-puncturing massive
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Figure 20. 2-σ constraints onΩΛ andΩm on the worldline of the central
observer today for the various combinations of data presented in the text.

D-particles can be captured by electrically neutral matter
open strings, a process that is described by the Dirac-Born-
Infeld action. This scenario leads to a bi-metric theory9

(Mavromatos & Sakellariadou, 2007), with a vector field ap-
pearing naturally as the result of the recoil velocity field
of D-particles. The recoil results in a metric deformation
of the neighbouring spacetime, and in Lorentz invariance
being locally broken. The latter implies the emergence of
vector-like excitations that can lead to an early era of ac-
celerated expansion, in the absence of an inflaton field,
and contribute to large scale structure (enhancing the dark
matter component) and galaxy formation (Ferreras et al.,
2008, 2009; Mavromatos et al., 2009). The D-material uni-
verse has been shown to be in agreement with gravitational
lensing phenomenology (Mavromatos et al., 2013). More-
over, the medium of D-particles leads to recoil velocity field
condensates that induce an effective mass for the gravi-
ton (Elghozi et al., 2017), in agreement with the constraints
imposed from the Advanced LIGO interferometric data
(Abbott et al., 2016a,b; Abbott et al., 2017). So far, the D-
material universe is in agreement with observational con-
straints (Mavromatos et al., 2013; Elghozi et al., 2017)

This, so far successful, cosmological model with the ad-
vantage of being based on a microscopic theory, can be
further tested with the SKA (Janssen et al., 2015). LLI viola-
tion leads to modifications of the orbital dynamics of binary
pulsars, as well as to modifications of the spin evolution

9A bi-metric theory has two metrics: (1) the ‘Einstein frame’ metric, gµν,
that satisfies the canonically Einstein-Hilbert action, and (2) a modified
physical metric that matter and radiation ‘feel’; it depends on gµν but also
on scalar and vector fields.

of solitary pulsars (Shao et al., 2013), while for the latter it
also leads to a spin precession with respect to a fixed di-
rection (Shao & Wex, 2012). Hence, LLI violation implies
changes in the time-derivative of the orbital eccentricity,
of the projected semi-major axis, and of the longitude of
the periastron, while it changes the time-behaviour of the
pulse profile.

Since the accuracy of timing precession of binary pulsars
will be significantly improved with the SKA project, one
expects to further constrain models leading to LLI violation,
such as the cosmological model mentioned above. For a
given pulsar, the timing precision scales with the signal-
to-noise ratio of its pulse profile. As simulations have indi-
cated, if the SKA improves the signal-to-noise ratio of pulse
profiles by a factor of 10, the Lorentz-violating coefficients
will be constrained by the same factor, within only a 10-year
cycle of observations. Combining these SKA observations
with 20 years of pre-SKA data, one may be able to constrain
the Lorentz-violating coefficients up to a factor of 50 (Shao
et al., 2015).

4.6 Summary

In this section, we have reviewed how data from the SKA
will open a new era for radio cosmology, allowing us to test
the foundations of the concordance cosmological model to
unprecedented accuracy. Furthermore, we argue that the
SKA’s commensality with other observational campaigns,
aimed at scrutinising the Universe’s large-scale structure in
the optical and NIR bands, will allow us to have indepen-
dent checks of crucial cosmological observations, de facto
reinforcing statistical analyses on long-standing problems
such as the nature of dark energy or the validity of general
relativity on cosmological scales.

Below, we list the main points considered in the section:

• Tests of cosmic acceleration (see §4.2). The zeroth order
test to understand whether the late-time cosmic ex-
pansion is truly due to a cosmological constant term
or if it is a dark energy component that dominates the
Universe’s present-day evolution is to check the con-
stancy of the equation of state of dark energy, w(z).
The SKA will be able to do this both at the level of
background and cosmological perturbations. The lat-
ter will be achieved mostly via BAO measurements, for
which 21cm intensity mapping will represent a unique
added value of the SKA, compared to usual galaxy sur-
veys. The former is envisaged through measurements
of the redshift drift, which will allow us to probe the
Hubble parameter directly and not as an integrated
quantity, e.g., as for type Ia supernovae.

• Tests of gravity (§4.3). Although general relativity has
been tested to exquisite precision in the solar system
and in strong gravity regimes, we still extrapolate it for
orders of magnitude when we use it to interpret cos-
mological data. For this reason, the possibility of devia-
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tions from Einsteinian gravity are particularly interest-
ing in the context of dark energy, for which a modified
gravity model may represent a viable alternative. The
main means by which the SKA will test this hypothesis
is the study of the growth of large-scale structure. On
the one hand, the SKA will complement optical/NIR
surveys such as those to be performed by Euclid or
LSST in quantifying deviations from general relativity
at the level of the matter power spectrum, employing
21cm intensity mapping, HI and continuum galaxy
number counts, as well as radio weak lensing cosmic
shear. On the other hand, the SKA depth and sky area
will allow us to probe for the first time the largest cos-
mic scales, which see the peak of as-yet-undetected
relativistic effects.

• Tests of inflation (§4.4). Those same extremely large
scales where relativistic effects hide also retain pris-
tine information about inflation. One of the most ro-
bust prediction of inflation is a certain amount of non-
gaussianity in the distribution of primordial density
fluctuations. By probing the growth of structures on
the scale of the horizon and, in particular, by cross-
correlating multiple tracers of the underlying dark mat-
ter distribution, we will be able to push the limits on
primordial non-gaussianity, eventually reaching sub
fNL = 1 precision. Moreover, the study of the matter
power spectrum over a wide range of scales will allow
us to test the hypothesis of primordial black holes, for
which a significant increase in power is required at the
scale corresponding to the primordial black hole mass.

• Tests of the cosmological principle (§4.5.1). By mea-
suring the cosmic radio dipole and comparing it to
the observed CMB dipole, the SKA is ideally suited to
test the hypothesis of statistical isotropy of the Uni-
verse around us. Furthermore, redshift drift measure-
ments can also help constrain the Copernican Princi-
ple, in particular by putting strong bounds on inho-
mogeneous cosmological models, such asΛ-Lemaître-
Tolman-Bondi cosmologies.

5 DARK MATTER AND ASTROPARTICLE PHYSICS

5.1 Introduction

The detection of dark matter remains a key goal of mod-
ern cosmology and astrophysics. After three decades of
searching, the case for its existence remains stronger than
ever, with measurements from Planck (Planck Collabora-
tion et al., 2018) reinforcing the hypothesis that massive,
non-luminous matter comprises 26% of the total energy
density of the Universe. Radio astronomy in particular has
played a critical role in constraining the properties and evo-
lution of DM halos since their initial prediction, particularly
in the observation of HI rotation curves well beyond the op-
tical radius of galaxies (see, e.g., Bosma, 1981a,b; van Albada
et al., 1985; Begeman, 1989). Future radio observations may

Figure 21. The mass and cross-section for various dark matter particle
candidates. Figure taken from Park (2007).

also be crucial for identifying the DM among the many
suggested candidates. Weakly interacting massive particles
(WIMPs) have been a primary focus, a category of new,
principally fermionic, particles predicted from extensions
to the standard model of particle physics. However, atten-
tion has also turned to a variety of other candidates: recent
observations at LIGO (Bird et al., 2016) have re-invigorated
the search for primordial black holes, and the search for
axions has received significant support in recent years (see
Fig. 21 and Park, 2007, for an overview of the dark matter
parameter space).

The development of the SKA marks a significant advance-
ment in radio astronomy and offers the possibility of direct
or indirect detection of dark matter. One of the major chal-
lenges in doing this is to disentangle the DM signal from
astrophysical signals. With its huge improvement in sen-
sitivity, resolution, and versatility, the SKA will massively
increase our understanding of astrophysical backgrounds
and facilitate disentanglement. Our key goal in compiling
this work is to bring together the areas in which the SKA and
its precursors can make its greatest contribution to both
cosmology and particle physics. §5.2 looks at ways the SKA
may help to constrain general DM properties; §5.3 reviews
the search for DM candidates and details ways in which the
SKA can support the search for WIMPs, axions and PBHs in
particular; and §5.4 investigates ways in which the SKA can
constrain astroparticle properties.

5.2 Dark Matter Properties

HI studies played a major role in establishing the presence
of DM in gas rich galaxies. It became readily clear, however,
that due to the well known degeneracy between models
with different stellar mass-to-light ratios, additional dynam-
ical methods were needed to establish the amount of DM
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accurately. Even though some work argues for nearly max-
imum disks in Milky Way type galaxies, other work using
stellar velocity dispersions contradicts this (see for example
Bosma, 2017, and references therein). For bright edge-on
galaxies, the star formation intensity is such that a thick HI
disk is set up whose kinematics show rotation speeds that
are smaller than those in the plane of the disk (for example
Oosterloo et al., 2007, for NGC 891). This greatly compli-
cates the analysis of flaring HI disks, which are expected to
exist in the outer parts of galaxies if the dark halo is near
spherical, and which can help constrain the shape of the
dark halo. Perhaps this latter problem can still be studied
for a number of small galaxies, which have a more quies-
cent star formation activity. Through HI intensity mapping
and observation of the HI power spectrum, SKA will be able
to provide new insights into galaxy formation and evolu-
tion, thus providing greater clarity on the properties of DM.
Most particularly, such observations will provide a window
into DM distribution, DM halo abundance and clustering,
and the thermal nature of DM.

5.2.1 Dark matter distribution

Understanding how HI correlates to the underlying mass
of the DM halo is crucial to constraining DM properties
from astrophysical observations. Observational constraints
on HI abundance and clustering in the post-reionisation
(z < 6) Universe can be divided into three categories: (1) 21-
cm emission line galaxy surveys at low redshifts (z ∼ 0−1),
(2) 21 cm intensity mapping (attempted at z ∼ 1) measur-
ing the integrated, unresolved emission from galaxies, and
(3) higher redshift damped Lyman-α absorption surveys
(at redshifts z > 1.5). Future facilities such as the SKA will
attempt to provide both galaxy surveys as well as intensity
maps at moderate and high redshifts (z > 1), thus enhanc-
ing our understanding in this field.

The HI intensity power spectrum, [δTHI(k, z)]2 (as pro-
vided by, for example, Battye et al., 2013), couples contribu-
tions from (1) the astrophysics of HI in galaxies that affects
the brightness temperature and the HI bias, and (2) the un-
derlying DM power spectrum. Padmanabhan et al. (2015)
combine the astrophysical uncertainties from the available
data to derive estimates of the observable HI power spec-
trum using current and future facilities. The astrophysics
needs to be modelled effectively in order to recover the un-
derlying cosmological parameters, and in the future also
enable constraints on the DM power spectrum via HI exper-
iments. This can be done by using a data-driven halo model
framework for neutral hydrogen in the post-reionisation
Universe (Padmanabhan & Refregier, 2017; Padmanabhan
et al., 2017). The uncertainties on the astrophysical parame-
ters are quantified using a Markov chain Monte Carlo tech-
nique applied to existing HI observations. This not only
offers clues towards the baryonic gas evolution, but also
enables insights into the amount of astrophysical degra-
dation expected in forecasting the cosmological and DM
properties.
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Figure 22. Upper panel: we use a box of the EAGLE hydro-dynamical sim-
ulation suite at z = 0.5 to derive the HI intensity mapping power spectrum
(orange line) as well as several optical selected galaxy sample power spec-
tra using the magnitudes in the SDSS u and g filters. The black line marks
the power spectrum of all galaxies in the simulation volume. Lower panel:
We cross-correlate the HI intensity maps with respective galaxy selections.
The dashed lines mark the observed cross-power spectra. The solid lines
have been shot-noise corrected where the shot-noise is proportional to
the average HI mass in the optical galaxies.
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Accurate cosmological interpretation of the HI intensity
mapping power spectrum requires profound understand-
ing of the manner in which the HI gas traces the underly-
ing DM distribution, most commonly expressed through
the HI bias (Sarkar et al., 2016; Castorina & Villaescusa-
Navarro, 2016). From numerical simulations, the HI bias is
observed to scale-dependently increase on smaller scales,
for wavenumbers k ≤ 1.0. Figure 22 shows an example of
this effect using the HI intensity mapping power spectrum
derived from a (100 Mpc)3 volume of the hydrodynamical
EAGLE simulation (Lagos et al., 2015; Crain et al., 2016) at
z = 0.5 (marked in orange), in comparison to several power
spectra of galaxy samples selected by their Sloan Digital Sky
Survey (SDSS) u and g luminosities. The total galaxy power
spectrum as a tracer for the DM is marked in black for com-
parison. Measuring the HI bias in future intensity mapping
observations at low and high redshifts as seen by SKA1-Mid
and SKA1-Low, respectively, will be crucial to gaining a new
understanding of how HI correlates with the underlying
host DM halo mass as well as to the properties of the host
galaxy. The latter can be facilitated by the cross-correlation
of HI intensity maps with different galaxy samples, allow-
ing measurement of the cross-correlation coefficients of
HI to galaxy properties such as age, star-formation activ-
ity, AGN activity, and halo mass. The shot-noise on the
cross-correlation power spectrum determines the average
HI mass of the optical galaxy sample, constraining the scal-
ing relation of HI mass to optical galaxy tracers (Wolz et al.,
2017b). An example of these effects can be seen in the lower
panel of Figure 22, which shows the cross-correlation of
(u−g)-magnitude selected galaxy samples with HI inten-
sity mapping signals given by the EAGLE simulation. If the
shot-noise is not taken into account, the cross-correlations
of different galaxy selections exhibit vastly varying scale-
dependent clustering behaviour on smaller scales, which is
relieved once the shot noise is correctly removed as marked
by the solid lines.

SKA1-Mid and SKA1-Low will both be equipped to per-
form HI intensity mapping observations spanning 0 < z < 6.
The resulting HI power spectrum measurements will allow
the determination of the scale-dependence of the HI bias,
as well as the absolute amplitude of the HI bias when em-
ploying outside constraints for the HI energy density,ΩHI.
The cross-correlations of these observations with galaxy
surveys performed by Euclid or LSST will provide additional
insights into the coupling of galaxy and halo properties to
the HI distribution.

The all-sky surveys planned with the SKA precursors en-
able the selection of an adequate sample of relatively un-
perturbed galaxies, allowing deeper HI observations to be
combined with extensive diagnostics of the kinematics of
the visible parts using integral field units. Such data will
contain crucial information on the kinematics of the gas,
and hence can be used to study the DM problem. Improve-
ment in constraining the stellar mass-to-light ratios using
multi-wavelength data can also be expected.

5.2.2 Thermal characteristics of dark matter

Determining the magnitude of the DM thermal velocities
will give us clues to unveiling the nature of DM. We already
know that DM cannot be hot, that is, it cannot be mostly
made up of particles with large thermal velocities such as
neutrinos, since this would change the structure formation
paradigm from bottom-up to top-down. On the other hand,
the possibility of DM having relatively small thermal veloci-
ties (i.e., warm dark matter) is not in contradiction with cos-
mological observations. Currently, the tightest constraints
come from observations of the Lyman-α forest (Iršič et al.,
2017) with mWDM > 5.3 keV at 2σ confidence, but a large pa-
rameter space remains unexplored and could in principle
be investigated. The SKA can further constrain these WDM
properties by measuring the global 21 cm evolution and
power spectra in different frequency bands. The following
sections summarise the effect of such thermal properties
and the prospects for measurement.

5.2.3 Warm dark matter and the HI power spectrum

The amplitude and shape of the 21 cm power spectrum is
sensitive to the abundance, clustering and HI mass con-
tent of DM halos. Therefore, it is expected that WDM may
induce some effects on it since it affects significantly the
properties of low-mass halos.

The impact of WDM on halo properties has been stud-
ied in some detail, and an analytic formalism, such as the
halo model, has been extended to include it (Dunstan et al.,
2011). It can be shown that WDM induces the expected cut-
off in the abundance of low-mass halos while it increases
the amplitude of the halo bias for all masses. Through hy-
drodynamic simulations, Carucci et al. (2015) showed that
halos of the same mass host a very similar amount of HI
in cosmologies with CDM and WDM. Those three ingredi-
ents imply that the amplitude of the thermal velocities of
WDM will leave a signature on the 21 cm power spectrum.
This was investigated in detail by Carucci et al. (2015), who
showed that both the 1-halo and 2-halo terms of the 21
cm power spectrum are affected by WDM. 21 cm intensity
mapping observations can therefore be used to constrain
the nature of DM.

Carucci et al. (2015) prepared forecasts by using the re-
sults of hydrodynamic simulations with CDM and WDM
and pointed out that 5000 hours of interferometer intensity
mapping observations by SKA1-Low can be used to rule out
a WDM model with an effective particle mass of 4 keV at 3σ.
These are competitive constraints that can complement
bounds from independent probes such as those from the
Lyman-α forest (Iršič et al., 2017).

Figure 23 shows curves for CDM with the lower f∗ value
of f∗/ f∗fid = 0.1, which in our model delays star forma-
tion such that the minimum value of T̄S occurs roughly at
the same time as in the WDM example used. Since lower-
ing f∗ reduces the photon production efficiency in stars
of all masses, the X-ray heating rate increases at a much
slower rate after the minimum in T̄S as compared to the two
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Figure 23. Mean spin temperatures, T̄S, for CDM and WDM models. The
dotted curves show T̄S for a fiducial CDM model (blue), WDM with mX =
3keV (red), and CDM with f∗/ f∗fid = 0.1 (green). In addition, the mean
kinetic temperature T̄K of each model is plotted with a dashed curve in
the same colour used for T̄S. The grey solid line is the CMB temperature.
Figure taken from Sitwell et al. (2014).

other cases shown. In the case of both WDM and lowering
star-formation efficiency, the spin temperature, TS, and gas
temperature, TK, undergo a lower value in their absorption.
The only difference is that the X-ray heating for the WDM
model with mX = 3 keV heats up the gas temperature much
faster than for CDM with f∗/ f∗fid = 0.1.

In Figure 24, we compare the mean 21 cm brightness
temperature, δT̄b, for a fiducial CDM model (solid line),
for WDM models with mX = 2,3,4 keV (upper panel) and
for a CDM model with f∗/ f∗fid = 0.03,0.1,0.5 (lower panel).
One can see that the WDM model with a particle mass of a
few keV can substantially change the mean 21-cm bright-
ness temperature evolution. The CDM model with a lower
value of f∗ can delay the strong absorption signal, but the
absorption trough is much wider than for WDM.

Figure 25 shows the evolution of the power spectrum
for the modes k = 0.08 Mpc−1 and k = 0.18 Mpc−1, show-
ing a three peak structure, where the peaks from high to
low redshift are associated with inhomogeneities in xα, TK,
and xHI, respectively. When inhomogeneities in TK are at
their maximum, the power at k = 0.08,0.18 Mpc−1 can be
boosted in WDM by as much as a factor of 2.4,2.0(1.3,1.1)
for mX = 2 keV (mX = 4 keV). When inhomogeneous in xα
are near their height, the power at k = 0.08 Mpc−1 can be
increased by a factor of 1.5 (1.2) for WDM with mX = 2 keV
(mX = 4 keV).

The on-going and future interferometric radio telescopes
such as MWA Phase 1, HERA and SKA1-Low may be used
to detect the boost in power associated with WDM models.
In Figure 25 we plot the forecasts of 1σ power spectrum
thermal noise levels for 2000 hours of observation time,
computed by Mesinger et al. (2014) and Sitwell et al. (2014)
for MWA Phase 1, HERA and SKA1-Low. We can see that
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Figure 24. Mean 21 cm brightness temperature δT̄b as a function of red-
shift for WDM models (upper panel, the dashed, dotted-dashed, and dot-
ted curves are for mX = 2,3,4 keV, respectively), and CDM model (lower
panel) with f∗/ f∗fid = 0.03,0.1,0.5 (the dashed, dotted-dashed, and dotted
curves), respectively. Figure taken from Sitwell et al. (2014).

MWA may be able to marginally detect the boosted power
of mX = 2 keV model at the reionisation and X-ray heating
peaks. But SKA1-low will be able to easily measure the ex-
cess of power at these scales for mX = 2,4 keV models over
a wide range of redshifts.

5.2.4 Determining thermal properties from the epoch of
reionisation

Free-free emission from an ionised medium can produce
a potentially remarkable distortion in the CMB spectrum,
particularly at long wavelengths. The baryonic matter vari-
ance can then be calculated by integrating the correspond-
ing power spectrum over a suitable interval:

σ2(z) = 1

2π2

∫
P (k, z)k2dk. (28)

The matter density contrast depends on the cosmological
model and parameters. In particular, the nature of DM par-
ticles affects the power spectrum of density perturbations
at small scales, with implications for the clumping factor.

The CDM standard cosmological model predicts the exis-
tence of primordial cold and collisionless particles with neg-
ligibly small velocity dispersion at the epoch of radiation-
matter equilibrium and a derived matter power spectrum
supporting small scale structure formation. WDM particles
have intrinsic thermal velocities, and so exhibit larger veloc-
ity dispersions with respect to CDM particles and charac-
teristic free streaming scales that contribute to determining
clustering properties, as the small scale structure formation
is suppressed. Typical particle masses are in the keV range,
mwarm ∼ 1−10 keV (Boyanovsky et al., 2008), which is in-
termediate between the traditional cold (∼ 10−102 GeV)
and hot DM masses (∼ few eV). Sterile neutrinos or grav-
itinos are possible candidates for WDM. The suppression
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Figure 25. Evolution of the power spectrum of the brightness temperature for WDM with (left panel) mX = 2keV and (right panel) mX = 4keV. The top
panels show power spectra at k = 0.08, 0.18 Mpc−1 for the WDM (dashed) and the CDM model (solid). The bottom panels show the difference in the
power spectrum between the WDM and CDM models. The dotted curves show forecasts for the 1σ power spectrum thermal noise as computed by
Mesinger et al. (2014) and Sitwell et al. (2014) with 2000 hours of observation time. The dotted green and red curves are the forecasts for the MWA and
HERA, respectively, and the dotted blue line represents the forecast for SKA1-Low. This Figure is taken from Sitwell et al. (2014).

of fluctuations in ΛWDM models on scales smaller than
the WDM particle free-streaming scale, corresponding to a
cut-off of the total matter power at large k, slows down the
growth of structure (Viel et al., 2005) and can be described
by the transfer function for different cut-off values.

While the formation of the first generation of stars is
affected by the adopted cosmological model, large-scale
structure distributions are independent of the model (Gao
& Theuns, 2007). The power spectrum drop for WDM mod-
els with different particle properties can be approximated
by a CDM model with a suitable cut-off kmax, typically in
the range ' (20−103). Thus, σ2(z) mainly depends on two
crucial parameters, the amplitude and small scale cut-off
of perturbations.

With respect to the case of uniform matter density, the
non-negligible IGM density contrast implies an amplifica-
tion factor ' (1+σ2[z]) of the diffuse free-free emission
triggered by a specific reionisation process (Trombetti &
Burigana, 2014). Therefore, once the astrophysical scenario
is well understood, free-free signatures could be used to
test also DM properties through their effect on the power
spectrum at small scales.

5.3 Dark Matter Searches

The nature of DM will remain a mystery without the clear
and unequivocal detection of its particle physics nature10.
A surprisingly common prediction of many particle physics
models is that DM is not completely dark. It can either
couple to standard model particles with a very weak inter-
action or it can self-annihilate or decay, and via cascading

10For a review on DM direct and indirect searches see, for example, Gask-
ins (2016); Conrad & Reimer (2017), and see Athron et al. (2017a,b) for the
accelerator-based status.

processes eventually end up as standard model particles
such as neutrinos, photons, positrons and other antimatter
elements (Bertone et al., 2005).

Such particles may be observed through different chan-
nels. Neutrinos and photons, usually in the form of γ-rays,
have zero electromagnetic charge and consequently main-
tain their original trajectory. Conversely, charged particles
are effectively isotropised by their tangled propagation in
Galactic magnetic fields. The acceleration of the charged
particle products in the magnetic fields do however pro-
vide an additional detection channel via the emission of
secondary radiation such as bremsstrahlung, Compton or
synchrotron radiation. The latter can reach frequencies
from MHz to a few hundred GHz, and needs to be iso-
lated from overwhelming and complex astrophysical back-
grounds that mask the expected DM signal both morpho-
logically and in spectral features. The DM signals often pos-
sess features that differentiate them from the backgrounds
(typically, a non-power-law spectrum and a cut-off at an
energy related to the DM mass). This is not observed in
the data (for example from Fermi, HESS and MAGIC) and
therefore relevant bounds on DM properties (particle mass,
annihilation or decay rate) are the typical outcome (for
example, Gaskins, 2016; Conrad & Reimer, 2017, and refer-
ences therein).

The most studied option is the so-called WIMP, elemen-
tary particles with a mass from a few GeV to several TeV, en-
dowed with weak or sub-weak type interactions. In particu-
lar, γ-ray observations are considered a promising avenue
to probe WIMP scenarios (Bringmann & Weniger, 2012), but
γ-rays alone cannot usually be disentangled from the astro-
physical sources, and radio astronomy can play a crucial
role in background determination. Although DM targets
(clusters, galaxies, galaxy satellites or subhalos) appear to
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be invisible individually, their cumulative emission might
be detectable with advanced techniques. We will discuss
possible general signals in §5.3.1 and more specific cases
in §5.3.2, §5.3.4 and §5.3.5. But as we will discuss in §5.3.3
and §5.3.6, other options should also be considered.

5.3.1 Photon fluxes from WIMP-like dark matter

Positrons and electrons propagating in magnetic fields
will lose energy (mainly) due to synchrotron radiation
and inverse Compton scattering (Sarazin, 1999). Other
ways to lose energy, such as Coulombian interactions or
bremsstrahlung are subdominant. For the energies and
magnetic fields relevant for DM positrons in the Milky Way,
the resulting radiation has frequencies from MHz to a few
hundred GHz. For high-energy positrons and electrons
propagating in a Galactic environment, the density per unit
energy (ψ in units of cm−3 GeV−1) is well described as a
purely diffusive equation (Delahaye et al., 2008):

−K0ε
δ∇2ψ− ∂

∂E
(b(E)ψ) =Q(~x,E), (29)

in which the parameters K0 and δ model the diffusion of
the positrons in the Galactic magnetic field, b(E ) describes
the loss of energy, and ε= E/1GeV.

The source term Q(~x,E) contains the information on
the source that injects positrons into the environment. If
the only primary source of positrons is the annihilation of
WIMP particles with mass M , the source term becomes

Q(~x,E) = 1

2
〈σv〉

(
ρ(~x)

M

)2 ∑
i
β j

dN j
e

dE
, (30)

where β j is the branching ratio of the different annihila-
tion channels. The thermally averaged annihilation cross-
section, 〈σv〉, is mainly described by the theory explaining
the WIMP physics, whereas the number of positrons and
electrons produced in each decay channel per energy in-
terval, d N i

γ/dEγ involves decays and/or hadronisation of
unstable products (e.g., quarks and gauge bosons) involv-
ing non-perturbative effects related to quantum chromo-
dynamics (QCD), which can be obtained from numerical
software packages such as DarkSUSY11 or micrOMEGAs12

based on PYTHIA Monte Carlo event generator13.
The power of emission is related to the positron kinetic

energy by the synchrotron power

Psyn = 1

4πε0

p
3e3B

me c
y

∫ ∞

y
dξK5/3(ξ)

(
ν

νc

)
, (31)

where

νc = 3eE 2B

4πm3
e c4

, (32)

11http://www.darksusy.org
12https://lapth.cnrs.fr/micromegas/
13http://home.thep.lu.se/~torbjorn/Pythia.html

is defined as a the critical frequency of the emission. In
the above equations, B is the Galactic magnetic field, me

the mass of the electron, E the kinetic energy of the elec-
tron/positrons, c the speed of light. and K5/3(ξ) is the mod-
ified Bessel function of the second kind.

Taking into consideration every positron and electron
with a specific energy as a synchrotron emitter, it is neces-
sary to sum all the possible contributions over the line-of-
sight as follows:

F (ν) =
(

2

4π

)∫
l.o.s

dl
∫ M

me

dE ′ Ps yn(ν,E ′)ψ(~x,E ′) . (33)

F (ν) corresponds to the so-called density of radiation
(which can be measured in janskys), and ψ(~x,E ′) is the
number density of electrons/positrons previously calcu-
lated through the diffusion equation in Equation (30). Fo-
cussing on the Milky Way, a diffuse contribution in radio
frequencies could be expected due to the disposition of DM
in halos.

5.3.2 Searches for diffuse emission in the darkest sources

As described in §5.3.1, DM annihilations may cascade to
non-thermal electrons and positrons, which in turn emit
radio waves as synchrotron radiation in regions where an
ambient magnetic field is present. Therefore, a generic pre-
diction of WIMP models is diffuse radio emission from DM
halos induced by non-gravitational interactions of DM. Its
discovery would be a significant step toward the solution of
the DM mystery. The improved sensitivity of the SKA and its
precursors will allow us to reach the sensitivity required to
detect the radio flux emitted by DM halos, especially at low
redshifts, both in the investigation of the number counts of
sources, and in their statistics across the sky.

Intriguingly, a few years ago, the ARCADE-2 collabora-
tion reported isotropic radio emission that is significantly
brighter than the expected contributions from known ex-
tragalactic astrophysical sources (Seiffert et al., 2011; For-
nengo et al., 2014) and is well-fitted by WIMP-induced emis-
sion (Fornengo et al., 2011). If the cosmological signal from
DM is at such level, then the contribution from particle
DM in the data from the Evolutionary Map of the Universe
(EMU; Norris et al., 2011) survey on the Australian Square
Kilometre Array Pathfinder (ASKAP; Johnston & Wall, 2008)
should be significant.

Figure 26 shows the number of sources as a function
of redshift in two brightness ranges for the DM compo-
nent (for model A of Fornengo et al., 2011, which fits the
ARCADE excess), compared to more mundane astrophysi-
cal sources that explain the source counts observed so far.
The emission from DM is mainly provided by faint sources
at low redshift, and the median size of the source is large
(& arcmin). This implies that previous analyses of counts or
angular correlation were not sensitive to a WIMP-induced
signal. A relevant exception is Vernstrom et al. (2015), who
interestingly reported a possible deviation associated with
faint extended sources. Figure 26 shows that while the DM
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Figure 26. Redshift distribution of sources for bright (S > 3 mJy, lower in
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contribution is subdominant in the range probed by NRAO
Very Large Array Sky Survey (NVSS, above mJy), it can be-
come relevant for fluxes within the sensitivity reach of the
SKA and its precursors.

The analysis of number count fluctuations in SKA data
and the angular auto- and cross-correlation of the SKA den-
sity field are thus promising techniques to test the DM in-
terpretation of the ARCADE excess and, more generally,
to constrain the WIMP parameter space (Fornengo et al.,
2012a).

5.3.3 Branons as WIMP candidates

Massive brane fluctuations (branons) provide an example
of a DM candidate that is detectable or constrainable with
the SKA. They arise in brane-world models with low ten-
sion (Cembranos et al., 2003b; Cembranos et al., 2003a;
Kugo & Yoshioka, 2001).

Massive branons are pseudo-scalar fields that can be un-
derstood as the pseudo-Goldstone bosons corresponding
to the spontaneous breaking of translational invariance
in the bulk space. The broken symmetry is precisely pro-
duced by the presence of the brane (Sundrum, 1999; Bando
et al., 1999; Dobado & Maroto, 2001). Branons are prevented
from decaying into standard model particles by parity in-
variance on the brane, but can annihilate into standard
model particles, although the coupling is suppressed by
the brane tension scale. The branons are mass degener-
ate, and consequently the annihilation fluxes only depend
upon two parameters of the effective theory describing the
low-energy dynamics of flexible brane-worlds, namely the
brane tension scale and the branon mass, M (Cembranos
et al., 2001b,a, 2004; Alcaraz et al., 2003). Bounds and con-

Figure 27. Combined exclusion plot for a branon model with a single dis-
formal scalar from total and hot DM (taken from Cembranos & Maroto,
2016) including constraints from LEP-II (Alcaraz et al., 2003; Achard et al.,
2004) and LHC (Cembranos et al., 2004, 2011; Landsberg, 2015; Khacha-
tryan et al., 2016) single photon event, and supernova cooling (Cembranos
et al., 2003c). The (blue) solid line on the right is associated with hot DM;
the thicker line corresponds to the total DM rangeΩD h2 = 0.126−0.114
(Ade et al., 2016) and the thin line is the hot DM limitΩD h2 < 0.126−0.114.
The dashed lines corresponds to M/Tfreeze−out = 3 for hot (upper curve)
and cold (lower curve) DM.

straints on the model parameters from cosmology and tree-
level processes in colliders are shown in Figure 27 (Kugo &
Yoshioka, 2001; Cembranos et al., 2003a; Maroto, 2004a,b).
Further astrophysical and cosmological bounds serve to
parametrise the tension in terms of the branon mass, ren-
dering the dynamics dependent on only one parameter
(Kugo & Yoshioka, 2001; Cembranos et al., 2003a; Maroto,
2004a,b)

For branons, the thermally averaged annihilation cross-
sections depend solely upon the spin and the mass of the
branon (Cembranos et al., 2003c, 2006). In the case of heavy
branons M À mW, Z , the main contribution to the indirect
photon flux comes from branon annihilation into bosons,
W +W − and Z Z . The contribution from heavy fermions,
that is the annihilation into top-antitop, can be shown to be
subdominant. On the contrary, whenever M ¿ mW, Z , the
annihilation into W or Z bosons is kinematically forbidden
so that the remaining channels must be considered, mainly
annihilation into the heaviest possible quarks (Cembranos
et al., 2012).

Figure 28 shows the expected synchrotron flux densi-
ties from annihilating branons in the Galactic centre, con-
sidering various annihilation channels (upper and middle
panels) and branon masses (lower panel). The SKA has the
potential to distinguish different branon models by com-
bining different frequency ranges. The first, belonging to
SKA1-Mid band-1, lies in the range of 0.35−1.05 GHz and
is sensitive to the DM composition as seen in Figure 28 (up-
per and middle panels). The second, SKA1-Mid band-4, lies
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in the 2.80−5.18 GHz range and is sensitive to the branon
mass (lower panel) (Colafrancesco et al., 2015).

In Figure 28 we show the predicted fluxes for branon
masses in the range of 200 GeV to 100 TeV, so that the prin-
cipal channels of annihilation are via W and Z bosons and
the top quark. Qualitatively, we observe that the radio emis-
sion shape depends on the annihilation channel, poten-
tially providing information about the nature of the bra-
non. In addition, we observe that for branons (with a brane
tension that depends on the mass), the expected signa-
ture decreases with the mass. That means that detectable
signatures can be associated to low masses of this extra-
dimensional particle. Furthermore, this methodology of
obtaining the flux density will allow us to discard regions
of parameter space in the case where we observe a smaller
signal than predicted by experimental results.

Finally, a monochromatic γ-ray line is expected at the
energy equal to the branon mass as a consequence of direct
annihilation into photons. This annihilation takes place in
the d-wave channel. Consequently it is highly suppressed,
and is not detectable with current instruments (e.g., Fermi;
Cembranos et al., 2012). However, masses above 150 GeV
can potentially be detected with the increased sensitivity
of the Cherenkov Telescope Array, in which case cross-
correlation with a synchrotron signal from the SKA be-
comes a crucial test.

5.3.4 Cross-correlation of SKA1 HI galaxies and γ-rays

Faint sources of emission from DM might not be detectable
on their own, but they contribute a cumulative compo-
nent. This method builds on a recent proposal to use cross-
correlations between a gravitational tracer of DM (cosmic
shear or galaxy clustering as proxies for the DM distribu-
tion in the Universe) and any DM-sourced electromagnetic
signals (Camera et al., 2013b; Fornengo & Regis, 2014). In
addition, it has the potential to bring redshift information
to the electromagnetic signal that is otherwise unavailable,
exploiting the different behaviour of DM emission peaking
at low redshift and the unresolved astrophysical production
of the same observables more pronounced towards inter-
mediate redshift (Camera et al., 2013b, 2015d; Fornengo
et al., 2015; Xia et al., 2015; Branchini et al., 2017; Tröster
et al., 2017, for example). Specifically, we discuss here the
impact of the catalogue of HI galaxies that will be obtained
by the SKA on the cross-correlation with Fermi-Large Area
Telescope (LAT) γ-ray maps.

Currently, the vast majority of the γ-ray sky is unresolved
and only a few thousand γ-ray sources are known. The
two frequency regimes where, on large scales, non-thermal
emission mechanisms are expected to exceed greatly any
other process are the low-frequency radio band and the
γ-ray range. Radio data are thus expected to correlate with
the γ-ray sky and can be exploited to filter out information
on the composition of the γ-ray background contained in
unresolved γ-ray data.

Indeed, a cross correlation between the unresolved γ-ray
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background seen by the Fermi-LAT telescope and the distri-
bution of sources detected in continuum in the NVSS (Con-
don et al., 1998) catalogue has been recently detected (Xia
et al., 2015). The angular power spectrum data are shown
in Figure 29 together with a reference model (Cuoco et al.,
2015). Combining this measurement with other catalogues,
relevant constraints on the composition of the γ-ray back-
ground can be derived (Xia et al., 2015; Cuoco et al., 2015).
The improvement in sensitivity offered by ASKAP and the
SKA is dramatic, as shown in the example of the EMU sur-
vey (grey area) in Figure 29. SKA and precursor data will
therefore allow us to discriminate between different expla-
nations for the composition of the γ-ray background.

Following on from these seminal observational results
and the techniques and forecasts first proposed by Cam-
era et al. (2013b, 2015d) and Fornengo & Regis (2014), we
present some preliminary results on the cross-correlation
of SKA1 HI galaxies and the γ-ray sky from Fermi. Note that,
contrary to NVSS and EMU, in this case we use HI galax-
ies for which spectroscopic redshifts will be available. This
will allow us to exploit fully the tomographic-spectral ap-
proach outlined in Camera et al. (2015d). Moreover, there
is major added value in the use of SKA1 HI galaxies, their
redshift distribution peaking at low redshift and having an
extremely low shot-noise (see Fig. 4 of Yahya et al., 2015).
This is the very regime where the non-gravitational DM
signal is strongest. The emission associated with WIMP de-
cay is proportional to the DM density, and consequently
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Figure 30. Joint 1σmarginal error contours on WIMP parameters for Fermi
LAT γ-ray data cross-correlated with DES cosmic shear (green), SKA1 HI
galaxies (blue) and their combination (red).

stronger at low redshift because the produced radiation is
diluted by the expansion of the Universe more rapidly than
its source. The WIMP annihilation signal, proportional to
the density squared, also peaks at low redshift since the
density contrast associated with cosmic structures grows
non-linearly at late times.

Specifically, we adopt an SKA1 HI galaxy survey with
specifics given by Yahya et al. (2015) for the baseline con-
figuration. We consider only galaxies in the redshift range
0 < z ≤ 0.5, which we further subdivide into ten spectro-
scopic, narrow redshift bins. For the γ-ray angular power
spectrum, we employ the fitting formulae found by Tröster
et al. (2017) for Pass-8 Fermi-LAT events gathered over eight
years through to September 2016. This is a very conserva-
tive approach, as by the time the SKA1 HI galaxy catalogue
will be available, Fermi-LAT will have produced a much
larger amount of data.

Figure 30 preliminarily shows the precision with which
we will be able to reconstruct the WIMP cross-section and
mass in the case of a DM candidate with mDM = 100 GeV
and thermal cross-section 3×10−26 cm3 s−1. The green con-
tour (the same as in Fig. 4 of Camera et al., 2015d) refers
to the cross-correlation of Fermi-LAT γ rays and cosmic
shear from DES, while the blue contour depicts the con-
straining power of an SKA1-Fermi joint analysis. The main
take-home message here is the high complementarity of
the two techniques, the combination of which (red ellipse)
has the potential to tightly constrain both WIMP mass and
cross-section.
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5.3.5 SKA1-Mid and Millisecond Pulsars

Given the large DM density in the inner Galaxy, any WIMP
annihilation signal is expected to be particularly bright
from that direction. Interestingly, a signal candidate has
been found in γ-ray data from the Fermi-LAT (Goode-
nough & Hooper, 2009; Vitale & Morselli, 2009). The ex-
istence of an excess emission in the GeV energy range
(∼ 100MeV−10GeV), above conventional models for the
diffuse γ-ray emission from the Galaxy, is now firmly estab-
lished (Abazajian et al., 2014; Calore et al., 2015; Ajello et al.,
2016; Daylan et al., 2016; Ackermann et al., 2017). However,
the signal may also have an astrophysical origin, e.g., from
the combined emission of thousands of millisecond pul-
sars in the Galactic bulge (Wang, 2005; Abazajian, 2011),
young pulsars (O’Leary et al., 2016), or stellar remnants
from disrupted globular clusters (Brandt & Kocsis, 2015).

We briefly summarise how the sensitivity of the SKA to
detect the bulge population of millisecond pulsars can be
estimated. Following Dewey et al. (1984), the root mean
square uncertainty of the flux density (in mJy) is given by

Sν,rms =
Tsys

G
√

tobs∆νnp

(
Wobs

P −Wobs

)1/2

, (34)

where Tsys refers to the system temperature, G the instru-
ment gain, tobs the observation time,∆ν the bandwidth and
np = 2 the number of polarisations. Furthermore, P is the
pulse period, and Wobs the effective pulse width. We adopt
the parameters corresponding to SKA1-Mid observations
(Dewdney et al., 2013). More specifically, we adopt a central
frequency of 1.67 GHz, a 770 MHz bandwidth, a receiver
temperature of 25 K, and an effective gain of 8.5 K Jy−1 for
the considered sub-array (see Calore et al., 2016, for de-
tails). The beam full-width half-maximum is 0.77 arcmin,
and we assume 3000 synthesised beams and 20 minutes of
integration time per pointing.

We find that a dedicated search in the region (|`| < 5◦
and 3◦ < |b| < 7◦) plus (|`| < 3◦ and 1◦ < |b| < 3◦) plus
(|`|, |b| < 1◦), which would take about 90 hours, can detect
207 bulge and 112 foreground sources at 10σ significance or
higher. This number is about 7 times larger than the num-
ber of sources expected for a similar survey with MeerKAT.
As shown in Figure 31, the SKA will be able to detect three
times fainter sources than what is accessible by an equiva-
lent MeerKAT survey, or by targeted observations with the
Green Bank Telescope (GBT).

The large number of detections will mark significant
progress for our understanding of the millisecond pulsar
bulge population, and hence backgrounds for DM searches
in the inner Galaxy. First, the large number of detections
will allow us to determine the number of radio-bright bulge
millisecond pulsars down to 10% precision, and to measure
the distribution of sources and confirm that they indeed
correspond to the morphology of the Fermi GeV excess.
Second, the large number of measured ephemerides will
be useful for searches for γ-ray pulsations in the Fermi LAT
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data, and likely allow us to significantly increase the part
of the inner Galaxy γ-ray emission that can be directly at-
tributed to millisecond pulsars. Third, anticipating a better
determination of a potential correlation between γ-ray and
radio emission, these results can lead to relatively clear pre-
dictions for the γ-ray emission from the Galactic bulge that
can then be subtracted from DM signal searches.

Finally, we stress that a non-detection of a significant
number of bulge millisecond pulsars with the SKA would
practically exclude the millisecond pulsar hypothesis as ex-
planation for the Fermi GeV excess, and strengthen the case
for a DM signal, unless the radio emission of millisecond
pulsars is a factor 10–100 weaker than what is suggested
by globular clusters, while keeping the γ-ray emission un-
changed.

5.3.6 Extremely weakly interacting dark matter
candidates

Looking for radio signals could be equally (if not more)
important than searching for anomalous γ-ray production.
Radio signatures have already ruled out GeV DM particles
with thermal interactions, have constrained DM models in
general (e.g., Boehm et al., 2004; Crocker et al., 2010; Boehm
et al., 2010; Fornengo et al., 2012b; Bringmann et al., 2014;
Cirelli & Taoso, 2016), and could further be used to probe
the existence of extremely weakly interacting dark matter.

5.3.6.1 Black hole shadow The DM density profile in-
creases in the inner regions of galaxies, but the ‘spikiness’ of
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the profile is under debate. One hypothesis is that the DM
density profile becomes as steep as ρ∝ r−7/3 near the cen-
tral black hole, referred to as a DM spike. The formation and
survival of DM spikes is controversial (partly due to galaxy
dynamics), however one can test their existence if one fur-
ther assumes that DM interacts (even very weakly) with
standard model particles. Indeed, taking the specific case
of heavy DM particles annihilating into standard model
particles, it was shown that the presence of a DM spike in
M87 leads to a copious production of synchrotron emission
in the frequency range and spatial region that is currently
being probed by the Event Horizon Telescope.14. As the
additional radiation from DM further enhances the pho-
ton ring around the black hole shadow for any value of the
self-annihilation cross section greater than 10−31 cm3 s−1

(assuming a 10 GeV candidate), one should be able to con-
firm the presence of DM spikes even in scenarios of light
p-wave annihilating DM candidates (Lacroix et al., 2017).

5.3.6.2 Dark Ages Alternative DM scenarios include parti-
cles with self and/or interactions with standard model par-
ticles in the early Universe. One consequence of these inter-
actions is the damping of the primordial DM fluctuations,
leading to a small-scale cut-off in the primordial power
spectrum (see for example de Laix et al., 1995; Boehm et al.,
2001, 2002; Boehm & Schaeffer, 2005; Mangano et al., 2006).
A late-time manifestation of these effects is the suppres-
sion of small-scale companions of the Milky Way as well
as a smaller number of small-structures in the Universe
as a whole, which becomes even more prominent as one
goes back in time (Boehm et al., 2014; Schewtschenko et al.,
2015, 2016; Cyr-Racine et al., 2016; Vogelsberger et al., 2016;
Moline et al., 2016). By probing the Dark Ages, the SKA will
be able to measure the primordial power spectrum at high
redshift and probe a potential suppression of power due to
the nature of the DM.

5.3.6.3 Axions An alternative to the WIMP dark matter
model is that some or all of the dark matter is comprised of
QCD axions.

Axion-two photon coupling in the astrophysical environ-
ment may result in an observable DM signature, with the
strength and shape of the axion signature strongly depen-
dent on the relative properties of the magnetic field. Assum-
ing that the axion comprises a substantial component of
the CDM density, conversion in a static magnetic field will
produce a line profile with central frequency principally
derived from the mass of the axion, that is in the range
0.2−200 GHz. The width and polarisation of the signal is
then dependent on the velocity distribution of the axion,
the relative movement of the Earth and the source, and
the polarisation of the magnetic field itself (see also §5.4.4
on the SKA’s ability to trace magnetic fields). In fact, the
polarisation and strength of the axion signal should trace
the spatial profile of the magnetic field. This is of particular

14http://www.eventhorizontelescope.org/

Figure 32. The coupling strength that could be probed by observing
the interstellar medium across the frequency range accessible to ASKAP,
MeerKAT and SKA-Mid. The sensitivities of SKA1-Mid and SKA2-Mid
(blue and green, respectively) show considerable improvement on the
pre-cursor telescopes, ASKAP (purple) and MeerKAT (yellow). The system
temperature of the SKA is minimised between ∼ 2−7 GHz, corresponding
to an axion mass of ∼ 8.26−28.91 µeVc−2 and providing a good oppor-
tunity for detection of both KSVZ and DFSZ axions. Figure reproduced
from Kelley & Quinn (2017) by permission of the AAS.

.

use in extracting the axion signature from other foreground
signals, since the polarisation should be perpendicular to
synchrotron radiation.

With such distinguishing features, new technologies of-
fer the opportunity for astrophysical observations to make
a significant contribution to axion search efforts. Labora-
tory experiments searching for the axion have received sig-
nificant investment in recent years but remain sensitive
only to the most optimistic axion model and operate over
small areas in frequency space. SKA2 in particular offers
a significant improvement in the axion coupling strength
that can be probed and in the breadth of frequency space
that can be observed. To demonstrate the potential power
of the SKA and its precursors, Figure 32 (taken from Kel-
ley & Quinn, 2017) shows the axion-two photon coupling
strength that could be probed with observations of the in-
terstellar medium, the parallel lines from the bottom-left
to top-right showing the coupling strength expected from
the Kim-Shifman-Vainshtein-Zakharov (KSVZ) and Dine-
Fischler-Srednicki-Zhitnitsky (DFSZ) models (Kim, 1979;
Shifman et al., 1980; Dine et al., 1981). Further constraint of
this parameter space with the SKA, or indeed detection of
the axion itself, would represent an important step forward
in both particle physics and cosmology.

5.3.6.4 Primordial Black Holes The idea that PBHs can
collapse in the early Universe out of small-scale density
fluctuations (possibly originated during inflation by many
different mechanisms) dates back to the early 1970s (see,
e.g., Hawking, 1971; Carr & Hawking, 1974).

The PBH mass is of order the horizon mass at forma-
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tion, and can in principle span a very large range, from the
Planck scale all the way up to O(10−100) M¯. For masses
larger than 10−17 M¯, the PBH evaporation lifetime (due
to Hawking-Bekenstein radiation) is larger than the age of
the Universe, and PBHs in that range can be a viable dark
matter candidate, as first outlined by Chapline (1975). How-
ever, there are only a few mass windows observationally
allowed if such PBHs contribute significantly to the DM
density (Carr et al., 2010, 2016).

The recent LIGO detection of gravitational waves from
binary-black-hole mergers has in particular prompted a
renewed interest in the PBH mass window around 10−
100 M¯. The PBH merger rate was initially found to be con-
sistent with that expected in the case where PBHs make all
of the DM in the Universe (Bird et al., 2016), but subsequent
analyses have shown that the predicted rate in this case
would exceed the observed one, thus PBHs can only be a
small fraction of the DM in the Universe (Sasaki et al., 2016;
Ali-Haïmoud et al., 2017). SKA measurements of third-order
Shapiro time delay induced by PBHs in MSP timing might
lead to further constraints in this mass window (Schutz &
Liu, 2017).

Other relevant windows still allowed in the DM context
are the lunar-mass range 1020 −1024 g and the atomic-size
range 1016 −1017 g, although these would be unimportant
for large-scale structure, any seeding effects being negligi-
ble. Pulsar timing with the SKA could however be an im-
portant probe of the mass range 1022 −1028 g, even if these
PBHs are highly subdominant (Kashiyama & Seto, 2012).

Even more interestingly, SKA-Low will play an important
role in evaluating the presence of a relevant population of
intermediate mass 10− 100 M¯ PBHs in our Galaxy and
in the Universe by looking for radio signatures both in the
astronomical and cosmological context.

On the cosmological side, the redshifted HI line is a very
interesting observable. In fact, a population of PBHs is ex-
pected to accrete gas during the Dark Ages (see §2.2.1) and

significantly change the reionisation history of the Universe:
this effect can be probed by the SKA up to redshifts ' 30
(Poulin et al., 2017).

On the astronomical side, it is possible to look for radio
and X-ray sources in the sky associated with a population
of PBHs distributed in the Galaxy and accreting interstellar
gas.

In the following, we first discuss the astronomical
searches in more detail, and we then present opportuni-
ties for detecting quantum gravitational properties of PBHs,
focusing particularly on the future role of the SKA.

Detecting PBHs using radio sources. PBHs can in princi-
ple be discovered by measuring the radio and X-ray emis-
sion produced by the accretion of interstellar gas onto these
objects (Gaggero et al., 2017). By comparing the predicted
number of sources with astronomical catalogues, it is pos-
sible to set an upper limit on the fraction of dark matter in
the form of PBHs. The current bound in shown in Figure
33.

The SKA may in principle allow the discovery of PBHs,
even if they represent a subdominant contribution to dark
matter. Let us now demonstrate this claim in more de-
tail, following the ideas and the approach of Gaggero et al.
(2017). We focus on a small region of interest that includes
the high density region of the Galactic ridge. The ridge is
promising because a population of PBHs amounting to the
bulk of DM is expected to be peaked here, and an extremely
massive molecular complex (the so-called central molecu-
lar zone) is located at this position, so the accretion of gas is
expected to be very strong. For radio emission, we assume
that a jet is launched and adopt the universal empirical rela-
tion known as the fundamental plane (Plotkin et al., 2012).
We exploit this relation to compute the 5-GHz radio flux and
assume a flat radio spectrum, such that F5G H z = F1.4G H z .
First, we consider the projected bound for the SKA1-Mid
(band 2, 0.95−1.76 GHz) point-source sensitivity. Assum-
ing PBHs amount for all the DM, and with a Monte Carlo
simulation, we predict a detection of ' 2000 sources in our
region of interest (< 1◦ away from the Galactic centre) for 1
hour of exposure.

In Figure 34, we show the predicted map of radio sources
above the SKA1-Mid sensitivity threshold (for 1h exposure)
in the Galactic ridge region, for a mass of 30 M¯ and a DM
fraction equal to 1%. Even in this case, corresponding to
a subdominant population of PBHs, SKA1-Mid can detect
a large number of sources, in correspondence with the re-
gions where the gas density is larger. However, a detailed
calculation of the SKA1-Mid detection sensitivity, correctly
accounting for other radio source backgrounds, is post-
poned to a future work.

Together with cosmological observations, based on the
detection of the redshifted 21 cm signal, astronomical
searches are an important opportunity to investigate the
presence of compact objects of both primordial and astro-
physical origin. Given the expected data from the LIGO and
Virgo collaborations (and other gravitational wave detec-
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Figure 34. Radio sources above the SKA1-Mid point source sensitivity, for
1000 hours of data taking, if PBHs are ∼ 1% of the DM.

tors currently in an upgrade or development phase), an
exciting set of complementary observations will help to
characterise the presence of compact objects both in our
Galaxy and in the early Universe, and can eventually shed
light on the nature of DM in the Universe.

PBHs and quantum gravity. Different approaches to
quantum gravity converge in pointing out the possibility
of instabilities of quantum-gravitational origin that can
manifest in an explosive event in a time scale shorter than
the evaporation time (Gregory & Laflamme, 1993; Kol &
Sorkin, 2004). In particular, loop quantum gravity has re-
cently provided a framework to compute explicitly this
time (Christodoulou et al., 2016). Loop quantum gravity
removes the classical curvature singularities (Ashtekar &
Bojowald, 2006; Rovelli & Vidotto, 2013; Corichi & Singh,
2016), such as the one at the black hole centre, because
of quantum spacetime discreteness. The consequences of
this discreteness on the dynamics can be modelled at the
effective level by an effective potential that prevents the
gravitational collapse from forming the singularity and trig-
gers a bounce. The bounce connects a collapsing solution
of the Einstein equation, that is the classical black hole,
to an explosive expanding one, a white hole (Haggard &
Rovelli, 2015), through an intermediate quantum region.
This process is a typical quantum tunnelling event, and the
characteristic time at which it takes place, the hole lifetime,
can be as a decaying time, similar to the lifetime of con-
ventional nuclear radioactivity. The resulting picture is con-
servative in comparison to other models of non-singular
black holes. The collapse still produces a horizon, but it is
now a dynamical horizon with a finite lifetime, rather than
a perpetual event horizon. The collapsing matter continues
its fall after entering the trapping region, forming a very
dense object whose further collapse is prevented by quan-
tum pressure (referred to as a Planck Star; Rovelli & Vidotto,

2014).

While this fate should be generic for all black holes, it be-
comes experimentally relevant only for tiny and old black
holes, being the primordial ones. The collapsing matter that
forms PBHs in the radiation-dominated epoch is mainly
constituted by photons. Seen from the centre of the hole,
those photons collapse through the trapping region, then
expand passing through an anti-trapping region and even-
tually exit the white-hole horizon, always at the speed of
light; the process is thus extremely fast. On the other hand,
for an observer sitting outside the horizon, a huge but fi-
nite redshift stretches this time to cosmological times. This
time, properly called the hole lifetime, as discussed before,
has a minimal duration of M 2

BH and a maximal duration
below M 3

BH. In analogy with standard quantum-decay pro-
cesses, one may expect the shortest possible time M 2

BH to
be favoured.

Astrophysical signals produced in the explosive event
associated with the black hole decay could be detectable
directly. Various signals can be expected (Barrau et al., 2016;
Barrau et al., 2018a): (1) a high-energy signal determined
by the temperature of the photons emitted, (2) a signal de-
termined by the size of the hole exploding, (3) a signal in
the radio due to the possible presence of magnetic fields
around the exploding hole, and (4) the emission in grav-
itational waves. The peak of signal (2) falls at millimetre
wavelengths; however, ethe full distribution of events is ac-
cessible to SKA1-Mid (Barrau et al., 2018b). Interestingly,
the signal presents a peculiar wavelength-distance relation
(Barrau et al., 2014), which allows it to be discriminated
from other astrophysical sources, either via direct detec-
tion, or via the resulting background radiation (Barrau et al.,
2016) that SKA intensity mapping may detect, especially
with the improved sensitivity of SKA2-Mid.

Signal (3) is fully within the frequency range of SKA1-Mid
and SKA2-Mid. The interaction of signal (1) with the ionised
interstellar medium produces a radio pulse at a frequency
∼ 1 GHz (Rees, 1977; Blandford, 1977). Interestingly, this
signal has similar properties to those of fast radio bursts. In
this case, the emission mechanism relies on the presence
of a shell of relativistic charged particles produced in the
explosion. The shell behaves as a superconductor that ex-
pels the interstellar magnetic field from a spherical volume
centred on the original black hole site (Cutchin et al., 2016).

Finally, PBH decay has the peculiar property of lowering
the DM energy-density content of the Universe, since the
decay effectively converts DM into radiation. This affects
the galaxy number count in large-scale galaxy surveys, in
particular measurements of galaxy clustering, galaxy lens-
ing and redshift-space distortions (Raccanelli et al., 2018).
The large-scale structure surveys performed by the SKA
will provide key data in this respect by detecting individual
galaxies in the radio continuum (Jarvis et al., 2015b).
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5.4 Astroparticle Physics

In this section we discuss how the SKA can constrain
the masses of photons (§5.4.3) and neutrinos (§5.4.1 and
§5.4.2). We also consider the problem of cosmic ray acceler-
ation in magnetic fields, and how the SKA can improve the
relatively little knowledge we have about magnetic fields
(§5.4.4).

5.4.1 Constraining the neutrino mass

Determining the sum of the neutrino masses and their hier-
archy is one of the most important tasks of modern physics.
Unfortunately, setting upper bounds from laboratory exper-
iments is very challenging. It is expected that in the near fu-
ture K A T R I N15 will set an upper limit of Mν =∑

i mνi < 0.6
eV. A different way to determine the sum of the neutrino
masses is through cosmological observables, where their
very large thermal velocities (in contrast with the assumed
negligible ones for CDM) produce a clear neutrino signa-
ture, in particular a suppression of power on small scales in
the matter power spectrum. Understanding and measuring
this effect is also important for dark energy and general
relativity tests, as models of modified gravity or interacting
DM/energy also lead to modifications of small scales power
(see, for example, Wright et al., 2017).

Current constraints on the sum of the neutrino masses,
arising by combining data from the CMB, galaxy cluster-
ing and/or the Lyman-α forest, are Mν. 0.12 eV (Riemer-
Sørensen et al., 2014; Palanque-Delabrouille et al., 2015;
Cuesta et al., 2016; Vagnozzi et al., 2017). One would naively
expect that those constraints can be improved by using
galaxy clustering at higher redshifts, since the available vol-
ume is much larger, the non-linear clustering effects are
weaker, and the effects of dark energy will be smaller.

The possibility of using high-redshift optical galaxy sur-
veys (combined with CMB data in order to lift parameter
degeneracies) to provide precision measurements of the
neutrino masses is not new (see for example Takada et al.,
2006). However, the detection of galaxies at high redshifts
becomes more difficult and expensive, and shot-noise ef-
fects may dominate. In Takada et al. (2006), a space-based
galaxy survey with a 300 deg2 sky coverage at redshifts
3.5 < z < 6.5 (assuming a very large number density and
bias of the galaxy tracers) was found to be able to measure
the neutrino mass withσ(mν, tot) = 0.025 eV combined with
CMB data.

Another possibility is to map the large scale structure of
the Universe through 21 cm intensity mapping. Given the
fact that neutrinos modify the abundance of halos (Cas-
torina et al., 2014; Costanzi et al., 2013), their clustering
(Villaescusa-Navarro et al., 2014; Castorina et al., 2014) and
also the internal halo properties such as concentration
(Villaescusa-Navarro et al., 2013), it is expected that they
will also leave a signature on the abundance and spatial
distribution of cosmic HI in the post-reionisation era. This

15https://www.katrin.kit.edu

Figure 35. Constraints on the Mν−σ8 plane from Planck (grey), SKA1-low
(brown), SKA1-low + Planck (dark blue) and SKA1-low + SKA1-mid + Planck
+ Euclid (light blue). The vertical dashed lines indicate the minimum sum
of the neutrino masses from neutrino oscillations together with recent
bounds from cosmological probes. Adapted from Villaescusa-Navarro et al.
(2015).

has been explicitly checked by means of hydrodynamic
simulations by Villaescusa-Navarro et al. (2015). The key
point to understand the impact of neutrino masses on the
abundance and clustering properties of HI is the fact that
halos of the same mass have very similar HI content, inde-
pendently of the sum of the neutrino masses. The results
show that in cosmologies with massive neutrinos the abun-
dance of cosmic HI will be suppressed with respect to the
equivalent massless neutrino model. At the same time, the
presence of massive neutrinos will make the HI more clus-
tered.

Villaescusa-Navarro et al. (2015) investigated the con-
straints that intensity mapping observations using SKA1
can place on the sum of the neutrino masses. They consid-
ered a deep survey by SKA1-low covering ' 20 deg2 with
10,000 hours using interferometry over a bandwidth cov-
ering redshifts z ∈ [3−6], and a wide SKA1-mid survey cov-
ering 20,000 deg2 over 10,000 hours using the single-dish
mode of observation from z = 0 to z = 3. As shown in Fig-
ure 35 the neutrino mass can be constrained with ' 0.09
eV (1σ). It is important to note that, for the given observ-
ing time, the constraints from SKA1-low remain practically
constant up to a survey area of 100 deg2, and similarly for
SKA1-mid down to 2,000 deg2. The constraints are more
sensitive to the total available observation time. By combin-
ing intensity mapping observations with data from Planck
and optical galaxy surveys like Euclid the uncertainty can
shrink to ' 0.03 eV (1σ), which is very competitive with
respect to any other probe such as galaxy clustering probes
or the Lyman-α forest.
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Figure 36. Expected limiting void radii for future spectroscopic galaxy
surveys (not including quasars) across the corresponding survey redshift
ranges. An approximate void-in-cloud limit is indicated (shaded), below
which theoretical predictions are uncertain as regards to what extent
voids inside overdensity clouds disappear due to halo collapse of the
overdensity.

5.4.2 Constraining neutrino properties with SKA voids

Future SKA HI galaxy surveys will offer an unprecedented
spectroscopic view of both large and small scales in the cos-
mic web. This will allow the identification and mapping of
around 105 −106 voids in the galaxy distribution, from the
smallest to the largest voids in the Universe (Sahlén & Silk,
2018). Figure 36 shows the expected limiting void radii for
a selection of future large, spectroscopic surveys (we limit
the discussion to spectroscopic surveys to minimise the
impact of redshift-space systematics). The number counts
(Pisani et al., 2015; Sahlén et al., 2016), shapes (Massara
et al., 2015), RSDs (Sutter et al., 2014), and lensing proper-
ties (Spolyar et al., 2013) of voids are examples of sensitive
void probes of cosmological parameters. Voids are particu-
larly sensitive to the normalisation and shape of the matter
power spectrum, and the effects of screened theories of
gravity which exhibit a modification to General Relativity in
low-density environments (Voivodic et al., 2017). This is be-
cause void distributions contain objects ranging from the
linear to the non-linear regimes, across both scale and red-
shift. SKA2 will also reach well into the void-in-cloud limit
across a wide range of redshifts, allowing a detailed study
of this theoretically uncertain process whereby small voids
disappear through the collapse of the larger overdensities
within which they arise.

As a particular case for the SKA, we consider number
counts of voids, and forecast cosmological parameter con-
straints from future SKA surveys in combination with Eu-
clid, using the Fisher-matrix method. Massive neutrinos
affect void and galaxy cluster distributions by shifting the
turn-over scale in the matter power spectrum as set by the
redshift of matter-radiation equality. Their free-streaming
also suppresses power on the neutrino free-streaming scale
(set by the neutrino masses), which significantly affects the
number counts and shapes of voids (Massara et al., 2015)
and the number counts of clusters (Brandbyge et al., 2010).

We consider a flat wCDM cosmology with massive neu-
trinos described by the sum of neutrino masses Σmν. The

Figure 37. Forecast parameter constraints (95% confidence levels) for a
flat wCDM model with massive neutrinos. Note the considerable degen-
eracy breaking between the Euclid and SKA1 void samples, and between
the SKA2 void and Euclid cluster samples. SKA1-Mid covers 5000 deg2,
z = 0−0.43. SKA2 covers 30 000 deg2, z = 0.1−2. Euclid voids covers 15 000
deg2, z = 0.7−2. Euclid clusters covers 15 000 deg2, z = 0.2−2. The fiducial
cosmological model is given by {Ωm = 0.3, w = −1,Σmν = 0.06eV,σ8 =
0.8,ns = 0.96,h = 0.7,Ωb = 0.044}. We have also marginalised over uncer-
tainty in void radius and cluster mass (Sahlén & Silk, 2018), and in the
theoretical void distribution function (Pisani et al., 2015).

void distribution is modelled following Sahlén et al. (2016)
and Sahlén & Silk (2018), also taking into account the galaxy
density and bias for each survey (Yahya et al., 2015; Rac-
canelli et al., 2016c). The results are shown in Figure 37 (see
caption for survey and model assumptions). The combined
SKA1-Mid & Euclid void number counts could achieve a pre-
cision σ(Σmν) = 0.02 eV, marginalised over all 6 other pa-
rameters. No additional priors are included. The SKA2 void
number counts could improve on this by a factor of two, po-
tentially distinguishing Σmν = 0.06 eV from Σmν = 0.1 eV
and allowing for a determination of the neutrino hierarchy
characterised by those masses (inverted and normal respec-
tively). By using the powerful degeneracy-breaking comple-
mentarity between clusters of galaxies and voids (Sahlén
et al., 2016; Sahlén & Silk, 2018), SKA2 voids + Euclid clusters
number counts could reach as low as σ(Σmν) = 0.002 eV.
These forecasts are highly competitive with expectations for
planned Stage IV CMB experiments/probes (for example
Pan & Knox, 2015).

5.4.3 Measuring the photon mass with fast radio bursts

Fast radio bursts (FRBs) are short, dispersed spikes of radio
waves, typically lasting a few milliseconds at ∼ GHz fre-
quencies (Lorimer et al., 2007; Thornton et al., 2013). They
appear to come from powerful events at cosmological dis-
tances with their cause still unknown (Katz, 2016). Despite
our ignorance of their origin, FRBs can be used to study
fundamental physics, particularly in setting upper limits
on the mass of the photon (Wu et al., 2016; Bonetti et al.,
2016, 2017; Shao & Zhang, 2017).

If photons are massive, the speed of light will be en-
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ergy dependent (in a Lorentz-invariant theory), with high-
energy photons travelling faster. Thus, low energy photons
will have a time delay after they traverse a fixed distance.
Because of (1) the short time duration (∼ms), (2) the large
travelling distance (∼Gpc), and (3) the low energy of pho-
tons (∼ µeV), FRBs are among the best celestial objects
to constrain the photon mass, mγ (Shao & Zhang, 2017).
Individual sources with redshift measurements have been
used to obtain a limit of mν <O(10−50) kg (Wu et al., 2016;
Bonetti et al., 2016, 2017). Nevertheless, measurements of
FRB redshifts are rare (Chatterjee et al., 2017) and conse-
quently a Bayesian framework, where FRBs with and with-
out redshift measurement equally contribute to the con-
straint was used to obtain the currently best limit from the
kinematics of light propagation (Shao & Zhang, 2017).

In January 2017, the Commensal Real-time ASKAP Fast
Transients survey (CRAFT) found a FRB in a 3.4-day pi-
lot survey (Bannister et al., 2017). Such a survey benefits
greatly from the large field of view with the phased-array-
feed technology. The Canadian Hydrogen Intensity Map-
ping Experiment (CHIME) will also find many more FRBs
(CHIME/FRB Collaboration et al., 2018; Boyle et al., 2018),
while when SKA2 is operating, FRBs will be detected daily.
These FRBs will contribute to an even tighter limit on the
photon mass, or may even discover new physics beyond
the standard model if photons are indeed massive.

5.4.4 The non-thermal Universe

Continuum observations with the SKA will allow profound
insights into the non-thermal Universe. This encompasses
sources of the energy density that stem from magnetic
fields, non-thermal particles (also called cosmic rays), and
turbulent motions. In spiral galaxies, these non-thermal
components dominate the total energy density. Also on
larger scales, in the cosmic web of galaxy clusters and fila-
ments, there is ample evidence of substantial non-thermal
components. An example is shown in Figure 38, which
shows a multi-wavelength image of the ‘toothbrush’ relic, a
3-Mpc long diffuse radio source, located at the periphery of
a merging galaxy cluster (van Weeren et al., 2016). At radio
wavelengths, these non-thermal components are mostly
observed via the synchrotron emission that is produced
by relativistic electrons with Lorentz factors of a few hun-
dred gyrating in magnetic fields (see also §5.3.1). However,
the origins of both the magnetic fields and the relativistic
particles are unknown.

The diffuse radio sources observed in galaxy clusters
span vast scales of up to several Mpc. The short synchrotron
cooling time of the electrons implies that they must be in-
jected in-situ by a process operating over the same spatial
scale as the source itself. The plasmas in which radio relics
and halos occur are collisionless and have number den-
sities of 10−4 −10−3 cm−3. Moreover, the magnetic fields
have strengths of around a few µG, leading to a substan-
tially weaker magnetic pressure than the thermal pressure.
Similar conditions are unattainable in a laboratory on Earth

Figure 38. Multi-wavelength image of the so-called ‘toothbrush’ radio
relic. The green colours show the radio image (LOFAR), the magenta the
X-ray (Chandra) view and the white the optical data (Subaru) (van Weeren
et al., 2016).

and hence can only be studied remotely through astronom-
ical observations.

Cosmological simulations predict that the largest part of
radio relics and halos have not been discovered yet, since
their large size and low surface brightness makes them dif-
ficult to find (for example Nuza et al., 2017; Wittor et al.,
2017). Yet, through the study of these objects one hopes
to find (1) a process that can generate magnetic fields that
fills large volumes (probably) in very low-density cosmic
environments, and (2) processes that can accelerate elec-
trons to relativistic energies such that they fill an entire
galaxy cluster or operate at the outskirts of clusters. The
main candidates are shock waves and turbulence, but it is
not known whether low-Mach number shocks are efficient
enough, or what fraction of the magnetic field is produced
by the shock wave itself and what part is merely amplified
via compression.

The SKA will be able to probe the cosmic filaments that
are predicted to contain most of the baryons in the Universe
(Davé et al., 2001). Very little is known about these filaments,
since the thermal state of the baryons and their low column
densities makes them very hard to observe, but they are
expected to be sheathed by accretion shocks for which both
the continuum and polarised emission could be detectable.
Provided that the shocks in this extreme environment are
at least as efficient as cluster shocks in accelerating rela-
tivistic electrons, we have predicted the flux densities of the
synchrotron radiation that could be detected by the SKA
for magnetic fields of order ∼ 0.01−0.1 µG.

In Figure 39 we show the predicted synchrotron signal
from shock accelerated relativistic electrons in a 5×15 de-
gree region from a cosmological simulation, as observed
assuming the typical sensitivities of current and future tech-
nologies. The region was extracted from a cosmological
magnetohydrodynamic (MHD) simulation performed with
the ENZO code (Bryan et al., 2014). The acceleration ef-
ficiency of electrons by shocks is tuned to reproduce the
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Figure 39. Mock observations of a 5× 15 degree area including galaxy
clusters and filaments, assuming the sensitivity of the NVSS survey with
the Very Large Array at 1.4 GHz (top) and with the sensitivity of a survey
with SKA1-Low at 110 MHz (bottom) in units of Jy/arcsec2. The underly-
ing cosmological simulations are part of the CHRONOS++ suite of MHD
simulations with the ENZO code and was run on the Piz-Daint computer
cluster at CSCS in Lugano (Vazza et al., 2014).

radio emission observed at radio relics in the intracluster
medium (Vazza et al., 2015).16. This mock observation il-
lustrates the large jump in sensitivity to the diffuse and
shocked cosmic web that we expect to achieve with SKA1-
Low, allowing us to greatly improve our present view of
extragalactic magnetic fields beyond the innermost regions
of galaxy clusters. There are strong indications that both
radio relics and halos are in fact made up of quite distinct
subclasses of sources (for example de Gasperin et al., 2015;
van Weeren et al., 2017). The improved sensitivity of the SKA
will provide sufficient statistics to study and distinguish be-
tween the various particle acceleration and re-acceleration
scenarios.

The SKA will be able detect cosmic filaments if the mag-
netic field energy density is at the level of a few percent of
the thermal energy density (Vazza et al., 2015). Observa-
tions below ≈ 200 MHz are best suited to detect the large-
scale diffuse emission produced by cosmological shock
waves. These shocks are characterised by a flat emission
spectrum and show flux densities of ∼ µJy/arcsec2 at low
redshifts. Because of cosmological dimming, most of the
detectable radio emission is caused by structures at z ≤ 0.1.
Especially at high frequencies, the detection of nearby fil-
aments (z ≤ 0.02) is difficult because of the lack of short
baselines. The range of magnetic fields that should ensure
a systematic detection of the cosmic web at the periph-
ery of galaxy clusters is in line with the magnetic field de-
tected along an accreting group in the nearby Coma galaxy

16A public repository of radio maps for the full volumes studied by Vazza
et al. (2015) is available at http://cosmosimfrazza.myfreesites.
net/radio-web

cluster (Bonafede et al., 2013) and can be achieved either
via a small-scale dynamo or via release of magnetic fields
by nearby galaxies/AGN. Assessing which of these mech-
anism(s) is responsible for the magnetisation in such rar-
efied cosmic environments is an exciting and important
challenge for the SKA.

5.5 Summary

It is clear that the SKA will provide significant advance-
ments in our understanding of astronomical, cosmological
and even particle theories. The wide range of opportunities
set out in this section focus only on the fields of DM and
astroparticle physics and demonstrate the power of this
new technology. Just the increased observability of high-
energy objects such as pulsars, binary stars and AGN, and
the ability to trace back to extremely high redshift offers
a wealth of new data that will contribute to a number of
important and groundbreaking discoveries.

HI intensity mapping in particular is a new and powerful
tool for mapping the structure formation of the Universe. It
will provide insight on the clustering properties and ther-
mal characteristics of DM. The increased sensitivity also
opens the door for DM particle searches as well as new
experiments for constraining standard model particle prop-
erties such as the neutrino mass. It may even offer the op-
portunity to test new quantum gravity and string theories
through observations of primordial black holes and binary
pulsars.

6 CONCLUSIONS

Physicists seek to understand the nature of matter, energy
and spacetime, plus how the three of these have interacted
over cosmic time. While great strides have come from ter-
restrial and solar system experiments, it is increasingly clear
that immense progress lies ahead through studying the cos-
mos.

Modern radio telescopes now have the capability to
gather enormous statistical samples of celestial objects,
and to make ultra-precise measurements of astrophysical
effects. In this paper, we have explained the many ways
in which the Square Kilometre Array will push far beyond
the current frontiers in these areas, and will allow us to ask
and answer new questions about cosmology, gravity, dark
matter, dark energy, and more. The SKA will not just be
a revolutionary facility for astronomy, but will also be an
extraordinary machine for advancing fundamental physics.
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