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Altered hippocampal gene expression
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Abstract
Transgenic mice overexpressing the type I isoform of neuregulin 1 (Nrg1; NRG1) have alterations in hippocampal
gamma oscillations and an age-emergent deficit in hippocampus-dependent spatial working memory. Here, we
examined the molecular and morphological correlates of these findings. Microarrays showed over 100 hippocampal
transcripts differentially expressed in Nrg1tg-type I mice, with enrichment of genes related to neuromodulation and, in
older mice, of genes involved in inflammation and immunity. Nrg1tg-type I mice had an enlarged hippocampus with a
widened dentate gyrus. The results show that Nrg1 type I impacts on hippocampal gene expression and structure in a
multifaceted and partly age-related way, complementing the evidence implicating Nrg1 signaling in aspects of
hippocampal function. The findings are also relevant to the possible role of NRG1 signaling in the pathophysiology of
schizophrenia or other disorders affecting this brain region.

Introduction
Neuregulin 1 (Nrg1; NRG1) is a growth factor, signaling

via Erbb3 and Erbb4 receptor tyrosine kinases. Nrg1 plays
diverse roles in the development, plasticity, and diseases
of the nervous system1–5. Its pleiotropy arises, in part,
from a family of structurally and functionally distinct
isoforms (types I to VI), transcribed from different 5’
exons6. In humans, allelic variation can affect NRG1 iso-
form expression7–9, and polymorphisms in NRG1 may be
a risk gene for schizophrenia10–12, although this has not
been confirmed in genome-wide association studies13.
The type I isoform is affected in schizophrenia, with

increased expression in hippocampus7 and prefrontal
cortex14 compared with controls, and representing one of
the abnormalities of NRG1-ErbB4 signaling observed in
the disorder15–18. Reflecting the interest in the functional
and pathological roles of NRG1 type I, a transgenic mouse

selectively overexpressing this isoform (Nrg1tg-type I) was
created19, and shown to have alterations in myelination20

and some aspects of behavior21, including an age-
emergent deficit in hippocampus-dependent spatial
working memory22. Nrg1tg-type I mice also exhibit a
reduced frequency of carbachol-induced hippocampal
gamma oscillations22. These findings complement a broad
body of evidence linking Nrg1 to hippocampal function
and plasticity23–28. Differing phenotypic profiles are seen
in other genetic mouse models of Nrg1, highlighting the
existence of isoform-specific properties29–34.
In the current study we examined two other aspects of

the hippocampus in Nrg1tg-type I mice: its transcriptome,
and its structure, in comparison with wildtype (wt) lit-
termates. Because of the age-dependent features of the
hippocampal phenotype observed previously, the tran-
scriptomic analysis was performed at two ages.
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Materials and methods
All experiments were conducted in accordance with the

United Kingdom Animals (Scientific Procedures) Act,
1986, and had local ethical approval.

Generation and genotyping of Nrg1tg-type I mice
The generation and genotyping of the Nrg1tg-type I mice

has been described19. The mice overexpress Nrg1 type I
(β1a-isoform) under a Thy-1 promoter, with robust
overexpression in multiple brain regions, including the
hippocampus, with no alteration in Nrg1 types II or
III20,21. The experiments reported here were performed in
F6-F9 generations of backcross of heterozygous Nrg1tg-type
I males with wt C57BL/6 J females, comparing Nrg1tg-type I

mice with their wt littermates.

Microarrays and quantitative real-time PCR (RT-qPCR)
Two microarray experiments were performed, one in

‘young adult’ mice (2.5–4 months), the other in ‘old’ mice
(14–15 months). Each comprised 24 animals, 6 of each
genotype and sex.

RNA extraction and preparation for microarrays
Brains were frozen in isopentane cooled on dry ice. The

left hemisphere was placed into RNAlater®-ICE Frozen
Tissue Transition Solution (Ambion) at − 20 °C for 18 h,
after which the hippocampus was dissected and homo-
genized in Qiazol in a TissueLyser (Qiagen). Total RNA
was extracted and purified with RNeasy lipid tissue Mini
kits (Qiagen) according to manufacturer’s protocol. In
total, 300 ng RNA was used for amplification and labeling
with Illumina® TotalPrep™ RNA Amplification Kit
(Ambion). Complementary RNA (cRNA) quality was
determined with an Agilent 2100 Bioanalyser (Agilent
Technologies, Palo Alto, CA).
A total of 1.5 µg cRNA from each brain was hybridized

to an Illumina Mouse WG-6 v1.1 (young mice) or v2 (old
mice) chip according to manufacturers’ protocol and
scanned with a BeadStation 500 machine.

Microarray analysis
Standard quality control measures were performed with

the BeadStudio program (Illumina, CA), including sub-
tracting the background from each array from the raw
signal intensity of each probe type. The raw signal
intensity data underwent variance stabilizing normal-
ization, which is a generalized log2 transformation of the
signal. A quantile standardization procedure was used to
centralize the mean signal in the distribution (i.e., of all
the probes) and to equalize the variance between mice.
Further quality control was performed such as hier-
archical clustering and box plots of normalized intensity
(robust multichip average; RMA) values for each chip.

A linear model with an empirical Bayes t-statistic was
fitted to the data to generate lists of significant effects of
genotype, using the Limma program35. We corrected for
multiple testing with the Benjamini–Hochberg false dis-
covery rate to give an adjusted p value36. The criteria for
differential expression were an adjusted p value < 0.05 and
an absolute (unlogged RMA) fold change in expression
(FC) > 1.5.
Differentially expressed probe lists were condensed into

lists of differentially expressed transcripts, including
known splice variants, identified with PubMed basic local
alignment search tool (BLAST). Probes with no accession
number were identified by nucleotide sequence with
PubMed Nucleotide BLAST. Results from each array were
compared with obtain lists of genes that were differen-
tially expressed in NRG1tg-type I mice at both ages, or only
at one of the two ages. These three lists of genes were
used for further investigation with Ingenuity Pathways
Analysis (IPA; Ingenuity Systems), which generated net-
works of up to 35 genes based on their known functional
links37.

RT-qPCR
Hippocampal RNA was treated with 1 μl (1 unit) RQ1

RNase-free DNAse (Promega) and 0.6 μl (24 units) RNa-
sin ribonuclease inhibitor (Promega) at 37 °C for 30 min
and then heated to 72 °C for 10min. DNAse-treated RNA
was reverse-transcribed using 1 μl (200 units) MMLV
reverse transcriptase, Promega), 1xMMLV buffer, 0.8 μl of
10 mM dNTPs, 0.6 μl (24 units) RNasin, 0.6 μl of 10 mM
oligoDTs. The reaction mix was incubated at 42 °C for 1 h
and then heated to 72 °C for 10 min. The reverse-
transcribed RNA (complementary DNA; cDNA) was
diluted with nuclease-free water and stored at − 80 °C.
TaqMan assays were ordered from Applied Biosystems

(Npy, Mm00445771_m1; Gfap, Mm01253034_m1; Inhba,
Mm00434339_m1; Cntfr, Mm00516697_m1; C1qa,
Mm00432142_m1; Rbbp4, Mm00771401_g1). Bdnf was
detected using pan-BDNF primers and a TaqMan probe
(Forward, 5′-GGGTCACAG CGGCAGATAAA-3′,
Reverse 5′-GCCTTTGGATACCGGGACTT-3′; Probe, T
CTGGCGGGACGGTCACAGTCCTA)38. Bdnf v1-
specific probes39 were: Forward, 5′-CACATTACCTTCC
TGCATCTGTTG-3′, reverse 5′-ACCATAGTAAGGAA
AAGGATGGTCAT-3′, probe AAGCCACAATGTTCC
ACCAG. The PCR reaction mix included 15 ng cDNA,
1xTaqMan Universal PCR Master Mix (Applied Biosys-
tems) and the assay in a final volume (with nuclease-free
water) of 15 μl in 384-well plates. Nrg1 mRNA was
quantified using a SyBr green assay, with the primers
designed so that the PCR product would span the exon
boundary between the type I-specific exon and the
immunoglobulin-like domain, and checked in the BLAST
database for binding specificity (Forward, 5′-
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AAGGGGAAGGGCAAGAAGAA-3′, Reverse 5′-
TCTTTCAATCTGGGAGGCAAT-3′; Eurogentech). The
reaction mix for Nrg1 type I was 1xSyBr Green Mix, 15 ng
cDNA, 200 nM of each primer and nuclease-free water up
to a final volume of 15 μl.
Standard curves of pooled cDNA from all samples were

set up in triplicate with the starting amount of cDNA
ranging from 100 ng to 0.54 pg (Nrg1), 5 pg (Npy), 0.01 ng
(Gfap), or 0.39 ng (Inhba, Cntfr, C1qa, Rbbp4). The R2 of
all standard curves was > 0.99. All experimental samples
fell within the standard curve. Samples were run in tri-
plicate on the same plate as the standard curve. No-
template controls and RT-negative controls were also run
in triplicate to test for any contamination of the reaction
mix or cDNA, respectively. Cycling conditions for all
qRT-PCR reactions were 50 °C for 2 min, 95 °C for 10 min
and then 40 repeats of 95 °C for 15 seconds to denature
and 60 °C for 1 min.

Morphology and histology
Snap-frozen brains from 10-month-old wt and Nrg1tg-

type I mice were coronally cryosectioned at 20 μm thick-
ness. Hippocampal area was measured by point counting
on multiple cresyl violet-stained sections throughout the
dorsoventral extent, and hippocampal volume estimated
using Cavalieri’s theorem as described40. Whole brain
volume was estimated in the same way. We also measured
the cross-sectional area of subfields (dentate gyrus, CA3,
CA1) by manual tracing using a Nikon Eclipse 3600
microscope coupled to an MCID Elite image analysis
system (Interfocus, Haverhill, UK). Other sections were
immunostained for parvalbumin (PV27, 1:100; Swant,
Switzerland), detected with diaminobenzidine, by standard
methods. All measurements were made blind to genotype.

Results
The hippocampal transcriptome of Nrg1tg-type I mice: age-
related effects on genes involved in myelination,
neurotransmission, and immunity
Nrg1 impacts upon the expression of many individual

genes1,3. Here we used microarrays as an unbiased
method to identify transcripts and networks altered in the
hippocampus of Nrg1tg-type I mice. Adopting a stringent
statistical approach, and with a 1.5-fold change threshold,
we identified over 100 differentially expressed genes, of
which ~ 80% were increased in Nrg1tg-type I mice com-
pared with wt (Fig. 1a, and Supplementary Tables 1–3).
Thirty-eight transcripts were altered in the same direction
at both ages (Supplementary Table 1), 20 were differen-
tially expressed only in the young adult (2.5–4 month)
Nrg1tg-type I mice (Supplementary Table 2) and 54 only in
old (14–15 month) Nrg1tg-type I mice (Supplementary
Table 3). Eight transcripts were selected for qPCR vali-
dation, based on the microarray results as well as what

was known about their functions and interactions with
Nrg1 (Fig. 1b–d; and Table 1).
Genes upregulated at both ages in the NRG1tg-type I mice

included neuropeptide Y (Npy), brain-derived neuro-
trophic factor (Bdnf), and glial fibrillary acidic protein
(Gfap). Consistent with the Npy mRNA data, Npy-
immunoreactive hippocampal interneurons were mark-
edly more prominent in the Nrg1tg-type I mice (not shown).
The Bdnf mRNA increase affected the V1 isoform selec-
tively. IPA generated two networks with scores corre-
sponding to significance values of p= 10−31 and p=
10−25 (Supplementary Figs. 1 and 2). Network 1 included,
as well as Npy and Bdnf, several transcripts involved in
neurotransmission and implicated in schizophrenia, such
as dopamine D1 and D4 receptors (Drd1 and Drd4).
Of the genes differentially expressed in young but not

old Nrg1tg-type I mice, three were involved in myelination
(myelin basic protein (Mbp), myelin oligodendrocyte
glycoprotein (Mog), and myelin-associated oligoden-
drocytic basic protein). IPA generated a network that
included Mog and Mbp (p= 10−35; Supplementary Fig. 3).
Genes overexpressed in old but not young Nrg1tg-type I

mice (Supplementary Table 3) included many with
immune and inflammatory functions, and IPA generated
two highly significant networks (p= 10−37 and p= 10−34;
one is shown in Fig. 1e, the other in Supplementary Fig.
4). In particular, the network shown in Fig. 1e includes
many upregulated HLA and major histocompatibility
complex (MHC) genes (Supplementary Table 4).

Nrg1tg-type I mice have altered hippocampal morphology
As shown in Fig. 2a, the hippocampus was enlarged (by

~ 25%) in Nrg1tg-type I mice, with brain volume unchan-
ged. In terms of individual subfields, the only difference
observed in Nrg1tg-type I mice was that the dentate gyrus
granule cell layer was wider than in wt mice; this was
primarily in the infra-pyramidal (external) blade rather
than the supra-pyramidal (internal) blade (Fig. 2b, c). The
density of PV+ interneurons was unchanged in each
subfield measured (Fig. 2d).

Discussion
Mice selectively overexpressing the type I isoform of Nrg1

show differences in hippocampal function and age-emergent
deficits in hippocampus-dependent behavior22. Here, we
report that these changes are accompanied by an altered
profile of gene expression which differs between young adult
(2.5–4 month) and old (14–15 month) Nrg1tg-type I mice,
and by an increase in hippocampal volume.

The hippocampal molecular and morphological profile of
Nrg1tg-type I mice
Nrg1tg-type I mice exhibited differential expression of a

number of genes (Fig. 1; Table 1; Supplementary Figures
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Fig. 1 (See legend on next page.)
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1–4; Supplementary Tables 1–3). Of the genes over-
expressed in Nrg1tg-type I mice at both ages, several are
noteworthy. In particular, five transcripts (Npy, Gfap,
Bdnf, Drd1, and Drd4) were part of the most significant
gene network and all had been linked previously to Nrg1.
The fact they were upregulated in both age cohorts, which
were studied separately and with different versions of the
microarray chip, strengthens the robustness of the
findings.
Npy is expressed by a subpopulation of hippocampal

interneurons, bistratified and ivy cells, which impose a
strong inhibitory influence on pyramidal cell den-
drites41,42. Its marked upregulation in the Nrg1tg-type I

mice (Fig. 1b) is of interest for several reasons. First, it
provides another hint that interneurons are affected and
may contribute to the oscillatory and circuitry alterations
that underlie the phenotype of the mice41–44. Second, Npy
is anti-epileptic45–47, and enhanced Npy expression may
help prevent the epileptiform predisposition of Nrg1tg-type
I mice22 progressing to overt seizure activity. Third, the
NpymRNA elevation may be related to the morphological
finding of a widened dentate gyrus. Preliminary data show

an increase of hilar cells immunoreactive for doublecortin,
a marker of newly formed neurons, in the Nrg1tg-type I

mice (I.H.D. and P.J.H., unpublished observations), sug-
gesting that the enlarged dentate gyrus might reflect
increased adult neurogenesis—a process stimulated by
Npy48–50, and influenced by Nrg151. Whether the per-
sisting upregulation of Gfap mRNA in Nrg1tg-type I mice
(Table 1) is also indicative of enhanced cell proliferation—
as many neural precursors express Gfap52—remains to be
seen; it might also be a remnant of the developmental role
of Nrg1-ErbB signaling in neuron–astrocyte differentia-
tion53,54. Bdnf is a regulator of hippocampal plasticity and
function55, and its elevated expression may have many
manifestations in the Nrg1tg-type I mice, including a con-
tribution to their spatial working memory deficit22,56.
Finally, the upregulation of Drd1 and Drd4 mRNAs
complements evidence that hippocampal Drd4 mediates
Nrg1-induced reversal of LTP24, and that Nrg1 applica-
tion produces acute57 and sustained58 increases in dopa-
mine release and dopamine neuron firing59. Another Nrg
genetic mouse model also shows dopamine receptor
alterations60.

(see figure on previous page)
Fig. 1 Hippocampal gene expression in Nrg1tg-type I mice. a Genes meeting the criteria described in text for differential expression in young
(yellow) or old (blue) adult Nrg1tg-type I mice, or Nrg1tg-type I mice of both ages (orange). b–d examples of RT-qPCR validation of transcripts from each
group. b Npy mRNA, increased in Nrg1tg-type I mice of both ages; c Cntfr mRNA, decreased in young but not old adult Nrg1tg-type I mice; d C1q mRNA,
increased in old but not young adult Nrg1tg-type I mice. Statistics for the data shown in panels b–d are given in Table 1. e An IPA network of
transcripts differentially expressed in old but not young adult Nrg1tg-type I mice. The network comprises nodes (genes) and their biological
relationships shown by interconnecting lines. Red nodes are transcripts with increased expression, and the green nodes are transcripts with lower
expression, in the old Nrg1tg-type I mice, compared with their age-matched wt controls. Increasing color intensity indicates a greater fold change.
White nodes show genes that are functionally related to the other differentially expressed genes in the network and added by IPA. Solid lines
between nodes indicate a direct interaction between them and dashed lines indicate indirect relationships. A continuous line denotes “binding only”;
pointed line, “acts upon” and blunt ended line, “inhibits”. For gene symbols and names, see Supplementary Table 4. For additional IPA networks
identified in one or both age groups of Nrg1tg-type I mice, see Supplementary Tables 1–3 and Supplementary Figures 1–4

Table 1 Quantitative RT-PCR validation of differentially expressed genes in Nrg1tg-type I mice

Young adult (2.5–4 months) Old (4–15 months)

Microarray qRT-PCR Microarray qRT-PCR

Accession Gene FC p FC p FC p FC p

NRG1 type I 8.60 2.62E-19 801 0.001 NA NA 466 0.001

NM_023456.2 NPY 2.22 1.01E-05 2.0 0.005 2.46 9.93E-06 2.6 0.001

NM_010277 GFAP 1.59 1.69E-03 NC NC 1.62 1.42E-02 1.5 0.036

NM_007540.3 BDNF v1 1.65 4.12E-04 3.5 0.001 2.76 8.00E-07 NC NC

NM_008380.1 Inhba 2.28 4.83E-06 NC NC NC NC 2.7 0.001

NM_016673.1 Cntfr −1.86 5.66E-03 −3.4 0.068 NC NC NC NC

NM_007572 C1qa NC NC NC NC 1.60 6.14E-04 1.4 0.032

NM_009030 Rbbp4 NC NC NC NC −1.89 6.14E-04 NC NC

NA: probe not present on array. NC: no significant change. The statistical approach to the microarray data is described in text; p values for qRT-PCR are from unpaired t
tests (two-tailed) comparing transgenic and wt mice of each age group
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The gene expression differences that occurred in the old
but not young Nrg1tg-type I were striking, comprising many
immune and inflammatory genes, such as HLA-DR, MHC
class II CD74, and complement C1q. Similar changes have
been reported in old vs. young wt rodents and in this
respect there may be an ‘accelerated aging’ phenotype in
Nrg1tg-type I mice61–64. C1q, like other complement fac-
tors, is also involved in neuronal and synaptic function65–
67 and dysfunction68–70 and brain aging71. As such, the
altered expression of the genes in the older Nrg1tg-type I

mice may represent molecular correlates of, and might
contribute to, their age-emergent memory impairment.
Fewer genes were differentially expressed in the young

but not old Nrg1tg-type I mice, and they were primarily
myelin-related. This is not unexpected, in that Nrg1 is a
critical player in myelination72,73. Although the type I
isoform has hitherto been implicated primarily in per-
ipheral myelination19,74,75, these mice do show hyper-
myelination of small diameter axons in the central
nervous system20. The upregulation of myelin-related
transcripts in the Nrg1tg-type I mice may be a molecular
indication that this process is also occurring in the

hippocampus; any resulting hypermyelination may in turn
contribute to the hippocampal volume increase. However,
this remains speculative; indeed, more generally, the
processes that link the morphological and molecular
alterations reported here remain unknown.
The altered transcriptomic profile of the Nrg1tg-type I

mice highlights an issue that pertains broadly to geneti-
cally modified animals: their phenotypes need not arise
solely from the targeted gene(s) but also from the cascade
of molecular changes which the manipulation induces.
Moreover, these effects are not static but vary with age,
and illustrate the value of going beyond the 3–6 month
time-point at which characterization is often completed,
even though capturing the temporal dynamic and long-
itudinal profile is demanding of resources and time.

Implications for NRG1 in schizophrenia
The evidence mentioned earlier showing Nrg1-dopa-

mine interactions, and the increased D1 and D4 receptor
expression seen here is notable, given that dopaminergic
abnormalities are a final common pathway in schizo-
phrenia pathophysiology76, and alterations in both

Fig. 2 Hippocampal morphology in Nrg1tg-type I mice. a Hippocampal volume is increased in Nrg1tg-type I mice (n= 10) compared with wt (n= 9;
two-tailed unpaired t test, t= 3.249, df= 17, p= 0.006), but whole brain volume is unchanged. b The width of the dentate gyrus granule cell layer is
increased in Nrg1tg-type I mice in the infra-pyramidal blade (n= 6 in each group; two-tailed unpaired t test, t= 4.126, df= 10, p= 0.002) but not in the
supra-pyramidal blade. c Illustration of the data in b, showing the wider infra-pyramidal blade (IPB) in a Nrg1tg-type I mouse compared with a wt
mouse. The supra-pyramidal blade (SPB) is also shown, with CA3 in between. d The density of parvalbumin (PV)-immunoreactive cells did not differ in
Nrg1tg-type I mice (n= 10) compared with wt (n= 12). Bars in a, b, and d show mean and standard deviation. All data in this Figure come from 10-
month-old mice
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receptors have been reported in the disorder77,78. The
MHC complex is strongly implicated in schizophrenia79,
in part through the complement C4 gene80, and several81–
84 though not all85 studies report elevated expression of
many immune and inflammatory genes, including C1q,
especially in older, chronically ill patients86, reminiscent
of the gene expression changes being restricted to the old
Nrg1tg-type I mice. There is also some evidence for direct
links between NRG1, immune function, and schizo-
phrenia87–89.
However, there is less congruence when other findings

are considered. Thus, in schizophrenia, in contrast to
findings in the Nrg1tg-type I mice, hippocampal myelin-
related transcripts are decreased90, hippocampal volume
is unchanged or reduced91, and there is a lower density of
hippocampal PV+ neurons92. Thus, although the phe-
notype of Nrg1tg-type I mice may be seen as overlapping to
an extent with that of schizophrenia, the differences are at
least as striking as the similarities. One specific factor to
consider is that the magnitude of overexpression in the
Nrg1tg-type I mouse is far greater than the increased NRG1
type I expression reported in schizophrenia. More gen-
erally, these considerations draw attention to the need for
cautious interpretation and extrapolation from any
genetic mouse model to the human syndrome. Never-
theless, the results extend the evidence that Nrg1 type I is
functional in the hippocampus, and hence may play a role
in any disease in which its expression in this brain region
is altered.
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