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Summary 
Episodic memories consist of event information linked to spatio-temporal context. Notably, 
the hippocampus is involved in the encoding, representation and retrieval of temporal 
relations that comprise a context [1–11], but it remains largely unclear how coding for elapsed 
time arises in the hippocampal-entorhinal region. The entorhinal cortex (EC), the main cortical 
input structure of the hippocampus, has been hypothesized to provide temporal tags for 
memories via contextual drift [12,13] and recent evidence demonstrates that time can be 
decoded from population activity in the rodent lateral EC [14]. Here, we use fMRI to show that 
the anterior-lateral EC (alEC), the human homologue region of rodent lateral EC [15,16], maps 
the temporal structure of events. Participants acquired knowledge about temporal and spatial 
relationships between object positions—dissociated via teleporters—along a fixed route 
through a virtual city. Multi-voxel pattern similarity in alEC changed through learning to reflect 
elapsed time between event memories. Furthermore, we reconstructed the temporal 
structure of object relationships from alEC pattern similarity change. In contrast to the 
hippocampus, which maps the subjective time between event memories in this task [1], the 
temporal map in alEC reflected the objective time elapsed between events. Our findings 
provide evidence for the notion that alEC represents the temporal structure of memories, 
putatively derived from slowly-varying population signals during learning. Further, our findings 
suggest a dissociation between objective and subjective temporal maps in EC and 
hippocampus; thereby providing novel evidence for the role of the hippocampal-entorhinal 
region in representing time for episodic memory.  
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Results 
Here, we used representational similarity analysis of fMRI multi-voxel patterns in the 
hippocampal-entorhinal region to test the prediction that the anterior-lateral entorhinal cortex 
(alEC) maps the temporal structure of events. We examined the effect of learning temporal 
and spatial positions of objects along a route through a virtual city (Figure 1). Specifically, we 
presented object images in the same random order before and after learning and 
subsequently compared the change in neural pattern similarity between object 
representations to the temporal and spatial structure of the task [1]. Using this paradigm and 
data, we previously demonstrated that participants can successfully recall the subjective, 
remembered spatial and temporal relations between object pairs and that the change of 
hippocampal representations reflects an integrated event map of the remembered distance 
structure. Here, we demonstrate that the change of multi-voxel pattern similarity through 
learning in alEC (Figure 2A) reflects the objective temporal distance structure of the task—
dissociated from spatial distances through the use of teleporters [1]—resulting in a consistent 
relationship between similarity and time elapsed between object encounters. The change in 
multi-voxel pattern similarity in alEC between pre- and post-learning scans was negatively 
correlated with temporal distances between objects pairs along the route (Figure 2B, T(25)=- 
3.75, p=0.001, alpha-level of 0.0125, Bonferroni-corrected for four comparisons). Objects 

Figure 1. Design and analysis logic. A. During the spatio-temporal learning task, which took place in 
between two identical runs of a picture viewing task (Supplemental Figure 1), participants repeatedly 
navigated a fixed route (blue line) through the virtual city along which they encountered objects hidden in 
chests (numbered circles) [1]. Temporal (median time elapsed) and spatial (Euclidean) distances between 
objects were dissociated through the use of three teleporters (lettered circles) along the route (Supplemental 
Figure 2), which instantaneously changed the participant’s location to a different part of the city. B. In the 
picture viewing tasks, participants viewed randomly ordered images of the objects encountered along the 
route while fMRI data were acquired. We quantified multi-voxel pattern similarity change between pairwise 
object comparisons from before to after learning the temporal and spatial relationships between objects in 
subregions of the entorhinal cortex. We tested whether pattern similarity change reflected the structure of the 
task, by correlating it with the time elapsed between objects pairs (top right matrix shows median elapsed 
time between object encounters along the route averaged across participants). For each participant, we 
compared the correlation between pattern similarity change and the prediction matrix to a surrogate 
distribution obtained via bootstrapping and used the resulting z-statistic for group-level analysis (see 
Methods). 
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encountered in temporal proximity changed to be represented more similarly compared to 
object pairs further separated in time (Figure 2C). Pattern similarity change in alEC did not 
correlate significantly with spatial distances (T(25)=0.81, p=0.420) and pattern similarity 

Figure 2. Temporal mapping in alEC. A. Entorhinal cortex subregion masks from [15] were moved into 
subject-space and intersected with participant-specific Freesurfer parcellations of entorhinal cortex. Color 
indicates probability of voxels to belong to the alEC (blue) or pmEC (green) subregion mask after subject-
specific masks were transformed back to MNI template space for visualization. B. Pattern similarity change in 
the alEC reflected elapsed time between objects along the route as indicated by z-statistics significantly 
below 0. A permutation-based two-way repeated measures ANOVA further revealed a significant interaction 
highlighting a difference in temporal and spatial mapping between alEC and pmEC. Planned post-hoc 
comparisons indicated that the correlations between pattern similarity change and elapsed time in alEC were 
significantly more negative than correlations with spatial distances in alEC and as well as significantly more 
negative than the correlations between elapsed time and pattern similarity change in pmEC. C. Pattern 
similarity change in alEC for objects encountered close together or far apart in time along the route. Lines 
connect data points from the same participant. D. To recover the temporal structure of events we performed 
multidimensional scaling on the average pattern similarity change matrix in alEC. The resulting coordinates, 
one for each object along the route, were subjected to Procrustes analysis, which applies translations, 
rotations and uniform scaling to superimpose the coordinates from multidimensional scaling on the true 
temporal coordinates along the route (see Methods). For visualization, we varied the positions resulting from 
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change in posterior-medial EC (pmEC) did not correlate with spatial (T(25)=0.58, p=0.583) or 
temporal (T(25)=1.73, p=0.089) distances.  

Can we reconstruct the timeline of events from pattern similarity change in alEC? Here, we 
used multidimensional scaling to extract coordinates along one dimension from pattern 
similarity change averaged across participants (Figure 2D-G). The reconstructed temporal 
coordinates, transformed into the original value range using Procrustes analysis (Figure 2D), 
mirrored the time points at which objects were encountered during the task (Figure 2E, 
Pearson correlation between reconstructed and true time points, r=0.56, p=0.023, 
bootstrapped 95% confidence interval: 0.21, 0.79). Further, we contrasted the fit of the 
coordinates from multidimensional scaling between the true and randomly shuffled timelines 
(Figure 2F). Specifically, we compared the deviance of the fit between the reconstructed and 
the true timeline, the Procrustes distance, to a surrogate distribution of Procrustes distances. 
This surrogate distribution was obtained by fitting the coordinates from multidimensional 
scaling to randomly shuffled timelines of events. The Procrustes distance from fitting to the 
true timeline was smaller than the 5th percentile of the surrogate distribution generated via 
10000 random shuffles (Figure 2G, p=0.026). Taken together, these findings indicate that 
alEC representations change through learning to reflect the temporal structure of the 
acquired event memories and that we can recover the timeline of events from this 
representational change. 

What is the nature of regional specificity within entorhinal cortex? In a next step, we 
compared temporal and spatial mapping between the subregions of the entorhinal cortex 
(EC). We conducted a permutation-based two-by-two repeated measures ANOVA (see 
Methods) with the factors entorhinal subregion (alEC vs. pmEC) and relationship type (time 
elapsed vs. spatial distance between events). Crucially, we observed a significant interaction 
between EC subregion and distance type (F(1,25)=7.40, p=0.011). Further, the main effect of EC 
subregion was significant (F(1,25)=5.18, p=0.029), while the main effect of distance type was 
not (F(1,25)=0.84, p=0.367). Based on the significant interaction, we conducted planned post-
hoc comparisons, which revealed significant differences (Bonferroni-corrected alpha-level of 
0.025) between the mapping of elapsed time and spatial distance in alEC (T(25)=-2.91, 
p=0.007) and a significant difference between temporal mapping in alEC compared to pmEC 
(T(25)=-3.52, p=0.001). Spatial and temporal signal-to-noise ratios did not differ between alEC 
and pmEC (Supplemental Figure 3), ruling out that differences in signal quality might explain 
the observed effects. Collectively, these findings demonstrate that, within the EC, only 
representations in the anterior-lateral subregion change to resemble the temporal structure of 
events and that this mapping was specific to the temporal rather than the spatial dimension. 

multidimensional scaling and Procrustes analysis along the y-axis. E. The temporal coordinates of this 
reconstructed timeline were significantly correlated with the true temporal coordinates of object encounters 
along the route. Circles indicate time points of object encounters; solid line shows least squares lines; dashed 
line and shaded region highlight bootstrapped confidence intervals of correlation coefficient. F. The 
goodness of fit of the reconstruction (the Procrustes distance) was compared to a surrogate distribution of 
Procrustes distances obtained from randomly shuffling the true coordinates against the coordinates obtained 
from multidimensional scaling and then performing Procrustes analysis for each of 10000 shuffles (left shows 
one randomly shuffled timeline for illustration). G. The Procrustes distance obtained from fitting to the true 
timeline of events (circle and dotted line) was smaller than the 5th percentile (dashed line) of the surrogate 
distribution (solid line), which constitutes the significance threshold at an alpha level of 0.05. 
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In a next step, we sought to examine potential differences in temporal mapping between alEC 
and hippocampus. As previously described [1], hippocampal multi-voxel patterns changed to 
represent remembered temporal distances between object positions, which were assessed in 
pairwise judgments on a computer screen (r=0.64±0.29 mean±standard deviation of 
correlations between true and remembered temporal distance between objects pairs). We 
conducted a two-by-two permutation-based repeated measures ANOVA with the factors 
region (alEC vs. hippocampus) and temporal distance type (objective time elapsed vs. 
subjectively remembered time). We observed no main effects of region (F(1,25)=0.001, 
p=0.966) or distance type (F(1,25)=0.17, p=0.681). Importantly, this analysis revealed a 
significant interaction effect (F(1,25)=11.64, p=0.002), indicating that the alEC and hippocampus 
represent elapsed and remembered time differently. While the alEC mapped objectively 
elapsed rather than subjectively remembered time (T(25)=-2.15, p=0.041), the opposite was 
true for the hippocampus (T(25)=2.25, p=0.034). However, we note that these post-hoc tests 
are reduced to trends when compared to a Bonferroni-corrected alpha level, likely due to the 
close relationship between objective and remembered time. While we observed differences 
in signal-to-noise ratio between alEC and hippocampus (Supplemental Figure 3), such 
differences cannot explain the specific interaction evident in our data. Overall, our findings 
indicate a difference between how alEC and hippocampus represent the temporal structure 
of experience, with alEC activity patterns reflecting the objectively experienced time and the 
hippocampus representing the subjectively remembered temporal distances between 
memories.  

Discussion 
We examined the similarity of multi-voxel patterns to demonstrate that alEC event 
representations change to reflect the elapsed time between memories. Despite being cued in 
random order after learning, these representations related to a holistic temporal map of the 
task structure. Moreover, we recovered the timeline of events during learning from the 
changes in representation. The alEC temporal map reflected objective time elapsed between 
memories, while hippocampal activity patterns resembled the remembered temporal 
distances [1]. 

Our hypothesis for temporal mapping in the alEC was based on a recent finding 
demonstrating that population activity in the rodent lateral EC carries information from which 
time can be decoded at different scales ranging from seconds to days [14]. This temporal 
information might arise from the integration of experience across different scales. During a 

Figure 3. Objective and subjective temporal distances 
in alEC and hippocampus. Previous analysis of this 
dataset [1] demonstrated significantly negative 
correlations of pattern similarity change in the 
hippocampus with subjectively remembered temporal 
distances between objects along the route. A 
permutation-based two-way repeated measures 
ANOVA revealed a significant interaction between 
pattern similarity change in alEC and hippocampus and 
the correlations with objectively elapsed and 
remembered temporal distances. While alEC pattern 
similarity change reflected objectively elapsed rather 
than subjectively remembered temporal distances, this 
effect was reversed for the hippocampus. 
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structured task in which the animal ran repeated laps on a maze separated into different trials, 
neural trajectories through population activity space were similar across trials, illustrating that 
the dynamics of lateral EC neural signals were more stable than during free foraging [14]. 
Consistently, temporal coding was improved for time within a trial during the structured task 
compared to episodes of free foraging. These findings support the notion that temporal 
information in the lateral EC might inherently arise from the encoding of experience [14]. The 
long time scales of lateral EC temporal codes differ from the observation of time cells in the 
hippocampus, which fire during temporal delays in highly trained tasks [17–21]. While the 
ensemble of active cells changes over minutes and days [21], time cell firing has been 
investigated in the context of short temporal delays in the range of seconds, leaving open the 
question if time cells also encode longer temporal intervals. Slowly drifting activity patterns 
have been observed also in the human medial temporal lobe [22] and EC specifically [9]. A 
representation of time within a known trajectory in the alEC could underlie the encoding of 
temporal relationships between events in our task, where participants repeatedly navigated 
along the route to learn the positions of objects. Hence, temporal mapping in the alEC as we 
report here might help integrate hippocampal spatio-temporal event maps [1]. 

One possibility for why the similarity structure of alEC multi-voxel patterns resembles a holistic 
temporal map of the event memories after learning is the reactivation of temporal context 
information. If the alEC represents elapsed time along the route, the information about when 
an object is encountered might serve as a temporal context tag, which is associated with the 
object during learning. The visual object cues during the picture viewing task following the 
learning phase might lead to the reactivation of these temporal context tags. This might 
explain the observed pattern similarity structure with relatively increased similarity for objects 
encountered in temporal proximity during learning and decreased similarity for items 
encountered after longer delays. While this interpretation is in line with the framework 
proposed by the temporal context model [12,13], we cannot test the reinstatement of specific 
activity patterns from the learning phase directly since fMRI data were only collected during 
the picture viewing tasks in this study. The reactivation of temporal context representations 
might explain why the change in multi-voxel patterns in the alEC reflects the temporal 
relations between objects representations after learning.  

Importantly, the highly-controlled design of our study supports the interpretation that alEC 
representations change through learning to map time elapsed between events. The order of 
object presentations during the scanning sessions was randomized and thus did not reflect 
the order in which objects were encountered during the learning task. Since the assignment 
of objects to positions was randomized across participants and we analyzed pattern similarity 
change from a baseline scan, our findings do not go back to prior associations between the 
objects, but reflect information learned over the course of the experiment. Further, we 
presented the object images during the scanning sessions not only in the same random 
order, but also with the same presentation times and inter-stimulus intervals; thereby ruling 
out that the effects we observed go back to temporal autocorrelation of the BOLD-signal. 
Taken together, the high degree of experimental control of our study supports the conclusion 
that alEC representations change to reflect the temporal structure of acquired memories. 

Our assessment of temporal representations in the antero-lateral and posterior-medial 
subdivision of the EC was inspired by a recent report of temporal coding during free foraging 
and repetitive behavior in the rodent EC, which was most pronounced in the lateral EC [14]. In 
humans, local and global functional connectivity patterns suggest a preserved bipartite 
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division of the EC, but along not only its medial-lateral, but also its anterior-posterior axis 
[15,16]. Via these entorhinal subdivisions, cortical inputs from the anterior-temporal and 
posterior-medial memory systems might converge onto the hippocampus [23,24]. The rodent 
medial EC hosts a variety of functionally defined cell types such as grid, head direction, speed 
and border cells [25]. In line with hexadirectional signals in pmEC during imagination [26,27], 
putatively related to grid cell population activity [28], one might expect the pmEC to map 
spatial distances between object positions in our task. However, we did not observe an 
association of pattern similarity change in pmEC with the Euclidean distances between object 
positions. One potential explanation for the absence of evidence for a spatial distance signal 
in pmEC might be the way in which we cued participants’ memory during the picture viewing 
task. The presentation of isolated object images probed locations in their stored 
representation of the virtual city. Due to the periodic nature of grid-cell firing, different 
locations might not result in diverging patterns of grid-cell population activity. Hence, the 
design here was not optimized for the analysis of spatial representations in pmEC, if the 
object positions were encoded in grid-cell firing patterns as suggested by models of grid-cell 
function [29–32]. 

Interestingly, our findings suggest a differential role for the alEC and the hippocampus for 
processing temporal mnemonic information. Whereas alEC pattern similarity change mirrored 
objectively elapsed time between memories, hippocampal representational change more 
strongly reflected the remembered time between these memories. The observation of this 
dissociation is even more surprising in the light of the high correlation between remembered 
and true temporal distances. Our findings are in line with the role of the hippocampus in the 
retrieval of temporal information from memory [3,8,10,11]. Here, hippocampal pattern similarity 
has been shown to scale with temporal distances between events [1,10] and evidence for the 
reinstatement of temporally associated items from memory has been reported in the 
hippocampus [3]. Already at the stage of encoding, hippocampal and entorhinal activity have 
been related to later temporal memory [2–4,6,7,9,33]. For example, increased pattern 
similarity has been reported for items remembered to be close together compared to items 
remembered to be far apart in time, despite the same time having elapsed between these 
items [4]. Similarly, changes in EC pattern similarity during the encoding of a narrative 
correlated with later duration estimates between events [9]. Complementing these reports, 
our findings demonstrate that entorhinal activity patterns carry information about the temporal 
structure of memories at retrieval. The central role of the hippocampus and entorhinal cortex 
in temporal memory (for review see [34–37]) dovetails with the involvement of these regions 
in learning sequences and statistical regularities in general [5,38–43]). 

In conclusion, our findings demonstrate that activity patterns in alEC, the human homologue 
region of the rodent lateral EC, carry information about the temporal structure of newly 
acquired memories. The observed effects might be related to the reactivation of temporal 
contextual tags, in line with the recent report of temporal information available in rodent 
lateral EC population activity and models of episodic memory. 
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Methods 

Subjects 
26 participants (mean±std. 24.88±2.21 years of age, 42.3% female) were recruited via the 
university’s online recruitment system and participated in the study. As described in the 
original publication using this dataset [1], this sample size was based on a power-calculation 
(alpha-level of 0.001, power of 0.95, estimated effect size of d=1.03 based on a prior study 
[44]) using G*Power (http://www.gpower.hhu.de/). Participants with prior knowledge of the 
virtual city (see [1]) were recruited for the study. All procedures were approved by the local 
ethics committee (CMO Regio Arnhem Nijmegen) and all participants gave written informed 
consent prior to commencement of the study. 

Overview 
The experiment began by a 10 minute session during which participants freely navigated the 
virtual city [45] on a computer screen to re-familiarize themselves with its layout. Afterwards 
participants were moved into the scanner and completed the first run of the picture viewing 
task during which they viewed pictures of everyday objects as described below 
(Supplemental Figure 1). After this baseline scan, participants learned a fixed route through 
the virtual city along which they encountered the objects at predefined positions (Figure 1 and 
Supplemental Figure 1). The use of teleporters, which instantaneously moved participants to a 
different part of the city, enabled us to dissociate temporal and spatial distances between 
object positions (Supplemental Figure 2). Subsequent to the spatio-temporal learning task, 
participants again underwent fMRI and completed the second run of the picture viewing task. 
Lastly, participants’ memory was probed outside of the MRI scanner. Specifically, participants 
freely recalled the objects they encountered, estimated spatial and temporal distances 
between them on a subjective scale, and indicated their knowledge of the positions the 
objects in the virtual city on a top-down map [1].  

Design 
Spatio-temporal learning task 
Participants learned the positions of everyday objects along a trajectory through the virtual 
city Donderstown [45]. This urban environment, surrounded by a range of mountains, consists 
of a complex street network, parks and buildings. Participants with prior knowledge of the 
virtual city (see [1]) were recruited for the study. After the baseline scan, participants navigated 
the fixed route through the city along which they encountered 16 wooden chests at specified 
positions (Figure 1A). During the initial 6 laps the route was marked by traffic cones. In later 
laps, participants had to rely on their memory to navigate the route, but guidance in the form 
of traffic cones was available upon button press for laps 7-11. Participants completed 14 laps of 
the route in total (mean ± standard deviation of duration 71.63±13.75 minutes), which were 
separated by a black screen displayed for 15s before commencement of the next lap from the 
start position. 

Participants were instructed to open the chests they encountered along the route by walking 
into them. They were then shown the object contained in that chest for 2 seconds on a black 
screen. A given chest always contained the same object for a participant, with the assignment 
of objects to chests randomized across participants. Therefore, each object was associated 
with a spatial position defined by its location in the virtual city and a temporal position 
described by its occurrence along the progression of the route. Importantly, we dissociated 
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temporal relationships between object pairs (measured by time elapsed between their 
encounter) from the Euclidean distance between their positions in the city through the use of 
teleporters. Specifically, at three locations along the route participants encountered 
teleporters, which immediately transported them to a different position in the city where the 
route continued (Figure 1A). This manipulation allows the otherwise impossible encounter of 
objects after only a short temporal delay, but with a large Euclidean distance between them in 
the virtual city [1]. Indeed, temporal and spatial distances across all comparisons of object 
pairs were uncorrelated (Pearson r=-0.068; bootstrapped 95% confidence interval: -0.24, 0.12; 
p=0.462; Supplemental Figure 2). 

Picture viewing tasks 
Before and after the spatio-temporal learning task participants completed the picture viewing 
tasks while undergoing fMRI [1]. During these picture viewing tasks, the 16 objects from the 
learning task as well as an additional target object were presented. Participants were 
instructed to attend to the objects and to respond via button press when the target object 
was presented. Every object was shown 12 times in 12 blocks, with every object being shown 
once in every block. In each block, the order of objects was randomized. Blocks were 
separated by a 30 second break without object presentation. Objects were presented for 2.5 
seconds on a black background in each trial and trials were separated by two or three TRs. 
These intertrial intervals occurred equally often and were randomly assigned to the object 
presentations. The presentation of object images was locked to the onset of the new fMRI 
volume. For each participant, we generated a trial order adhering to the above constraints 
and used the identical trial order for the picture viewing tasks before and after learning the 
spatio-temporal arrangement of objects along the route. Using the exact same temporal 
structure of object presentations in both runs rules out potential effects of temporal 
autocorrelation of the BOLD signal on the results, since such a spurious influence on the 
representational structure would be present in both tasks similarly and therefore cannot drive 
the pattern similarity change we focussed our analysis on [1]. 

MRI Acquisition 
All MRI data were collected using a 3T Siemens Skyra scanner (Siemens, Erlangen, Germany). 
Functional images during the picture viewing tasks were acquired with a 2D EPI sequence 
(voxel size 1.5mm isotropic, TR=2270ms, TE=24ms, 40 slices, distance factor 13%, flip angle 
85°, field of view (FOV) 210×210×68mm). The FOV was oriented to fully cover the medial 
temporal lobes and if possible calcarine sulcus [1]. To improve the registration of the 
functional images with partial coverage of the brain, 10 volumes of the same functional 
sequence with an increased number of slices (120 slices, TR=6804.1ms) were acquired (see 
fMRI preprocessing). Additionally, gradient field maps were acquired (for 21 participants) with 
a gradient echo sequence (TR=1020 ms; TE1=10ms; TE2=12.46ms; flip angle=90˚; volume 
resolution=3.5×3.5×2mm; FOV = 224×224 mm). Further, a structural image was acquired for 
each participant (voxel size = 0.8×0.8×0.8mm, TR=2300ms; TE=315ms; flip angle=8˚; in-plane 
resolution=256×256 mm; 224 slices). 

Data Analysis 
Behavioral Data 
Results from in-depth analysis of the behavioral data obtained during the spatio-temporal 
learning task as well as the memory tests conducted after fMRI scanning are reported in detail 
in [1]. Here, we used data from the spatio-temporal learning task as predictions for multi-voxel 
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pattern similarity (see below). Specifically, we defined the temporal structure of pairwise 
relationships between objects pairs as the median time elapsed between object encounters 
across the 14 laps of the route. These times differed between participants due to differences 
in navigation speed [1]. Figure 1b shows the temporal distance matrix averaged across 
participants for illustration. The spatial distances between object positions were defined as 
the Euclidean distances between the locations of the respective chests in the virtual city. 
Remembered temporal distances were obtained in a post-scan memory test in which 
participants indicated the remembered temporal (and, separately, spatial) relationships 
between object pairs on a subjective scale [1].  

fMRI preprocessing 
Preprocessing of FMRI data was carried out using FEAT (FMRI Expert Analysis Tool, version 
6.00), part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl, version 5.0.8), as 
described in [1]. Functional images were submitted to motion correction and high-pass filtering 
(cutoff 100s). Images were not smoothed. When available, distortion correction using the 
fieldmaps was applied. Using FLIRT [46,47], the functional images acquired during the picture 
viewing tasks were registered to the preprocessed whole-brain mean functional images, 
which were in turn registered to the to the participant’s structural scan. The linear registration 
from this high-resolution structural to standard MNI space (1mm resolution) was then further 
refined using FNIRT nonlinear registration [48]. Representational similarity analysis of the 
functional images acquired during the picture viewing tasks was carried out in regions of 
interests co-registered to the space of the whole-brain functional images.  

ROI definition 
Based on functional connectivity patterns, the anterior-lateral and posterior-medial portions of 
human EC were identified as human homologue regions of the rodent lateral and medial EC 
in two independent studies [15,16]. Here, we focused on temporal coding in the alEC, building 
upon a recent report of temporal signals in rodent lateral EC during navigation [14]. Therefore, 
we used masks from [15] to perform ROI-based representational similarity analysis on our 
data. The ROI mask for the bilateral hippocampus was based on the probabilistic Harvard-
Oxford atlas, thresholded at a probability level of 0.25 [1]. For each ROI, the mask was co-
registered from standard MNI space (1mm) to each participant’s functional space (number of 
voxels: alEC 126.7±46.3; pmEC 69.0±32.9; hippocampus 1062.3±101.9 mean ± standard 
deviation). To improve anatomical precision for the EC masks, the subregion masks from [15] 
were each intersected with participant-specific EC masks obtained from their structural scan 
using the automated segmentation implemented in Freesurfer (version 5.3). 

Representational Similarity Analysis 
As described in [1], we implemented representational similarity analysis (RSA, [49,50]) for the 
two picture viewing tasks individually and then analyzed changes in pattern similarity 
between the two picture viewing tasks, which were separated by the spatio-temporal learning 
phase. After preprocessing, analyses were conducted in Matlab (version 2017b, MathWorks). 
In a general linear model, we used the motion parameters obtained during preprocessing as 
predictors for the time series of each voxel in the respective ROI. Only the residuals of this 
GLM, i.e. the part of the data that could not be explained by head motion, were used for 
further analysis. Stimulus presentations during the picture viewing tasks were locked to the 
onset of fMRI volumes and the third volume after the onset of picture presentations, 
corresponding to the time 4.54 to 6.81 seconds after stimulus onset, was extracted for RSA.  
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For each ROI, we calculated Pearson correlation coefficients between all object presentations 
except for comparisons within the same of the 12 blocks of each picture viewing task. For 
each pairwise comparison, we averaged the resulting correlation coefficients across 
comparisons, yielding a 16×16 matrix reflecting the average representational similarity of 
objects for each picture viewing task [1]. These matrices were Fisher z-transformed. Since the 
picture viewing task was conducted before and after spatio-temporal learning, the two cross-
correlation matrices reflected representational similarity with and without knowledge of the 
spatial and temporal relationships between objects, respectively. Thus, the difference 
between the two matrices corresponds to the change in pattern similarity due to learning. 
Specifically, we subtracted the pattern similarity matrix obtained prior to learning from the 
pattern similarity matrix obtained after learning, resulting in a matrix of pattern similarity 
change for each ROI from each participant. This change in similarity of object representations 
was then compared to different predictions of how this effect of learning might be explained 
(Figure 1B). 

To test the hypothesis that multi-voxel pattern similarity change reflects the temporal structure 
of the object encounters along the route, we correlated pattern similarity change with the 
temporal relationships between object pairs; defined by the participant-specific median time 
elapsed between object encounters while navigating the route. Likewise, we compared 
pattern similarity change to the Euclidean distances between object positions in the virtual 
city as well as the temporal relations subjectively remembered by each participant. We 
calculated Spearman correlation coefficients to quantify the fit between pattern similarity 
change and each prediction. We expected negative correlations as relative increases in 
pattern similarity are expected for objects separated by only a small distance compared to 
comparisons of objects separated by large distances [1]. We compared these correlation 
coefficients to a surrogate distribution obtained from shuffling pattern similarity change 
against the respective prediction. For each of 10000 shuffles, the Spearman correlation 
coefficient between the two variables was calculated, yielding a surrogate distribution of 
correlation coefficients (Figure 1B). We quantified the size of the original correlation coefficient 
in comparison to the surrogate distribution. Specifically, we assessed the proportion of larger 
or equal correlation coefficients in the surrogate distribution and converted the resulting p-
value into a z-statistic using the inverse of the normal cumulative distribution function [1,51,52]. 
Thus, for each participant, we obtained a z-statistic reflecting the fit of the prediction to 
pattern similarity change in that ROI. For visualization (Figure 2c), we averaged correlation 
coefficients quantifying pattern similarity change in alEC separately for comparisons of 
objects encountered close together or far apart in time based on the median elapsed time 
between object pairs. 

The z-statistics were tested on the group level using permutation-based procedures (10000 
permutations) implemented in the Resampling Statistical Toolkit for Matlab 
(https://mathworks.com/matlabcentral/fileexchange/27960-resampling-statistical-toolkit). To 
test whether pattern similarity change in alEC reflected the temporal structure of object 
encounters, we tested the respective z-statistic against 0 using a permutation-based t-test 
and compared the resulting p-value against an alpha of 0.0125 (Bonferroni-corrected for 4 
comparisons, Figure 2). Respecting within-subject dependencies, differences between the fit 
of temporal and spatial relationships between objects and pattern similarity change in the EC 
subregions were assessed using a permutation-based two-way repeated measures ANOVA 
with the factors EC subregion (alEC vs. pmEC) and relationship type (elapsed time vs. 
Euclidean distance). Planned post-hoc comparisons then included permutation-based t-tests 
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of temporal against spatial mapping in alEC and temporal mapping between alEC and pmEC 
(Bonferroni-corrected alpha-level of 0.025). Likewise, we conducted a permutation-based 
two-way repeated measures ANOVA with the factors region (alEC vs. HPC) and temporal 
relationship type (objective time elapsed vs. remembered temporal relationship) to compare 
temporal mapping between the alEC and the hippocampus. 

Timeline reconstruction  
To reconstruct the timeline of events from alEC pattern similarity change we combined 
multidimensional scaling with Procrustes analysis (Figure 2D). We first rescaled the pattern 
similarity matrix to a range from 0 to 1 and then converted it to a distance matrix (distance = 1-
similarity). We averaged the distance matrices across participants and subjected the resulting 
matrix to classical multidimensional scaling. Since we were aiming to recover the timeline of 
events, we extracted coordinates underlying the averaged pattern distance matrix along one 
dimension. In a next step, we fitted the resulting coordinates to the times of object encounters 
along the route, which were also averaged across participants, using Procrustes analysis. This 
analysis finds the linear transformation, allowing scaling and reflections, that minimizes the 
sum of squared errors between the two sets of temporal coordinates. To assess whether the 
reconstruction of the temporal relationships between memories was above chance, we 
correlated the reconstructed temporal coordinates with the true temporal coordinates using 
Pearson correlation (Figure 2E). 95% confidence intervals were bootstrapped using the 
Robust Correlation Toolbox [53]. Additionally, we compared the goodness of fit of the 
Procrustes transform—the Procrustes distance, which measures the deviance between true 
and reconstructed coordinates—to a surrogate distribution. Specifically, we randomly shuffled 
the true temporal coordinates and then mapped the coordinates from multidimensional 
scaling onto these shuffled timelines. We computed the Procrustes distance for each of 
10000 iterations. We quantified the proportion of random fits in the surrogate distribution 
better than the fit to the true timeline (i.e. smaller Procrustes distances) and expressed it as a 
p-value to demonstrate that our reconstruction exceeds chance level (Figure 2F-G). 

Signal-to-noise ratio 
We quantified the temporal and spatial signal-to-noise ratio for each ROI. Temporal signal-to-
noise was calculated for each voxel as the temporal mean divided by the temporal standard 
deviation for both runs of the picture viewing task separately. Values were averaged across 
the two runs and across voxels in the ROIs. Spatial signal-to-noise ratio was calculated for 
each volume as the mean signal divided by the standard deviation across voxels in the ROI. 
The resulting values were averaged across volumes of the time series and averaged across 
the two runs. Signal-to-noise ratios were compared between ROIs using permutation-based t-
tests.  
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Supplemental Figures 

Supplemental Figure 1. Overview of experimental design. Participants viewed object images in random 
order while undergoing fMRI before and after learning the temporal and spatial relationships between these 
objects. The order and timing of picture presentations was held identical in both sessions to assess changes 
in the similarity of object representations as measured by the difference in similarity of multi-voxel activity 
patterns (see Methods). In between the two picture viewing tasks, participants acquired knowledge about the 
spatial and temporal positions of objects along a route through the virtual city. Initially, the route was marked 
by traffic cones, but in later laps participants navigated the route without guidance. Participants encountered 
chests along the route and were instructed to open the chests by walking into them. Each chest contained a 
different object, which was displayed on a black screen upon opening the chest. Crucially, the route featured 
three teleporters that instantly teleported participants to a different part of the city where the route continued 
(Figure 1). This manipulation enabled us to dissociate the temporal and spatial distances between pairwise 
object comparisons (Supplemental Figure 2). After the second picture viewing task, participants’ memory for 
temporal and spatial relationships between object pairs was assessed. Here, participants adjusted a slider to 
indicate whether they remembered object pairs to be close together or far apart. Temporal and spatial 
relations were judged in separate trials. The results of these memory tests are reported in detail in [1]. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/458133doi: bioRxiv preprint first posted online Nov. 1, 2018; 

http://dx.doi.org/10.1101/458133
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

  

Supplemental Figure 2. Temporal and spatial distances are uncorrelated. Pairwise temporal and spatial 
distances between objects are uncorrelated (Pearson r=-0.068; bootstrapped 95% confidence interval: -0.24, 
0.12; p=0.462). Median times elapsed between object encounters were z-scored and then averaged across 
participants. Spatial distances were defined as z-scored Euclidean distances between object positions. When 
correlating individual median times elapsed with spatial distances, the correlation between the dimensions 
was not significant in any of the participants (mean ± standard deviation of Pearson correlation coefficients r= 
-0.068±0.006, all p≥0.378). 
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Supplemental Figure 3. Signal-to-noise ratio in the entorhinal cortex and hippocampus. A,B. Temporal 
signal-to-noise ratio did not differ between entorhinal subregions (A), but differed between alEC and 
hippocampus (B). C,D. Spatial signal-to-noise ratio was comparable between entorhinal subregions (C), but 
differed between alEC and hippocampus (D). 
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