
Distributed Computing
https://doi.org/10.1007/s00446-018-0326-6

Distributed distance computation and routing with small messages

Christoph Lenzen1 · Boaz Patt-Shamir2 · David Peleg3

Received: 7 February 2017 / Accepted: 3 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
We consider shortest paths computation and related tasks from the viewpoint of network algorithms, where the n-node input
graph is also the computational system: nodes represent processors and edges represent communication links, which can in
each time step carry anO(log n)-bit message. We identify several basic distributed distance computation tasks that are highly
useful in the design of more sophisticated algorithms and provide efficient solutions. We showcase the utility of these tools
by means of several applications.

Keywords CONGESTmodel · Source detection · Skeleton spanner ·Compact routing ·All-pairs shortest paths · Single-souce
shortest paths

1 Introduction

The task of routing table construction concerns computing
local tables at all nodes of a network that will allow each
node v, when given a destination node u, to instantly find the
first link on a route from v to u, from which the next hop
is found by another lookup etc. Constructing routing tables
is a central task in network operation, the Internet being a
prime example. Routing table construction (abbreviated rtc
henceforth) is not only important as an end goal, but is also a
critical part of the infrastructure in most distributed systems.

At the heart of any routing protocol lies the computation of
short paths between all possible node pairs, which is another

This article is based on preliminary results appearing at conferences
[32,34,35]. This work has been supported by the Swiss National
Science Foundation (SNSF), the Swiss Society of Friends of the
Weizmann Institute of Science, the Deutsche Forschungsgemeinschaft
(DFG, reference number Le 3107/1-1), the Israel Science Foundation
(Grants 894/09 and 1444/14), the United States-Israel Binational
Science Foundation (Grant 2008348), the Israel Ministry of Science
and Technology (infrastructures grant), the Citi Foundation, and the
I-CORE program of the Israel PBC and ISF (Grant 4/11).

B Christoph Lenzen
clenzen@mpi-inf.mpg.de

1 MPI for Informatics, Campus E1.4, 66123 Saarbrücken,
Germany

2 School of Electrical Engineering, Tel Aviv University, 69978
Tel Aviv, Israel

3 Faculty of Mathematics and Computer Science, Weizmann
Institute of Science, 76100 Rehovot, Israel

fundamental challenge that occurs in amultitude of optimiza-
tion problems. The best previous distributed algorithms for
this task were based on, essentially, running n independent
versions of a single-source shortest-paths algorithm, where
n is the number of nodes in the network: in each version a
different node acts as the source. The result of this approach
is an inherent Ω(n) complexity bottleneck in message size
or execution time, and frequently both.

In this work, we provide fundamental building blocks
and obtain sub-linear-time distributed algorithms for a vari-
ety of distance estimation and routing tasks in the so-called
CONGEST model. In this model, each node has a unique
O(log n)-bit identifier, and it is assumed that in each time
unit, nodes can send and receive, on each of their incident
links, messages of O(log n) bits, where n denotes the num-
ber of nodes in the system. This means that each message
can carry no more than a constant number of node identifiers
and integers of magnitude polynomial in n. Communication
proceeds in synchronous rounds and the system is assumed
to be fault-free. Initially, nodes know only the identity of
their neighbors and, if the graph is weighted, the weights of
adjacent edges.

It is quite obvious that many distributed tasks, includ-
ing rtc, cannot be solved in fewer rounds than the network
diameter, because some information needs to cross the entire
network. It is also well-known (see, e.g., [15]) that in CON-
GEST model, many basic tasks cannot be solved in õ(

√
n)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-018-0326-6&domain=pdf

C. Lenzen et al.

rounds in some graphs with very small diameter.1 As we
show, such a lower bound extends naturally to rtc and other
related tasks. We provide algorithms whose running time is
close to the lower bound.

1.1 Main contributions

While the derivation of the results on routing and distance
approximation requires overcoming non-trivial technical
challenges, themain insightwe seek to convey in this article is
the identification of a few fundamental tasks whose efficient
solution facilitates fast distributed algorithms. These basic
tasks include what we call exact and approximate source
detection, and skeleton spanner construction. For each of
these tasks,we provide an optimal or near-optimal distributed
implementation, which in turn results in a variety of (nearly)
optimal solutions to distance approximation, routing, and
similar problems. Let us specify what these tasks are.

1.1.1 Source detection

Intuitively, in the source detection problem there is a subset S
of nodes called sources, and a parameter σ ∈ N. The required
output at each node is a list of its σ closest sources, alongside
the respective distances. This is a very powerful basic routine,
as it generalizes various distance computation and breadth-
first-search (BFS) tree construction problems. For instance,
the all-pairs shortest path problem (APSP) can be rephrased
as source detection with S = V and σ = |V | (where V is the
set of all nodes), and single-source shortest paths translates
to |S| = σ = 1.

For the general case of σ < |S|, however, this intuitive
description must be refined. Source detection implies con-
struction of partial BFS trees rooted at the nodes in S, where
each node participates in the trees rooted at its closest σ

sources. To ensure that the parent of a node in the shortest-
paths tree rooted at s ∈ S also has s in its list, we impose
consistent tie-breaking, by relying on the unique node identi-
fiers (any other consistent tie-breaking mechanism could do
as well).

A second salient point is that we limit the “horizon”,
namely the number of hops up to which sources are con-
sidered, because determining distances may require commu-
nication over |V | − 1 hops in the worst case. By bounding
both the number of sources to detect and the hop count up to
which this is required, we avoid trivial Ω(n) lower bounds
on the running time. With these issues in mind, the source
detection problem on unweighted graphs is formalized as
follows.

1 We use weak asymptotic notation throughout the paper, where Õ, Ω̃ ,
etc. absorb polylog n factors (irrespective of the considered function,
e.g., Õ(1) = (log n)O(1)), where n is the number of nodes in the graph.

Fig. 1 An example of unweighted source detection. Shaded nodes rep-
resent sources. For σ = 2 and h = 3 and assuming vi < v j for i < j we
have, for example, the outputs Lv2 = 〈(1, v1), (1, v3)〉, Lv7 = 〈(1, v6)〉
and Lv8 = 〈(1, v3), (3, v1)〉

Fig. 2 A graph where uweighted source detection must take at least
h + Ω(σ) rounds. The shaded nodes s1 . . . , sσ are sources. Node vh
receives the first record of a source after h rounds. Note that if only one
distance/source pair fits into a message, the bound becomes precisely
h + σ − 1

Unweighted source detection Fix a graph G = (V , E),
and let hd(v,w) denote the distance between any two nodes
v,w ∈ V . (We use hd() to emphasize that this distance is
measured in terms of hops.) Let N0 denote the set of non-
negative integers. Let topk(L) denote the list of the first k
elements of a list L , or L if |L| ≤ k.

Definition 1.1 (Unweighted (S, h, σ)-detection) Given S ⊆
V , v ∈ V , and h ∈ N0, let L(h)

v be the list of pairs
{(hd(v, s), s) | s ∈ S, hd(v, s) ≤ h}, ordered in increas-
ing lexicographical order. I.e., (hd(v, s), s) < (hd(v, s′), s′)
iff hd(v, s) < hd(v, s′), or both hd(v, s) = hd(v, s′) and the
identifiers satisfy s < s′.

For σ ∈ N, (S, h, σ)-detection requires each node v ∈ V
to compute topσ (L(h)

v).

Note that σ and/or hmay depend on n here; we do not restrict
to constant values only.

Figure 1 depicts a simple graph and the resulting lists. We
will show that unweighted source detection allows for a fully
“pipelined” version of the Bellman–Ford algorithm, running
in σ + h − 1 rounds.

Theorem 1.2 Unweighted (S, h, σ)-detection can be solved
in σ + h − 1 rounds.

Given that in ourmodel messages haveO(log n) bits, only
a constant number of source/distancepairs fits into amessage.
As possibly σ such pairs must be sent over the same edge,
the above running time is essentially optimal (cf. Fig. 2).

Weighted source detection In a weighted graph G =
(V , E,W), the situation is more complex. As mentioned
above, determining the exact distance between nodes may
require tracing a path of Ω(n) hops. Since we are interested
in o(n)-time solutions, we relax the requirement of exact dis-
tances.Weuse the followingnotation.Givennodesv,w ∈ V ,
let wd(v,w) denote the weighted distance between them,

123

Distributed distance computation and routing with small messages

Fig. 3 Agraphwhere (S, h+1, σ)-detection cannot be solved in o(hσ)

rounds. Edge weights are 4ih for edges {vi , si, j } for all i ∈ {1, . . . , h}
and j ∈ {1, . . . , σ }, and 1 (i.e., negligible) for all other edges. Node
ui , i ∈ {1, . . . , h}, needs to learn about all nodes si, j and distances
wdh+1(ui , si, j), where j ∈ {1, . . . , σ }. Hence all this information must
traverse the dashed edge {u1, vh}. (The example can be modified into
onewhere there are only σ sources, each connected to all the vi nodes. It
can be shown, by setting the weight of the edges

{
vi , s j

}
appropriately,

that σh values must be communicated over the dashed edge in this case
too. Therefore, the special case of σ = |S| is not easier.)

and let wdh(v,w), called the h-hop v − w distance, be
the weight of the lightest v − w path with at most h edges
(wdh(v,w) = ∞ if no such path exists). We remark that
wdh is not a metric, since if there is a v − w path of � hops
with weight less than wdh(v,w), then the triangle inequality
is violated if h < � ≤ 2h.

Definition 1.3 ((S, h, σ)-detection) Given S ⊆ V , v ∈ V ,
and h ∈ N0, let L(h)

v be the list of pairs {(wdh(v, s), s) | s ∈
S, wdh(v, s) < ∞}, ordered in increasing lexicographical
order. For σ ∈ N, (S, h, σ)-detection requires each node
v ∈ V to compute topσ (L(h)

v).

Note that Definition 1.3 generalizes Definition 1.1, as
can be seen by assigning unit weight to the edges of an
unweighted graph.

Unfortunately, there are instances of theweighted (S, h, σ)-
detection problem that require Ω(σh) rounds to be solved,
as demonstrated by the example given in Fig. 3. The O(σh)

round complexity is easily attained by another variant of
Bellman–Ford, where in each iteration, current lists are sent
to neighbors, merged and truncated [14,32]. In conjunction
with suitable sparsification techniques, this can still lead to
algorithms of running time õ(n), e.g. for APSP [32]. How-
ever, it turns out that relaxing the source detection problem
further enables an Õ(σ + h)-round solution and, conse-
quently, better algorithms for APSP and related tasks.

1.1.2 Approximate source detection

We relax Definition 1.3 to allow for approximate distances
as follows.

Definition 1.4 (Approximate Source Detection) Given S ⊆
V , h, σ ∈ N, and ε > 0, letL(h,ε)

v be a list of {(wd′(v, s), s) |
s ∈ S, wd′(v, s) < ∞}, ordered in increasing lexicograph-
ical order, for some wd′ : V × S → N ∪ {∞} that satisfies
wd′(v, s) ∈ [

wd(v, s), (1 + ε)wdh(v, s)
]
for all v, s ∈ V .

The (1 + ε)-approximate (S, h, σ)-detection problem is to
output topσ (L(h,ε)

v) at each node v for some such wd′.

See Fig. 4 for an example. We stress that we impose very
little structure on wd′. In particular,

– wd′ is not required to be a metric (just as wdh is not
necessarily a metric);

– wd′ is not required to be monotone in h (unlike wdh);
– wd′ is not required to be symmetric (also unlike wdh);
and

– the list L(h,ε)
v could contain entries (wd′(v, s), s) with

wdh(v, s) = ∞, i.e., hd(v, s) > h.

Unlike for exact source detection, this entails that there is
no guarantee that the computed lists induce (approximate,
partial) shortest-path trees. In general, this might pose an
obstacle to routing algorithms, which tend to exploit such
trees. Fortunately, our algorithm for solving approximate
source detection is based on solving a number of instances of
unweighted source detection, whose solutions provide suffi-
cient information for routing.Assuming positive integer edge
weights that are polynomially bounded in n, our approach
results in a (timewise) near-optimal solution.

Theorem 1.5 If W (e) ∈ {1, . . . , nγ } for all e ∈ E, for a
known constant γ > 0, and 0 < ε ∈ O(1), then (1 + ε)-
approximate (S, h, σ)-detection can be solved in Õ(ε−1σ +
ε−2h) rounds.

1.1.3 Skeleton spanners

When applying source detection as a subroutine, sparsifi-
cation techniques can help in keeping σ small. However,
as mentioned above, in weighted graphs it may happen that
paths that are shortest in terms of weight have many hops.
This difficulty is overcome by constructing a sparse “back-
bone” of the graph that approximately preserves distances
between the nodes of a skeletonS ⊂ V , where |S| ∈ Θ̃(

√
n).

LettingS be a random sample of nodes of that size, long paths
are brokendown into subpaths of Õ(

√
n)hopsbetween skele-

ton nodes with high probability.2 Having information about
the distances of skeleton nodes hence usually implies that we
can keep h ∈ Õ(

√
n) when applying source detection.

A skeleton spanner can be used to concisely represent the
global distance structure of the graph and make it available
to all nodes in a number of rounds comparable to the lower
bound of Ω̃(

√
n + D). Let us formalize this concept. First,

we define the skeleton graph.

Definition 1.6 (Skeleton Graph) Let G = (V , E,W) be a
weighted graph.GivenS ⊆ V and h ∈ N, the h-hopS- skele-
ton graph is the weighted graph GS,h = (S, ES,h,WS,h)

defined by

2 We use the phrase “with high probability”, abbreviated “w.h.p.”, as a
shorthand for “with probability at least 1−n−c, for any desired constant
c”.

123

C. Lenzen et al.

Fig. 4 An example of approximate source detection, where shaded
nodes represent sources. For σ = 4, h = 2, and ε = 1/10
we may have, e.g., Lv3 = 〈(0, v3), (11, v5), (12, v9)〉 and Lv9 =
〈(0, v9), (1, v5), (11, v3), (35, v6)〉. Note that 12 = wd′(v3, v9)
=

wd′(v9, v3) = 11 and 35 = wd′(v9, v6) > (1 + ε)wd(v9, v6) = 7.7,
where the latter is feasible since hd(v9, v6) > 2, i.e., wdh(v9, v6) = ∞

– ES,h = {{v,w} | v,w ∈ S ∧ v
= w ∧ hd(v,w) ≤ h};
– For {v,w} ∈ ES,h , WS,h(v,w) = wdh(v,w).

We denote the distance function in GS,h by wdS,h .

It is straightforward to show (see Lemma 6.2) that if S is
a uniformly random set of c · n log n/h nodes, where c is
a sufficiently large constant, then with high probability, the
distances in the skeleton graph are identical to the distances
in G. In particular, choosing h = √

n allows us to preserve
distances using a skeleton of size |S| ∈ Θ̃(

√
n).

An α-spanner, for a given α ≥ 1, is a subgraph approxi-
mating distances up to factor α. By computing a sufficiently
sparse spanner of the skeleton graph—referred to as the
skeleton spanner—we obtain a compact approximate rep-
resentation of the skeleton graph which can be shipped to all
nodes fast. To this end, we show how to simulate the O(k)-
round algorithm by Baswana and Sen [9] that, for an n-node

graph, constructs (w.h.p.) a (2k − 1)-spanner with Õ(n
k+1
k)

edges; for the skeleton graph this translates to Õ(n
k+1
2k) edges.

Each of the k − 1 iterations of the algorithm is based on
solving a (weighted) instance of (S, h, σ)-detection, where

σ ∈ Õ(n
1
k), and can hence be completed in Õ(n

k+1
2k) rounds.

Pipelining the computed spanner to all nodes over a (sin-
gle) BFS tree makes the skeleton spanner known to all nodes

within a total number of Õ(n
k+1
2k + D) rounds.

Theorem 1.7 LetS ⊆ V be a randomnode set such that each
v ∈ V is inS independently with probability c log n/

√
n, i.e.,

Pr[v ∈ S] = c log n√
n

, for a sufficiently large constant c. For

any natural number k ∈ O(log n), a (2k − 1)-spanner of
the �√n �-hop S-skeleton graph can be computed and made
known to all nodes in Õ(n

k+1
2k + D) rounds with high proba-

bility. Moreover, for each spanner edge e = {s, t}, there is a
unique path pe from s to t in G with the following properties:

– pe has weight WS,�√n �(e) (cf. Definition 1.6);
– pe has at most �√n � hops;
– each node v ∈ pe \ {s} knows the next node u ∈ pe in
the direction of s; and

– each node v ∈ pe \ {t} knows the next node u ∈ pe in the
direction of t .

The fact that the “magic number”
√
n pops up repeatedly is

no coincidence. As mentioned before, there is a well-known
lower bound of Ω̃(

√
n) that applies to a large class of prob-

lems in the CONGEST model, even when the hop diameter
D is very small [15,43]. Essentially, the issue is that while D
might be small, the shortest paths may induce a congestion
bottleneck. We demonstrate that this is the case for APSP
and routing table construction in Sect. 9.

1.1.4 Further results

The tools described above are applicable to many tasks.
Belowwe give an informal overview of results that use them.

Name-independent routing and distance approximation In
the routing table construction (rtc) problem, each node v

must compute a routing table such that given an identifier of
a node w, v can determine a neighbor u based on its table
and the identifier ofw; querying u forw and repeating induc-
tively, the routemust eventually arrive atw. The stretch of the
resulting path is its weight divided by the weight of a shortest
v −w path. The stretch of a routing scheme is the maximum
stretch over all pairs of nodes.3 In the distance approxima-
tion problem, the task is to output an approximate distance
w̃d(v,w) ≥ wd(v,w) instead of the next routing hop when
queried; the stretch then is the ratio w̃d(v,w)/wd(v,w).
Our algorithms always solve both rtc and distance approx-
imation simultaneously, hence in what follows we drop the
distinction and talk of “table construction”.

The qualifier “name-independent”, when applied to rout-
ing, refers to the fact that the algorithm is not permitted to
assign new “names” to the nodes; as detailed below, such
a reassignment may greatly reduce the complexity of the
task. For name-independent table construction, the possi-
ble need to communicate Ω(n) identifiers over a bottleneck
edge entails a running time lower bound of Ω̃(n), even
in the unweighted case with D ∈ O(1). Close-to-optimal
algorithms are given by solving source detection (in the

3 Note that while this formulation of the routing problem does not deal
directlywith congestion as a costmeasure, employing low-stretch routes
reduces the network load and thus contributes towards a lower overall
congestion. Also, sometimes edge weights represent the reciprocal of
their bandwidth.

123

Distributed distance computation and routing with small messages

unweighted case, yielding stretch 1) or (1+ ε)-approximate
source detection (in the weighted case, yielding stretch 1+ε)
with S = V and σ = h = n. (As an exception to the rule,
these algorithms are deterministic; unless we indicate other-
wise, in the following all results rely on randomization, and
all lower bounds also apply to randomized algorithms.)

Name-dependent routing and distance approximation If
table construction algorithms are permitted to assign to each
node v a (small) label λ(v) and answer queries based on
these labels instead, the game changes significantly. In this
case, the strongest lower bounds are Ω(D) (trivial, also in
unweighted graphs) and Ω̃(

√
n); the latter applies even if

D ∈ O(log n). Combining approximate source detection
and a skeleton spanner, we obtain tables of stretch O(k) in

Õ(n
k+2
2k + D) rounds, with labels of optimal size O(log n).

Compact routing and distance approximation In this prob-
lem, one adds the table size as an optimization criterion. It is
straightforward to show that this implies that renaming must
be permitted, as otherwise tables must comprise Ω(n log n)

bits, which is trivially achieved by evaluating the tables of
any given scheme for all node identifiers (which can be made
known to all nodes inO(n) rounds). We remark that one can
circumvent this lower bound by permitting stateful routing,
in which nodes may add auxilliaury bits to the message dur-
ing the routing process. Intuitively, this makes it possible to
distribute the large tables over multiple nodes, substantially
reducing the degree of redundancy in stored information. In
this article, we confine our attention to stateless routing, in
which the routing decisions depend only on the destination’s
label and the local table.

Constructing a Thorup–Zwick routing hierarchy [52]
by solving k instances of source detection on unweighted
graphs, we readily obtain tables of size Õ(n1/k) and stretch
O(k) (this trade-off is known to be asymptotically optimal)
within Õ(n1/k + D) rounds. The weighted case is more
involved: constructing the hierarchy through a skeleton span-
ner results in stretch Θ(k2) for this table size and a target

running timeof Õ(n
k+2
2k +D) rounds.An alternative approach

is to refrain from the use of a skeleton spanner and construct
the hierarchy directly on the skeleton graph; this can be seen
as constructing a spanner tailored to the routing scheme.
Recently Elkin and Neiman (independently) pursued this

direction, achieving stretch 4k−5+o(1) in (n
k+1
2k +D)no(1)

rounds [17].

Single-source shortest paths and distance approximation
For single-source shortest paths (SSSP), the task is the same

as in APSP, except that it suffices to determine routing infor-
mation and distance estimates to a single node. Henziger
et al. [24] employ approximate source detection to obtain
a deterministic (1 + o(1))-approximation in near-optimal
n1/2+o(1) + D1+o(1) rounds. Their result is based on using
approximate source detection to reduce the problem to an
SSSP instance on an overlay network on Õ(

√
n) nodes,

which they then solve efficiently. The reduction itself does not
incur an extra factor-no(1) overhead in running time (beyond
the n1/2 factor). Indeed, very recent advances [10] result in
a deterministic (1 + o(1))-approximation of the distances
in Õ(

√
n + D) rounds, which is optimal up to a polylog n

factor. However, for extracting an approximate shortest path
tree [10] relies on randomization. It is worth mentioning that
the latter result makes use of a skeleton spanner to access a
rough approximation of the distances in the skeleton, which
it then “boosts” to a (1 + o(1))-approximation.

Steiner forest In the Steiner forest problem, we are given a
weighted graph G = (V , E,W) and disjoint terminal sets
V1, . . . , Vt . The task is to find a minimum weight edge set
F ⊆ E so that for each i ∈ {1, . . . , t} and all v,w ∈ Vi ,
F connects v and w. Source detection and skeleton span-
ners havebeen leveraged in several distributed approximation
algorithms for the problem [32–34].

Tree embeddings A tree embedding of a weighted graph
G = (V , E,W) maps its node set to the leaves of a tree
T = (V ′, E ′,W ′) so that wdT (v,w) ≥ wd(v,w) (where
wdT denotes distances in the tree) and the expected stretch
E[wdT (v,w)/wd(v,w)] is small for each v,w ∈ V . Using
a skeleton spanner, one can construct a tree embedding of
expected stretchO(ε−1 log n) in Õ(n1/2+ε+D) rounds [22].

1.2 Organization of this paper

The remainder of the article is organized in a modular way.
In the next section, we discuss related work. In Sect. 3, we
specify the notation used throughout this paper and give for-
mal definitions of the routing table construction problem and
its variants; readers who already feel comfortable with the
terms that appeared up to this point are encouraged to skip
this section and treat it as a reference to be usedwhen needed.
We then follow through with fairly self-contained sections
proving our claims: source detection (Sect. 4), approximate
source detection (Sect. 5), skeleton and skeleton spanners
(Sect. 6), table construction in unweighted graphs (Sect. 7),
table construction in weighted graphs (Sect. 8), and lower
bounds (Sect. 9).

123

C. Lenzen et al.

2 Related work

2.1 Distributed algorithms for exact all-pairs
shortest-paths

The exact all-pairs shortest path (APSP) problem has been
studied extensively in the sequential setting, and was also
given several solutions in the distributed setting [2,13,23,29,
51]. The algorithm by Kanchi and Vineyard [29] is fast (runs
inO(n) time) but involves using large messages, hence does
not apply in the CONGEST model. The algorithm of Anto-
nio et al. [2] uses short (i.e., O(log n) bits) messages, hence
it can be executed in the CONGEST model, but it requires
O(n log n) time, and moreover, it applies only to the spe-
cial family of BHC graphs, which are graphs structured as a
balanced hierarchy of clusters. Most of the distributed algo-
rithms for the APSP problem aim at minimizing the message
complexity, rather than the time; for instance, the algorithmof
Haldar [23] requires O(n2) time. For unweighted networks,
a trivial lower bound of Ω(n) applies for exact APSP in
the CONGEST model, as Ω(n) node identifiers may have
to be communicated through a bottleneck edge. This lower
bound has been matched (asymptotically) by two distributed
O(n)-time algorithms, proposed independently by Holzer
and Wattenhofer [26] and Peleg et al. [42]. Apart from solv-
ing a more general problem, our solution slightly improves
on each of these algorithms. Compared to the first algorithm,
our solution attains the optimal time with respect to the con-
stant factors (cf. Corollary 7.1). Compared to the second, our
algorithm never sends different messages to different neigh-
bors in the same round.

For weighted networks, prior to this work there has been
little progress from the theoretical perspective on computing
weighted shortest paths faster than the SPD barrier, where
SPD (“shortest paths diameter”) is minimal with the property
that wdSPD = wd, i.e., between each pair of nodes there is
a shortest path of at most SPD hops; see, e.g., Das Sarma et
al. [14] and references therein.

2.1.1 Distributed construction of compact routing tables

There are many centralized algorithms for constructing com-
pact routing tables (a routing table at a node says which hop
to take for each possible destination); in these algorithms the
goal is usually to minimize space without affecting the qual-
ity of the routes too badly. Following the early constructions
in [3,6,46], Thorup and Zwick [52] presented an algorithm
that achieves, for any k ∈ N, routes of stretch at most 2k − 1
using Õ(n1/k) memory, which is optimal up to a constant
factor in worst-case stretch w.r.t. routing [46]. Note that a
naïve distributed implementation of a centralized algorithm
in the CONGEST model requires Ω(|E |) time in the worst

case, since the whole network topology has to be collected
at a single node.

Practical distributed routing table construction algo-
rithms are usually categorized as either “distance vector” or
“link state” algorithm (see, e.g., Peterson and Davie [47]).
Distance-vector algorithms are variants of the Bellman–Ford
algorithm [11,18], whose worst-case time complexity in the
CONGESTmodel isΘ(n2). In link-state algorithms [37,38],
each routing node collects the complete graph topology and
then solves the single-source shortest path problem locally.
This approach has Θ(|E |) time complexity.

Both the approximate shortest paths and the compact
routing problems have been studied extensively. However,
most previous work on these problems either focused on
efficient performance (stretch, memory) and ignored the
preprocessing stage (cf. [6,20,41,46] and references), or pro-
vided time-efficient sequential (centralized) preprocessing
algorithms [7,8,30,49,49,53]. Relatively little attention was
given to distributed preprocessing algorithms, and previous
work on such algorithms either ignored time-efficiency (cf.
[3,4]) or assumed a model allowing large messages (cf. [5]).

2.1.2 Spanners

A closely related concept is that of sparse graph span-
ners [44,45]. It is known that a (2k − 1)-spanner must
have Ω̃(n1+1/k) edges for some values of k, and this lower
bound is conjectured to hold for all k ∈ N. A matching
upper bound is obtained by the construction of Thorup and
Zwick [53]. Our construction of skeleton spanners simu-
lates an elegant algorithm by Baswana and Sen [9] on the
skeleton. Their algorithm achieves stretch at most 2k − 1
vs. O(n1+1/k) expected edges within O(k) rounds in the
CONGEST model. A deterministic construction with simi-
lar performance but allowing large messages is presented by
Derbel et al. [16].

2.1.3 Distributed lower bounds

Lower bounds of Ω̃(
√
n) on the running time of a variety of

global distributed problems (including MST, shortest-paths
tree of low weight, and stateless routing) were presented
by Das Sarma et al. [15] and Peleg and Rubinovich [43].
Without relabeling (i.e., when renaming of the nodes is for-
bidden), routing table construction and APSP both require
Ω(n) rounds [32,39], regardless of the stretch or approxima-
tion ratio, respectively. Another (almost) linear-time barrier
arises from the approximation ratio: any approximation of the
hop diameter better than factor 3/2 [1,19] or the weighted
diameter (themaximumweight of a shortest path) better than
2 [25] takesΩ(n/ log n) rounds. A matching upper bound of
O(n/ log n+D) rounds for exactAPSP in unweighted graphs
(with relabeling) proves this bound to be asymptotically tight

123

Distributed distance computation and routing with small messages

[27], as it immediately implies that the hop diameter can
be computed in the same time. Izumi and Wattenhofer [28]
prove a lower bound of Ω̃(n1/(t+1)) (and a lower bound of

Ω̃(n
1
2+ 1

5t)) on the running time required to compute in the
CONGESTmodel a labeling scheme that allows one to esti-
mate the distances with stretch at most 2t in unweighted
graphs (and in weighted graphs, respectively).

2.1.4 Leveraging the shortest-path-diameter

Das Sarma et al. [14] show how to construct distance tables
of size Õ(n1/k)with stretch 2k−1 in theCONGESTmodel
in Õ(SPD n1/k) rounds, where SPD is the minimal hop count
such that between any two nodes there is a weighted shortest
path of at most SPD hops. They exploit the Bellman–Ford
relaxation with termination detection via an (unweighted)
BFS tree within O(D) time. Our analysis enables us to gen-
eralize this result using small labels, albeit with stretch 4k−3
(Corollary 8.1); this is because, unlike in [14], we disallow
access to the destination’s table.

3 Preliminaries

In this section we define themodel of computation, introduce
some notation, and discuss a few basic subroutines we make
explicit or implicit use of frequently.

3.1 The computational model

We follow the CONGEST model as described in [41]. The
distributed system is represented by a simple, connected
weighted graphG = (V , E,W), where V is the set of nodes,
E is the set of edges, and W : E → N is the edge weight
function.4 As a convention, we use n to denote the number
of nodes, and assume that all edge weights are bounded by
some polynomial in n, and that each node v ∈ V has a unique
identifier of O(log n) bits, to conform with the CONGEST
model [41]. (We use v to denote both the node and its iden-
tifier.)

Execution proceeds in global synchronous rounds, where
in each round, each node takes the following three steps:

(1) Perform local computation,
(2) send messages to neighbors, and
(3) receive the messages sent by neighbors.

Moreover, a nodemay decide to terminate and output a result
at the end of any given round. A node that terminated ceases

4 We remark that our results can be easily extended to non-negative edge
weights by employing appropriate symmetry breaking mechanisms.

to execute the above steps. The running time or round com-
plexity of a deterministic algorithm is the worst-case number
of rounds (parametrized with n, D, etc.) until all nodes have
terminated. For randomized algorithms, the respective bound
may hold with a certain probability bound only.

Initially, nodes have the following information:

– their own identifier;
– the identifiers of the respective other endpoint of incident
edges;5

– the weight of incident edges (if the graph is weighted);
and, in general,

– possible further problem-specific input.

In each round, each edge can carry a message of B bits for
some given parameter B of the model. Throughout this arti-
cle, we make the common assumption that B ∈ Θ(log n).

3.2 General concepts

WeuseN to denote the natural numbers,N0 to denoteN∪{0},
and N∞ to denote N ∪ {∞}.

Given a list L = 〈a1, a2, . . . , a�〉 and k ∈ N, we use
topk(L) to denote the list that consists of the first k elements
of L , or L if � < k.

We use extensively “soft” asymptotic notation that ignores
polylogarithmic factors. Formally, f (n) ∈ Õ(g(n)) if and
only if there exists a constant c ∈ R

+
0 such that f (n) ≤

g(n) logc(n) for all but finitely many values of n ∈ N. Anal-
ogously,

– f (n) ∈ Ω̃(g(n)) iff g(n) ∈ Õ(f (n)),
– Θ̃(f (n)) = Õ(f (n)) ∩ Ω̃(f (n)),
– f (n) ∈ õ(g(n)) iff for any c ∈ R

+
0 it holds that

lim supn→∞ f (n) logc(n)/g(n) = 0, and
– f (n) ∈ ω̃(g(n)) iff g(n) ∈ õ(f (n)).

Note that polylog n = Õ(1).
To model probabilistic computation, we assume that each

node has access to an infinite string of independent unbiased
random bits. When we say that a certain event occurs “with
high probability” (abbreviated “w.h.p.”), we mean that the
probability of the event not occurring can be set to be less
than 1/nc for any desired constant c, where the probability
is taken over the strings of random bits. As c is meant to
be a constant, it will be hidden by asymptotic notation. We
remark that for all our results, c affects the time complexity
at most as a multiplicative factor.

5 This assumption is made for notational convenience; it takes a single
round to exchange identifiers with neighbors.

123

C. Lenzen et al.

3.3 Some graph-theoretic concepts

We consider both weighted and unweighted graphs; in
weighted graphs, we use W : V → N to denote the weight
function, and assume that edgeweights are boundedbynO(1).
With the exception of Sects. 4.4 and 5.3, we consider undi-
rected graphs and assume this to be the case without further
notice. Without loss of generality, graphs are simple; self-
loops as well as all but a lightest edge between a pair of
nodes can be deleted without changing the solutions, and
thus worst-case instances will not provide additional com-
munication bandwidth due to parallel edges.

A path p connecting v, u ∈ V is a finite sequence of
nodes 〈v = v0, . . . , vk = u〉 such that for all 0 ≤ i < k,
{vi , vi+1} is an edge in G. Let paths(v, u) denote the set of
all paths connecting nodes v and u. (This setmay contain also
non-simple paths, but our focus later on is on shortest paths,
which are always simple.) We use the following unweighted
concepts.

– The hop-length of a path p, denoted �(p), is the number
of edges in it.

– A path p0 between v and u is a shortest unweighted
path if its hop-length �(p0) is minimum among all p ∈
paths(v, u).

– The hop distance hd : V × V → N0 is defined as the
hop-length of a shortest unweighted path, hd(v, u) :=
min{�(p) | p ∈ paths(v, u)}.

– The (hop-)diameter D = maxv,u∈V {hd(v, u)}.

We use the following weighted concepts.

– The weight of a path p, denoted W (p), is its total edge
weight, i.e., W (p) = ∑�(p)

i=1 W (vi−1, vi).
– A path p0 between v and u is a shortest weighted path if
its weightW (p0) isminimumamong all p ∈ paths(v, u).

– The weighted distance wd : V × V → N is defined as
the weight of a shortest weighted path,

wd(v, u) = min{W (p) | p ∈ paths(v, u)}.

– The weighted diameter

WD = max{wd(v, u) | v, u ∈ V }.

Finally, we define the following “hybrid” notions.

– For h ∈ N,

wdh(v, u) = inf{W (p) | p ∈ paths(v, u) ∧ �(p) ≤ h}

is the h-hop distance. Note that wdh(v, u) = ∞ iff
hd(v, u) > h.

– The shortest path diameter is

SPD = min{h ∈ N |wdh = wd},

i.e., theminimumhop distance h so that for each u, v ∈ V
there is a shortest weighted path of at most h hops.

Note that for h < SPD, wdh is not a metric, as it violates the
triangle inequality.

3.4 Basic primitives

The results in this section can be considered folklore. We
will informally sketch the basic algorithmic ideas. For amore
detailed exposition, we refer to [41].

Based on a simple flooding, it is straightforward to con-
struct a BFS tree rooted at any given node in D rounds. By
starting this routine concurrently for each node as a potential
root, but ignoring all instances except for the one correspond-
ing to the node of (so far) smallest known identifier, one
constructs a single BFS tree and implicitly elects a leader.
By reporting back to the root via the (so far) constructed tree
whenever a new node is added, the root detects that the tree
was completed by round 2D + 2.

Lemma 3.1 A single BFS tree can be constructed in Θ(D)

rounds. Moreover, the root learns the depth d ∈ [D/2, D] of
the tree.

Most problems discussed in this article are global, i.e.,
satisfy trivial running time lower bounds of Ω(D). By the
above lemma, we can hence assume that termination is coor-
dinated by the root of aBFS treewithout affecting asymptotic
running times: nodes report to their parent when the subtree
rooted at them is ready to terminate, and once the root learns
that all nodes are ready, it can decide that all nodes shall
terminate d rounds later and distribute this information via
the tree. Accordingly, we will in most cases refrain from
discussing how nodes decide on when to terminate.

A BFS tree supports efficient basic operations, such as
broadcasts and convergecasts. In particular, it can be used
to determine sums, maxima, or minima of individual values
held by the nodes.

Lemma 3.2 WithinΘ(D) rounds, the following can be deter-
mined and made known to all nodes:

– The number of nodes n.
– The maximum edge weight maxe∈E {W (e)}.
– The minimum edge weight mine∈E {W (e)}.
– |S| for any S ⊆ V given locally, i.e., when each v ∈ V
knows whether v ∈ S or not.

Therefore, we may assume w.l.o.g. that such values are
globally known in our algorithms. For simplicity, we will

123

Distributed distance computation and routing with small messages

also assume that D is known; in practice, one must of course
rely on the upper bound 2d ∈ [D, 2D] instead, at the expense
of a constant-factor increase in running times.

In addition, we will make excessive use of pipelining,
i.e.,running multiple broadcast and convergecast operations
on the BFS tree concurrently.

Lemma 3.3 Suppose each v ∈ V holds mv ∈ N0 messages
of O(log n) bits each, for a total of M = ∑

v∈V mv strings.
Then all nodes in the graph can receive these M messages
within O(M + D) rounds.

In the following, we use this lemma implicitly whenever
stating that some information is “broadcast to all nodes” or
“announced to all nodes”.

4 Source detection in unweighted graphs

In this section,wepresent an efficient deterministic algorithm
for the source detection task on unweighted graphs. Accord-
ingly, we assume that the graph is unweighted throughout
this section. Recall the task we need to solve:

Definition 4.1 (Unweighted (S, h, σ)-detection, restated)
Given S ⊆ V , a node v ∈ V , and non-negative integer
h ∈ N0, let L(h)

v be the list of elements {(hd(v, s), s) | s ∈
S ∧ hd(v, s) ≤ h}, ordered in ascending lexicographical
order. For σ ∈ N, (S, h, σ)-detection requires each node
v ∈ V to compute topσ (L(h)

v).

Without restrictions on bandwidth, a variant of the
Bellman–Ford algorithm solves the problem in O(h) time.
Each node v maintains a list Lv of the (distance, source) pairs
that it knows about. Lv = ∅ if v /∈ S, and Lv = {(0, v)} if
v ∈ S. In each round, each node v sends Lv to its neighbors.
Upon reception of such a message, for each received pair
(h, s) for which there is no own pair (h′, s) ∈ Lv , it adds
(h + 1, s) to Lv . After h rounds, v knows the sources within
hop distance h from itself and their correct hop distance;
thus it is able to order the source/distance pairs correctly.
This approach concurrently constructs BFS trees up to depth
h for all sources s ∈ S.

4.1 Pipelined Bellman–Ford algorithm

A naïve implementation of the above algorithm in the
CONGEST model would cost O(σh) time, since messages
contain up to σ pairs, each of O(log n) bits. However, it
turns out that in the unweighted case, the following sim-
ple idea works: in each round, each node v ∈ V announces
only the smallest pair (h, s) in Lv it has not announced yet.
Pseudocode is given in Algorithm 1. (The algorithm can
be trivially extended to construct BFS trees rooted at the
sources.)

Algorithm 1: PBF(S, h, σ): Pipelined Bellman–Ford at
node v ∈ V .
input : S: sources // v ∈ V knows if v ∈ S

h: distance parameter
σ : number of sources to detect

output: list Lv

// list of distance/source pairs
(hs , s) ∈ N0 × S

1 Lv := ∅
// whether a pair in Lv has been sent yet

2 sentv : Lv → {true, false}
3 if v ∈ S then
4 Lv := {(0, v)}
5 sentv(0, v) := false

// one round per iteration
6 for h + σ − 1 iterations do
7 if ∃(hs , s) ∈ Lv : sentv(hs , s) = false then
8 (hs , s) := argmin{(hs′ , s′) ∈ Lv | sentv(hs′ , s′) = false}
9 send (hs , s) to all neighbors

10 sentv(hs , s) := true

11 for (hs , s) received from some neighbor do
12 if �(h′

s , s) ∈ Lv : h′
s ≤ hs + 1 then

// remove outdated entry (if exists)
13 Lv := Lv \ {(·, s)}
14 Lv := Lv ∪ {(hs + 1, s)}
15 sentv(hs + 1, s) := false

16 delete all entries (hs , s) from Lv with hs > h
17 return topσ (Lv)

4.2 Analysis

The algorithm appears simple enough, but note that since
only one pair is announced by each node in every round, it
may now happen that a pair (h, s) is stored in Lv with h >

hd(v, s). Further, we need to consider that v might announce
this pair to other nodes. However, nodes keep announcing
smaller distances as they learn about them, and eventually
Lv = {(hd(s, v), s) | s ∈ S} for all v ∈ V .

To prove this formally, we first fix some helpful notation.

Definition 4.2 For each node v ∈ V and each round r ∈ N,
denote by Lr

v the content of v’s Lv variable at the end of
round r ; by L0

v we denote the value at initialization.

We start with the basic observation that, at all times, list
entries may be incorrect only in that the stated distances may
be too large.

Lemma 4.3 For all v ∈ V and r ∈ N0: If (hs, s) ∈ Lr
v , then

s ∈ S and hs ≥ hd(v, s).

Proof By induction on r . For r = 0 the claim holds by Lines
3–4. For the inductive step, assume that the claim holds for
r ∈ N0 and consider r + 1. If (hs, s) ∈ Lr

v we are done
by the induction hypothesis. Thus, consider a message (h, s)
received at time r + 1. First note that by Line 9, which is the
only place where messages are sent, (s, h) ∈ Lr

u for some

123

C. Lenzen et al.

neighbor u of v. Hence, by the induction hypothesis applied
to u, s ∈ S. Now suppose that (h + 1, s) is inserted into
Lv in Line 14. By the induction hypothesis, we have that
h ≥ hd(u, s), and hence, using the triangle inequality, we
may conclude that h + 1 ≥ hd(u, s) + 1 ≥ hd(v, s), as
required. ��

This immediately implies that (i) correct pairs will never
be deleted and (ii) if a prefix ofL(h)

v is known to v, vwill com-
municate this prefix to all neighbors before sending “useless”
pairs.

Corollary 4.4 Let s ∈ S and v ∈ V . If v receives (hd(v, s) −
1, s) from a neighbor in round r ∈ N, or if (hd(v, s), s) ∈
L0

v , then (hd(v, s), s) ∈ Lr ′
v for all r ′ ≥ r . Moreover, if

topk(L(h)
v) ⊆ Lr

v for any r ∈ N0 and k ∈ N, then topk(L
r
v) =

topk(L(h)
v).

In particular, it suffices to show that topσ (L(h)
v) ⊆ Lr

v

at termination. Before we move on to the main lemma, we
need another basic property that goes almost without saying:
a source s ∈ S \ {v} that is among the k closest sources to
v must also be among the k closest sources of a neighbor w

with hd(w, s) = hd(v, s) − 1.

Lemma 4.5 For all h, k ∈ N and all v ∈ V ,

topk(L(h)
v) ⊆ L(0)

v ∪
{
(hd(w, s) + 1, s) |

(hd(w, s), s) ∈ topk(L(h−1)
w) ∧ {v,w} ∈ E

}
.

Proof For any (hd(v, s), s) ∈ topk(L(h)
v) \ L(0)

v , consider a
neighbor w of v on a shortest path from v to s. We have
that hd(w, s) = hd(v, s) − 1, i.e., (hd(w, s), s) ∈ L(h−1)

w .
Assume for contradiction that (hd(w, s), s) /∈ topk(L(h−1)

w).
Then there are k elements (hd(w, s′), s′) ∈ topk(L(h−1)

w)

satisfying (hd(w, s′), s′) < (hd(w, s), s). Hence, for each
of these elements, (hd(v, s′), s′) ≤ (hd(w, s′) + 1, s′) <

(hd(w, s) + 1, s) = (hd(v, s), s), and hence (hd(v, s), s) /∈
topk(L(h)

v), a contradiction. ��
We are now ready to prove the key invariants of the algo-

rithm.

Lemma 4.6 Let v ∈ V , r ∈ {0, . . . , h+σ −1}, and let d, k ∈
N0 be such that d + k ≤ r + 1. Then (i) topk(L(d)

v) ⊆ Lr
v;

and (ii) by the end of round r + 1, if not terminated, v sends
topk(L(d)

v).

Proof By induction on r . The statement trivially holds for
d = 0 and all k, as topk(L(d)

v) = {(0, v)} if v ∈ S and
topk(L(d)

v) = ∅ otherwise, and clearly this will be sent by
the end of round 1. In particular, the claim holds for r = 0.

Now suppose that the statement holds for r and consider
r + 1. To this end, fix some d + k ≤ r + 2, where we

may assume that d > 0, because the case d = 0 is already
covered.

By part (ii) of the induction hypothesis applied to r for
values d − 1 and k, node v has already received the lists
topk(L(d−1)

w) from all neighbors w. By Lemma 4.5, v thus
has received all elements of topk(L(d)

v). By Corollary 4.4,
this implies Statement (i) for d + k ≤ r + 2.

It remains to show (ii) for d + k = r + 2 ≤ h + σ − 1.
Since we just have shown (i) for d+k = r +2, we know that
topk(L(d)

v) ⊆ Lr+1
v for all d, k satisfying d + k = r + 2. By

Corollary 4.4, these are actually the first elements of Lr+1
v , so

v will send the next unsent entry of topk(L(d)
v) in round r +2

(if there is one). As d + (k − 1) = r + 1, we can apply the
induction hypothesis to see that v sent topk−1(L(d)

v) during

the first r + 1 rounds (where we define top0(L(d)
v) = ∅).

Hence, only topk(L(d)
v) \ topk−1(L(d)

v) may still be missing.

As
∣∣∣topk(L(d)

v) \ topk−1(L(d)
v)

∣∣∣ ≤ 1 by definition, this proves

(ii) for d + k = r + 2. This completes the induction step and
thus the proof. ��

The reader may wonder why the final argument in the above
proof addresses all possible combinations of d + k = r + 2
simultaneously. This is true because the missing element (if
any) is the same for all such values. To see this, observe
the following: (i) if |topk(L(d)

v)| < k, then topk−1(L(d)
v) =

topk(L(d)
v) and no entry needs to be sent; (ii) if |topk(L(d)

v)| =
k, then topk(L(d ′)

v) = topk(L(d)
v) ⊇ topk−(d ′−d)(L(d)

v) for all
d ′ ≥ d. Accordingly, for all d and k for which still an entry
needs to be sent, it is the same.

We are now ready to prove our first main result, Theo-
rem 1.2, showing that unweighted (S, h, σ)-detection can be
solved in σ + h − 1 rounds.

Proof of Theorem 1.2. ByLemma4.6, topσ (L(h)
v) ⊆ Lh+σ−1

v .
By Corollary 4.4, topσ (L(h)

v) = topσ (Lh+σ−1
v), implying

that Algorithm 1 returns the correct output, which establishes
the theorem. ��

We remark that one can generalize this result to show that
if up toβ list entries are sent in amessage, (S, h, σ)-detection
is solved within h + �σ/β� − 1 rounds. Likewise, we have a
trivial lower bound of h + �σ/β� − 1 for (S, h, σ)-detection
in this setting. Our technique is thus essentially optimal.

4.3 Additional properties

We conclude this section with a few observations that we use
later. First, if we use Algorithm 1 to construct partial BFS
trees of depth h rooted at the sources S (i.e., σ = |S|), we
get a schedule that facilitates flooding or echo on all partial
BFS trees concurrently in σ + h rounds.

123

Distributed distance computation and routing with small messages

Corollary 4.7 Consider an execution of Algorithm 1. Let
ps(v) denote the node from which a node v receives the mes-
sage (hd(s, v) − 1, s) for the first time, where (hd(s, v), s)
is in the output Lv of v. Then

(i) All these messages are received by round h + σ of the
execution.

(ii) The edges {(v, ps(v)) | v ∈ V \ {s}} induce a BFS tree
rooted at s, comprising only nodes within distance at
most h from s. (If σ ≥ |S|, the tree comprises all such
nodes.)

(iii) The sending pattern of these messages defines a sched-
ule for concurrent flooding on all such trees. In the
concurrent flooding operation, each node in a tree
sends amessage of its choice to all neighbors (in partic-
ular its children in the tree), such that on any root-leaf
path the sending order matches the order of nodes in
the path. Thus, each inner node is scheduled before
any of its children, and its message may depend on the
messages sent by its parent.

(iv) If the sending pattern of these messages is reversed
(after running the algorithm for one more round and
removing the first round of the execution), this defines
a schedule for concurrent echo on all such trees. In the
concurrent echo operation, each node in a tree sends a
message of its choice to all neighbors (in particular its
parent in the tree) such that on any leaf-root path the
sending order matches the order of nodes in the path.
Thus, each inner node receives the messages of all its
children before sending its own, i.e., its message may
depend on those of its children.

Proof The first statement follows directly fromTheorem 1.2.
The second follows by observing that for each v with
hd(s, v) ≤ h, by construction ps(v) is in hop distance
hd(s, v) − 1 from s. The third statement holds because
v cannot send the message (hd(s, v), s) before receiving
(hd(s, v) − 1, s) for the first time. The last statement imme-
diately follows from the third (for h + 1). ��

Note that, in particular, storing the parent relation for the
BFS trees is sufficient for routing purposes.

Corollary 4.8 Algorithm 1 can be used to construct routing
tables of O(σ log n) bits for destinations in Lv .

4.4 Source detection in unweighted directed graphs

While this article studies distance problems in undirected
graphs, it is worthmentioning that our source detection prim-
itives work equally well on directed graphs. Note that in a
directed graph, hd(v,w)
= hd(w, v), where hd(v,w) is the
minimum hop count of a directed path from v to w.

Definition 4.9 (Unweighted Directed (S, h, σ)-detection)
Given an unweighted directed graph G = (V , E), define
for v,w ∈ V that hd(v,w) is the minimum number of hops
on a directed path from v to w.

Given S ⊆ V , a node v ∈ V , and non-negative integer
h ∈ N0, letL(h)

v be the list of elements {(hd(s, v), s) | s ∈ S∧
hd(s, v) ≤ h}, ordered in ascending lexicographical order.
For σ ∈ N, directed (S, h, σ)-detection requires each node
v ∈ V to compute topσ (L(h)

v).

It is straightforward to verify that the reasoning from this
section applies analogously to the directed case.

Corollary 4.10 If we execute Algorithm 1 on a directed graph
such that messages are sent only to out-neighbors, this solves
the unweighted directed (S, h, σ)-detection problem in σ +
h − 1 rounds.

We note that this corollary applies even if communication is
only possible in direction of the graph edges. However, for
performing echo operations as per Corollary 4.7, detecting
termination using a BFS tree, or determinining and making
known parameters like the number of nodes, bidirectional
communication is necessary.

5 Approximate source detection

We now consider source detection in weighted graphs,
approximately. We recall the definition.

Definition 5.1 (Approximate Source Detection, restated)
Given S ⊆ V , h, σ ∈ N, and ε > 0, let L(h,ε)

v be a list of
{(wd′(v, s), s) | s ∈ S, wd′(v, s) < ∞}, ordered in increas-
ing lexicographical order, for some wd′ : V × S → N∞
that satisfies wd′(v, s) ∈ [

wd(v, s), (1 + ε)wdh(v, s)
]
for

all v ∈ V and s ∈ S. The (1 + ε)-approximate (S, h, σ)-
detection problem is to output topσ (L(h,ε)

v) at each node v

for some such wd′.

5.1 Reduction to the unweighted case

Fix 0 < ε ≤ 1 and natural h < n. Following Nanongkai [39]
and others [12,31,36,48], we reduce approximate weighted
source detection to O(log1+ε n) instances of the exact
unweighted problem. Themain idea is to round edge weights
to integer multiples of (1 + ε)i and replace each edge with
a path consisting of the respective number of unit weight
edges. One then shows that for each shortest path, there is
a “good” choice of i ∈ O(log1+ε n) such that its weight is
approximately preserved, yet its hop count does not increase
too much.

Formalizing this approach, we define imax = �log1+ε(h
maxe∈E {W (e)})�, i.e., imax is the logarithm, to base (1+ ε),
of (an upper bound on) the maximum weight of paths of

123

C. Lenzen et al.

h hops. Note that by our assumption on the magnitude of
weights, imax ∈ O(log1+ε n).

For i ∈ {0, . . . , imax}, define b(i) = (1 + ε)i , and

∀e ∈ E : Wi (e) = b(i)�W (e)/b(i)� ,

i.e.,Wi (e) isW (e) rounded up to the next integer multiple of
(1 + ε)i . Let wdi denote the distance function of the graph
(V , E,Wi). Then the following crucial property holds.

Lemma 5.2 (adapted from [39]) Given 0 < ε ≤ 1 and dis-
tinct nodes v,w ∈ V with hd(v,w) ≤ h, let

iv,w = max

{
0,

⌊
log1+ε

(
εwdh(v,w)

h

)⌋}
.

Then

wdiv,w (v,w) < (1 + ε)wdh(v,w) <
4b(iv,w)h

ε
.

Proof For iv,w = 0wehavewd0 = wdbecauseb(0) = 1and
clearly wd(v,w) < (1 + ε)wdh(v,w) for ε > 0. Consider
iv,w > 0. As rounding up edge weights increases the weight
of an h-hop path additively by less than b(i)h, the choice of
iv,w yields that

wdiv,w (v,w) < wdh(v,w)+b(iv,w)h≤(1 + ε)wdh(v,w) .

To see the second bound, note that, by definition,

b(iv,w) >
1

1 + ε
· εwdh(v,w)

h
.

Therefore,

(1 + ε)wdh(v,w) <
(1 + ε)2b(iv,w)h

ε
,

and the result follows since ε ≤ 1. ��
Next, let Gi be the unweighted graph obtained by replac-

ing each edge e in (V , E,Wi) by a path of lengthWi (e)/b(i)
(recall that Wi (e) is always divisible by b(i)). Let hdi (v,w)

denote the distance between v and w in Gi . Lemma 5.2
implies that in Giv,w , the resulting hop distance between v

and w is not too large.

Corollary 5.3 For all v,w ∈ V : if hd(v,w) ≤ h, then
hdiv,w (v,w) < 4h/ε.

Proof By Lemma 5.2, wdiv,w (v,w) < 4b(iv,w)h/ε. As edge
weights are scaled down by factor b(iv,w) in Giv,w , we con-
clude that hdiv,w (v,w) < 4h/ε. ��

These simple observations give rise to an efficient algo-
rithm for approximate source detection by reduction to the
unweighted case.

Theorem 5.4 Given 0 < ε ≤ 1, any deterministic algo-
rithm for unweighted (S, h, σ)-detection with running time
R(h, σ) can be employed to solve (1 + ε)-approximate
(S, h, σ)-estimation in O(log1+ε n · R(h′, σ) + D) rounds,
where h′ = �4h/ε�.
Proof Let A be any deterministic algorithm for unweighted
(S, h, σ)-detection with running time R(h, σ). We use the
following algorithm for approximate source detection.

1. For all i ∈ {0, . . . , imax}, solve unweighted (S, h′, σ)-detection on
Gi by A. Let Lv,i denote the output for Gi at node v.

2. For each source s ∈ S, each node v computes
w̃d(v, s) = inf{hdi (v, s)b(i) | (hdi (v, s), s) ∈ Lv,i

for some 0 ≤ i ≤ imax}.
3. Let L ′

v be the list {(w̃d(v, s), s) | s ∈ S and w̃d(v, s) < ∞}, ordered
in increasing lexicographical order. Node v outputs Lv = topσ (L ′

v).

Clearly, the resulting running time is the one stated in the
claim of the theorem.6 In the remainder of the proof, we show
correctness. First, we define

wd′(v, s) = inf{hdi (v, s)b(i) |
0 ≤ i ≤ imax and hdi (v, s) ≤ h′}.

We claim that wd′ satisfies the problem specification and
that the list returned by v is the one induced by wd′, which
will complete the proof. The claim is established using the
following properties.

(i) ∀v ∈ V , s ∈ S : wd′(v, s) ≥ wd(v, s),
(ii) ∀v ∈ V , s ∈ S : wd′(v, s) ≤ (1 + ε)wdh(v, s),
(iii) ∀v ∈ V , s ∈ S : (w̃d(v, s), s) ≥ (wd′(v, s), s), and
(iv) ∀v ∈ V , (w̃d(v, s), s) ∈ Lv : w̃d(v, s) = wd′(v, s).

We now prove these four properties.
(i) By definition,

b(i)hdi (v, s) = wdi (v, s) ≥ wd(v, s)

for all v ∈ V and s ∈ S.
(ii) If hd(v, s) > h, then wdh(v, s) = ∞ and the

statement is trivial. Otherwise, hd(v, s) ≤ h, implying
hdiv,s (v, s) ≤ h′ by Corollary 5.3. Hence,

wd′(v, s) ≤ b(iv,s)hdiv,s (v, s)

= wdiv,s (v, s)

< (1 + ε)wdh(v, s)

6 The additive D in the running time originates in the need for nodes
to determine imax by learning maxe∈E {W (e)}.

123

Distributed distance computation and routing with small messages

by Lemma 5.2.
(iii) This trivially holds, because (hdi (v, s), s) ∈ Lv,i

implies that hdi (v, s) ≤ h′ (we executed (S, h′, σ)-detection
on each Gi), i.e., w̃d(v, s) is an infimum taken over a subset
of the set used for wd′(v, s).

(iv) Assume for contradiction that (w̃d(v, s), s) ∈ Lv , yet
w̃d(v, s) > wd′(v, s) (by the previous property w̃d(v, s) <

wd′(v, s) is not possible). Choose i such that b(i)hdi (v, s) =
wd′(v, s) and hdi (v, s) ≤ h′. We have that (hdi (v, s), s) /∈
Lv,i , as otherwise we had w̃d(v, s) ≤ b(i)hdi (v, s) =
wd′(v, s). It follows that |Lv,i | = σ and, for each (hdi (v, t), t)
∈ Lv,i , we have that

(w̃d(v, t), t) ≤ (b(i)hdi (v, t), t)

< (b(i)hdi (v, s), s)

= (wd′(v, s), s)

≤ (w̃d(v, s), s) ,

where in the final step we exploit the third property. As there
are σ distinct such sources t , we arrive at the contradiction
that (w̃d(v, s), s) /∈ Lv . ��

Applying Theorem 5.4 to the source detection algorithm
from Sect. 4 and noting that log1+ε n ∈ Θ(ε−1 log n) for
0 < ε ∈ O(1), we obtain a variant of our second main result,
Theorem 1.5, that does not rely on an a priori bound on the
maximum edge weight.

Theorem 5.5 For 0 < ε ∈ O(1), (1 + ε)-approximate
(S, h, σ)-detection canbe solved inO((ε−1σ+ε−2h) log n+
D) rounds.

Theorem 1.5 follows by the same arguments, if we rely on
an a priori bound on imax derived from a known polynomial
upper bound on the maximum edge weight; then the algo-
rithm given in the proof of Theorem 5.4 can be executed
without determinining the maximum edge weight, avoiding
the additive cost of O(D) in terms of round complexity.

5.2 Additional properties

As our approach is based on reduction to the unweighted case
and applying Algorithm 1, the additional useful properties of
the algorithm carry over.

Corollary 5.6 Consider augmenting the algorithm from The-
orem?? so that each node v ∈ V records the following
information for each instance i of the unweighted source
detection:

– The parent of v in each of the induced trees (rooted at
sources).

– The round in which the message establishing the parent-
child relation was received.

– The (weighted) distance in the tree to the source at which
the tree is rooted.

Then Õ(σ/ε) bits suffice to store this extra information, and
it can be used to do

(i) Concurrent flooding on all these trees in Õ(ε−1σ +
ε−2h) rounds.

(ii) Concurrent echo on all these trees in Õ(ε−1σ + ε−2h)

rounds.
(iii) Routing and distance approximation to the nodes in

Lv with stretch 1 + ε. The induced routing paths have
Õ(ε−2h) hops.

(iv) Concurrent flooding on the induced routing trees in
Õ(ε−1σ + ε−2h) rounds.

(v) Concurrent echo on the induced routing trees in
Õ(ε−1σ + ε−2h) rounds.

Remark One subtlety to be aware of is that, due to the
multiple weight classes, node v may have several options
for the next routing hop to a given destination w with
an entry (hdi (v,w),w) ∈ Lv,i for some i . In order to
ensure that routing is stateless (i.e., the suffix of a rout-
ing path is independent of its prefix), nodes will always
pick the next routing hop by using the entry minimizing
wdi (v,w) = hdi (v,w)b(i) (ties broken by choosing the
smallest suitable value of i). This is necessary to ensure that
the weight of a routing path never exceeds the distance esti-
mate mini {wdi (v,w) | (hdi (v,w),w) ∈ Lv,i }, but implies
that routing paths may have more than h′ ∈ O(h/ε) hops.
The bound of Õ(ε−2h) follows from observing that for all
v,w ∈ V and i < j , it holds that wdi (v,w) ≤ wd j (v,w),
and thus the i-value minimizing wdi (v,w) is decreasing
along the routing path; for eachof theO(log1+ε n) ⊂ Õ(ε−1)

weight classes, the subpath for that class has h′ ∈ O(h/ε)

hops.

This point is also reflected in parts (iv) and (v) of Corol-
lary 5.6: exploiting the monotonicity of routing paths with
respect to i , the operations can be broken down into sequen-
tial (partial) flooding or echo operations for each of the
Õ(ε−1) weight classes, which then each can be handled in
O(σ + h′) ⊆ O(σ + ε−1h) rounds.

5.3 Approximate source detection in directed
graphs

As the reduction to the unweighted case is oblivious to
whether the graph is directed or not, also our approximate
source detection algorithm can be used in directed graphs.
Here, we again need to consider the distance measures
induced by directed paths.

123

C. Lenzen et al.

Definition 5.7 (Directed Approximate Source Detection)
Given a weighted directed graph G = (V , E), define for
v,w ∈ V that hd(v,w) is the minimum number of hops on
a directed path from v to w. Moreover, denote for h ∈ N by
wdh(v,w) the minimum weight of paths from v to w of at
most h hops (or ∞ if no such path exists).

Given S ⊆ V , h, σ ∈ N, and ε > 0, let L(h,ε)
v be a

list of {(wd′(s, v), s) | s ∈ S, wd′(s, v) < ∞}, ordered in
increasing lexicographical order, for some wd′ : S × V →
N∞ that satisfies wd′(s, v) ∈ [

wd(s, v), (1 + ε)wdh(s, v)
]

for all s ∈ S and v ∈ V . The directed (1 + ε)-approximate
(S, h, σ)-detection problem is to output topσ (L(h,ε)

v) at each
node v for some such wd′.

In the simulation argument, one simply replaces undirected
edges by directed edges, which does not affect the running
time. If communication is still possible in both directions of
each edge, this yields the following corollary.

Corollary 5.8 For 0 < ε ∈ O(1), directed (1 + ε)-
approximate (S, h, σ)-detection can be solved inO((ε−1σ +
ε−2h) log n + D) rounds.

We stress that also here, determining parameters globally,
detecting termination, or other more advanced operations
require bidirectional communication. If this is not possible,
the above corollary does not apply, and only Theorem 1.5
applies (which assumes a known a-priori bound on the max-
imum edge weight).

6 Skeletons and skeleton spanners

In this section we define a skeleton graph GS,h of G, where
|S|, h ∈ Õ(

√
n), and construct a sparse spanner of this graph.

Later, we discuss approximate versions based on approxi-
mate source detection.

Definition 6.1 (SkeletonGraph, restated)LetG = (V , E,W)

be a weighted graph. Given S ⊆ V and h ∈ N, the
h-hop S-skeleton graph is the weighted graph GS,h =
(S, ES,h,WS,h) defined by

– ES,h = {{v,w} | v,w ∈ S ∧ v
= w ∧ hd(v,w) ≤ h};
– For {v,w} ∈ ES,h , WS,h(v,w) = wdh(v,w).

We denote the distance function in GS,h by wdS,h .

A simple but crucial observation on distances in skele-
ton graphs (which, in this context, are meant to be weighted
distances) is that if the skeleton S consists of nodes chosen
independently at random, and if h ∈ Ω(n log n/|S|), then
w.h.p., the distances in GS,h are equal to the corresponding
distances in G. The following lemma formalizes this idea.

Lemma 6.2 Let 1 ≥ π ≥ c log n/h for a sufficiently large
constant 0 < c ≤ h/ log n, and letS be a set of randomnodes
defined by Pr[v ∈ S] = π independently for all nodes. Then
w.h.p. wdS,h(v,w) = wd(v,w) for all v,w ∈ S.
Proof Fix v,w ∈ S. Clearly, wdS,h(v,w) ≥ wd(v,w)

because each path in GS,h corresponds to a path of the same
weight inG. We show that wdS,h(v,w) ≤ wd(v,w) as well.
Let p = 〈

u0 = v, u1, . . . , u�(p) = w
〉
be a shortest path con-

necting v and w in G, i.e., W (p) = wd(v,w). We prove, by
induction on �(p), that wd(p) ≥ wdS,h(v,w) w.h.p.

For the base case note that if �(p) ≤ h, then by definition
wdS,h(v,w) ≤ W (p) = wd(v,w) and we are done. For
the inductive step, assume that the claim holds for all values
of �(p) ≤ i for some i ≥ h and consider a path of length
�(p) = i + 1. We have

P[|S ∩ {u1, . . . , ui }| = ∅] ≤ (1 − π)h ≤ e−hπ

= e−c log n ∈ n−Ω(c),

and thus w.h.p. the intersection is non-empty. Assume that
this is the case and let u ∈ {u1, . . . , ui } ∩ S. Since p is a
shortest path in G, so are (v, . . . , u) and (u, . . . , w). Both
these paths are of length at most i , implying by the induction
hypothesis that wdS,h(v, u) ≤ wd(v, u) and wdS,h(u, w) ≤
wd(u, w) w.h.p., respectively. Therefore wdS,h(v,w) ≤
wdS,h(v, u) + wdS,h(u, w) ≤ wd(v, u) + wd(u, w) =
W (p) = wd(v,w) w.h.p., completing the induction. Note
that the overall number of events we consider throughout the
induction is in nO(1), and since the probability of the bad
events is polynomially small, the union bound allows us to
deduce that the claim holds w.h.p. ��

With this in mind, we fix h = �√n� and sufficiently large
π ∈ Θ(log n/

√
n) for Lemma 6.2 to apply to GS,h through-

out this section. (Note that both can be determined in O(D)

time.)

6.1 The Baswana–Sen construction

The algorithm by Baswana and Sen [9] computes a (2k −
1)-spanner of an n-node graph with O(kn1+1/k) edges in
expectation, in O(k) rounds of the CONGEST model.

Definition 6.3 (Weighted α-Spanners) Let H = (V , E,W)

be a weighted graph and α ≥ 1. An α-spanner of H is a
subgraph H ′ = (V , E ′,W ′) of G where E ′ ⊆ E andW ′ is a
restriction ofW to E ′, such that wdH ′(u, v) ≤ α ·wdH (u, v)

for all u, v ∈ V , where wdH and wdH ′ denote weighted
distances in H and H ′, respectively.

We will simulate the Baswana-Sen algorithm on GS,h ,
while running on the underlying physical graph G, without
ever constructing the skeleton graph explicitly. Before dis-
cussing the simulation, let us recall the algorithm; we use

123

Distributed distance computation and routing with small messages

a slightly simpler variant that may select some additional
edges, albeit without affecting the probabilistic upper bound
on the number of spanner edges (cf. Lemma 6.5). The input
is a graph H = (VH , EH ,WH) and a parameter k ∈ N.

1. Initially, each node is a singleton cluster: R1 := {{v} | v ∈ VH }.
2. For i = 1, . . . , k − 1 do (the i th iteration is called “phase i”):
(a) Each cluster from Ri is marked independently with
probability |VH |−1/k . Ri+1 is defined to be the set of clusters
marked in phase i .
(b) If v is a node in an unmarked cluster:
(i) Define Qv to be the set of edges that consists of the lightest

edge from v to each cluster in Ri it is adjacent to.
(ii) If v is not adjacent to any marked cluster, all edges in Qv

are added to the spanner.
(iii) Otherwise, let u be the closest neighbor of v in a marked

cluster. In this case v adds to the spanner the edge {v, u}, and also
all edges {v,w} ∈ Qv with (WH (v,w),w) < (WH (v, u), u)

(i.e., ordered by weight, breaking ties by identifiers). Also, let X
be the cluster of u. Then X := X ∪ {v}. (I.e., v joins the cluster of
u.)

3. Each node v adds, for each cluster X ∈ Rk it is adjacent to, the
lightest edge connecting it to X .

For this algorithm, Baswana and Sen prove the following
result.

Theorem 6.4 [9] Given H = (VH , EH ,WH) and and k ∈
N, the algorithm above computes a (2k − 1)-spanner of H.
It has O(k|VH |1+1/k log n) edges w.h.p.7

6.2 Constructing the skeleton spanner

In our case, each edge considered in Steps (2b) and (3)
of the spanner algorithm on GS,h corresponds to a short-
est path in G. Essentially, we implement these steps by
letting each skeleton node find its closest O(|S|1/k log n)

clusters (w.h.p.), by running (S, h, σ)-detection with σ =
O(|S|1/k log n). This requires a tweak: all nodes v in a clus-
ter X use the same source identifier source(v) = X ; logically,
this can be interpreted as connecting them to a virtual source
X by edges of weight 0. Consequently, σ needs to account
for the number of detected clusters only, i.e., the number of
nodes per cluster is immaterial. The following lemma shows
that this strategy is sound.

Lemma 6.5 W.h.p., for a sufficiently large constant c > 0,
execution of the centralized spanner construction algorithm
yields identical results if in Steps (2b) and (3), each node
considers the lightest edges to the c · |VH |1/k log n closest
clusters only.

7 Baswana and Sen prove that the expected number of edges is
O(k|VH |1+1/k). The modified bound directly follows from Lemma 6.5.

Proof Fix a node v and a phase 1 ≤ i < k. If v has at most
c|VH |1/k log n adjacent clusters, the lemma is trivially true.
So suppose that v hasmore than c|VH |1/k log n adjacent clus-
ters. By the specification of Step (2b), we are interested only
in the clusters closer than the closest marked cluster. Now,
the probability that none of the closest c|VH |1/k log n clusters
is marked is (1 − |VH |−1/k)c|VH |1/k log n ∈ n−Ω(c). In other
words, choosing a sufficiently large constant c, we are guar-
anteed that w.h.p., at least one of the closest c|VH |1/k log n
clusters is marked.

Regarding Step (3), observe that a cluster gets marked in
all of the first k − 1 iterations with independent probability
|VH |−(k−1)/k . ByChernoff’s bound, the probability thatmore
than c|VH |1/k log n clusters remain in the last iteration is thus
bounded by 2−Ω(c log n) = n−Ω(c). Therefore, w.h.p. no node
is adjacent to more than c|VH |1/k log n clusters in Step (3),
and we are done. ��

We remark that while nodes v in the same cluster X act
as a single source, we need to keep account of the actual
node v ∈ X to which an edge in GS,h (i.e., the correspond-
ing path in G) leads. This is achieved by simply adding the
identifier v to the messages (dv, X) of the source detection
algorithm that indicate a path to v and storing it alongside
the respective entry of Lv; this does not affect the execution
of the algorithm in any other way. Detailed pseudo-code of
our implementation is given in Algorithm 2. Each skeleton
node s ∈ S records the ID of its cluster in phase i as Fi (s);
nodes in V \ S or those which do not join a cluster in some
phase i have Fi (s) = ⊥.

Toprove the algorithmcorrect,we argue that its executions
can be mapped to executions of the centralized algorithm on
the skeleton graph and then applyTheorem6.4. Thismapping
is straightforward. Clusters are referred to by the identifiers
of their leaders. Initially, these are the nodes sampled into S,
each of which forms a singleton cluster. The leader of a clus-
ter in phase i + 1 is the leader of the corresponding cluster
from phase i that was marked in Line 9 of iteration i of the
main loop of the algorithm. The broadcast in Line 5 ensures
that all nodes know the cluster leaders and can decidewhether
Fi (t) ∈ Ri+1 in Line 20 locally. A call to source detection
then serves to discover the skeleton edges that are added
to the spanner in iteration i . The call uses h = �√n�, as we
consider the �√n�-hop skeleton, andσ ∈ O(S|1/k log n) suf-
fices according toLemma6.5.Nodes evaluatewhich skeleton
edges to add to the spanner locally, and update their cluster
leader to the one of the closest marked cluster of this itera-
tion. Checking for s
= t when adding spanner edges avoids
adding 0-weight loops, as of course each node will determine
that its own cluster is the closest source. Finally, the spanner

8 I.e., at initialization of Algorithm 1 set Lv := {(0, Fi (v))} if Fi (v)
=
⊥ and Lv := ∅ otherwise.

123

C. Lenzen et al.

Algorithm 2: Construction of skeleton spanner.
input : // trades approximation for sparsity

k: integer in [1, log n]
output: S ⊆ V // skeleton nodes

ES,h,k ⊆ V // skeleton spanner edges
WS,h,k : Ek → N // edge weights

1 S := ∅
2 ES,h,k := ∅
3 foreach v ∈ V do

// c is a sufficiently large constant
4 add v to S with probability c log n/

√
n

F1(v) :=
{

v if v ∈ S
⊥ otherwise

5 broadcast S to all nodes
// cluster leaders; initial clusters are

singletons of S
6 R1 := S
// c is a sufficiently large constant

7 σ := c · |S|1/k log n for i := 1 to k do
8 if i < k then
9 Ri+1 := random subset of Ri of expected size

|S|1−i/k = |Ri |/|S|1/k
// make leaders of marked clusters

known
10 broadcast Ri+1 to all nodes

11 else
// no clusters marked in final

iteration
12 Ri+1 := ∅
13 solve (S, �√n �, σ)-detection on G, using source identifier

Fi (v) at v;8 record the node w for each entry (d, Fi (w)) ∈ Lv

14 foreach s ∈ S do
15 Let Ls denote the list returned by the call to

(S, �√n�, σ)-detection
16 Fi+1(s) := ⊥
17 foreach (wd(s, t), Fi (t)) ∈ Ls in increasing

lexicographical order do
18 if s
= t then

// add edge to spanner
19 ES,h,k := ES,h,k ∪ {s, t} WS,h,k := wd(s, t)

20 if Fi (t) ∈ Ri+1 then
// leader of closest marked

cluster
21 Fi+1(s) := Fi (t)
22 break

23 broadcast ES,h,k , and WS,h,k to all nodes
24 return (S, ES,h,k ,WS,h,k)

is made known to all nodes by broadcasting it over a BFS
tree.

Lemma 6.6 W.h.p., Algorithm 2 can be implemented with the
following guarantees.

(i) |S| ∈ Θ(n1/2 log n).

(ii) It computes a weighted (2k − 1)-spanner of the skele-
ton graph GS,�√n � that is known at all nodes and has

Õ(n1/2+1/(2k)) edges.
(iii) The weighted distances between nodes in S are identical

in GS,�√n � and G.

(iv) The algorithm terminates in Õ(n
k+1
2k + D) rounds.

Proof Statement (i) is immediate from an application of
Chernoff’s bound, as each node joins S independently with
probability Θ(log n/

√
n). To prove Statement (ii), we note

that Algorithm 2 simulates the centralized algorithm, except
for considering only the closest O(|S|1/k log n) clusters
when adding edges to the spanner. ByLemma 6.5, this results
in a (simulated) correct execution of the centralized algorithm
w.h.p. Hence, Statement (ii) follows from Theorem 6.4 and
Statement (i). Statement (iii) follows from Lemma 6.2.

It remains to analyze the running time of the algorithm.
All steps but the broadcast operations (Lines 5, 10, and 23)
and the call to source detection (Line 13) are local com-
putations. Lemma 3.3 together with Statements (i) and (ii)
implies that the broadcast operations can be completedwithin
Õ(n1/2+1/(2k) + D) rounds in total. (Note that k factors are
absorbed in the weak Õ notation because k ≤ log n.) Source
detection can be solved inO(σh) rounds [32]. As h = �√n �
and, by Statement (i), σ ∈ Õ(n1/(2k)), the time complexity
bound follows. ��

We remark that it is not difficult to derandomize the algo-
rithm at the cost of a multiplicative increase of O(log n) in
the running time, see [10].

6.3 Routing on the skeleton spanner

Algorithm 2 constructs a (2k − 1)-spanner of the skeleton
graph and makes it known to all nodes. This enables each
skeleton node to determine low-stretch routing paths in GS,h

by local computation. To use this information, we must map
each spanner edge e = {s, t} ∈ ES,h to a path in G of weight
WS,h(s, t). Since the construction of the spanner was carried
out by source detection, we can readily map a spanner edge
to a route in G in one direction: if, say, s added the edge
{s, t} to the spanner, then that edge corresponds to a path in
the induced tree (of depth at most h) rooted at t , which can be
easily reconstructed using the weight information, thus facil-
itating routing from s to t . However, to route in the opposite
direction we need to do a little more.9 Specifically, we add a
post-processing step where we “reverse” the unidirectional
routing paths, i.e., inform the nodes on the paths about their
predecessors (if we have paths both from s to t and vice versa,

9 This asymmetry is not due to our implementation: consider an n-node
star graph. Its k-spanner is the whole star (for any k ≥ 1). However, the
center adds only Õ(n1/k) edges to the spanner.

123

Distributed distance computation and routing with small messages

we select one to reverse and drop the other). This can be done
inO(σh) rounds by using the idea in Corollary 4.7, part (iv).

Corollary 6.7 Let e = {s, t} be a skeleton spanner edge
selected by Algorithm 2. Denote by pe ∈ paths(s, t) the
corresponding path in G of �(pe) ≤ h hops and weight
W (pe) = wdh(s, t) = WS,h(s, t) that was (implicitly) found
by the call to source detection when the edge was added.
Then, concurrently for all e ∈ ES,h, each node v on pe can
learn the next nodes on this path in both directions within

Õ(n
k+1
2k) rounds w.h.p.

Our third main result, Theorem 1.7, now follows from
Lemma 6.6 and Corollary 6.7.

6.4 Approximate skeleton and skeleton spanner

The reduction of the single-source shortest path problem to
an overlay network on Õ(

√
n) nodes given in [24] is based

on computing approximate distances to the source on a skele-
ton. However, this requires the skeleton to be known as an
overlay network, which means that its nodes have knowl-
edge of their incident edges. We illustrated in Fig. 3 why an
algorithm obtaining this information cannot be fast. How-
ever, using approximate source detection, we can compute
an “approximate” skeleton graph.

Definition 6.8 (Approximate Skeleton Graph) Let G =
(V , E,W) be a weighted graph. Given S ⊆ V and h ∈ N, a
(1 + ε)-approximate h-hop S-skeleton graph is a weighted
graph G̃S,h = (S, ES,h, W̃S,h) satisfying

– ES,h = {{v,w} | v,w ∈ S ∧ v
= w ∧ hd(v,w) ≤ h};
– For {v,w} ∈ ES,h , wdh(v,w) ≤ W̃S,h(v,w) ≤ (1 +

ε)wdh(v,w).

We denote the distance function in G̃S,h by w̃dS,h .

Recall that, for sufficiently large h, an (exact) skeleton
on independently sampled nodes preserves distances w.h.p.
Analogously, a (1 + ε)-approximate skeleton preserves dis-
tances up to factor 1 + ε.

Corollary 6.9 For a given parameter h ∈ N, let S be a set of
nodes obtained by adding each node from V independently
with probability π ≥ c log n/h, where 0 < c ≤ h/ log n is a
sufficiently large constant. Let G̃ be any (1+ε)-approximate
h-hop S-skeleton of G for a given parameter ε > 0. Then
w.h.p. (over the choice of S), for all v,w ∈ S we have
wd(v,w) ≤ w̃dS,h(v,w) ≤ (1 + ε)wd(v,w).

Proof As for Lemma 6.2, taking into account that h-hop dis-
tances are only approximated up to factor 1 + ε. ��
Using approximate source detection, we can compute an
approximate skeleton, in the sense that each skeleton node
learns its incident edges and their weights.

Corollary 6.10 Let S and h be as in Corollary 6.9 and 0 <

ε ∈ O(1). We can compute a (1 + ε)-approximate h-hop
S-skeleton of G in Õ(ε−1|S| + ε−2h + D) rounds.

Proof After determining |S| inO(D) rounds, we run (1+ε)-
approximate (S, h, |S|)-detection, which by Theorem 5.4
completes within the stated time bounds. Note, however, that
the distance estimates nodes s, t ∈ S have obtained from
each other may differ. To fix this, we leverage Statement (i)
of Corollary 5.6, “reversing” the flow of distance information
as compared to the algorithm, again taking Õ(ε−1|S|+ε−2h)

rounds. As a result, s will obtain the estimate t has of its dis-
tance to s and vice versa. Now each skeleton edge is assigned
the minimum of the two values as weight. ��

Given the information obtained in the construction of the
overlay, one can readily run the Baswana-Sen algorithm on
the overlay to obtain a spanner of the approximate skeleton.

Corollary 6.11 For any integer k ∈ [1, log n], w.h.p. we can
compute and make known to all nodes a (2k − 1)-spanner
of the approximate skeleton determined in Corollary 6.10
of Õ(|S|1+1/k) edges within Õ(|S|1+1/k + D) additional
rounds.

We remark that [10,24] provide derandomizations, resulting
in adeterministic (1+o(1))-approximation toSSSPdistances
within Õ(

√
n + D) rounds.

For later use in our routing schemes we specialize the
result as follows.

Corollary 6.12 For any 0 < ε ∈ O(1) and any integer k ∈
[1, log n], within Õ(ε−2n

2k+1
4k + D) rounds a graph GS =

(S, ES ,WS) with the following properties can be computed
and made known to all nodes w.h.p.

(i) Nodes are sampled independently into S, so that |S| ∈
Θ(n

2k−1
4k log n).

(ii) |ES | ∈ Õ(n
2k+1
4k).

(iii) For all s, t ∈ S, wd(s, t) ≤ wdS(s, t) ≤ (1 + ε)(2k −
1)wd(s, t), where wdS is the distance metric induced by
WS .

Proof Choose sampling probability π = n
−2k−1

4k log n, pick

h = c log n/π ∈ Õ(n
2k+1
4k), and apply Corollary 6.9, Corol-

lary 6.10, and Corollary 6.11. ��
Regarding the mapping of edges in GS to paths in G, we

have the following.

Corollary 6.13 For each edge e = {s, t} ∈ ES as in Corol-
lary 6.12, let pe ∈ paths(s, t) denote its corresponding path

in G. Then, after Õ(ε−2n
2k+1
4k +D) additional rounds, w.h.p.,

every node v on every path pe knows the next nodes on this
path in both directions (including the weight of the respective
subpaths).

123

C. Lenzen et al.

To prove this corollary, we use the powerful tool of labeling
schemes. A tree labeling scheme is an assignment of labels
to tree nodes such that determining the next hop from one
node towards another, or the distance between two nodes,
can be done based on the labels of the two nodes alone.
We note that determining the next hop can be achieved
withO(log n)-bit labels [50], while determining the distance
requires Θ(log2 n)-bit labels [21,40]. We shall use the fol-
lowing result, which is implicit in the work by Thorup and
Zwick (see Section 2.1 and Theorem 2.6 in [52]).

Theorem 6.14 (based on [52]) It is possible to construct a
tree labeling scheme withO(log n)-bit tables andO(log2 n)-
bit labels using O(log n) flooding/echo operations in the
CONGEST model.

Proof of Corollary 6.13 In each iteration of the Baswana-Sen
construction, nodes may add at most σ ∈ Õ(|S|1/k) edges
corresponding to their σ closest clusters to the spanner. By
Corollary 5.6 (iv),(v), we can perform concurrent flooding
and echo operations on the corresponding routing trees in

Õ(ε− 2k+1
k n

2k+1
4k) rounds w.h.p. Therefore, by Theorem 6.14,

we can construct tree labels of O(log2 n) bits. To get rid of
the labels and let each node acquire full information on the
paths pe corresponding to edges e ∈ ES , each skeleton node
s ∈ S announces the tree labels for its tree Ts and for each
other tree Tt such that {s, t} ∈ ES . Using a BFS tree, this

takesO(σ |S|+D) ⊆ Õ(ε−2n
2k+1
4k +D) rounds w.h.p. Since

for each edge e = {s, t} ∈ ES , we have that p(e) ∈ Ts or
p(e) ∈ Tt , each node can determine whether it is in p(e) and,
if so, its neighbors in p(e) in direction of s and t , respectively.

��

7 Table construction in unweighted graphs

7.1 Exact tables

As a warm-up, let us state the following immediate result.

Corollary 7.1 On unweighted graphs, name-independent
tables for exact (i.e., stretch-1) routing and distances can
be computed in n + O(D) rounds.

Proof Using a BFS tree, find a bound on the diameter d ∈
O(D) and the number of nodes n (cf. Sect. 3.4). Then run
source detection with S = V , σ = n and h = d. The result
follows from Theorem 1.2. ��

7.2 Tables of Size Õ(n1/k) and Stretch 4k− 3

While Corollary 7.1 merely reproduces earlier results (albeit
with improved leading constants), the fact that we solve

source detection in unweighted graphs in σ + h rounds irre-
spectively of |S| permits efficient distributed construction of
a Thorup–Zwick routing hierarchy [52].

7.2.1 Algorithm

Assume that n and D are known (cf. Sect. 3.4). Let k ∈
[1, log n] be an integer parameter (k controls the trade-off
between table size and maximum stretch). The construction
algorithm is as follows.

1. Define S0 = V . Given Si−1, construct Si , for i ∈ {1, . . . , k − 1},
by independently including each member of Si−1 in Si with
probability n−1/k . Set Sk = ∅.

2. For i = 0, . . . , k − 1, run (Si , D, σ)-detection, where
σ := cn1/k log n for a sufficiently large constant c. Let Ts,i
denote the induced tree for source s ∈ Si .

3. For each tree Ts,i , construct a tree labeling scheme as in
Theorem 6.14. The result, for each v ∈ Ts,i , is a label λi (v) and a
routing table Rs,i (v) of O(log n) bits, facilitating routing in Ts,i .

4. Let sv,i be the node in Si minimizing hd(v, sv,i). The output of a
node v ∈ V consists of (i) its label λ(v) constructed from the ID
of v and the list of pairs

{
(sv,i , λi (v))

}k−1
i=1 , and (ii) a table

containing the lists Lv,i constructed by source detection10 and the
routing table Rs,i (v) for each s, i for which (hd(v, s), s) ∈ Lv,i .

Routing proceeds as follows. Let v be any node, and
suppose v is given the label λ(w) of the destination w.
Then v determines the next routing hop to w as follows.
If (hd(v,w),w) ∈ Lv,0, exact routing is given by Tw,0.
Otherwise, v finds the minimum i ∈ {0, . . . , k − 1} so that
v ∈ Tws,i ,i and reports back the next routing hop from v to
w in Tws,i ,i . Note that this rule does not rely on prior routing
decisions, i.e., it is stateless. Distance approximation is done
using the same mechanism.

7.2.2 Analysis

The following lemma is an immediate consequence of Cher-
noff’s bound.

Lemma 7.2 In the above algorithm, we have, w.h.p., that (i)
|Sk−1| ≤ σ ; and (ii) for all v ∈ V and i ∈ {0, . . . , k − 2},
∃s ∈ Si+1 satisfying (hd(v, s), s) ∈ Lv,i .

Note that part (i) of the lemma implies that for any v,w ∈ V ,
there is an index i so that v ∈ Tws,i ,i , and hence the routing
scheme is correct.

The tables and labels, by construction, are of size Õ(n1/k)
and O(k log n) bits, respectively. The round complexity of
the construction can be readily bounded using our previous
results.

10 Including the respective parents in the induced trees; we will refrain
from repeating this every time in what follows.

123

Distributed distance computation and routing with small messages

Corollary 7.3 The above algorithm runs in Õ(n1/k + D)

rounds.

Proof Steps 1 and 4 involve local computations only. By
Theorem 1.2, Step 2 takes O(k(σ + D)) ⊂ Õ(n1/k + D)

rounds. By Theorem 6.14, constructing the labels and tables
in Step 3 can be performed by Õ(1) flooding and echo
operations on each of the trees. By Corollary 4.7, these oper-
ations can be executed for each level i concurrently within
Õ(σ + D) ⊂ Õ(n1/k + D) rounds. ��

Finally, we prove that the resulting stretch is at most 4k −
3. We follow [52], but in our case (since the table of the
destination node is not available), each step of the induction
contains an additional application of the triangle inequality.
Consequently the stretch is 4k − 3 rather than 2k − 1.

Lemma 7.4 Let v,w ∈ V and 1 ≤ j ≤ k − 1. If v /∈ Tsw, j ,
then w.h.p., (a) hd(v, sv, j) ≤ (2 j − 1)hd(v,w), and (b)
hd(w, sw, j) ≤ 2 j · hd(v,w).

Proof We show, by induction on i ∈ {1, . . . , j}, that (a)
hd(v, sv,i) ≤ (2i − 1)hd(v,w) and (b) hd(w, sw,i) ≤ 2i ·
hd(v,w). For the basis of the induction, consider i = 0. In
this case, since S0 = V , we have that, su,0 = u for all nodes
u and the claim is trivial.

For the inductive step, assume that (b) holds for 0 ≤
i < j and consider i + 1. By assumption, v /∈ Tsw,i ,i ,
i.e., (hd(v, sw,i), sw,i) /∈ Lv,i . However, by Statement (ii)
of Lemma 7.2, (hd(v, sv,i+1), sv,i+1) ∈ Lv,i w.h.p. Hence,

hd(v, sv,i+1) ≤ hd(v, sw,i)

≤ hd(v,w) + hd(w, sw,i)

≤ (2i + 1)hd(v,w),

where in the last step we use the induction hypothesis. This
proves part (a) of the claim for index i + 1. As sw,i+1 is the
closest node from Si+1 to w, using the above inequality we
also obtain

hd(w, sw,i+1) ≤ hd(w, sv,i+1)

≤ hd(w, v) + hd(v, sv,i+1)

≤ (2i + 2)hd(v,w),

which proves part (b) of the claim, completing the inductive
step. ��

Rephrasing, we obtain the following result.

Corollary 7.5 Let v,w ∈ V , and let 0 ≤ i0 ≤ k − 1
be minimal such that v ∈ Tsw,i0 ,i0 . Then wd(v, sw,i0) +
wd(sw,i0 , w) ≤ (4i0 + 1)wd(v,w) ≤ (4k − 3)wd(v,w)).

Proof By Lemma 7.4,

wd(v, sw,i0) + wd(sw,i0 , w) ≤ wd(v,w) + 2wd(w, sw,i0)

≤ (4i0 + 1)wd(v,w)

≤ (4k − 3)wd(v,w)

and the corollary is proved. ��
To summarize, we arrive at the following theorem.

Theorem 7.6 Given an unweighted graph and an integer
k ∈ [1, log n], we can compute in O(n1/k + D) rounds
Õ(n1/k)-bit tables andO(k log n)-bit labels which facilitate,
w.h.p., stateless (4k−3)-stretch routing and distance approx-
imation.

We note that we can obtain stretch 2k − 1 at the cost
of increasing the label size to Õ(n1/k): simply append the
destination’s table to its label.

8 Table construction in weighted graphs

In this section, we use approximate source detection and
skeleton spanners for constructing tables for weighted
graphs. We first consider the case where the Shortest-Path
Diameter (SPD, cf. Sect. 3.3) is small.

8.1 Small shortest-path diameter

If the SPD is small, then, intuitively, we do not need to con-
struct a skeleton (whose role is to split shortest paths with
many hops into few-hops subpaths), and we can directly
apply the strategy for the unweighted case using SPD instead
of D. However, this approach raises two issues. First, it is not
known how to compute—or approximate—SPD efficiently.
Second, source detection has time complexity Θ̃(hσ) in gen-
eral, resulting in a multiplicative running time overhead of
Θ̃(n1/k) for tables of stretch 4k − 3.

We can solve each of these concerns, but we do not
know whether one can construct tables of stretch Θ(k) in
Õ(n1/k + SPD) rounds. In order to obtain an algorithm that
requires no initial knowledge on SPD, one can exploit the
fact that for h ≥ SPD, source detection is solved if and only
if each node knows the exact distance to its σ closest sources,
which holds at a round if and only if no node v changes its
Lv list in that round. The latter property, and hence global
termination, can be detected (by means similar to the ones
used to prove Lemma 3.2) in O(D) ⊆ O(SPD) additional
rounds. We therefore have the following.

Corollary 8.1 For any natural k ∈ [1, log n], tables of size
Õ(n1/k) and labels of size O(k log n) for routing and dis-
tance approximation with stretch 4k − 3 can be computed in
O(n1/kSPD) rounds w.h.p.

123

C. Lenzen et al.

Proof (sketch) We use the algorithm described in Sect. 7.2,
replacing the invocations of source detection in step 2 with
approximate source detection using infinity as the hop bound,
in conjuction with termination detection as discussed above.
We observe that the stretch bound can be shown analogously
to Lemma 7.4, by replacing hd with wd. ��

8.2 The general case

If SPD is large or unknown, the algorithms outlined above
may be too slow. Our approach is to use approximate source
detection and a skeleton spanner.

8.2.1 Algorithm

We first describe a stateful routing variant (i.e., the next hop
may be a function of traversed hops); we extend it to a state-
less one later. The routing table computation algorithm takes
0 < ε ≤ 1 as a parameter and proceeds as follows.

1. Construct an (approximate) skeleton spanner
GS = (S, ES ,WS) and make it known to all nodes
(Corollary 6.12). Node v ∈ V also stores the solution Lv(S) to

(1 + ε)-approximate (S, h, |S|)-detection, where h = n
2k+1
4k ,

which is computed during the construction, as well as the routing
information for (1 + ε)-stretch routing to the detected nodes
(computed using Corollary 5.6).

2. Construct a routing path pe in G for each edge in e ∈ ES
(Corollary 6.13).

3. Run (1 + ε)-approximate (V , h, h)-detection, obtaining a list
Lv(V) for each v ∈ V (Theorem 1.5). Determine the necessary
information to route from v to w with stretch 1 + ε, for each
v,w ∈ V such that (wd′(v,w),w) ∈ Lv(V) (Corollary 5.6).

4. For each v ∈ V , let s′
v be the closest node of S w.r.t. wd′, i.e.,

(wd′(v, s′
v), s

′
v) is the first entry of Lv(V) with s′

v ∈ S.11 For
each s ∈ S, let Ts be the tree defined by the union of all routing
paths from nodes v with s′

v = s. Using Corollary 4.7 and
Theorem 6.14, compute tree labels λv,s as in [52] in each such
tree Ts for each v ∈ Ts . The label of node v is
λv := (v, s′

v,wd
′(v, s′

v), λv,s′v) and its routing table contains all
that was computed in the previous steps.

Routing and distance approximation is done as follows.
Given the label λw of w ∈ V at node v ∈ V , v checks
whether there is an entry (wd′(v,w),w) ∈ Lv(V) with
wd′(v,w) ≤ wd′(w, s′

w). If there is one, v can estimate
the distance to w as wd′(v,w) and it knows the next hop
on the corresponding route to w. Otherwise, v estimates the
distance as mins∈S{wd′(v, s) + wdS(s, s′

w) + wd′(w, s′
w)},

wherewdS is the distancemetric onGS (using the list Lv(S),
its knowledge of GS , and the label λw). If a message needs

11 We slightly abuse notation here in that we do not indicatewhether the
distance functionwd′ corresponds to the lists Lv(S) or Lv(V) explicitly.
Unless explicitly indicated otherwise, we refer to both instances.

to be routed, v picks the next hop on the corresponding path;
by adding the sequence of nodes in S that are still to be vis-
ited to the message, 12 each intermediate node on the path
can determine its next routing hop in G. The weight of the
routing path is bounded from above by the distance estimate
computed by v.

8.2.2 Analysis

Due to the choice of h = (c log n)/E(|S|), with probability
1 − n−Θ(c), there is some s ∈ S such that (wd′(v, s), s) ∈
Lv(V) (cf. Corollary 6.12). Thus, w.h.p. all steps of the algo-
rithm can be executed as described. Based on the information
computed (and stored) by v and the label λw, v can always
determine the above distance estimate. With the additional
information included in the routingmessage (i.e., the subpath
to take in GS), nodes can determine the next routing hop.

Concerning the round complexity, recall that tree label-
ings can be constructed using Õ(1) flooding/echo operations
by Theorem 6.14. Hence, by Theorem 1.5 and Corollar-
ies 5.6, 6.12, and 6.13, the scheme can be implemented in

Õ(ε−2n
2k+1
4k + D) rounds w.h.p.

It remains to prove that the scheme guarantees, w.h.p.,
stretch at most (1+O(ε))(4k−1). To this end, we first show
that for close-by nodes, wd′ actually approximates the real
distances well. The key observation is simple: the internal
nodes on any shortest path from v to w are closer to v than
w, and therefore if w is among the closest h + 1 nodes to v,
then wdh(v,w) = wd(v,w).

Lemma 8.2 Fix v and order V in increasing lexicographical
order of (wd(v,w),w). Letw1, . . . , wn be the resulting node
sequence. Then wdh(v,wi) = wd(v,wi) for i ≤ h + 1.

Proof For any i ≤ h + 1, choose a shortest path p ∈
paths(v,wi), i.e.,W (p) = wd(v,wi). All nodes u ∈ p\{wi }
satisfy that wd(v, u) < W (p) = wd(v,w), because edge
weights are positive and there is a strict subpath of p con-
necting v and u. We conclude that �(p) ≤ h and therefore
wdh(v,wi) = wd(v,wi). ��

Applying Lemma 8.2, we relate wd′ and wd for close-by
nodes.

Corollary 8.3 Given v ∈ V , let sv ∈ S and s′
v ∈ S denote the

skeleton nodes minimizing (wd(v, s), v) and (wd′(v, s), v),
respectively. Suppose wd′ is the distance function of an
instance of (1 + ε)-approximate (S, h, σ)-detection for any
σ and S ⊇ S, and S and h as in the above algorithm. Then,
w.h.p.,

12 We ignore message size for themoment, as making the scheme state-
less will remove this header.

123

Distributed distance computation and routing with small messages

(i) ∀w ∈ V : (wd(v,w),w) ≤ (wd(v, sv), sv) ⇒
wdh(v,w) = wd(v,w);

(ii) ∀w ∈ V : wd′(v,w) ≤ wd′(v, sv) ⇒ wd′(v,w) ≤
(1 + ε)wd(v,w);

(iii) ∀w ∈ V : wd(v,w) < wd′(v, s′
v)/(1 + ε) ⇒

wdh(v,w) = wd(v,w).

Proof Recall that nodes have been sampled into S with uni-
form and indepent probability c log n/h (for a sufficiently
large constant c). Using the notation of Lemma 8.2, the prob-
ability that sv
= wi for all i ≤ h equals

(
1 − c log n

h

)h

∈ e−Θ(c log n) = n−Θ(c).

In other words, sv = wi for some i ≤ h w.h.p., implying (i)
by Lemma 8.2.

To show (ii), we distinguish between two cases. If
wd(v,w) < wd(v, sv), then w.h.p., wdh(v,w) = wd(v,w)

by (i). In this case, the claim follows directly from the
properties of source detection, namely that wd′(v,w) ≤
(1 + ε)wdh(v,w). Otherwise, wd(v,w) ≥ wd(v, sv) and
we can bound

wd′(v,w) ≤ wd′(v, sv)

≤ (1 + ε)wd(v, sv)

≤ (1 + ε)wd(v,w) .

For (iii), observe that

wd′(v, s′
v)

1 + ε
≤ wd′(v, sv)

1 + ε
≤ wd(v, sv)

by (ii) and hence wd(v,w) < wd(v, sv). Thus we can apply
(i) to obtain (iii). ��

In order to show the stretch bound, we use a strategy simi-
lar to the one employed in Sect. 7, for a single level, where sw
is replaced by s′

w. Moreover, we need to bound the additional
stretch incurred by (i) using approximate source detection
(costing factor 1 + O(ε)) and (ii) approximating distances
between skeleton nodes using the spannerGS (costing factor
2k − 1).

Lemma 8.4 The above algorithm guarantees w.h.p. stretch
(1 + O(ε))(4k − 1).

Proof Assume that v ∈ V is given label λw for somew ∈ V .
If we route using Lv(V), then wd′(v,w) ≤ wd′(w, s′

w) ≤
wd′(w, sw) and Statement (ii) of Corollary 8.3 bounds the
stretch by 1+ ε. Moreover, if wd(v,w) < wd′(w, s′

w)/(1+

ε), Statement (iii) of Corollary 8.3, applied tow, implies that

wd′(w, v) ≤ (1 + ε)wdh(w, v)

= (1 + ε)wd(v,w)

< wd′(w, s′
w)

and we route using Lv(V).
Therefore, if we route via s′

w, it must hold that wd′(w, s′
w)

≤ (1 + ε)wd(v,w) and thus also

wd(v, s′
w) ≤ wd(v,w) + wd(w, s′

w) ≤ (2 + ε)wd(v,w) .

Consider a shortest path p ∈ paths(v, s′
w), i.e., W (p) =

wd(v, s′
w) and denote by s the first node on the path that is

in S. Analogously to Lemma 8.2, w.h.p. s is among the first
h nodes of the path and hence wdh(v, s) = wd(v, s). From
Statement (iii) of Corollary 6.12 and the above bounds, we
infer that

wd′(v, s) + wdS(s, s′
w) + wd′(w, s′

w)

≤ (1 + ε)wdh(v, s) + (1 + ε)(2k − 1)wd(s, s′
w)

+ (1 + ε)wd(v,w)

= (1 + ε)wd(v, s) + (1 + ε)(2k − 1)wd(s, s′
w)

+ (1 + ε)wd(v,w)

≤ (1 + ε)(2k − 1)wd(v, s′
w) + (1 + ε)wd(v,w)

≤ (1 + ε)(2 + ε)(2k − 1)wd(v,w) + (1 + ε)wd(v,w)

∈ (1 + O(ε))(4k − 1)wd(v,w) ,

where in the last step we used the assumption that ε ∈ O(1).
It follows that

min
s∈S

{wd′(v, s) + wdS(s, s′
w) + wd′(w, s′

w)}
≤ (1 + O(ε))(4k − 1)wd(v,w) ,

proving the stated bound on the stretch also in the second
case. ��

8.2.3 From stateful to stateless routing

From a high-level point of view, the routing is essentially
already stateless: suppose a destination label λ(w) of node
w given at node v. If we consider the “path” on node set
S∪{v,w} induced by contracting all edges of the routing path
from v to w containing nodes u ∈ V \ (S ∪ {v,w}), then we
route on each resulting edge {s, t} at cost wd′(s, t). The main
issue is that when routing over an edge e = {x, y} towards
some node t ∈ S ∪ {w} in G, it is neither guaranteed that
wd′(y, t) = wd′(x, t)−W (e) nor that (wd′(x, t), t) ∈ Lx (·).

To resolve this, we adapt the approach used in the remark
in Sect. 5.2. For each spanner edge e = {s, t} ∈ ES , a

123

C. Lenzen et al.

routing path p(e) is found using Corollary 6.13, so that
each v ∈ p(e) knows the next routing hop on p(e) =
(s, . . . , v, . . . , t) to both s and t , as well as the respec-
tive weights of the subpaths Wp(e)(v, s) := W ((s, . . . , v))

and Wp(e)(v, t) := W ((v, . . . , t)). Note that W (p(e)) =
Wp(e)(v, s)+Wp(e)(v, t) ≤ WS(e). Let us extend the domain
of the distance metric wdS from S × S to V × S by setting

wdS(v, s) := min({wd′(v, t) + wdS(t, s) | t ∈ S} ∪
{Wp(e)(v, t) + wdS(s, t) |
e = {t, t ′} ∈ ES ∧ v ∈ p(e)}) .

Intuitively, wdS(v, s) is an upper bound on the cost from
routing from v to s based on the information from the first two
steps of the algorithm, where we account for the possibility
that an edge of the spanner has been “partially” traversed by
following a prefix of some path p(e) up to node v.

Let Lv,i (V) denote the lists computed by the unweighted
source detection algorithm for weight class i in Step (3). To
determine its distance estimate and the next routing hop to
nodew, node v finds the following minimum, where i ranges
over allO(ε−1 log n)weight classes used by the approximate
source detection algorithm (cf. Sect. 5):

min
{
wdS(v, s′

w) + wd′(s′
w,w),

min
0≤i≤imax

{
wdi (v,w) | ∃(hdi (v,w),w) ∈ Lv,i (V)

}}
.

The next node on the routing path is then selected in accor-
dance with the minimum. In case of a tie we give precedence
to Lv,i (V) for minimal i .

By construction, the modified routing scheme satisfies
the following properties: (i) If v computes distance estimate
w̃d(v,w) and routes via neighbor u, then u computes dis-
tance estimate w̃d(u, w) ≤ w̃d(v,w) − W ({v, u}), and (ii)
w̃d(v,w) is bounded from above by the distance estimate
used in the stateful variant of the algorithm. These two prop-
erties immediately imply that the stretch guarantee of the
stateful scheme carries over to the stateless scheme, and we
obtain the following theorem.

Theorem 8.5 Given an integer k ∈ [1, log n] and 0 < ε ∈
O(1), tables andO(log n)-bit labels for routing and distance
approximation with stretch (1+O(ε))(4k − 1) can be com-

puted in Õ(ε−2n
2k+1
4k + D) rounds w.h.p.

9 Lower bounds

In this sectionwe prove that the asymptotic complexity of our
algorithms is nearly the best possible within the CONGEST
model. We start with a lower bound on the time required to

Fig. 5 An illustration of the graph used in the proof of Theorem 9.1.
Thick edges denote edges of weight ωmax, other edges are of weight 1.
The shaded triangle represents a binary tree

estimate the diameter of the network, which is immediately
applicable to, say, APSP distance estimation.

9.1 Approximating the diameter in weighted graphs

Frischknecht et al. [19] show that approximating the diameter
of an unweighted graph to within a factor smaller than 1.5
cannot be done in theCONGESTmodel in o(n/ log n) time.
Here, following the framework of Das Sarma et al. [15], we
prove a hardness result for the weighted diameter, formally
stated as follows.

Theorem 9.1 For anyωmax ≥ √
n, there is a function α(n) ∈

Ω(ωmax/
√
n) such that the following holds. In the family of

weighted graphs of hop-diameter D ∈ O(log n) and edge
weights 1 and ωmax only, an (expected) α(n)-approximation
of the weighted diameter requires Ω̃(

√
n) communication

rounds in the CONGEST model.

Proof Let n ∈ N. Like in [15], we construct a graph family
Gn where each G ∈ Gn has Θ(n) nodes. Let m = ⌈√

n
⌉
. All

graphs in Gn consist of the following three conceptual parts.
Figure 5 illustrates a part of the construction.

– Nodes vi, j for 1 ≤ i, j ≤ m. These nodes are connected
asm paths of lengthm−1 (horizontal paths in the figure).
All path edges are of weight 1.

– A star rooted at an Alice node, whose the children are
v1,1, . . . , vm,1, and similarly, a star rooted at a Bob node,
whose leaves are v1,m, . . . , vm,m . The weights of these
edges may be either 1 or ωmax (that’s the only difference
between graphs in Gn).

– For each 1 ≤ j ≤ m there is a node u j connected to
all nodes vi, j , 1 ≤ i ≤ m in “column” j , with edges
of weight ωmax. In addition, there is a binary tree whose
leaves are the nodes u j . All tree edges have weight 1.
Finally,Alice andBob are connected tou1 andum , respec-
tively, by edges of weight 1.

123

Distributed distance computation and routing with small messages

Clearly, the hop-diameter of any graph in Gn is O(log n):
the hop-distance from any node to one of the nodes u j is
O(log n), and the distance between any two such nodes is
also O(log n). Furthermore, the following fact is shown by
Das Sarma et al. [15], based on the two-party communication
complexity of deciding set disjointness.

Fact 9.1 (Complexity of Set Disjointness [15]) Let M =
{1, . . . ,m}. Suppose that Alice holds a set A ⊆ M and
that Bob holds a set B ⊆ M. If deciding whether A∩ B = ∅
can be reduced to running a CONGEST algorithm on Gn
(where edge weights incident to the Alice node depend only
on A and those incident to the Bob node depend only on
B), then this algorithm runs for Ω̃(m) rounds, even if it is
randomized.

Accordingly, we now show that if the diameter of G ∈ Gn
can be approximated within factor ωmax/

√
n in time T in the

CONGEST model, then set disjointness can be decided in
time T + 1. To this end, we set the edge weights of the stars
rooted at Alice and Bob as follows: for all i ∈ {1, . . . ,m}, the
edge from Alice to vi,1 has weight ωmax if i ∈ A and weight
1 else; likewise, the edge from Bob to vi,m has weight ωmax

if i ∈ B and weight 1 otherwise.
Note that given A atAlice and B atBob, we can inform the

nodes vi,1 and vi,m of these weights in one round. Now run
any algorithm that outputs a value betweenWD(theweighted
diameter) and α(n)WD := ωmaxWD/(

√
n + C log n) (for a

suitable constant C) within T rounds, and output “A and B
are disjoint” if the outcome is at most ωmax and output “A
and B are not disjoint” othwerwise.

It remains to show that the outcome of this computation
is correct for any inputs A and B and the statement of the
theorem will follow from Fact 9.1 (recall that the number of
nodes in G is Θ(n)). Suppose first that A ∩ B = ∅. Then
for each node vi, j , there is a path of at most

√
n edges of

weight 1 connecting it to Alice or Bob, and Alice and Bob are
connected to all nodes in the binary tree and each other via
O(log n) hops in the binary tree (whose edges have weight 1
as well). Hence the weighted diameter ofG is

√
n+O(log n)

in this case and the output is correct (where we assume that
C is sufficiently large to account for theO(log n) term). Now
suppose that i ∈ A ∩ B. In this case each path from node
vi,1 to Bob contains an edge of weight ωmax, since the edges
from Alice to vi,1 and Bob to vi,m as well as those connecting
vi, j to u j have weight ωmax. Hence, the weighted distance
from vi,1 to Bob is strictly larger than ωmax and the output
is correct as well. This shows that set disjointness is decided
correctly and therefore the proof is complete. ��

9.2 Hardness of name-dependent distributed table
construction

A lower bound on name-dependent distance approximation
follows directly from Theorem 9.1.

Corollary 9.2 For anyωmax ≥ √
n, there is a function α(n) ∈

Ω(ωmax/
√
n) such that the following holds. In the family of

weighted graphs of hop-diameter D ∈ O(log n) and edge
weights 1 and ωmax only, constructing labels of size õ(

√
n)

and tables for distance approximation of (expected) stretch
α(n) requires Ω̃(

√
n) communication rounds in the CON-

GEST model.

Proof We use the same construction as in the previous proof,
however, now we need to solve the disjointness problem
using the tables and lables. Using the same setup, we run
the assumed table and label construction algorithm. After-
wards, we transmit, e.g., the label of Alice to all nodes vi,1.
This takes õ(

√
n) rounds by assumption on label size. We

then query the estimated distance to Alice at the nodes vi,1
and collect the results at Alice. Analogously to the proof of
Theorem 9.1, the maximum of these values is large if and
only if the input satisfies that A ∩ B = ∅. Since transmit-
ting the label costs only õ(

√
n) additional rounds, the same

asymptotic lower bound as in Theorem 9.1 follows. ��
A variation of the theme shows that stateless routing

requires Ω̃(
√
n) time.

Corollary 9.3 For anyωmax ≥ √
n, there is a function α(n) ∈

Ω(ωmax/
√
n) such that the following holds. In the family of

weighted graphs of hop-diameter D ∈ O(log n) and edge
weights 1 andωmax only, constructing stateless routing tables
of (expected) stretch α(n) with labels of size õ(

√
n) requires

Ω̃(
√
n) communication rounds in the CONGEST model.

Proof We consider the graph Gn as defined in the proof of
Theorem 9.1 and input sets A and B atAlice andBob, respec-
tively, but we use a different assignment of edge weights.

– All edges incident to a node in the binary tree haveweight
ωmax.

– For each i ∈ {1, . . . ,m}, the edge from Alice to vi,1 has
weight 1 if i ∈ A and weight ωmax else. Likewise, the
edge fromBob to vi,m hasweight 1 if i ∈ B and otherwise
weight ωmax.

– The remaining edges (on the m paths from vi,1 to vi,m)
have weight 1.

Observe that the distance from Alice to Bob is
√
n + 1 if

A ∩ B
= ∅ and at least ωmax + 2 if A ∩ B = ∅. Once
static routing tables for routing on paths of stretch at most
ωmax/(

√
n + 1) are set up, e.g. Bob can decide whether A

and B are disjoint as follows. Bob sends its label to Alice

123

C. Lenzen et al.

via the binary tree (which takes time õ(
√
n) if the label has

size õ(
√
n)). Alice responds with “i” if the first routing hop

from Alice to Bob is node vi,1 and i ∈ A (i.e., the weight of
the edge is 1), and “A ∩ B = ∅” else (this takes O(log n)

rounds). Bob then outputs “A ∩ B
= ∅” if Alice responded
with “i” and i ∈ B (i.e., the weight of the routing path is√
n + 1 since the edge from Bob to vi,m has weight 1) and

“A ∩ B = ∅” otherwise.
If the output is “A∩B
= ∅”, it is correct because i ∈ A∩B.

On the other hand, if it is “A ∩ B = ∅”, the route from Alice
to Bob must contain an edge of weight ωmax, implying by
the stretch guarantee that there is no path of weight

√
n + 1

from Alice to Bob. This in turn entails that A∩ B = ∅ due to
the assignment of weights and we conclude that the output is
correct also in this case. Hence the statement of the corollary
follows from Fact 9.1. ��

As a final remark, we point out that name-independent
routing (i.e., λ(v) = v for all v ∈ V) requires Ω̃(n) rounds,
which is shown by similar techniques [32,39]. Thus, relabel-
ing is essential for achieving small running times.

Acknowledgements Open access funding provided by Max Planck
Society.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lower
bounds for distributed distance computations, even in sparse
networks. In: Proceedings of the International Symposium on Dis-
tributed Computing (DISC), pp. 29–42 (2016). https://doi.org/10.
1007/978-3-662-53426-7_3

2. Antonio, J., Huang, G., Tsai, W.: A fast distributed shortest path
algorithm for a class of hierarchically clustered data networks.
IEEE Trans. Comput. 41, 710–724 (1992)

3. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Compact dis-
tributed data structures for adaptive network routing. In: Proceed-
ings of the 21st ACM Symposium on Theory of Computing, pp.
230–240 (1989)

4. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved rout-
ing strategies with succinct tables. J. Algorithms 11(3), 307–341
(1990)

5. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear cost
sequential and distribured constructions of sparse neighborhood
covers. In: Proceedings 34th Symposium on Foundations of Com-
puter Science (FOCS), pp. 638–647 (1993)

6. Awerbuch,B., Peleg,D.:Routingwith polynomial communication-
space trade-off. SIAM J. Discr. Math. 5, 151–162 (1992)

7. Baswana, S., Kavitha, T.: Faster algorithms for approximate dis-
tance oracles and all-pairs small stretch paths. In: Proceedings of
the 47th SymposiumonFoundations ofComputer Science (FOCS),
pp. 591–602 (2006)

8. Baswana, S., Sen, S.: Approximate distance oracles for unweighted
graphs in expected O(n2) time. ACM Trans. Algorithms 2, 557–
577 (2006)

9. Baswana, S., Sen, S.: A simple and linear time randomized algo-
rithm for computing sparse spanners in weighted graphs. Random
Struct. Algorithms 30(4), 532–563 (2007)

10. Becker, R., Karrenbauer, A., Krinninger, S., Lenzen, C.: Near-
optimal approximate shortest paths and transshipment in dis-
tributed and streaming models. In: 31st Symposium on Distributed
Computing (DISC) (2017)

11. Bellman, R.E.: On a routing problem.Quart. Appl.Math. 16, 87–90
(1958)

12. Bernstein, A.: Maintaining shortest paths under deletions in
weighted directed graphs: [extended abstract]. In: Proceedings of
the 45th Symposium Theory of Computing (STOC), pp. 725–734
(2013)

13. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Petricola,
A.: Partially dynamic algorithms for distributed shortest paths and
their experimental evaluation. J. Comput. 2, 16–26 (2007)

14. Das Sarma, A., Dinitz, M., Pandurangan, G.: Efficient computa-
tion of distance sketches in distributed networks. In: Proceedings
of the 24th ACM Symposium on Parallelism in Algorithms and
Architectures (2012)

15. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D.,
Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verifica-
tion and hardness of distributed approximation. In: Proceedings of
the 43th ACM Symposium on Theory of Computing, pp. 363–372
(2011)

16. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of
distributed sparse spanner construction. In: Proceedings of the 27th
Symposium on Principles of Distributed Computing (PODC), pp.
273–282 (2008)

17. Elkin,M., Neiman, O.: On efficient distributed construction of near
optimal routing schemes: Extended abstract. In: Proceedings 34th
Symposium on Principles of Distributed Computing (PODC), pp.
235–244 (2016)

18. Ford, L.R.: Network flow theory. Techical Report P-923, The Rand
Corporation (1956)

19. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot
compute their diameter in sublinear time. In: Proceedings of the
23rd ACM-SIAM Symposium on Discrete Algorithms, pp. 1150–
1162 (2012)

20. Gavoille, C., Peleg, D.: Compact and localized distributed data
structures. Distrib. Comput. 16, 111–120 (2003)

21. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in
graphs. In: Proceedings of the 12th ACM Symposium on Discrete
Algorithms, pp. 210–219 (2001)

22. Ghaffari,M., Lenzen, C.: Near-optimal distributed tree embedding.
In: 28th Symposium on Distributed Computing (DISC), pp. 197–
211 (2014)

23. Haldar, S.: An ‘all pairs shortest paths’ distributed algorithm using
2n2 messages. J. Algorithms 24(1), 20–36 (1997)

24. Henzinger, M., Krinninger, S., Nanongkai, D.: An Almost-Tight
Distributed Algorithm for Computing Single-Source Shortest
Paths. CoRR abs/1504.07056 (2015)

25. Holzer, S., Pinsker, N.: Approximation of Distances and Short-
est Paths in the Broadcast Congest Clique. CoRR abs/1412.3445
(2014)

26. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest
paths and applications. In: Proceedings of the 31st ACM Sympo-
sium on Principles of Distributed Computing (2012)

27. Hua, Q.S., Fan, H., Qian, L., Ai, M., Li, Y., Shi, X., Jin, H.:
Brief Announcement: A Tight Distributed Algorithm for All Pairs
Shortest Paths and Applications. In: 28th ACM Symposium on
Parallelism in Algorithms and Architectures, pp. 439–441 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-662-53426-7_3
https://doi.org/10.1007/978-3-662-53426-7_3

Distributed distance computation and routing with small messages

28. Izumi, T., Wattenhofer, R.: Time lower bounds for distributed
distance oracles. In: Proceedings of the 18th International Confer-
ence on Principles of Distributed Systems (OPODIS), pp. 60–75.
Springer International Publishing (2014). https://doi.org/10.1007/
978-3-319-14472-6_5

29. Kanchi, S., Vineyard, D.: An optimal distributed algorithm for
all-pairs shortest-path. Int. J. Inf. Theories Appl. 11(2), 141–146
(2004)

30. Kavitha, T.: Faster algorithms for all-pairs small stretch distances
in weighted graphs. In: Proceedings of the FSTTCS, pp. 328–339
(2007)

31. Klein, P.N., Subramanian, S.: A fully dynamic approximation
scheme for shortest paths in planar graphs. Algorithmica 22, 235–
249 (1998)

32. Lenzen, C., Patt-Shamir, B.: Fast routing table construction using
small messages [Extended Abstract]. In: Proceedings of the 45th
Symposium on the Theory of Computing (STOC) (2013). Full ver-
sion at http://arxiv.org/abs/1210.5774

33. Lenzen, C., Patt-Shamir, B.: Improved distributed steiner forest
construction. In: Proceedings of the 32nd SymposiumonPrinciples
of Distributed Computing (PODC), pp. 262–271 (2014)

34. Lenzen, C., Patt-Shamir, B.: Fast partial distance estimation and
applications. In: Proceedings of the 33rd Symposium on Principles
of Distributed Computing (PODC) (2015)

35. Lenzen, C., Peleg, D.: Efficient distributed source detection with
limited bandwidth. In: Proceedings of the 32nd ACM Symposium
on Principles of Distributed Computing (2013)

36. Madry, A.: Faster approximation schemes for fractional mul-
ticommodity flow problems via dynamic graph algorithms. In:
Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, Cambridge, Massachusetts, USA, 5–8 June
2010, pp. 121–130 (2010)

37. McQuillan, J., Richer, I., Rosen, E.: The new routing algorithm for
the arpanet. IEEE Trans. Commun. COM–28(5), 711–719 (1980)

38. Moy, J.: OSPF version 2. RFC 2328, Network Working Group
(1998)

39. Nanongkai, D.: Distributed approximation Algorithms for
weighted shortest paths. In: Proceedings of the 46th Symposium
on Theory of Computing (STOC), pp. 565–573 (2014)

40. Peleg, D.: Proximity-preserving labeling schemes and their appli-
cations. In: Proceedings of the 25th International Workshop on
Graph-Theoretic Concepts in Computer Science, pp. 30–41 (1999)

41. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
SIAM, Philadelphia, PA (2000)

42. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network
diameter and girth. In: Proceedings of the 39th International Col-
loquium on Automata, Languages, and Programming (2012)

43. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time
complexity of distributedminimum-weight spanning tree construc-
tion. SIAM J. Comput. 30, 1427–1442 (2000)

44. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1),
99–116 (1989)

45. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hyper-
cube. SIAM J. Comput. 18(2), 740–747 (1989)

46. Peleg, D., Upfal, E.: A trade-off between space and efficiency for
routing tables. J. ACM 36(3), 510–530 (1989)

47. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems
Approach, 5th edn. Morgan Kaufmann, Burlington (2011)

48. Raghavan, P., Thompson, C.D.: Provably good routing in graphs:
Regular arrays. In: Proceedings of the 17th Annual ACM Sympo-
sium on Theory of Computing, STOC ’85, pp. 79–87 (1985)

49. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions
of approximate distance oracles and spanners. In: Proceedings of
the 32nd Colloquium on Automata, Languages, and Programming
(ICALP), pp. 261–272 (2005)

50. Santoro, N., Khatib, R.: Labelling and implicit routing in networks.
Comput. J. 28, 5–8 (1985)

51. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory
29, 23–35 (1983)

52. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings
of the 13th ACM Symposium on Parallel Algorithms and Archi-
tectures (2001)

53. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM
52(1), 1–24 (2005)

123

https://doi.org/10.1007/978-3-319-14472-6_5
https://doi.org/10.1007/978-3-319-14472-6_5
http://arxiv.org/abs/1210.5774

	Distributed distance computation and routing with small messages
	Abstract
	1 Introduction
	1.1 Main contributions
	1.1.1 Source detection
	1.1.2 Approximate source detection
	1.1.3 Skeleton spanners
	1.1.4 Further results

	1.2 Organization of this paper

	2 Related work
	2.1 Distributed algorithms for exact all-pairs shortest-paths
	2.1.1 Distributed construction of compact routing tables
	2.1.2 Spanners
	2.1.3 Distributed lower bounds
	2.1.4 Leveraging the shortest-path-diameter

	3 Preliminaries
	3.1 The computational model
	3.2 General concepts
	3.3 Some graph-theoretic concepts
	3.4 Basic primitives

	4 Source detection in unweighted graphs
	4.1 Pipelined Bellman–Ford algorithm
	4.2 Analysis
	4.3 Additional properties
	4.4 Source detection in unweighted directed graphs

	5 Approximate source detection
	5.1 Reduction to the unweighted case
	5.2 Additional properties
	5.3 Approximate source detection in directed graphs

	6 Skeletons and skeleton spanners
	6.1 The Baswana–Sen construction
	6.2 Constructing the skeleton spanner
	6.3 Routing on the skeleton spanner
	6.4 Approximate skeleton and skeleton spanner

	7 Table construction in unweighted graphs
	7.1 Exact tables
	7.2 Compact Tables
	7.2.1 Algorithm
	7.2.2 Analysis

	8 Table construction in weighted graphs
	8.1 Small shortest-path diameter
	8.2 The general case
	8.2.1 Algorithm
	8.2.2 Analysis
	8.2.3 From stateful to stateless routing

	9 Lower bounds
	9.1 Approximating the diameter in weighted graphs
	9.2 Hardness of name-dependent distributed table construction

	Acknowledgements
	References

