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1. Methods 

1.1. Fewest Switches Surface Hopping 

NA-MQC dynamics forms a class of methods to approximately solve the time-dependent 

Schrödinger equation for an electronically excited molecular system.
1
 In these methods, the 

nuclei are treated as a swarm of classical trajectories, while the electrons are treated quantum-

mechanically. Nonadiabatic information (the coupling between different adiabatic electronic 

states induced by nuclear motion) is provided in diverse ways depending on the specific method. 

The classical trajectories are usually (but not necessarily
2
) independent from each other. NA-

MQC dynamics methods are well suited for on-the-fly propagation, in which electronic 

properties (potential energies, potential energy gradients, and state couplings) are computed for 

the nuclear geometry of the classical trajectory as the time propagation goes. Therefore, they do 

not require precomputed or fitted multidimensional surfaces, which allows considering the 

dynamics of all nuclear degrees of freedom.  

In this paper, we employ one of the most well-known on-the-fly NA-MQC methods, the surface 

hopping dynamics with decoherence-corrected
3
 fewest switches

4
 (DC-FSSH). The latest 

advances in and main limitations of NA-MQC dynamics have been recently reviewed in Ref. 5. 

Here, we only present the core features of DC-FSSH such that the explanation of its integration 

with machine learning is self-contained. 

In surface hopping, Newton’s equations for each nucleus k  with mass kM  

 

2

2
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d V
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
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R
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 (S1) 

are solved on a single Born-Oppenheimer potential energy surface (adiabatic state L with 

potential energy VL), while the nonadiabatic transition probabilities between state L and any 

other state J nearby are simultaneously computed. At each time step, a stochastic algorithm 

decides whether the propagation should remain on L or switch to J. The sequence of nuclear 

geometries  tR  generated in this way is called a trajectory.  

The integration of Eq. (S1) requires the force /L kV R   acting on the nuclei  due to energy 

gradient of state L. In our implementation, this integration is done with the popular velocity-

Verlet algorithm
6
 at time steps t. 

In the DC-FSSH version of surface hopping, transition probabilities are computed for each time 

step by integrating a local approximation of the time-dependent Schrödinger equation (TDSE) 

 
NACJ

J J JK K

K

dc i
V c c

dt
     (S2) 

This approximation is local because the time-dependent coefficients Jc  are computed only at the 

position  tR  of the classical trajectory. The integration of the local TDSE requires knowledge 

of the potential energies of each state J and the couplings between J and K 



Dral, Barbatti, Thiel SI for Excited-State MD with ML 08.09.2018 

Page S3 of S19 

  NAC kK
JK J JK k

kt


 


  


R F v   (S3) 

where J  is the electronic wave function of state J,   
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  (S4) 

is the nonadiabatic coupling vector, and kv  is the classical velocity of nucleus k . In the 

examples discussed later, the local TDSE was integrated with the Butcher algorithm
7
 to the 6

th
 

order, with time step / st m    , where ms is an integer. This choice of   is motivated by 

the fact that the local TDSE requires much smaller time steps than the classical equations. The 

integration of the local TDSE between two classical steps is done using interpolated electronic 

quantities.  

The locality of the TDSE is known to lead to overcoherence,
8
 with a superposition of several 

electronic states holding over time, rather than selecting a specific state, as expected. 

Overcoherence may lead to bad probability estimates, and several algorithms have been 

proposed to fix it.
8-10

 Here, we use the simplified decay of mixing (SDM),
3
 which transforms the 

coefficients obtained from Eq. (S2) according to 
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In the SDM, the decoherence time 
JL   is given by 

 

1

1 J L

JL n

V V
C

K







  
  

 
  (S6) 

where 
nK  is the classical kinetic energy of the nuclei. C and   are parameters whose 

recommended values are 1 and 0.1 Hartree, respectively.
11

 

The decoherence-corrected coefficients are then used to compute the FSSH probabilities 

according to 

  *

2
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The stochastic algorithm samples a uniform [0,1] random number rt, which is compared to the 

computed probabilities. The trajectory hops from L to J if two conditions are satisfied. First, 
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Second, the total energy after hopping is not larger than before. The second condition ensures 

that a hop from a lower to a higher surface is not allowed if it requires more energy than 
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available in the system. In our calculations, if a hopping is frustrated by the second condition, the 

trajectory continues in the same state, with the same momentum. Hops usually occur for finite 

energy gaps LJV . To ensure energy conservation, an amount of linear momentum 

corresponding to this gap is added after hopping, along the direction of the nonadiabatic coupling 

vectors.  

The aim of surface hopping is to emulate the wave packet propagation by a swarm of 

independent trajectories. Therefore, the procedure outlined above needs to be repeated many 

times to produce many trajectories, which are then statistically analysed. Because of the 

stochastic nature of the algorithm, even when starting from the same initial conditions, two 

trajectories are usually different, as they hop at different times.  

The DC-FSSH approach is expected to work well if 1) the light pulse is much shorter than the 

dynamics; 2) the nuclear momentum is large; and 3) there is no strong interference between 

different parts of the wave packet.
12

 

All DC-FSSH trajectories in this study were run for 2 ps (if not specified otherwise) with time 

steps 0.2t   fs, and 20sm   using the development version of the Newton-X program 

package.
13-14

 The initial conditions (starting geometries and velocities) for the dynamics with the 

33-D A-SBH were generated by sampling randomly from a 2 ps ground-state dynamics run. 
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1.2. Adiabatic Spin-Boson Hamiltonian 

Dynamics of dissipative systems can be simulated with the spin-boson Hamiltonian (SBH),
15

 

which in the diabatic basis is given as 

 .s b sbH H H H     (S9) 

This Hamiltonian has contributions from the system (s), the bath (b), and the system-bath 

coupling (sb). For the two-state problem studied here, these terms are defined as follows.  

The system Hamiltonian is 

 0 0 ,s z xH v     (S10) 

written in terms of the Pauli matrices 

 
1 0 0 1

, .
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 (S11) 

In the isolated system, the two electronic levels are separated by 02  and coupled by 
0v . The 

bath is defined in terms of N  independent harmonic oscillators 
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each with mass 
kM  and frequency 

k , oscillating along the coordinate 
kR  with momentum 

kP . 

I  is the 2×2 identity matrix. The system and the bath are linearly coupled through 
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N
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k

H g R
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  , (S13) 

where 
kg  is a coupling constant. 

For surface hopping, it is more convenient to treat this model in the adiabatic basis.
16

 The 

potential energy surfaces are 
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where 
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The energy gradient components are 

    2

1/2
2 2

0

1 , 1 ,
JJ

k k k k

k

V
M R g k N

R v






 
     

     

 (S16) 

and the nonadiabatic coupling components are 
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Surface hopping with the spin-boson Hamiltonian is discussed in Refs. 16-19. In our 

implementation in Newton-X, energies, energy gradients, and nonadiabatic couplings are 

computed for the set of coordinates  kR  using Eqs. (S14), (S16), and (S17). The parameters 0  

and 
0v , the number of oscillators N , their masses  kM  and frequencies  k , and the system-

bath couplings  kg  are provided by the user. 

The largest A-SBH model considered here consists of 33 oscillators and has parameters chosen 

to roughly resemble the topography of the S1/S0 states of cytosine. Therefore, the masses and 

frequencies of this 33 dimensional (33-D) model were taken equal to those calculated for 

cytosine at B3LYP
20-25

/6-31G(d)
26-37

 with Gaussian 09
38

 (Table S1). The coupling 0v  was 

arbitrarily set to 800 cm
−1

 (ca. 0.1 eV), 0  was set to an arbitrary value of 12,000 cm
−1

. 1g  and 

2g  were set to 0.012 Hartree/a0, and kg for all other modes were set to 0.001 Hartree/a0. 

Table S1. Normal frequencies and reduced masses of cytosine in the ground state at B3LYP/6-31G(d) 

and system-bath couplings  kg . 

Mode Frequency (cm
−1

) Reduced Mass (amu) gk (Hartree/a0) 

1 138.2378 5.5516 0.012 

2 203.879 5.9372 0.012 

3 326.1611 1.2151 0.001 

4 359.2826 3.4224 0.001 

5 393.2188 2.8741 0.001 

6 525.6653 1.783 0.001 

7 533.3969 3.0695 0.001 

8 548.8424 2.7842 0.001 

9 577.1353 9.1378 0.001 

10 630.4229 1.2068 0.001 

11 732.2183 1.7023 0.001 

12 760.5861 2.7665 0.001 

13 769.6856 7.6244 0.001 

14 771.343 9.3183 0.001 

15 926.0104 3.3787 0.001 

16 955.0711 1.2839 0.001 

17 990.7741 4.5736 0.001 

18 1104.1897 1.9972 0.001 

19 1134.2905 1.4871 0.001 

20 1223.8565 1.318 0.001 

21 1263.4521 3.8957 0.001 

22 1367.2161 1.8242 0.001 

23 1453.6857 2.4315 0.001 

24 1522.0054 2.9114 0.001 

25 1581.3994 5.1055 0.001 

26 1659.507 1.3666 0.001 

27 1708.1024 4.6716 0.001 

28 1820.0429 9.5456 0.001 

29 3216.0061 1.0902 0.001 

30 3239.3832 1.0975 0.001 

31 3589.0573 1.0462 0.001 

32 3617.1036 1.0787 0.001 

33 3711.0983 1.103 0.001 
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1.3. Machine Learning 

In this study we use an ML approach based on kernel ridge regression (KRR), which is easy to 

implement and use. It has been successfully applied for predicting many quantum chemical 

properties with good accuracy.
39-46

 

As explained above, performing DC-FSSH nonadiabatic dynamics usually requires energies, 

energy gradients, and nonadiabatic couplings for a given set of coordinates. Thus, we estimate 

each of these components (
JV , J

k

V

R




, 12

kF ) individually using KRR: 
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where estY  is an estimate of one of the above components for the p-th set of coordinates  kR  

defined by a vector pR ,  m  are regression coefficients corresponding to the m-th set of 

coordinates  kR  defined by a vector 
mR  of the training set,  ,p mK R R  is the kernel, and 

trN

is the number of training set points. The dimensionality of the input vectors R  for ML is defined 

by the number of independent oscillators N . In this study we use the kernel of the Matérn type 

defined as follows:
47
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where n  is an integer parameter,   is the kernel width, 
2p mR R  is the Euclidean (L

2
) norm 

of the difference vector p mR R  (the Euclidean distance). In our tests we found that this kernel 

generally gives results superior to those obtained with commonly used Gaussian
42

 or Laplacian
42

 

kernels for many oscillators. 

The vector α  of regression coefficients  m  is obtained from the well-known expression:
48

 

  
1 ref


 α K I Y  (S20) 

where I  is the 
tr trN N  identity matrix, K  is the kernel matrix with elements calculated with 

the Matérn kernel for all pairs of training set points,   is the regularization parameter, and ref
Y  

is the vector of the reference values calculated with A-SBH for the training set points. 

The only parameters in Eqs. (S19) and (S20) that need to be defined by a user, are n ,  , and  . 

We found that 1n   provides the best results, while   and   were determined by two iterations 

of a logarithmic grid search
44

 that aims to minimize the error in the validation set for KRR 

models trained on the subtraining set. The validation and subtraining sets are obtained by 

splitting the training set so that the validation set consists of 20% of the training set points. The 

splitting was done randomly for the high-dimensional case. In the one-dimensional (1-D) case 
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the splitting was performed uniformly so that validation set points are always in between the 

boundaries of the training set points defined by 
1R . 

In principle, it is possible to estimate energy gradients J

k

V

R




 from ML models trained only on 

energies 
JV . However, this is known to lead to rather poor results

39-40, 49
 and our test calculations 

have confirmed that errors in gradients calculated by taking derivatives of ML models for 

energies are much worse than gradient components predicted by ML models individually trained 

for them. Another approach would be to train ML on both energies and gradients
50-52

 or only 

gradients
40

 to generate the universal ML model for predicting both energies and gradients. 

Although this approach is known to improve the accuracy of ML models,
40, 50-51

 it very quickly 

leads to an explosion in the kernel matrix size, which then either does not fit into even large 

random-access memory or is too slow to invert, because matrix inversion scales as O(N
3
). This 

limits the applicability of the latter approach. Hence, for practical applications, we prefer training 

ML models in this exploratory study for each gradient component individually as done in other 

studies.
53

 

All KRR calculations and parameter searches were performed with MLatom.
54

 During the 

nonadiabatic dynamics it was called by Newton-X to calculate on-the-fly energies, gradients, and 

nonadiabatic coupling components. 
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2. Nonadiabatic Dynamics with Machine Learning 

2.1. Complete Machine Learning Model 

Machine learning can, in principle, approximate any complex function with arbitrary accuracy if 

provided with sufficient information and hardware resources. We demonstrate for the 1-D model 

that it is possible to construct a complete ML model, which knows all the information about the 

photophysical system required to perform FSSH dynamics without loss of accuracy. During the 

dynamics with the complete model, calculations of additional reference data and re-training of 

the KRR models are not needed. 

We trained ML models on 2
q
 (q ≥ 2) points sampled uniformly from 

1 [ 15.0 15.0]R    a0. The 

ML model trained on only 2
7
 = 128 points could perfectly reproduce the numerically exact A-

SBH trajectory with all hopping events (see Figure 1 in the main text). The maximum drift in 

total energy during 2 ps ML dynamics was much less than 0.005 eV or 0.1 kcal/mol, and could 

be reduced even further with more training points. Trajectories with ML models trained on fewer 

points had larger total energy drifts, fewer or no hops, and hops at other times than found in the 

A-SBH trajectory. 

2.2. Approximate 1-D Machine Learning Potentials 

 
Figure S1. Comparison of A-SBH and ML surface hopping trajectories for 1-D model: The simulations 

started from the same initial conditions and were run with the same random seed. The ML model was 

trained on 16 points. 

 
Figure S2. Comparison of A-SBH and ML surface hopping trajectories for 1-D model: The simulations 

started from the same initial conditions and were run with the same random seed. The ML model was 

trained on 16 points, and A-SBH nonadiabatic couplings were used throughout during the ML trajectory 

propagation. 
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Figure S3. Comparison of A-SBH and ML surface hopping trajectories for 1-D model: The simulations 

started from the same initial conditions and were run with the same random seed. The ML model was 

trained on 16 points. During the ML trajectory propagation, A-SBH calculations were performed when 

the estimated energy gap between S1 and S0 was below 0.03 Hartree. 

Sparse sampling creates a problem: the total energy is no longer perfectly constant (Figure S4). 

However, the conservation of total energy is not necessary as long as forces are predicted 

accurately with ML.
49

 For example, in case of the 1-D ML model trained on 16 points, the 

maximum drift in total energy during 2 ps dynamics was as large as 0.30 eV or 7.0 kcal/mol. 

Nevertheless, the quality of this trajectory is reasonable (Figure S3). In practice, even during 

pure QM dynamics the total energy can deviate rather strongly due to various reasons. For 

example, when nonadiabatic dynamics are run at the semiempirical multi-reference configuration 

interaction level without adaptive time steps, there may be total energy deviations up to 

10 kcal/mol between consecutive time steps and a total energy drift during trajectory propagation 

of more than 100 kcal/mol.
55

 Thus, one may tolerate fluctuations in total energy during ML 

dynamics caused by incompleteness of the ML model as long as qualitative conclusions are 

preserved and crucial ensemble properties (e.g. excited-state lifetimes, evolution of geometrical 

properties, etc.) remain realistic. In other words, our approach can be regarded as an 

approximation to the reference high-level QM dynamics method, which may be more accurate 

than on-the-fly NA-MQC dynamics with a more approximate QM method. Low-level QM 

methods can still be useful as a prior to obtain more accurate ML models though,
56

 which will be 

the topic of our future research. 

 
Figure S4. Total energy evolution along A-SBH and ML surface hopping trajectories for 1-D model: The 

ML models were trained on a different number of points (Ntr). The simulations started from the same 

initial conditions and were run with the same random seed. During the ML trajectory propagation, A-SBH 

calculations were performed when the estimated energy gap between S1 and S0 was below 0.03 Hartree.  
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2.3. Approximate 33-D Machine Learning Potentials 

Simple random sampling will lead to many redundant structures in high-dimensional cases. We 

avoided this problem by first randomly sampling 50,000 points from the 33-dimensional space 

and then sampling 1,000 and 10,000 points from these 50,000 points using farthest-point 

traversal (FPT, with initial two points taken farthest apart), which is similar to structure-based 

sampling
41

 and is known to yield more diverse training sets for more accurate ML models. 

Energies, gradients, and nonadiabatic couplings were calculated with A-SBH only for the 

selected 1,000 and 10,000 points. The initial 50,000 points were sampled within boundaries far 

exceeding those encountered during A-SBH dynamics to avoid extrapolation problems with ML. 

In our test calculations we observed that dynamics with ML trained on points sampled with FPT 

is of better quality than dynamics with ML trained on randomly sampled points. 

The reduction of the number of required QM calculations can roughly serve as an estimate of the 

reduction of total computational cost, because the time for training ML models on small numbers 

of training set points and the time for estimating QM properties with ML (several seconds at 

most) are negligible compared to the time for typical QM calculations. In our case, A-SBH 

computations were required for the training points, while in our ML dynamics A-SBH was 

invoked for 13% (ML trained on 1,000 points) and 16% (ML trained on 10,000 points) of all 

time steps when the energy gap dropped below 0.03 Hartree, i.e. the number of A-SBH 

calculations was reduced in DC-FSSH dynamics by 84–87% by using ML. It is possible to 

reduce the fraction of QM calculations invoked during dynamics to less than 10% by decreasing 

the cutoff for the energy gap. However, we would not recommend going below 0.02 Hartree: this 

is the value, where hopping often happens in our pure A-SBH trajectories, and ML may well 

overestimate the gap and would then miss the hopping. Our ML model trained on 1,000 points 

indeed behaved poorly for a cutoff of 0.02 Hartree, while the model trained on 10,000 points 

gave hopping times that were similar for both values of the cutoff (0.02 and 0.03 Hartree). 

In principle, no energy calculations are necessary for running accurate dynamics as long as 

accurate forces are available. This is often exploited in ML dynamics simulations, where only 

forces are predicted with ML.
49, 53

 In our simulations we need ML energies only to estimate 

energy gap and thus to detect regions of higher probability of nonadiabatic transitions. Hence, in 

our model, total energy conservation is not a crucial issue. As we have shown above for 

individual trajectories of the 1-D model, relatively large deviations in total energy have little 

effect on the quality of the trajectories. On the other hand, we consider it useful to monitor the 

total energy drift to evaluate the stability of the ML approach, while we regard immediate 

fluctuations in the total energy as being less important. 

We first analyze the total energy evolution averaged over 1,000 trajectories for the simulations 

with A-SBH and two ML models. Increasing the number of ML training points decreases the 

magnitude of the total energy fluctuations, and also brings the average total energy and the 

corresponding standard deviation closer to the A-SBH values (Figure S5). The final drift of the 

average total energy in 2 ps trajectories relatively to the initial time is reasonably small for ML 
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trained on 1,000 points (0.35 eV, 8.03 kcal/mol) and much smaller for ML trained on 10,000 

points (0.02 eV, 0.4 kcal/mol). This confirms the stability of the ML approach. 

 
Figure S5. Evolution of the total energies along A-SBH (a) and ML (b,c) surface hopping 

trajectories for the 33-D model (blue). The ML models were trained on 1,000 (b) and 10,000 (c) 

points. Also shown are the total energy averaged over 1,000 trajectories (red) and the standard 

deviations (magenta). During the ML trajectory propagation, A-SBH calculations were 

performed when the estimated energy gap between S1 and S0 was below 0.03 Hartree. 

 

As seen from a selection of randomly chosen individual trajectories (Figure S6) fluctuations of 

the total energy during ML dynamics are rather large, similar to the case of 1-D dynamics runs 

with ML trained on a very sparse grids. The total energy fluctuations are smaller for the ML 
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model trained on 10,000 points. The largest total energy jumps between two consecutive steps 

happen when one step is calculated with ML and the other with A-SBH, i.e. at the borders of the 

region with an energy gap of 0.03 Hartree. For a randomly chosen trajectory, the largest total 

energy jumps are 2.17 eV (50.1 kcal/mol, ML trained on 1,000 points) and 0.92 eV (21.3 

kcal/mol, ML trained on 10,000 points). However, the largest total energy jumps before the first 

A-SBH calculation is done are reasonably small: 0.13 eV (3.1 kcal/mol, ML trained on 1,000 

points) and 0.11 eV (2.6 kcal/mol, ML trained on 10,000 points). As already mentioned, large 

variations in the ML total energy do not imply that the simulation is not reliable. Another 

important observation from Figure S6 is that there are clearly visible short periods when the total 

energy is constant: this happens when A-SBH calculations are requested for energy gaps below 

the cutoff of 0.03 Hartree. In these periods, the total energy is the true A-SBH energy, which is 

close to the A-SBH total energy at the start of the corresponding pure A-SBH trajectory. This 

suggests another way of estimating the quality of ML dynamics. Ideally, the A-SBH total energy 

should be the same during ML dynamics and pure A-SBH dynamics. To monitor this for our ML 

trajectories, we calculated the deviations between the A-SBH total energies at the first point of 

each low-energy-gap period in the ML trajectory and the starting point of the pure A-SBH 

trajectory with the same initial conditions. These deviations were collected from 

1,000 trajectories run with both ML models. The corresponding error histogram is given in 

Figure S7. The mean deviations are reasonably close to zero, and the standard deviations are also 

rather small: −0.06±0.27 eV (ML trained on 1,000 points) and +0.06±0.14 eV (ML trained on 

10,000 points, i.e. with roughly half the standard deviation of the model trained on 1,000 points). 

This provides further evidence for the stability of our ML approach. 

Our smallest ML model contains 1,000 training points. Decreasing this number even further 

would quickly increase the ML error, which is proportional to 
tr1/ bN , where b is a constant 

depending on specific conditions and can assume values typically ranging from 0.5 to 2.
41, 57-58

 In 

our simulations with 1,000 training points we have already seen signs of a break-down in terms 

of a larger drift in total energy after 2 ps and a higher sensitivity to the chosen energy cutoff. 

Thus, a training set of 1,000 points seems close to the the minimum size that is still applicable 

for the nonadiabatic dynamics simulations of our 33-D model. Generalizations to other systems 

are not yet possible at this stage. 
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Figure S6. Total energy evolution along several randomly chosen A-SBH and ML surface 

hopping trajectories for 33-D model: The ML models were trained on 1,000 and 10,000 points. 

The simulations started from the same initial conditions for each trajectory. During the ML 

trajectory propagation, A-SBH calculations were performed when the estimated energy gap 

between S1 and S0 was below 0.03 Hartree. As discussed in the text, despite these large 

fluctuations, the trajectories are still considered reliable. 
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Figure S7. Histogram of the deviations between the A-SBH total energies during ML dynamics  

(calculated for the first points of periods with ML-estimated S1–S0 energy gaps below 0.03 

Hartree) and at the starting point of pure A-SBH dynamics with the same initial conditions. The 

ML models were trained on 1,000 and 10,000 points. 
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2.4. Lifetime Fitting and Correlation Analysis 

The S1 population as a function of time was fitted with the function 

    0 01 exp L

D

t
f t f f





 
    

 
 (S21) 

where 0f  is the population asymptotically remaining in the excited state, L  is the latency time 

before which there are no transfers to the ground state, and D  is the exponential decay time 

constant. For the fitting, L  was kept fixed. The lifetime of the excited state is ex L D    .  

 
0f  L  (fs) D  (fs) ex  (fs) 

A-SBH 0.28 44 70 114 ± 1 

ML (trained on 1,000 points) 0.28 37 63 100 ± 1 

ML (trained on 10,000 points) 0.27 39 66 105 ± 1 

The margin of error in the lifetime corresponds to a 95% confidence interval. 

 

There is a high correlation between the results of the pure A-SBH and the ML simulations. This 

is shown in Figure S8 for the S1 populations. The Pearson correlation coefficient between A-

SBH and ML trained on 1,000 points is 0.988 over the full 2 ps data collection. It is 0.987 

between A-SBH and ML trained on 10,000 points.  

 

Figure S8. Correlation between the S1 populations computed with pure A-SBH and with ML for 

all points up to 2 ps. r is the Pearson correlation coefficient. 

 

The correlation tends to degrade as the dynamics evolves. If only points between 0 and 1 ps are 

considered, r = 0.994 between pure A-SBH and each ML set. By contrast, if only points between 

1 and 2 ps are considered, the correlation coefficient is 0.477 between pure A-SBH and ML 

trained on 1,000 points, and 0.611 between pure A-SBH and ML trained on 10,000 points.  
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