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Abstract

We consider the control problem of the stochastic Navier-Stokes equations in multidimensional domains
introduced in [2] restricted to noise terms defined by Q-Wiener processes. Using a stochastic maximum prin-
ciple, we derive a necessary optimality condition to design the optimal control based on an adjoint equation,
which is given by a backward SPDE. Moreover, we show that the optimal control satisfies a sufficient opti-
mality condition. As a consequence, we can solve uniquely control problems constrained by the stochastic
Navier-Stokes equations especially for two-dimensional as well as for three-dimensional domains.

Keywords. Stochastic Navier-Stokes equations, Q-Wiener process, Stochastic control, Maximum principle

1 Introduction

In this paper, we discuss an optimal control problem for the unsteady Navier-Stokes equations influenced by noise
terms. Concerning fluid dynamics, noise enters the system due to structural vibration and other environmental
effects. The aim is to control flow fields affected by noise, where we incorporate physical requirements, such as
drag minimization, lift enhancement, mixing enhancement, turbulence minimization and stabilization, see [42]
and the references therein.

In the last decades, existence and uniqueness results of solutions to the stochastic Navier-Stokes equations
has been studied extensively. Unique weak solutions of the stochastic Navier-Stokes equations exist only for
two-dimensional domains. In [35, 43], weak solutions are considered with noise terms given by Wiener processes.
Weak solutions with Lévy noise are considered in [5, 15]. For three-dimensional domains, uniqueness is still an
open problem and weak solutions are introduced as martingale solutions, see [4, 7, 16, 17, 37]. Another approach
uses the semigroup theory leading to the definition of mild solutions. The existence and uniqueness of a mild
solution over an arbitrary time interval can be obtained under certain additional assumptions, see [10, 12]. In
general, a unique mild solution of the stochastic Navier-Stokes equations does not exist. Thus, stopping times
are required to obtain a well defined local mild solutions. For a local mild solution with additive noise given by
Wiener processes, we refer to [3]. In [14, 36], the stochastic Navier-Stokes equations with additive Lévy noise
are considered. A generalization to multiplicative Lévy noise can be found in [2]. In [24], an existence and
uniqueness result for strong pathwise solutions is given. For further definitions of solutions to the fractional
stochastic Navier-Stokes equations, see [12].

The cost functional considered in this paper is motivated by common control strategies. In [28, 33, 39, 46],
the problem is formulated as a tracking type problem arising in data assimilation. Approaches that minimize the
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enstrophy can be found in [9, 13, 26, 42]. In [49], the cost functional combines both strategies by introducing
weights. The shortcoming of these papers is the restriction to two-dimensional domains. In [8, 34], optimal
control problems for the stochastic Navier-Stokes equations in three-dimensional domains are considered, where
the state equation is defined as a martingale solution. Recall that the martingale solution for three-dimensional
domains is not unique and thus, only existence results of the optimal control can be obtained.

To overcome these problems, we consider the control problem introduced in [2], which is a generalization
of the control problems mentioned above. The solution of the stochastic Navier-Stokes equations is given by a
local mild solution, which covers especially two as well as three-dimensional domains. Hence, a unique solution
exists up to a certain stopping time. Since the solution as well as the stopping time depend on the control,
the cost functional related to the control problem has to incorporate the stopping time resulting in a nonconvex
optimization problem. This represents the main difficulty here. However, the existence and uniqueness result of
the optimal control is provided in [2]. In this paper, we derive a stochastic maximum principle to obtain an explicit
formula the optimal control has to satisfy. For the deterministic case in a two-dimensional domain, we refer to
[29]. We calculate the Gâteaux derivative of the local mild solution to the stochastic Navier-Stokes equations,
which is given by the local mild solution to the linearized stochastic Navier-Stokes equations. Therefore, we can
determine the Gâteaux derivative of the cost functional and hence, the necessary optimality condition is stated
as a variational inequality. This result is well known for general optimization problems of functionals, see [29, 50].
To derive an explicit formula for the optimal control based on the variational inequality, a duality principle is
required, which gives a relation between the linearized stochastic Navier-Stokes equations and the corresponding
adjoint equation. Since the control problem is constrained by a SPDE with multiplicative noise, the adjoint
equation becomes a backward SPDE. Existence and uniqueness results of mild solutions to backward SPDEs are
mainly based on a martingale representation theorem, see [30]. These martingale representation theorems are
only available for infinite dimensional Wiener processes and real valued Lévy processes, see [21, 38, 41]. Thus,
we have to restrict the problem to noise terms defined by Q-Wiener processes. In general, a duality principle
for SPDEs is based on an Itô product formula, which is not applicable to mild solutions of SPDEs. Here, we
approximate the local mild solution of the linearized stochastic Navier-Stokes equations and the mild solution
of the adjoint equation by strong formulations. As a consequence, we obtain a duality principle for the strong
formulations and due to suitable convergence results, we prove that this duality principle holds for the mild
solutions as well. By the variational inequality and the duality principle, we design the optimal control based
on the adjoint equation. Moreover, we show that the Gâteaux derivatives and the Fréchet derivatives of the
cost functional coincides up to order two. Hence, we obtain that the optimal control also satisfies a sufficient
optimality condition provided in [45].

The main contribution of this paper is the derivation of a solution to the control problem introduced in [2]
using a stochastic maximum principle. Thus, we are able to control the stochastic Navier-Stokes equations in
multidimensional domains uniquely. As a consequence, it remains to solve a system of coupled forward and
backward SPDEs.

The paper is organized as follows. In Section 2, we discuss the functional analytic background, which is
standard in the literature on mild solutions to the deterministic unsteady Navier-Stokes equations. Moreover,
a brief introduction to stochastic integrals subject to Q-Wiener processes is given. The existence of a unique
local mild solution to the stochastic Navier-Stokes equations and some useful properties are stated in Section 3.
Section 4 addresses the control problem considered in this paper, which is given by a nonconvex optimization
problem. We calculate the Gâteaux derivatives as well as the Fréchet derivatives of the cost functional related
to the control problem up to order two such that we can state necessary and sufficient optimality conditions. In
Section 5, we introduce the adjoint equation as the mild solution of a backward SPDE. The approximation of
the local mild solution to the linearized stochastic Navier-Stokes equations and the mild solution of the adjoint
equation is shown in Section 6. In Section 7, we utilize a necessary optimality condition stated as a variational
inequality to deduce a formula for the optimal control, which also satisfies a sufficient optimality condition.
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2 Preliminaries

2.1 Functional Background

Throughout this paper, let D ⊂ R
n, n ≥ 2, be a bounded and connected domain with C∞ boundary ∂D. For

s ≥ 0, let Hs(D) denote the usual Sobolev space and for s > 1
2 let Hs

0(D) = {y ∈ Hs(D) : y = 0 on ∂D}. We
introduce the following common spaces:

H = Completion of {y ∈ (C∞
0 (D))n : div y = 0 in D} in (L2(D))n

=
{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
,

V = Completion of {y ∈ (C∞
0 (D))n : div y = 0 in D} in

(
H1(D)

)n

=
{
y ∈

(
H1

0 (D)
)n

: div y = 0 in D
}
,

where η denotes the unit outward normal to ∂D. The space H equipped with the inner product

〈y, z〉H = 〈y, z〉(L2(D))n =

∫

D

n∑

i=1

yi(x)zi(x) dx

for every y = (y1, ..., yn), z = (z1, ..., zn) ∈ H becomes a Hilbert space. For all x = (x1, ..., xn) ∈ D, we denote

Dj = ∂|j|

∂x
j1
1 ···∂xjn

n

with |j| = ∑n
i=1 ji. We set Djy = (Djy1, ..., D

jyn) for every y = (y1, ..., yn) ∈ V and |j| ≤ 1.

Then the space V equipped with the inner product

〈y, z〉V =
∑

|j|≤1

〈Djy,Djz〉(L2(D))n

for every y, z ∈ V becomes a Hilbert space. The norms on H and V are denoted by ‖ ·‖H and ‖ ·‖V , respectively.
We get the orthogonal Helmholtz decomposition

(L2(D))n = H ⊕ {∇y : y ∈ H1(D)},

where ⊕ denotes the direct sum. Then there exists an orthogonal projection Π: (L2(D))n → H , see [20]. Next, we
define the Stokes OperatorA : D(A) ⊂ H → H by Ay = −Π∆y for every y ∈ D(A), whereD(A) =

(
H2(D)

)n∩V .
The Stokes operator A is positive, self adjoint and has a bounded inverse. Moreover, the operator −A is the
infinitesimal generator of an analytic semigroup (e−At)t≥0 such that

∥∥e−At
∥∥
L(H)

≤ 1 for all t ≥ 0. For more

details, see [19, 22, 23, 48]. Hence, we can introduce fractional powers of the Stokes operator, see [40, 47, 48].
For α > 0, we define

A−α =
1

Γ(α)

∞∫

0

tα−1e−Atdt,

where Γ(·) denotes the gamma function. The operator A−α is linear, bounded and invertible on H . Hence, we
define for all α > 0

Aα =
(
A−α

)−1
.

Moreover, we set A0 = I, where I is the identity operator on H . For α > 0, the operator Aα is linear and closed
on H with dense domain D(Aα) = R(A−α), where R(A−α) denotes the range of A−α. Next, we provide some
useful properties of fractional powers to the Stokes operator.

Lemma 1 (cf. Section 2.6,[40]). Let A : D(A) ⊂ H → H be the Stokes operator. Then

(i) for α, β ∈ R, we have Aα+βy = AαAβy for every y ∈ D(Aγ), where γ = max{α, β, α+ β},
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(ii) e−At : H → D(Aα) for all t > 0 and α ≥ 0,

(iii) we have Aαe−Aty = e−AtAαy for every y ∈ D(Aα) with α ∈ R,

(iv) the operator Aαe−At is bounded for all t > 0 and there exist constants Mα, θ > 0 such that
∥∥Aαe−At

∥∥
L(H)

≤Mαt
−αe−θt,

(v) 0 ≤ β ≤ α ≤ 1 implies D(Aα) ⊂ D(Aβ) and there exists a constant C > 0 such that for every y ∈ D(Aα)
∥∥Aβy

∥∥
H

≤ C ‖Aαy‖H .

As a consequence of the previous lemma, we obtain that the space D(Aα) with α ≥ 0 equipped with the inner
product

〈y, z〉D(Aα) = 〈Aαy,Aαz〉H
for every y, z ∈ D(Aα) becomes a Hilbert space. In this paper, the space D(Aα) with α ∈ (0, 1) is used frequently.
A concrete characterization in terms of Sobolev spaces can be found in [12, 19, 47]. As a direct consequence of
the fact that the Stokes operator A is self adjoint, we get the following result.

Lemma 2. Let A : D(A) ⊂ H → H be the Stokes operator. Then, the operator Aα is self adjoint for all α ∈ R.

Next, we define the bilinear operator B(y, z) = Π(y ·∇)z for some y, z ∈ H . If y = z, we write B(y) = B(y, y).
Then we have the following properties.

Lemma 3 (cf. Lemma 2.2,[23]). Let 0 ≤ δ < 1
2 + n

4 . If y ∈ D(Aα1) and z ∈ D(Aα2 ), then we have

∥∥A−δB(y, z)
∥∥
H

≤ M̃ ‖Aα1y‖H ‖Aα2z‖H ,

with some constant M̃ = M̃δ,α1,α2 , provided that α1, α2 > 0, δ + α2 >
1
2 and δ + α1 + α2 ≥ n

4 + 1
2 .

Corollary 1. Let α1, α2 and δ be as in Lemma 3. If y, z ∈ D(Aβ), β = max{α1, α2}, then we have

∥∥A−δ(B(y)−B(z))
∥∥
H

≤ M̃(‖Aα1y‖H ‖Aα2(y − z)‖H + ‖Aα1(y − z)‖H ‖Aα2z‖H).

Finally, we introduce the resolvent operator and we state some basic properties. For more details, see [40].
Let λ ∈ R such that λI + A is invertible, i.e. (λI + A)−1 is a linear and bounded operator. Then the operator
R(λ;−A) = (λI +A)−1 is called the resolvent operator mapping H into D(A). Using the closed graph theorem,
we can conclude that the operator AR(λ;−A) : H → H is linear and bounded. Moreover, we have the following
representation:

R(λ;−A) =
∞∫

0

e−λre−Ardr. (1)

For all λ > 0, we get ‖R(λ;−A)‖L(H) ≤ 1
λ and since the semigroup (e−At)t≥0 is self adjoint, the operator

R(λ;−A) is self adjoint as well. Let the operator R(λ) : H → D(A) be defined by R(λ) = λR(λ;−A). Hence, we
get for all λ > 0

‖R(λ)‖L(H) ≤ 1. (2)

By Lemma 1 (iii) and equation (1), we obtain for every y ∈ D(Aα) with α ∈ R

AαR(λ)y = R(λ)Aαy. (3)

Moreover, we have for every y ∈ H

lim
λ→∞

‖R(λ)y − y‖H = 0. (4)
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2.2 Stochastic Processes and the Stochastic Integral

In this section, we give a brief introduction to stochastic integrals, where the noise term is defined as a Hilbert
space valued Wiener process. For more details, see [11, 21].

Throughout this paper, let (Ω,F ,P) be a complete probability space endowed with a filtration (Ft)t∈[0,T ]

satisfying Ft =
⋂

s>t Fs for all t ∈ [0, T ] and F0 contains all sets of F with P-measure 0. Let E be a separable
Hilbert space. We denote by L(E) the space of linear and bounded operators defined on E. Let Q ∈ L(E) be a
symmetric and nonnegative operator such that Tr Q <∞. Then we have the following definition.

Definition 1 (Definition 4.2,[11]). An E-valued stochastic process (W (t))t∈[0,T ] is called a Q-Wiener process if

• W (0) = 0;

• (W (t))t∈[0,T ] has continuous trajectories;

• (W (t))t∈[0,T ] has independent increments;

• the distribution of W (t) −W (s) is a Gaussian measure with mean 0 and covariance (t− s)Q for 0 ≤ s ≤
t ≤ T .

Next, we give a definition of Ft-adapted processes and predictable processes, which are important to construct
the stochastic integral. Let P denote the smallest σ-field of subsets of [0, T ]× Ω.

Definition 2 ([11]). A stochastic process (X(t))t∈[0,T ] taking values in a measurable space (X ,B(X )) is called
Ft-adapted if for arbitrary t ∈ [0, T ] the random variable X(t) is Ft-measurable. We call (X(t))t∈[0,T ] predictable
if it is a measurable mapping from ([0, T ]× Ω,P) to (X ,B(X )).

A predictable process is Ft-adapted. The converse is in general not true. However, the following result is
useful to conclude that a stochastic process has a predictable version.

Lemma 4 (Proposition 3.7,[11]). Assume that the stochastic process (X(t))t∈[0,T ] is Ft-adapted and stochastically
continuous. Then the process (X(t))t∈[0,T ] has a predictable version.

For the remaining part of this section, let (W (t))t∈[0,T ] be a Q-Wiener process with values in E and co-

variance operator Q ∈ L(E). Then there exists a unique operator Q1/2 ∈ L(E) such that Q1/2 ◦ Q1/2 = Q.
We denote by L(HS)(Q

1/2(E);H) the space of Hilbert-Schmidt operators mapping from Q1/2(E) into another

separable Hilbert space H. Let (Φ(t))t∈[0,T ] be a predictable process with values in L(HS)(Q
1/2(E);H) such that

E
∫ T

0
‖Φ(t)‖2L(HS)(Q1/2(E);H) dt <∞. Then one can define the stochastic integral

ψ(t) =

t∫

0

Φ(s)dW (s)

for all t ∈ [0, T ] and P-almost surely. Moreover, we have

E ‖ψ(t)‖2H = E

t∫

0

‖Φ(s)‖2L(HS)(Q1/2(E);H) ds.

The following proposition is useful when dealing with a closed operator A : D(A) ⊂ H → H.
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Proposition 1 (cf. Proposition 4.15,[11]). If Φ(t)y ∈ D(A) for every y ∈ E, all t ∈ [0, T ] and P-almost surely,

E

T∫

0

‖Φ(t)‖2L(HS)(Q1/2(E);H) dt <∞ and E

T∫

0

‖AΦ(t)‖2L(HS)(Q1/2(E);H) dt <∞,

then we have P-a.s.
∫ T

0
Φ(t)dW (t) ∈ D(A) and

A
T∫

0

Φ(t)dW (t) =

T∫

0

AΦ(t)dW (t).

Next, we state a product formula for infinite dimensional stochastic processes, which we use to obtain a
duality principle. The formula is an immediate consequence of the Itô formula, see [21, Theorem 2.9].

Lemma 5. For i = 1, 2, assume that X0
i are F0-measurable H-valued random variables, (fi(t))t∈[0,T ] are H-valued

Ft-adapted processes such that E
∫ T

0
‖fi(t)‖Hdt <∞ and (Φi(t))t∈[0,T ] are L(HS)(Q

1/2(E);H)-valued predictable

processes such that E
∫ T

0
‖Φi(t)‖2L(HS)(Q1/2(E);H)

dt < ∞. For i = 1, 2, assume that the processes (Xi(t))t∈[0,T ]

satisfy for all t ∈ [0, T ] and P-a.s.

Xi(t) = X0
i +

t∫

0

fi(s)ds+

t∫

0

Φi(s)dW (s).

Then we have for all t ∈ [0, T ] and P-a.s.

〈X1(t), X2(t)〉H =
〈
X0

1 , X
0
2

〉
H
+

t∫

0

[
〈X1(s), f2(s)〉H + 〈X2(s), f1(s)〉H + 〈Φ1(s),Φ2(s)〉L(HS)(Q1/2(E);H)

]
ds

+

t∫

0

〈X1(s),Φ2(s)dW (s)〉H +

t∫

0

〈X2(s),Φ1(s)dW (s)〉H .

Next, we introduce stochastic convolutions. Let (S(t))t≥0 be a C0-semigroup on H. Then the stochastic
convolution (I(t))t∈[0,T ] given by

I(t) =
t∫

0

S(t− s)Φ(s)dW (s) (5)

is well defined for all t ∈ [0, T ] and P-almost surely. Under additional assumptions, we get the following maximal
inequality.

Proposition 2 (cf. Proposition 1.3 (ii), [27]). Let the C0-semigroup (S(t))t≥0 satisfy ‖S(t)‖L(H) ≤ 1 for all
t ≥ 0. If k ∈ (0,∞), then

E sup
t∈[0,T ]

∥∥∥∥∥∥

t∫

0

S(t− s)Φ(s)dW (s)

∥∥∥∥∥∥

k

H

≤ ckk E




T∫

0

‖Φ(t)‖2L(HS)(Q1/2(E);H) dt




k/2

,

where ck > 0 is a constant.
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In order to define local mild solutions to SPDEs, we need to introduce a stopped stochastic convolution. Here,
we can adopt the results shown in [6, Appendix]. Let τ be a stopping time with values in [0, T ]. We consider the
stopped process (I(t ∧ τ))t∈[0,T ], where t ∧ τ = min{t, τ}. Unfortunately, the formula

I(t ∧ τ) =
t∧τ∫

0

S(t ∧ τ − s)Φ(s)dW (s)

is not well defined due to the fact that we integrate a process, which is not even (Ft)t∈[0,T ] adapted. To overcome
this problem, we introduce a process (Iτ (t))t∈[0,T ] given by

Iτ (t) =
t∫

0

1[0,τ)(s)S(t− s)Φ(s ∧ τ)dW (s) (6)

for all t ∈ [0, T ] and P-almost surely. We get the following result.

Lemma 6 (Lemma A.1, [6]). Let (S(t))t≥0 be a C0-semigroup on H and let τ be a stopping time with values in
[0, T ]. Moreover, let the processes (I(t))t∈[0,T ] and (Iτ (t))t∈[0,T ] be given by (5) and (6), respectively. Then we
have for all t ∈ [0, T ] and P-almost surely

S(t− t ∧ τ)I(t ∧ τ) = Iτ (t)

and in particular I(t ∧ τ) = Iτ (t ∧ τ).

Finally, we state a martingale representation theorem for Q-Wiener processes, which we use to construct
solutions of backward SPDEs. We note that the covariance operator Q ∈ L(E) is symmetric and nonnegative
such that Tr Q <∞. Hence, there exists a complete orthonormal system (ek)k∈N in E and a bounded sequence
of nonnegative real numbers (µk)k∈N such that Qek = µkek for each k ∈ N. Then for arbitrary t ∈ [0, T ] and
P-almost surely, a Q-Wiener process has the expansion

W (t) =

∞∑

k=1

√
µkwk(t)ek,

where (wk(t))t∈[0,T ], k ∈ N, are real valued mutually independent Brownian motions. The convergence is in
L2(Ω). Furthermore, we assume that the complete probability space (Ω,F ,P) is endowed with the filtration
Ft = σ{⋃∞

k=1 Fk
t }, where Fk

t = σ{wk(s) : 0 ≤ s ≤ t} for t ∈ [0, T ] and we require that the σ-algebra F satisfies
F = FT . Then we have the following martingale representation theorem.

Proposition 3 (Theorem 2.5,[21]). Let the process (M(t))t∈[0,T ] be a continuous Ft-martingale with values in
H such that E‖M(t)‖2H < ∞ for all t ∈ [0, T ]. Then there exists a unique predictable process (Φ(t))t∈[0,T ] with

values in L(HS)(Q
1/2(E);H) such that E

∫ T

0 ‖Φ(t)‖2
L(HS)(Q1/2(E);H)

dt < ∞ and we have for all t ∈ [0, T ] and

P-a.s.

M(t) = EM(0) +

t∫

0

Φ(s)dW (s).

3 The Stochastic Navier-Stokes Equations

In this section, we recall briefly the motivation of the stochastic Navier-Stokes equations and we state the existence
and uniqueness result for the local mild solution, see [2]. Moreover, we state some useful properties.
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We consider the following Navier-Stokes equations with Dirichlet boundary condition:





∂

∂t
y(t, x, ω) + (y(t, x, ω) · ∇)y(t, x, ω) +∇p(t, x, ω)− ν∆y(t, x, ω) = f(t, x, ω, y) in (0, T )×D × Ω,

div y(t, x, ω) = 0 in (0, T )×D × Ω,

y(t, x) = 0 on (0, T )× ∂D,
y(0, x, ω) = ξ(x, ω) in D × Ω,

where y(t, x, ω) ∈ R
n denotes the velocity field with F0-measurable initial value ξ(x, ω) ∈ R

n and p(t, x, ω) ∈ R

describes the pressure of the fluid. The parameter ν > 0 is the viscosity parameter (for the sake of simplicity,
we assume ν = 1) and f(t, x, ω, y) ∈ R

n is the external random force dependent on the velocity field. Here, we
assume that the external random force can be decomposed as the sum of a control term and a noise term. Using
the spaces and operators introduced in Section 2.1, we obtain the stochastic Navier-Stokes equations in D(Aα):

{
dy(t) = −[Ay(t) +B(y(t))− Fu(t)]dt+G(y(t))dW (t),

y(0) = ξ,
(7)

where (W (t))t∈[0,T ] is a Q-Wiener process with values in H and covariance operator Q ∈ L(H). We introduce the

space Lk
F(Ω;L

r([0, T ];D(Aβ))) containing all Ft-adapted processes (u(t))t∈[0,T ] with values in D(Aβ) such that

E(
∫ T

0
‖u(t)‖rD(Aβ) dt)

k/r < ∞ with k, r ∈ [0,∞) and β ∈ [0, α]. The space Lk
F(Ω;L

r([0, T ];D(Aβ))) equipped
with the norm

‖u‖kLk
F(Ω;Lr([0,T ];D(Aβ))) = E




T∫

0

‖u(t)‖rD(Aβ) dt




k/r

for every u ∈ Lk
F(Ω;L

r([0, T ];D(Aβ))) becomes a Banach space. The set of admissible controls U is a nonempty,
closed, bounded and convex subset of the Hilbert space L2

F(Ω;L
2([0, T ];D(Aβ))) such that 0 ∈ U . Moreover, we

assume that the operators F : D(Aβ) → D(Aβ) and G : H → L(HS)(Q
1/2(H);D(Aα)) are linear and bounded.

In general, we can not ensure the existence and uniqueness of a mild solution over an arbitrary time interval
[0, T ] since the nonlinear operator B is only locally Lipschitz continuous. Thus, we need the following definition
of a local mild solution.

Definition 3 (cf. Definition 3.2, [12]). Let τ be a stopping time taking values in (0, T ] and (τm)m∈N be an
increasing sequence of stopping times taking values in [0, T ] satisfying limm→∞ τm = τ . A predictable process
(y(t))t∈[0,τ) with values in D(Aα) is called a local mild solution of system (7) if for fixed m ∈ N

E sup
t∈[0,τm)

‖y(t)‖2D(Aα) <∞

and we have for each m ∈ N, all t ∈ [0, T ] and P-a.s.

y(t ∧ τm) = e−A(t∧τm)ξ −
t∧τm∫

0

Aδe−A(t∧τm−s)A−δB(y(s))ds+

t∧τm∫

0

e−A(t∧τm−s)Fu(s)ds+ Iτm(G(y))(t ∧ τm),

where Iτm(G(y))(t) =
∫ t

0 1[0,τm)(s)e
−A(t−s)G(y(s ∧ τm))dW (s).

Remark 1. In the previous definition, note that the stopped stochastic convolution is well defined according to
Section 2.2.
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The proof of the existence and uniqueness of a local mild solution to system (7) can be shown in two steps.
First, we consider a modified system to get a mild solution well defined over the whole time interval [0, T ].
Then we introduce suitable stopping times such that the mild solution of the modified system and the local mild
solution of system (7) coincides. Let us introduce the following system in D(Aα):

{
dym(t) = −[Aym(t) + B(πm(ym(t))) − Fu(t)]dt+G(ym(t))dW (t),

ym(0) = ξ,
(8)

where m ∈ N and πm : D(Aα) → D(Aα) is defined by

πm(y) =

{
y ‖y‖D(Aα) ≤ m,

m‖y‖−1
D(Aα)y ‖y‖D(Aα) > m.

(9)

Then we get for every y, z ∈ D(Aα)

‖πm(y)‖D(Aα) ≤ min{m, ‖y‖D(Aα)}, (10)

‖πm(y)− πm(z)‖D(Aα) ≤ 2‖y − z‖D(Aα). (11)

Definition 4. A predictable process (ym(t))t∈[0,T ] with values in D(Aα) is called a mild solution of system (8) if

E sup
t∈[0,T ]

‖ym(t)‖2D(Aα) <∞

and we have for all t ∈ [0, T ] and P-a.s.

ym(t) = e−Atξ −
t∫

0

Aδe−A(t−s)A−δB(πm(ym(s)))ds +

t∫

0

e−A(t−s)Fu(s)ds+

t∫

0

e−A(t−s)G(ym(s))dW (s).

Theorem 1 (cf. Theorem 4.6, [2]). Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ + α > 1
2 and

δ + 2α ≥ n
4 + 1

2 . Furthermore, let u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) be fixed for β ∈ [0, α] such that α − β < 1
2 .

Then for any ξ ∈ L2(Ω;D(Aα)), there exists a unique mild solution (ym(t))t∈[0,T ] of system (8) for fixed m ∈ N.
Moreover, the process (ym(t))t∈[0,T ] has a continuous modification.

Next, we define a sequence of stopping times (τm)m∈N given by

τm = inf{t ∈ (0, T ) : ‖ym(t)‖D(Aα) > m} ∧ T, (12)

where we declare inf{∅} = +∞. Since the sequence (τm)m∈N is increasing and bounded, there exists a stopping
time τ with values in (0, T ] such that limm→∞ τm = τ . We get the following result.

Theorem 2 (cf. Theorem 4.7, [2]). Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ + α > 1
2 and

δ+2α ≥ n
4 + 1

2 . Furthermore, let u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) be fixed for β ∈ [0, α] such that α− β < 1
2 . Then

for any ξ ∈ L2(Ω;D(Aα)), there exists a unique local mild solution (y(t))t∈[0,τ) of system (7). Moreover, the
process (y(t))t∈[0,τ) has a continuous modification.

Remark 2. (i) It suffices to assume that the operator G satisfies a growth condition and a Lipschitz condition,
see [11]. In this paper, the additional assumptions are necessary to derive the Gâteaux derivative of the local mild
solution to system (7). Moreover, the adjoint operator of G is required for the adjoint equation.
(ii) In [2], it is shown that the processes (ym(t))t∈[0,T ] and (y(t))t∈[0,τ) are mean square continuous. Due to
the fact that E supt∈[0,T ] ‖ym(t)‖2D(Aα) < ∞ and the operator G is linear and bounded, we can conclude that the

stochastic convolution has a continuous modification, see [11, Theorem 6.10]. Hence, the processes (ym(t))t∈[0,T ]

and (y(t))t∈[0,τ) have continuous modifications as well.
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Next, we state some useful results. In what follows, we always assume that the parameters α ∈ (0, 1),
δ ∈ [0, 1) and β ∈ [0, α] satisfy the assumptions of Theorem 1 and the stopping times (τm)m∈N are given by
equation (12). Moreover, let the initial value ξ ∈ L2(Ω;D(Aα)) of system (8) and system (7) be fixed. To
illustrate the dependence on the control u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))), let us denote by (ym(t;u))t∈[0,T ] and

(y(t;u))t∈[0,τu) the mild solution of system (8) and the local mild solution of system (7), respectively. Note that
the stopping times (τum)m∈N and τu depend on the control as well. Whenever these processes and the stopping
times are considered for fixed control, we use the notation introduced above. We have the following continuity
property. For k = 2, a proof can be found in [2, Lemma 5.3].

Lemma 7. For fixed m ∈ N, let (ym(t;u))t∈[0,T ] be the mild solution of system (8) corresponding to the control

u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). If u1, u2 ∈ Lk
F(Ω;L

2([0, T ];D(Aβ))) for k ≥ 2, then there exists a constant c > 0
such that

E sup
t∈[0,T ]

‖ym(t;u1)− ym(t;u2)‖kD(Aα) ≤ c ‖u1 − u2‖kLk
F(Ω;L2([0,T ];D(Aβ))).

By definition, we have for all t ∈ [0, τum) and P-a.s. y(t;u) = ym(t;u). Hence, a similar result of the previous
lemma holds for the local mild solution of system (7). In the following lemmas, we show some useful properties
of the stopping times.

Lemma 8 (cf. Lemma 5.3, [2]). For fixed m ∈ N, let (ym(t;u))t∈[0,T ] be the mild solution of system (8)

corresponding to the control u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) and let the stopping time τum be given by (12). Then
we have

lim
u1→u2

P (τu1
m 6= τu2

m ) = 0.

Similarly, we obtain the following convergence result.

Lemma 9. For fixed m ∈ N, let (ym(t;u))t∈[0,T ] be the mild solution of system (8) corresponding to the control

u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) and let the stopping time τum be given by (12). If u1, u2 ∈ Lk+1
F (Ω;L2([0, T ];D(Aβ)))

for k ≥ 1, then

lim
θ→0

P
(
τu1
m 6= τu1+θu2

m

)

θk
= 0.

4 A Generalized Control Problem

In this section, we introduce the cost functional and the related control problem. First, we calculate the Gâteaux
derivative of the local mild solution of system (7), which is given by the local mild solution of the linearized
stochastic Navier-Stokes equations. Hence, we are able to derive the Gâteaux derivatives of the cost functional
and using a mean value theorem, we show that the Gâteaux derivatives and the Fréchet derivatives coincides.

We introduce the cost functional Jm : L2
F (Ω;L

2([0, T ];D(Aβ))) → R given by

Jm(u) =
1

2
E

τu
m∫

0

‖Aγ(y(t;u)− yd(t))‖2H dt+
1

2
E

T∫

0

‖Aβu(t)‖2Hdt, (13)

where m ∈ N is fixed and γ ∈ [0, α]. Moreover, the process (y(t;u))t∈[0,τu) is the local mild solution of system (7)

corresponding to the control u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) and yd ∈ L2([0, T ];D(Aγ)) is a given desired velocity
field. The task is to find a control um ∈ U such that

Jm(um) = inf
u∈U

Jm(u).

The control um ∈ U is called an optimal control. Note that for γ = 0, the formulation coincides with a tracking
problem, see [28, 33, 39, 46]. For γ = 1

2 and yd = 0, we minimize the enstrophy, see [9, 26, 42]. Hence, we are
dealing with a generalized cost functional, which incorporates common control problems in fluid dynamics.
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Theorem 3 (Theorem 5.2, [2]). Let the functional Jm be given by (13). Then there exists a unique optimal
control um ∈ U .

4.1 The Linearized Stochastic Navier-Stokes Equations

We introduce the following system in D(Aα):
{
dz(t) = −[Az(t) +B(z(t), y(t)) +B(y(t), z(t))− Fv(t)]dt +G(z(t))dW (t),

z(0) = 0,
(14)

where v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), the process (y(t))t∈[0,τ) is the local mild solution of system (7) and the
process (W (t))t∈[0,T ] is a Q-Wiener process with values in H and covariance operator Q ∈ L(H). The operators
A,B, F,G are introduced in Section 2.1 and Section 3, respectively.

Definition 5. Let τ be a predictable stopping time taking values in (0, T ] and (τm)m∈N be an increasing sequence
of stopping times taking values in [0, T ] satisfying limm→∞ τm = τ . A predictable process (z(t))t∈[0,τ) with values
in D(Aα) is called a local mild solution of system (14) if for fixed m ∈ N

E sup
t∈[0,τm)

‖z(t)‖2D(Aα) <∞

and we have for each m ∈ N, all t ∈ [0, T ] and P-a.s.

z(t ∧ τm) =−
t∧τm∫

0

Aδe−A(t∧τm−s)A−δ [B(z(s), y(s)) +B(y(s), z(s))] ds+

t∧τm∫

0

e−A(t∧τm−s)Fv(s)ds

+ Iτm(G(z))(t ∧ τm),

where Iτm(G(z))(t) =
∫ t

0 1[0,τm)(s)e
−A(t−s)G(z(s ∧ τm))dW (s).

Remark 3. The following existence and uniqueness result holds also for a general F0-measurable initial value
z(0) = z0 ∈ L2(Ω;D(Aα)). Since we prove that the local mild solution of system (14) is the Gâteaux derivative
of the local mild solution of system (7), it suffices to show the result for z0 = 0.

Similarly to Section 3, we first consider the following system in D(Aα):
{
dzm(t) = −[Azm(t) +B(zm(t), πm(ym(t))) +B(πm(ym(t)), zm(t)) − Fv(t)]dt+G(zm(t))dW (t),

zm(0) = 0,
(15)

where the process (ym(t))t∈[0,T ] is the mild solution of system (8) and πm : D(Aα) → D(Aα) is given by (9).

Definition 6. A predictable process (zm(t))t∈[0,T ] with values in D(Aα) is called a mild solution of system (15)
if

E sup
t∈[0,T ]

‖zm(t)‖2D(Aα) <∞

and we have for all t ∈ [0, T ] and P-a.s.

zm(t) =−
t∫

0

Aδe−A(t−s)A−δ [B(zm(s), πm(ym(s))) +B(πm(ym(s)), zm(s))] ds+

t∫

0

e−A(t−s)Fv(s)ds

+

t∫

0

e−A(t−s)G(zm(s))dW (s).
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By Theorem 1, we get the existence and uniqueness of the mild solution (ym(t))t∈[0,T ] to system (8) for fixed

m ∈ N and fixed control u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). Recall that the initial value ξ ∈ L2(Ω;D(Aα)) is fixed
as well. Thus, we have the following existence and uniqueness result. The proof can be obtained similarly to
Theorem 1.

Theorem 4. Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ+α > 1
2 and δ+2α ≥ n

4 +
1
2 . Furthermore,

let u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) be fixed for β ∈ [0, α] such that α − β < 1
2 . Then for fixed m ∈ N, there

exists a unique mild solution (zm(t))t∈[0,T ] of system (15). Moreover, the process (zm(t))t∈[0,T ] has a continuous
modification.

Due to Theorem 2, we get the existence and uniqueness of the local mild solution (y(t))t∈[0,τ) to system (7) for

fixed control u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). Thus, we have the following existence and uniqueness result, where
the stopping times (τm)m∈N are given by equation (12). The proof can be obtained similarly to Theorem 2.

Theorem 5. Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ+α > 1
2 and δ+2α ≥ n

4 +
1
2 . Furthermore,

let u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) be fixed for β ∈ [0, α] such that α − β < 1
2 . Then there exists a unique local

mild solution (z(t))t∈[0,τ) of system (14). Moreover, the process (z(t))t∈[0,τ) has a continuous modification.

Next, we show some properties, which we use to calculate the Gâteaux derivative of the cost functional
(13). Note that the mild solution of system (8) depends on the control u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))). Hence,

the mild solution of system (15) depends on the control u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) as well as on the control
v ∈ L2

F(Ω;L
2([0, T ];D(Aβ))). Let us denote by (zm(t;u, v))t∈[0,T ] the mild solution of system (15). Sim-

ilarly, we indicate by (z(t;u, v))t∈[0,τu) the local mild solution of system (14) corresponding to the controls

u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). Whenever these processes are considered for fixed controls, we use the notation
introduced above.

Lemma 10. For fixed m ∈ N, let (zm(t;u, v))t∈[0,T ] be the mild solution of system (15) corresponding to the

controls u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). If v ∈ Lk
F(Ω;L

2([0, T ];D(Aβ))) for k ≥ 2, then there exists a constant
c̃ > 0 such that

E sup
t∈[0,T ]

‖zm(t;u, v)‖kD(Aα) ≤ c̃ ‖v‖kLk
F(Ω;L2([0,T ];D(Aβ))). (16)

Proof. Let the stochastic process (ym(t;u))t∈[0,T ] be the mild solution of system (8) corresponding to the control

u ∈ L2
F (Ω;L

2([0, T ];D(Aβ))). Recall that F : D(Aβ) → D(Aβ) and G : H → L(HS)(Q
1/2(H);D(Aα)) are

bounded. Let T1,m ∈ (0, T ]. By Lemma 1, Lemma 3, Proposition 2, inequality (10) and the Cauchy-Schwarz
inequality, there exist constants C1, C2, C3 > 0 such that

E sup
t∈[0,T1,m]

‖zm(t;u, v)‖kD(Aα)

≤ 3k−1
E sup

t∈[0,T1,m]




t∫

0

∥∥∥Aα+δe−A(t−s)A−δ [B(zm(s;u, v), πm(ym(s;u))) +B(πm(ym(s;u)), zm(s;u, v))]
∥∥∥
H
ds




k

+ 3k−1
E sup

t∈[0,T1,m]




t∫

0

∥∥∥Aα−βe−A(t−s)AβFv(s)
∥∥∥
H
ds




k

+ 3k−1
E sup

t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

e−A(t−s)AαG(zm(s;u, v))dW (s)

∥∥∥∥∥∥

k

H

≤
(
C1T

k(1−α−δ)
1,m + C2T

k/2
1,m

)
E sup

t∈[0,T1,m]

‖zm(t;u, v)‖kD(Aα) + C3 E




T∫

0

‖v(t)‖2D(Aβ) dt




k/2

.
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We chose T1,m ∈ (0, T ] such that C1T
k(1−α−δ)
1,m + C2T

k/2
1,m < 1. Then we have

E sup
t∈[0,T1,m]

‖zm(t;u, v)‖kD(Aα) ≤ c1,m E




T∫

0

‖v(t)‖2D(Aβ) dt




k/2

,

where c1,m = C3

1−C1T
k(1−α−δ)
1,m −C2T

k/2
1,m

. By definition, we have for all t ∈ [T1,m, T ] and P-a.s.

zm(t;u, v) = e−A(t−T1,m)zm(T1,m;u, v)

−
t∫

T1,m

Aδe−A(t−s)A−δ [B(zm(s;u, v), πm(ym(s;u))) +B(πm(ym(s;u)), zm(s;u, v))] ds

+

t∫

T1,m

e−A(t−s)Fv(s)ds+

t∫

T1,m

e−A(t−s)G(zm(s;u, v))dW (s).

Again, we find T2,m ∈ [T1,m, T ] such that

E sup
t∈[T1,m,T2,m]

‖zm(t;u, v)‖kD(Aα) ≤ c2,mE




T∫

0

‖v(t)‖2D(Aβ) dt




k/2

,

where c2,m > 0 is a constant. By continuing the method, we obtain inequality (16).

Lemma 11. For fixed m ∈ N, let (zm(t;u, v))t∈[0,T ] be the mild solution of system (14) corresponding to the

controls u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). Then we have for every u, v1, v2 ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), all a, b ∈
R, all t ∈ [0, T ] and P-a.s.

zm(t;u, a v1 + b v2) = a zm(t;u, v1) + b zm(t;u, v2).

Proof. Let the process (ym(t;u))t∈[0,T ] be the mild solution of system (8) corresponding to the control u ∈
L2
F(Ω;L

2([0, T ];D(Aβ))). To simplify the notation, we set for all t ∈ [0, T ] and P-a.s.

z̃m(t) = zm(t;u, a v1 + b v2)− a zm(t;u, v1)− b zm(t;u, v2).

Recall that the operators F : D(Aβ) → D(Aβ) and G : H → L(HS)(Q
1/2(H);D(Aα)) are linear and bounded.

Let T1,m ∈ (0, T ]. By Lemma 1, Lemma 3, Proposition 2 with k = 2 and inequality (10), there exist constants
C1, C2 > 0 such that

E sup
t∈[0,T1,m]

‖z̃m(t)‖2D(Aα) ≤ 3E sup
t∈[0,T1,m]




t∫

0

∥∥∥Aα+δe−A(t−s)A−δB(z̃m(s), πm(ym(s;u)))
∥∥∥
H
ds




2

+ 3E sup
t∈[0,T1,m]




t∫

0

∥∥∥Aα+δe−A(t−s)A−δB(πm(ym(s;u)), z̃m(s))
∥∥∥
H
ds




2

+ 3E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

e−A(t−s)AαG(z̃m(s))dW (s)

∥∥∥∥∥∥

2

H

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup

t∈[0,T1,m]

‖z̃m(t)‖2D(Aα).
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We chose T1,m ∈ (0, T ] such that C1T
2−2α−2δ
1,m + C2T1,m < 1. Then we have

E sup
t∈[0,T1,m]

‖z̃m(t)‖2D(Aα) = E sup
t∈[0,T1,m]

‖zm(t;u, a v1 + b v2)− a zm(t;u, v1)− b zm(t;u, v2)‖2D(Aα) = 0.

Similarly to Lemma 10, we can conclude that the result holds for the whole time interval [0, T ].

Lemma 12. For fixed m ∈ N, let (zm(t;u, v))t∈[0,T ] be the mild solution of system (15) corresponding to

the controls u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). Then there exists a constant c > 0 such that for every u1, u2 ∈
L2
F(Ω;L

2([0, T ];D(Aβ))) and every v ∈ L4
F(Ω;L

2([0, T ];D(Aβ)))

E sup
t∈[0,T ]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα) ≤ c ‖v‖2L4
F (Ω;L2([0,T ];D(Aβ)))‖u1 − u2‖L2

F(Ω;L2([0,T ];D(Aβ))).

Proof. We define the operator B̃(y, z) = B(z, y)+B(y, z) for every y, z ∈ D(Aα). Since the operator B is bilinear

on D(Aα)×D(Aα), the operator B̃ is bilinear as well and using Lemma 3, we get for every y, z ∈ D(Aα)
∥∥∥A−δB̃(y, z)

∥∥∥
H

≤ 2M̃‖y‖D(Aα)‖z‖D(Aα). (17)

Let (ym(t;ui))t∈[0,T ] be the mild solution of system (8) corresponding to the control ui ∈ L2
F(Ω;L

2([0, T ];D(Aβ)))

for i = 1, 2. Recall that the operator G : H → L(HS)(Q
1/2(H);D(Aα)) is linear and bounded. Let T1,m ∈ (0, T ].

By Lemma 1, the inequalities (10), (11) and (17), Proposition 2 with k = 2 and the Cauchy-Schwarz inequality,
there exist constants C1, C2, C3 > 0 such that

E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

≤ 3 E sup
t∈[0,T1,m]




t∫

0

∥∥∥Aα+δe−A(t−s)A−δB̃(πm(ym(s;u1)), zm(s;u1, v)− zm(s;u2, v))
∥∥∥
H
ds




2

+ 3 E sup
t∈[0,T1,m]




t∫

0

∥∥∥Aα+δe−A(t−s)A−δB̃(πm(ym(s;u1))− πm(ym(s;u2)), zm(s;u2, v))
∥∥∥
H
ds




2

+ 3 E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

e−A(t−s)AαG(zm(s;u1, v)− zm(s;u2, v))dW (s)

∥∥∥∥∥∥

2

H

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup

t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

+ C3

(
E sup

t∈[0,T1,m]

‖zm(t;u2, v)‖4D(Aα)

)1/2(
E sup

t∈[0,T1,m]

‖ym(t;u1)− ym(t;u2)‖2D(Aα)

)1/2

.

Using Lemma 7 with k = 2 and Lemma 10 with k = 4, we can conclude that there exists a constant C∗
3 > 0 such

that

E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup

t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

+ C∗
3


E




T∫

0

‖v(t)‖2D(Aβ)dt



2



1/2
E

T∫

0

‖u1(t)− u2(t)‖2D(Aβ)dt




1/2

.
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We chose T1,m ∈ (0, T ] such that C1T
2−2α−2δ
1,m + C2T1,m < 1. Then we infer

E sup
t∈[0,T1,m]

‖zm(t;u1, v)− zm(t;u2, v)‖2D(Aα)

≤ c1,m


E




T∫

0

‖v(t)‖2D(Aβ)dt



2



1/2
E

T∫

0

‖u1(t)− u2(t)‖2D(Aβ)dt




1/2

,

where c1,m =
C∗

3

1−C1T
2−2α−2δ
1,m −C2T1,m

. Similarly to Lemma 10, we can conclude that the result holds for the whole

time interval [0, T ].

Remark 4. By definition, we have for all t ∈ [0, τum) and P-a.s. z(t;u, v) = zm(t;u, v). Hence, one can easily
obtain similar results for the local mild solution of system (14).

4.2 The Derivatives of the Cost Functional

Let X,Y and Z be arbitrary Banach spaces. For a mapping f : M ⊂ X → Y with M nonempty and open,
we denote the Gâteaux derivative and the Fréchet derivative at x ∈ M in direction h ∈ X by dGf(x)[h] and
dF f(x)[h], respectively. Derivatives of order k ∈ N at x ∈ M in directions h1, ..., hk ∈ X are represented by
dG(f(x))k[h1, ..., hk] and dF (f(x))k[h1, ..., hk]. For a mapping f : MX × MY → Z with MX ⊂ X , MY ⊂ Y

nonempty and open, we denote the partial Gâteaux derivative and the partial Fréchet derivative at x ∈ MX in
direction h ∈ X for fixed y ∈MY by dGx f(x, y)[h] and d

F
x f(x, y)[h], respectively.

First, we show that the local mild solution of system (14) is the partial Gâteaux derivative of the local mild
solution to system (7) with respect to control variable.

Theorem 6. Let (y(t;u))t∈[0,τu) and (z(t;u, v))t∈[0,τu) be the local mild solution of system (7) and system (14)

corresponding to the controls u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), respectively. Then for fixed m ∈ N, the Gâteaux
derivative of y(t;u) at u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) in direction v ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) satisfies for all

t ∈ [0, τum) and P-a.s.
dGu y(t;u)[v] = z(t;u, v).

Proof. First, we assume that u, v ∈ L4
F(Ω;L

2([0, T ];D(Aβ))). Since the operator B is bilinear on D(Aα)×D(Aα)
and the operators F : D(Aβ) → D(Aβ) and G : H → L(HS)(Q

1/2(H);D(Aα)) are linear, we find for all θ ∈ R\{0},
all t ∈ [0, τum ∧ τu+θv

m ) and P-a.s.

1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

= −
t∫

0

Aδe−A(t−s)A−δB

(
y(s;u+ θv),

1

θ
[y(s;u+ θv) − y(s;u)]− z(s;u, v)

)
ds

−
t∫

0

Aδe−A(t−s)A−δB

(
1

θ
[y(s;u+ θv) − y(s;u)]− z(s;u, v), y(s;u)

)
ds

−
t∫

0

Aδe−A(t−s)A−δB(y(s;u+ θv)− y(s;u), z(s;u, v))ds

+

t∫

0

e−A(t−s)G

(
1

θ
[y(s;u+ θv)− y(s;u)]− z(s;u, v)

)
dW (s). (18)
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Next, let 0 = T0,m < T1,m < ... < Tl,m = T be a partition of the time interval [0, T ], which we specify below.
Since the stopping time τum ∧ τu+θv

m takes values in [0, T ], we have for almost all ω ∈ Ω and all θ ∈ R\{0}

1τu
m∧τu+θv

m ∈[0,T1,m](ω) +

l−1∑

j=1

1τu
m∧τu+θv

m ∈(Tj,m,Tj+1,m](ω) = 1, (19)

where 1 denotes the indicator function. For the sake of simplicity, we set

10 = 1τu
m∧τu+θv

m ∈[0,T1,m]

and
1j = 1τu

m∧τu+θv
m ∈(Tj,m,Tj+1,m]

for j = 1, ..., l− 1. Furthermore, let (ym(t;u∗))t∈[0,T ] and (zm(t;u∗, v∗))t∈[0,T ] be the mild solutions of system (8)

and system (15) corresponding to the controls u∗, v∗ ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), respectively. By definition, we
have for every u∗, v∗ ∈ L2

F (Ω;L
2([0, T ];D(Aβ))), all t ∈ [0, τu

∗

m ) and P-a.s. y(t;u∗) = ym(t;u∗) and z(t;u∗, v∗) =
zm(t;u∗, v∗). Recall that G : H → L(HS)(Q

1/2(H);D(Aα)) is bounded. By equation (18), Lemma 1, Lemma 3,
Proposition 2 with k = 2 and the Cauchy-Schwarz inequality, there exist constants C1, C2, C3 > 0 such that for
all θ ∈ R\{0} and for j = 1, ..., l− 1

E

[
1j sup

t∈[0,T1,m]

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]

≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E

[
1j sup

t∈[0,T1,m]

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]

+ C3

(
E sup

t∈[0,T1,m]

‖zm(t;u, v)‖4D(Aα)

)1/2(
E sup

t∈[0,T1,m]

‖ym(t;u+ θv)− ym(t;u)‖4D(Aα)

)1/2

.

We chose T1,m ∈ (0, T ] such that C1T
2−2α−2δ
1,m +C2T1,m < 1. Then we find for all θ ∈ R\{0} and for j = 1, ..., l−1

E

[
1j sup

t∈[0,T1,m]

∥∥∥∥
1

θ
[y(t;u+ θv) − y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]

≤ c1,m

(
E sup

t∈[0,T1,m]

‖zm(t;u, v)‖4D(Aα)

)1/2(
E sup

t∈[0,T1,m]

‖ym(t;u+ θv)− ym(t;u)‖4D(Aα)

)1/2

,

where c1,m = C3

1−C1T
2−2α−2δ
1,m −C2T1,m

. Using Lemma 7 with k = 4 and Lemma 10 with k = 4, we can conclude for

j = 1, ..., l − 1

lim
θ→0

E

[
1j sup

t∈[0,T1,m]

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]
= 0. (20)

Similarly, we get

lim
θ→0

E

[
10 sup

t∈[0,τu
m∧τu+θv

m )

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]
= 0.
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By definition, we have for all t ∈ [T1,m, T ], P-a.s. and for i = 1, 2

y(t ∧ τui
m ;ui) = e−A(t∧τ

ui
m −T1,m∧τ

ui
m )
[
y(T1,m ∧ τui

m ;ui)− Iτui
m
(G(y))(T1,m ∧ τui

m )
]

−
t∧τ

ui
m∫

T1,m∧τ
ui
m

Aδe−A(t∧τ
ui
m −s)A−δB(y(s;ui))ds

+

t∧τ
ui
m∫

T1,m∧τ
ui
m

e−A(t∧τ
ui
m −s)Fui(s)ds+ Iτui

m
(G(y))(t ∧ τui

m ),

where u1 = u+ θv and u2 = u and

z(t ∧ τum;u, v) = e−A(t∧τu
m−T1,m∧τu

m)
[
z(T1,m ∧ τum;u, v)− Iτu

m
(G(z))(T1,m ∧ τum)

]

−
t∧τu

m∫

T1,m∧τu
m

Aδe−A(t∧τu
m−s)A−δ [B(z(s;u, v), y(s;u)) +B(y(s;u), z(s;u, v))] ds

+

t∧τu
m∫

T1,m∧τu
m

e−A(t∧τu
m−s)Fv(s)ds+ Iτu

m
(G(z))(t ∧ τum).

Again, we find T2,m ∈ [T1,m, T ] such that for j = 2..., l − 1

lim
θ→0

E

[
1j sup

t∈[T1,m,T2,m]

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]
= 0

and

lim
θ→0

E

[
11 sup

t∈[T1,m,τu
m∧τu+θv

m )

∥∥∥∥
1

θ
[y(t;u+ θv) − y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]
= 0.

Using equality (20) for j = 1, we obtain

lim
θ→0

E

[
11 sup

t∈[0,τu
m∧τu+θv

m )

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]
= 0.

By continuing, we obtain for j = 0, 1, ..., l− 1

lim
θ→0

E

[
1j sup

t∈[0,τu
m∧τu+θv

m )

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]
= 0.

Due to equation (19), we have

lim
θ→0

E sup
t∈[0,τu

m∧τu+θv
m )

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

=
l−1∑

j=0

lim
θ→0

E

[
1j sup

t∈[0,τu
m∧τu+θv

m )

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

]
= 0.
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Therefore, the Gâteaux derivative of the velocity field (y(t;u))t∈[0,τu) at u ∈ L4
F(Ω;L

2([0, T ];D(Aβ))) in direction

v ∈ L4
F(Ω;L

2([0, T ];D(Aβ))) satisfies for all t ∈ [0, τum ∧ τu+θv
m ) and P-a.s.

dGu y(t;u)[v] = z(t;u, v). (21)

Note that by Lemma 8, we have limθ→0 P(τ
u
m 6= τu+θv

m ) = 0. Moreover, the operator dGu y(t;u) is linear and
bounded due to Lemma 10 with k = 4 and Lemma 11. Since the space L4

F(Ω;L
2([0, T ];D(Aβ))) is dense in

L2
F(Ω;L

2([0, T ];D(Aβ))), the equation (21) holds for u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), which is a consequence of
Lemma 10 with k = 2, Lemma 11 and Lemma 12.

This enables us to derive the Gâteaux derivative of the cost functional.

Theorem 7. Let the functional Jm : L2
F(Ω;L

2([0, T ];D(Aβ))) → R be defined by (13). Then the Gâteaux deriva-
tive at u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) in direction v ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) satisfies

dGJm(u)[v] = E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt+ E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt,

where the process (z(t;u, v))t∈[0,τu) is the local mild solution of system (14) corresponding to the controls u, v ∈
L2
F(Ω;L

2([0, T ];D(Aβ))).

Proof. We define the functionals Φ1,Φ2 : L
2
F(Ω;L

2([0, T ];D(Aβ))) → R by

Φ1(u) =
1

2
E

τu
m∫

0

‖Aγ(y(t;u)− yd(t))‖2H dt, Φ2(u) =
1

2
E

T∫

0

‖Aβu(t)‖2Hdt.

First, we derive the Gâteaux derivative of the functional Φ1 at u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) in direction v ∈
L2
F(Ω;L

2([0, T ];D(Aβ))). We get for all θ ∈ R\{0}
∣∣∣∣∣∣∣

1

θ
[Φ1(u + θv)− Φ1(u)]− E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt

∣∣∣∣∣∣∣
≤ I1(θ) + I2(θ) + I3(θ) + I4(θ) + I5(θ), (22)

where

I1(θ) =

∣∣∣∣∣∣∣

1

2θ
E

τu
m∧τu+θv

m∫

0

‖Aγ(y(t;u+ θv) − y(t;u))‖2H dt

∣∣∣∣∣∣∣
,

I2(θ) =

∣∣∣∣∣∣∣
E

τu
m∧τu+θv

m∫

0

〈
Aγ(y(t;u)− yd(t)), A

γ

(
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

)〉

H

dt

∣∣∣∣∣∣∣
,

I3(θ) =

∣∣∣∣∣∣∣

1

2θ
E

τu+θv
m∫

τu
m∧τu+θv

m

‖Aγ(y(t;u+ θv)− yd(t))‖2H dt

∣∣∣∣∣∣∣
, I4(θ) =

∣∣∣∣∣∣∣

1

2θ
E

τu
m∫

τu
m∧τu+θv

m

‖Aγ(y(t;u)− yd(t))‖2H dt

∣∣∣∣∣∣∣
,

I5(θ) =

∣∣∣∣∣∣∣
E

τu
m∫

τu
m∧τu+θv

m

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt

∣∣∣∣∣∣∣
.
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Let the stochastic process (ym(t;u∗))t∈[0,T ] be the mild solutions of system (8) corresponding to the control

u∗ ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). By definition, we have for every u∗ ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), all t ∈ [0, τu
∗

m )
and P-a.s. y(t;u∗) = ym(t;u∗) and ‖y(t;u∗)‖D(Aα) ≤ m. Using Lemma 1 (v), we obtain for all θ ∈ R\{0}

I1(θ) ≤
∣∣∣∣∣
CT

2θ
E sup

t∈[0,T ]

‖ym(t;u + θv)− ym(t;u)‖2D(Aα)

∣∣∣∣∣ .

Due to Lemma 7 with k = 2, we can conclude

lim
θ→0

I1(θ) = 0. (23)

Using the Cauchy-Schwarz inequality and Lemma 1 (v), there exists a constant C∗ > 0 such that for all θ ∈ R\{0}

I2(θ) ≤ C∗

(
E sup

t∈[0,τu
m∧τu+θv

m )

∥∥∥∥
1

θ
[y(t;u+ θv)− y(t;u)]− z(t;u, v)

∥∥∥∥
2

D(Aα)

)1/2

.

Due to Theorem 6, we can infer
lim
θ→0

I2(θ) = 0. (24)

Using Lemma 1 (v) and Fubini’s theorem, we get for all θ ∈ R\{0}

I3(θ) ≤

∣∣∣∣∣∣

T∫

0

1

2θ
P
(
τum ∧ τu+θv

m ≤ t < τu+θv
m

) (
2Cm2 + 2 ‖yd(t)‖2D(Aγ)

)
dt

∣∣∣∣∣∣
.

Due to Lemma 9 with k = 1, we have limθ→0
1
θ P
(
τum ∧ τu+θv

m ≤ t < τu+θv
m

)
= 0 for all t ∈ [0, T ]. By Lebesgue’s

dominated convergence theorem, we can infer

lim
θ→0

I3(θ) = 0. (25)

Similarly, we find
lim
θ→0

I4(θ) + lim
θ→0

I5(θ) = 0. (26)

Using inequality (22) and equations (23) – (26), we get

lim
θ→0

∣∣∣∣∣∣∣

1

θ
[Φ1(u+ θv) − Φ1(u)]− E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt

∣∣∣∣∣∣∣
= 0.

Therefore, the Gâteaux derivative of Φ1 : L
2
F(Ω;L

2([0, T ];D(Aβ))) → R at u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) in
direction v ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) is given by

dGΦ1(u)[v] = E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt. (27)

Let the stochastic process (zm(t;u, v))t∈[0,T ] be the mild solution of system (15) corresponding to the controls

u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). By definition, we have for all t ∈ [0, τum) and P-a.s. z(t;u, v) = zm(t;u, v).
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Using Lemma 11, the functional dGΦ1(u) is linear. Moreover, by Lemma 1 (v), Lemma 10 with k = 2 and the
Cauchy-Schwarz inequality, there exists a constant C∗ > 0 such that

∣∣dGΦ1(u)[v]
∣∣2 ≤ C∗ ‖v‖2L2

F (Ω;L2([0,T ];D(Aβ))) .

Hence, the functional dGΦ1(u) is bounded.
Note that the functional Φ2 : L

2
F (Ω;L

2([0, T ];D(Aβ))) → R is given by the squared norm in the Hilbert
space L2

F(Ω;L
2([0, T ];D(Aβ))). Thus, the Gâteaux derivative of Φ2 at u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) in direction

v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) is given by

dGΦ2(u)[v] = E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt. (28)

Obviously, the functional dGΦ2(u) is linear and bounded.
Using equation (27) and equation (28), the Gâteaux derivative of Jm at u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) in

direction v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) is given by

dGJm(u)[v] = dGΦ1(u)[v] + dGΦ2(u)[v]

= E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt+ E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt.

Since dGΦ1(u) and d
GΦ2(u) are linear and bounded, the functional dGJm(u) is linear and bounded as well.

Recall that the set of admissible controls U is a closed, bounded and convex subset of the Hilbert space
L2
F(Ω;L

2([0, T ];D(Aβ))) such that 0 ∈ U . Hence, the optimal control um ∈ U satisfies the necessary optimality
condition

dGJm(um)[u− um] ≥ 0 (29)

for fixed m ∈ N and every u ∈ U . Due to Theorem 7, we get the variational inequality

E

τum
m∫

0

〈Aγ(y(t;um)− yd(t)), A
γz(t;um, u− um)〉H dt+ E

T∫

0

〈
Aβum(t), Aβ(u(t)− um(t))

〉
H
dt ≥ 0 (30)

for fixed m ∈ N and every u ∈ U . We will use this inequality to derive an explicit formula for the optimal control
um ∈ U . For more details on necessary optimality conditions as variational inequalities, we refer to [29, 50].

Next, we state the second order Gâteaux derivative of the cost functional (13). Moreover, we show that the
Gâteaux derivatives and the Fréchet derivatives coincide, which will enable us to obtain a sufficient optimality
condition.

Corollary 2. Let the functional Jm : L2
F(Ω;L

2([0, T ];D(Aβ))) → R be defined by (13). Then the Gâteaux
derivative of order two at u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) in directions v1, v2 ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) satisfies

dG(Jm(u))2[v1, v2] = E

τu
m∫

0

〈Aγz(t;u, v1), A
γz(t;u, v2)〉H dt+ E

T∫

0

〈
Aβv1(t), A

βv2(t)
〉
H
dt,

where the processes (z(t;u, vi))t∈[0,τu) are the local mild solution of system (14) corresponding to the controls

u, vi ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) for i = 1, 2.
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Proof. The claim can be shown similarly to Theorem 7.

Corollary 3. Let the functional Jm : L2
F(Ω;L

2([0, T ];D(Aβ))) → R be defined by (13). Then the Fréchet deriva-
tive at u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) in direction v ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) satisfies

dFJm(u)[v] = E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt+ E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt,

where the process (z(t;u, v))t∈[0,τu) is the local mild solution of system (14) corresponding to the controls u, v ∈
L2
F(Ω;L

2([0, T ];D(Aβ))). Moreover, the functional dF Jm(u)[v] is continuous with respect to u.

Proof. Using Theorem 7, we have that the Gâteaux derivative at u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) in direction
v ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) satisfies

dGJm(u)[v] = E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt+ E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H
dt.

Let (ym(t;u))t∈[0,T ] and (zm(t;u, v))t∈[0,T ] be the mild solutions of system (8) and system (15) correspond-

ing to the controls u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), respectively. By definition, we have for every u, v ∈
L2
F(Ω;L

2([0, T ];D(Aβ))), all t ∈ [0, τum) and P-a.s. y(t;u) = ym(t;u) and z(t;u, v) = zm(t;u, v). If we as-
sume v ∈ L4

F(Ω;L
2([0, T ];D(Aβ))), then the process (z(t;u, v))t∈[0,τu

m) is continuous with respect to the control

u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) resulting from Lemma 12. By Lemma 10 with k = 2, Lemma 11 and the fact
that the space L4

F(Ω;L
2([0, T ];D(Aβ))) is dense in L2

F(Ω;L
2([0, T ];D(Aβ))), we can conclude that the process

(z(t;u, v))t∈[0,τu
m) is continuous with respect to u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) for v ∈ L2

F(Ω;L
2([0, T ];D(Aβ))).

The fact that (y(t;u))t∈[0,τu
m) is continuous with respect to the control u ∈ L2

F (Ω;L
2([0, T ];D(Aβ))) is an imme-

diate consequence of Lemma 7 with k = 2. Using additionally Lemma 8, one can show that u 7→ dGJm(u) is a
continuous mapping from L2

F (Ω;L
2([0, T ];D(Aβ))) into L(L2

F (Ω;L
2([0, T ];D(Aβ)));R). Therefore, by the mean

value theorem, see [32, Theorem 4.1.2], we get

∣∣Jm(u + v)− Jm(u)− dGJm(u)[v]
∣∣

=

∣∣∣∣∣∣

1∫

0

dGJm(u+ θv)[v]dθ − dGJm(u)[v]

∣∣∣∣∣∣

≤ sup
θ∈[0,1]

∥∥dGJm(u + θv)− dGJm(u)
∥∥
L(L2

F (Ω;L2([0,T ];D(Aβ));R)
‖v‖L2

F(Ω;L2([0,T ];D(Aβ))).

Since u 7→ dGJm(u) is a continuous mapping, we can conclude

lim
‖v‖

L2
F

(Ω;L2([0,T ];D(Aβ )))
→0

∣∣Jm(u+ v)− Jm(u)− dGJm(u)[v]
∣∣

‖v‖L2
F(Ω;L2([0,T ];D(Aβ)))

= 0.

Hence, the Fréchet derivative of Jm at u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) in direction v ∈ L2
F(Ω;L

2([0, T ];D(Aβ)))
is given by dF Jm(u)[v] = dGJm(u)[v] and by Theorem 7, the operator dF Jm(u) is linear and bounded. Since
dGJm(u)[v] is continuous with respect to u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))), the functional dFJm(u)[v] is continuous

as well.

Similarly to the previous corollary, we obtain that the cost functional is twice Fréchet differentiable.
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Corollary 4. Let the functional Jm : L2
F(Ω;L

2([0, T ];D(Aβ))) → R be defined by (13). Then the Fréchet deriva-
tive of order two at u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) in directions v1, v2 ∈ L2

F(Ω;L
2([0, T ];D(Aβ))) satisfies

dF (Jm(u))2[v1, v2] = E

τu
m∫

0

〈Aγz(t;u, v1), A
γz(t;u, v2)〉H dt+ E

T∫

0

〈
Aβv1(t), A

βv2(t)
〉
H
dt,

where the processes (z(t;u, vi))t∈[0,τu) are the local mild solution of system (14) corresponding to the controls

u, vi ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) for i = 1, 2. Moreover, the functional dF (Jm(u))2[v1, v2] is continuous with
respect to u.

5 The Adjoint Equation

We will use the necessary optimality condition (30) to derive an explicit formula the optimal controls um ∈ U

has to satisfy. Therefor, we need a duality principle, which gives us a relation between the local mild solution
to system (14) and the corresponding adjoint equation. Since the control problem considered in this paper is
constrained by a SPDE with linear multiplicative noise, the adjoint equation is specified by a backward SPDE.
For mild solutions of backward SPDEs, the existence and uniqueness result is mainly based on a martingale
representation theorem, see [30].

We introduce the following backward SPDE in D(Aδ):




dz∗m(t) = −1[0,τm)(t)[−Az∗m(t)−A2αB∗
δ

(
y(t), Aδz∗m(t)

)
+G∗(A−2αΦm(t)) +A2γ (y(t)− yd(t))]dt

+Φm(t)dW (t),

z∗m(T ) = 0,

(31)

where m ∈ N and the process (y(t))t∈[0,τ) is the local mild solution of system (7). The stopping times (τm)m∈N

are defined by equation (12) and yd ∈ L2([0, T ];D(Aγ)) is the given desired velocity field. The operator A and
its fractional powers are introduced in Section 2.1. The process (W (t))t∈[0,T ] is a Q-Wiener process with values
in H and covariance operator Q ∈ L(H). Moreover, the operators B∗

δ (y(t), ·) : H → D(Aα) for t ∈ [0, τm) and
G∗ : L(HS)(Q

1/2(H);D(Aα)) → H are linear and bounded. A precise meaning is given in the following remark.

Remark 5. (i) By Lemma 3, we obtain that the operator A−δ[B(·, y) + B(y, ·)] : D(Aα) → H is linear and
bounded for every y ∈ D(Aα) such that ‖y‖D(Aα) ≤ m. Therefore, there exists a linear and bounded operator
B∗

δ (y, ·) : H → D(Aα) satisfying for every h ∈ H and every z ∈ D(Aα)

〈A−δ[B(z, y) +B(y, z)], h〉H = 〈z,B∗
δ (y, h)〉D(Aα).

We can rewrite this equivalently as

〈A−δ[B(z, y) +B(y, z)], h〉H = 〈Aαz, AαB∗
δ (y, h)〉H (32)

for every h ∈ H and every z ∈ D(Aα). By the closed graph theorem, we get that the operator AαB∗
δ (y, ·) : H → H

is linear and bounded.
(ii) Recall that ‖y(t)‖D(Aα) ≤ m for all t ∈ [0, τm) and P-almost surely.

(iii) Since the operator G : H → L(HS)(Q
1/2(H);D(Aα)) is linear and bounded, there exists a linear and bounded

operator G∗ : L(HS)(Q
1/2(H);D(Aα)) → H satisfying for every h ∈ H and every Φ ∈ L(HS)(Q

1/2(H);D(Aα))

〈G(h),Φ〉L(HS)(Q1/2(H);D(Aα)) = 〈h,G∗(Φ)〉H .
We can rewrite this equivalently as

〈AαG(h), AαΦ〉L(HS)(Q1/2(H);H) = 〈h,G∗(Φ)〉H (33)

for every h ∈ H and every Φ ∈ L(HS)(Q
1/2(H);D(Aα)).
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Definition 7. A pair of predictable processes (z∗m(t),Φm(t))t∈[0,T ] with values in D(Aδ)×L(HS)(Q
1/2(H);H) is

called a mild solution of system (31) if

E sup
t∈[0,T ]

‖z∗m(t)‖2D(Aδ) <∞, E

T∫

0

‖Φm(t)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z∗m(t) =−
T∫

t

1[0,τm)(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδz∗m(s)

)
ds+

T∫

t

1[0,τm)(s)e
−A(s−t)G∗(A−2αΦm(s))ds

+

T∫

t

1[0,τm)(s)A
γe−A(s−t)Aγ (y(s ∧ τm)− yd(s)) ds−

T∫

t

e−A(s−t)Φm(s)dW (s). (34)

To prove the existence and uniqueness of the mild solution to system (31), we need the following auxiliary
results.

Lemma 13. Let δ, ε ∈ [0, 12 ) such that δ + ε < 1
2 . Moreover, let ζ ∈ L2(Ω;D(Aδ)) be FT -measurable and let

(f(t))t∈[0,T ] be a predictable process with values in H such that E
∫ T

0 ‖f(t)‖2Hdt <∞. Then there exists a unique

pair of predictable processes (ϕ(t), φ(t))t∈[0,T ] with values in D(Aδ) × L(HS)(Q
1/2(H);D(Aε)) such that for all

t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)ζ +

T∫

t

Aεe−A(s−t)f(s)ds−
T∫

t

e−A(s−t)Aεφ(s)dW (s).

Furthermore, there exists a constant c∗ > 0 such that for all t ∈ [0, T ]

E sup
s∈[t,T ]

‖ϕ(s)‖2D(Aδ) ≤ c∗


E ‖ζ‖2D(Aδ) + (T − t)1−2δ−2ε

E

T∫

t

‖f(s)‖2Hds


 , (35)

E

T∫

t

‖φ(s)‖2L(HS)(Q1/2(H);D(Aε))ds ≤ c∗


E ‖ζ‖2D(Aδ) + (T − t)1−2ε

E

T∫

t

‖f(s)‖2H ds


 . (36)

Proof. For δ = ε = 0, a proof can be found in [30, Lemma 2.1]. For arbitrary ε ∈
[
0, 12
)
and δ ∈ [0, 12 − ε), one

can show the result similarly using the properties of fractional powers to the operator A provided by Lemma
1.

Corollary 5. Let δ ∈ [0, 1) and ε ∈ [0, 12 ) satisfy δ+ε < 1. Furthermore, let ζ ∈ L2(Ω;D(Aδ)) be FT -measurable
and let (f(t))t∈[0,T ] be a predictable process with values in H such that E supt∈[0,T ] ‖f(t)‖2H < ∞. Then there

exists a unique pair of predictable processes (ϕ(t), φ(t))t∈[0,T ] with values in D(Aδ) × L(HS)(Q
1/2(H);D(Aε))

such that for all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)ζ +

T∫

t

Aεe−A(s−t)f(s)ds−
T∫

t

e−A(s−t)Aεφ(s)dW (s).
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Moreover, there exists a constant ĉ > 0 such that for all t ∈ [0, T ]

E sup
s∈[t,T ]

‖ϕ(s)‖2D(Aδ) ≤ ĉ

[
E ‖ζ‖2D(Aδ) + (T − t)2−2δ−2ε

E sup
s∈[t,T ]

‖f(s)‖2H

]
, (37)

E

T∫

t

‖φ(s)‖2L(HS)(Q1/2(H);D(Aε))ds ≤ ĉ

[
E ‖ζ‖2D(Aδ) + (T − t)2−2ε

E sup
s∈[t,T ]

‖f(s)‖2H

]
. (38)

Based on the above results, we are able to prove the existence and uniqueness of the mild solution to system
(31). Note that by Theorem 2, we get the existence and uniqueness of the local mild solution (y(t))t∈[0,τ) to

system (8) for fixed control u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))).

Theorem 8. Let the parameters α ∈ (0, 12 ) and δ ∈ [0, 12 ) satisfy 1 > δ + α > 1
2 and δ + 2α ≥ n

4 + 1
2 and let

γ ∈ [0, α] such that γ+δ < 1
2 . Then for fixed m ∈ N and fixed u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))), there exists a unique

mild solution (z∗m(t),Φm(t))t∈[0,T ] of system (31).

Proof. Let Z1
T denote the space of all predictable processes (z(t))t∈[0,T ] with values in the space D(Aδ) such that

E supt∈[0,T ] ‖z(t)‖2D(Aδ) <∞. The space Z1
T equipped with the norm

‖z‖2Z1
T
= E sup

t∈[0,T ]

‖z(t)‖2D(Aδ)

for every z ∈ Z1
T becomes a Banach space. Similarly, let Z2

T contain all predictable processes (Φ(t))t∈[0,T ] with

values in L(HS)(Q
1/2(H);H) such that E

∫ T

0 ‖Φ(t)‖2
L(HS)(Q1/2(H);H)

dt < ∞. The space Z2
T equipped with the

inner product

〈Φ1,Φ2〉2Z2
T
= E

T∫

0

〈Φ1(t),Φ2(t)〉2L(HS)(Q1/2(H);H)dt

for every Φ1,Φ2 ∈ Z2
T becomes a Hilbert space. We define a sequence (zkm,Φ

k
m)k∈N ⊂ Z1

T × Z2
T satisfying for

each k ∈ N, all t ∈ [0, T ] and P-a.s.

zkm(t) =−
T∫

t

1[0,τm)(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδzk−1

m (s)
)
ds+

T∫

t

1[0,τm)(s)e
−A(s−t)G∗(A−2αΦk−1

m (s))ds

+

T∫

t

1[0,τm)(s)A
γe−A(s−t)Aγ (y(s ∧ τm)− yd(s)) ds−

T∫

t

e−A(s−t)Φk
m(s)dW (s), (39)

where z0m(t) = 0 and Φ0
m(t) = 0 for all t ∈ [0, T ]. Recall that the operators AαB∗

δ (y(t), ·) : H → H and
G∗ : L(HS)(Q

1/2(H);D(Aα)) → H are linear and bounded. Note that due to Lemma 13 and Corollary 5, one

can easily verify that (zkm,Φ
k
m)k∈N ⊂ Z1

T ×Z2
T . Moreover, we obtain for each k ∈ N, all t ∈ [0, T ] and P-a.s.

zk+1
m (t)− zkm(t) =−

T∫

t

1[0,τm)(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδ

[
zkm(s)− zk−1

m (s)
])
ds

+

T∫

t

1[0,τm)(s)e
−A(s−t)G∗

(
A−2α

[
Φk

m(s)− Φk−1
m (s)

])
ds

−
T∫

t

e−A(s−t)
(
Φk+1

m (s)− Φk
m(s)

)
dW (s). (40)
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Moreover, there exist constants C1, C2 > 0 such that for each k ∈ N

E sup
t∈[0,T ]

∥∥1[0,τm)(t)A
αB∗

δ

(
y(t ∧ τm), Aδ

[
zkm(t)− zk−1

m (t)
])∥∥2

H
≤ C1 E sup

t∈[0,T ]

∥∥zkm(t)− zk−1
m (t)

∥∥2
D(Aδ)

,

E

T∫

0

∥∥1[0,τm)(t)G
∗
(
A−2α

[
Φk

m(t)− Φk−1
m (t)

])∥∥2
H
dt ≤ C2 E

T∫

0

∥∥Φk
m(t)− Φk−1

m (t)
∥∥2
L(HS)(Q1/2(H);H)

dt.

Hence, equation (40) satisfies the assumptions of Lemma 13 and Corollary 5. Let T1,m ∈ [0, T ). Due to inequality
(35) and inequality (37), there exist constants C∗

1 , C
∗
2 > 0 such that for each k ∈ N

E sup
t∈[T1,m,T ]

‖zk+1
m (t)− zkm(t)‖2D(Aδ) ≤ C∗

1 (T − T1,m)2−2α−2δ
E sup

t∈[T1,m,T ]

‖zkm(t)− zk−1
m (t)‖2D(Aδ)

+ C∗
2 (T − T1,m)1−2δ

E

T∫

T1,m

∥∥Φk
m(t)− Φk−1

m (t)
∥∥2
L(HS)(Q1/2(H);H)

dt.

Using inequality (36) and inequality (38), there exist constants C∗
3 , C

∗
4 > 0 such that for each k ∈ N

E

T∫

T1,m

∥∥Φk+1
m (t)− Φk

m(t)
∥∥2
L(HS)(Q1/2(H);H)

dt ≤ C∗
3 (T − T1,m)2−2α

E sup
t∈[T1,m,T ]

∥∥zkm(t)− zk−1
m (t)

∥∥2
D(Aδ)

+ C∗
4 (T − T1,m) E

T∫

T1,m

∥∥Φk
m(t)− Φk−1

m (t)
∥∥2
L(HS)(Q1/2(H);H)

dt.

Hence, we obtain for each k ∈ N

E sup
t∈[T1,m,T ]

‖zk+1
m (t)− zkm(t)‖2D(Aδ) + E

T∫

T1,m

∥∥Φk+1
m (t) − Φk

m(t)
∥∥2
L(HS)(Q1/2(H);H)

dt

≤ Km

[
E sup

t∈[T1,m,T ]

∥∥zkm(t)− zk−1
m (t)

∥∥2
D(Aδ)

+ E

∫ T

T1,m

∥∥Φk
m(t)− Φk−1

m (t)
∥∥2
L(HS)(Q1/2(H);H)

dt

]
,

where

Km = max{C∗
1 (T − T1,m)2−2α−2δ + C∗

3 (T − T1,m)2−2α, C∗
2 (T − T1,m)1−2δ + C∗

4 (T − T1,m)}.

Therefore, we find for each k ∈ N

E sup
t∈[T1,m,T ]

‖zk+1
m (t)− zkm(t)‖2D(Aδ) + E

T∫

T1,m

∥∥Φk+1
m (t)− Φk

m(t)
∥∥2
L(HS)(Q1/2(H);H)

dt

≤ Kk
m

[
E sup

t∈[T1,m,T ]

∥∥z1m(t)
∥∥2
D(Aδ)

+ E

∫ T

T1,m

∥∥Φ1
m(t)

∥∥2
L(HS)(Q1/2(H);H)

dt

]
.

We choose T1,m ∈ [0, T ) such that Km < 1. Thus, we can conclude that the sequence (zkm,Φ
k
m)k∈N ⊂ Z1

T × Z2
T

is a Cauchy sequence on the interval [T1,m, T ]. Using equation (40), we have for each k ∈ N, all t ∈ [0, T1,m] and
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P-a.s.

zk+1
m (t)− zkm(t) = e−A(T1,m−t)[zk+1

m (T1,m)− zkm(T1,m)]

−
T1,m∫

t

1[0,τm)(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδ

[
zkm(s)− zk−1

m (s)
])
ds

+

T1,m∫

t

1[0,τm)(s)e
−A(s−t)G∗

(
A−2α

[
Φk

m(s)− Φk−1
m (s)

])
ds

−
T1,m∫

t

e−A(s−t)
(
Φk+1

m (s)− Φk
m(s)

)
dW (s).

Again, we find T2,m ∈ [0, T1,m] such that the sequence (zkm,Φ
k
m)k∈N ⊂ Z1

T × Z2
T is a Cauchy sequence on the

interval [T2,m, T1,m]. By continuing the method, we can conclude that the sequence (zkm,Φ
k
m)k∈N ⊂ Z1

T × Z2
T is

a Cauchy sequence on the interval [0, T ]. Hence, there exist z∗m ∈ Z1
T and Φm ∈ Z2

T such that

z∗m = lim
k→∞

zkm, Φm = lim
k→∞

Φk
m.

By equation (39), one can easily verify that the pair of processes (z∗m(t),Φm(t))t∈[0,T ] satisfy equation (34).

Remark 6. If yd ∈ L∞([0, T ];D(Aγ)), then the restriction γ+δ < 1
2 vanishes in the previous theorem. Moreover,

note that we have the additional restrictions α, δ < 1
2 . Since γ ≤ α in equation (13), we can not solve the control

problem introduced in Section 4 for the special case γ = 1
2 . However, one can overcome this problem if system

(7) is driven by an additive noise, i.e. the operator G does not depend on the velocity field y(t).

Corollary 6. Let (z∗m(t),Φm(t))t∈[0,T ] be the mild solution of system (31). Then we have for fixed m ∈ N

E sup
t∈[τm,T ]

‖z∗m(t)‖2D(Aδ) = 0

and

E

T∫

τm

‖Φm(t)‖2L(HS)(Q1/2(H);H) dt = 0.

6 Approximation by a Strong Formulation

In general, a duality principle of solutions to forward and backward SPDEs can be obtained by applying an
Itô product formula. This formula is not applicable to solutions in a mild sense. Here, we approximate the
mild solutions of system (15) and system (31) by strong formulations. Recall that these mild solutions take
values in the domain of fractional powers to the Stokes operator and hence, we need convergence results in the
corresponding spaces. According to [11], one can use the Yosida approximation of the Stokes operator A. For
applications regarding a duality principle, see [18, 44]. This approximation holds only in the underlying Hilbert
space H and thus, we can not obtain suitable convergence results. Here, we apply the approach introduced in
[25, 31]. The basic idea is to formulate a mild solution with values in D(A) using the resolvent operator R(λ)
introduced in Section 2.1. Thus, we get convergence results in the domain of fractional power operators and the
mild solutions coincide with strong solutions. Although, the convergence is only available for forward SPDEs,
we are also able to show the result for the backward equation. In this section, we omit the dependence on the
controls for the sake of simplicity.

26



6.1 The Forward Equation

Here, we give an approximation of the mild solution to system (15). We introduce the following SPDE in
D(A1+α):





dzm(t, λ) = −[Azm(t, λ) +R(λ)B(R(λ)zm(t, λ), πm(ym(t))) +R(λ)B(πm(ym(t)), R(λ)zm(t, λ))

−R(λ)Fv(t)]dt +R(λ)G(R(λ)zm(t, λ))dW (t),

zm(0, λ) = 0,

(41)

where m ∈ N, λ > 0 and v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). The operators A,B,R(λ), F,G are introduced in Section
2.1 and Section 3, respectively. The mapping πm : D(Aα) → D(Aα) is given by (9) and the process (ym(t))t∈[0,T ]

is the mild solution of system (8). The process (W (t))t∈[0,T ] is a Q-Wiener process with values inH and covariance
operator Q ∈ L(H).

Definition 8. A predictable process (zm(t, λ))t∈[0,T ] with values in D(A1+α) is called a mild solution of system
(41) if

E sup
t∈[0,T ]

‖zm(t, λ)‖2D(A1+α) <∞

and we have for all t ∈ [0, T ] and P-a.s.

zm(t, λ) =−
t∫

0

Aδe−A(t−s)R(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))] ds

+

t∫

0

e−A(t−s)R(λ)Fv(s)ds +

t∫

0

e−A(t−s)R(λ)G(R(λ)zm(s, λ))dW (s).

Remark 7. Note that the approximation scheme provided in [25, 31] differs to the approximation scheme intro-
duced by system (41). Here, the additional operator R(λ) will be necessary to obtain the duality principle.

Recall that the operators R(λ) and AR(λ) are linear and bounded on H . Hence, an existence and uniqueness
result of a mild solution (zm(t, λ))t∈[0,T ] to system (41) can be obtained similarly to Theorem 4 for fixed m ∈ N

and fixed λ > 0. In the following lemma, we state a strong formulation of the mild solution to system (41), which
is an immediate consequence of [31, Proposition 2.3].

Lemma 14. Let (zm(t, λ))t∈[0,T ] be the mild solution of system (41). Then we have for fixed m ∈ N, fixed λ > 0,
all t ∈ [0, T ] and P-a.s.

zm(t, λ) =−
t∫

0

Azm(s, λ) + AδR(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))] ds

+

t∫

0

R(λ)Fv(s)ds +

t∫

0

R(λ)G(R(λ)zm(s, λ))dW (s).

We get the following convergence result.

Lemma 15. Let (zm(t))t∈[0,T ] and (zm(t, λ))t∈[0,T ] be the mild solutions of system (15) and system (41), respec-
tively. Then we have for fixed m ∈ N

lim
λ→∞

E sup
t∈[0,T ]

‖zm(t)− zm(t, λ)‖2D(Aα) = 0.
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Proof. Let I be the identity operator on H . We define the operator B̃(y, z) = B(z, y) + B(y, z) for every

y, z ∈ D(Aα). Since B is bilinear on D(Aα)×D(Aα), the operator B̃ is bilinear as well and using Lemma 3, we
get for every y, z ∈ D(Aα) ∥∥∥A−δB̃(y, z)

∥∥∥
H

≤ 2M̃‖y‖D(Aα)‖z‖D(Aα). (42)

Recall that the operator G : H → L(HS)(Q
1/2(H);D(Aα)) is linear and bounded. By definition, we find for all

λ > 0, all t ∈ [0, T ] and P-a.s.

zm(t)− zm(t, λ)

= −
t∫

0

Aδe−A(t−s)A−δB̃(πm(ym(s)), [I −R(λ)]zm(s))ds

−
t∫

0

Aδe−A(t−s)[I −R(λ)]A−δB̃(πm(ym(s)), R(λ)zm(s))ds

−
t∫

0

Aδe−A(t−s)R(λ)A−δB̃(πm(ym(s)), R(λ) [zm(s)− zm(s, λ)])ds

+

t∫

0

e−A(t−s)[I −R(λ)]Fv(s)ds +

t∫

0

e−A(t−s)G([I −R(λ)]zm(s))dW (s)

+

t∫

0

e−A(t−s)[I −R(λ)]G(R(λ)zm(s))dW (s) +

t∫

0

e−A(t−s)R(λ)G(R(λ) [zm(s)− zm(s, λ)])dW (s).

Let T1,m ∈ (0, T ]. Then we get for all λ > 0

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) ≤ 7 I1(λ) + 7 I2(λ) + 7 I3(λ), (43)

where

I1(λ) = E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

Aδe−A(t−s)R(λ)A−δB̃(πm(ym(s)), R(λ) [zm(s)− zm(s, λ)])ds

∥∥∥∥∥∥

2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

e−A(t−s)R(λ)G(R(λ) [zm(s)− zm(s, λ)])dW (s)

∥∥∥∥∥∥

2

D(Aα)

,

I2(λ) = E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

Aδe−A(t−s)A−δB̃(πm(ym(s)), [I −R(λ)]zm(s))ds

∥∥∥∥∥∥

2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

Aδe−A(t−s)[I −R(λ)]A−δB̃(πm(ym(s)), R(λ)zm(s))ds

∥∥∥∥∥∥

2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

e−A(t−s)[I −R(λ)]Fv(s)ds

∥∥∥∥∥∥

2

D(Aα)

,

28



I3(λ) = E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

e−A(t−s)G([I −R(λ)]zm(s))dW (s)

∥∥∥∥∥∥

2

D(Aα)

+ E sup
t∈[0,T1,m]

∥∥∥∥∥∥

t∫

0

e−A(t−s)[I −R(λ)]G(R(λ)zm(s))dW (s)

∥∥∥∥∥∥

2

D(Aα)

.

By Lemma 1, equation (3), Proposition 2 with k = 2 and inequalities (2), (10) and (42), there exist constants
C1, C2 > 0 such that for all λ > 0

I1(λ) ≤
(
C1T

2−2α−2δ
1,m + C2T1,m

)
E sup

t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) . (44)

Similarly, there exists a constant C∗ > 0 such that for all λ > 0

I2(λ) ≤ C∗
E sup

t∈[0,T1,m]

‖[I −R(λ)]Aαzm(t)‖2H + C∗
E sup

t∈[0,T1,m]

∥∥∥[I −R(λ)]A−δB̃(πm(ym(t)), R(λ)zm(t))
∥∥∥
2

H

+ C∗
E

T1,m∫

0

∥∥[I −R(λ)]AβFv(t)
∥∥2
H
dt,

I3(λ) ≤ C∗
E

T1,m∫

0

‖[I −R(λ)]zm(t)‖2H dt+ C∗
E

T1,m∫

0

‖[I −R(λ)]AαG(R(λ)zm(t))‖2L(HS)(Q1/2(H);H) dt.

Using equation (4) and Lebesgue’s dominated convergence theorem, we can conclude

lim
λ→∞

I2(λ) + lim
λ→∞

I3(λ) = 0. (45)

Due to inequality (43) and inequality (44), we find for all λ > 0

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) ≤ K1,m E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) + 7 I2(λ) + 7 I3(λ),

where K1,m = 7C1T
2−2α−2δ
1,m + 7C2T1,m. We chose T1,m ∈ (0, T ] such that K1,m < 1. Then we obtain for all

λ > 0

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) ≤
7 I2(λ) + 7 I3(λ)

1−K1,m
.

By equation (45), we can conclude

lim
λ→∞

E sup
t∈[0,T1,m]

‖zm(t)− zm(t, λ)‖2D(Aα) = 0.

Similarly to Lemma 10, we can conclude that the result holds for the whole time interval [0, T ].

6.2 The Backward Equation

Here we give an approximation of the mild solution to system (31). We introduce the following backward SPDE
in D(A1+δ):





dz∗m(t, λ) = −1[0,τm)(t)
[
−Az∗m(t, λ) −AαR(λ)AαB∗

δ

(
y(t), R(λ)Aδz∗m(t, λ)

)

+R(λ)G∗(A−2αR(λ)Φm(t, λ)) +AγR(λ)Aγ (y(t)− yd(t))
]
dt+Φm(t, λ)dW (t),

z∗m(T, λ) = 0,

(46)
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where m ∈ N and λ > 0. The operators A,R(λ), B∗
δ , G

∗ are introduced in Section 2.1 and Section 5, respectively.
The process (y(t))t∈[0,τ) is the local mild solution of system (7) with stopping times (τm)m∈N defined by (12) and
yd ∈ L2([0, T ];D(Aγ)) is the given desired velocity field. The process (W (t))t∈[0,T ] is a Q-Wiener process with
values in H and covariance operator Q ∈ L(H).

Definition 9. A pair of predictable processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] with values in the product space D(A1+δ)×
L(HS)(Q

1/2(H);H) is called a mild solution of system (46) if

E sup
t∈[0,T ]

‖z∗m(t, λ)‖2D(A1+δ) <∞, E

T∫

0

‖Φm(t, λ)‖2L(HS)(Q1/2(H);H)dt <∞

and we have for all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) =−
T∫

t

1[0,τm)(s)A
αe−A(s−t)R(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
ds

+

T∫

t

1[0,τm)(s)e
−A(s−t)R(λ)G∗(A−2αR(λ)Φm(s, λ))ds

+

T∫

t

1[0,τm)(s)A
γe−A(s−t)R(λ)Aγ (y(s ∧ τm)− yd(s)) ds−

T∫

t

e−A(s−t)Φm(s, λ)dW (s).

Recall that the operators R(λ) and AR(λ) are linear and bounded on H . Hence, an existence and uniqueness
result of a mild solution (z∗m(t, λ),Φm(t, λ))t∈[0,T ] to system (46) can be obtained similarly to Theorem 8 for fixed
m ∈ N and fixed λ > 0. Moreover, we get the following result.

Lemma 16. Let the pair of stochastic processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solution of system (46).
Then we have for fixed m ∈ N and fixed λ > 0

E sup
t∈[τm,T ]

‖z∗m(t, λ)‖2D(A1+δ) = 0 and E

T∫

τm

‖Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt = 0.

The following lemma provides a strong formulation of the mild solution to system (46), which is an immediate
consequence of [1, Theorem 3.4 and Theorem 4.1].

Lemma 17. Let the pair of stochastic processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solution of system (46).
Then we have for fixed m ∈ N, fixed λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) =−
T∫

t

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

+

T∫

t

1[0,τm)(s)R(λ)G
∗(A−2αR(λ)Φm(s, λ))ds+

T∫

t

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

−
T∫

t

Φm(s, λ)dW (s).
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We get the following convergence results.

Lemma 18. Let (z∗m(t),Φm(t))t∈[0,T ] and (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solutions of system (31) and
system (46), respectively. Then we have for fixed m ∈ N

lim
λ→∞

E sup
t∈[0,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) = 0, lim
λ→∞

E

T∫

0

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H)dt = 0.

Proof. Let I be the identity operator on H . By definition, we have for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t)− z∗m(t, λ)

= −
T∫

t

1[0,τm)(s)A
αe−A(s−t)[AαB∗

δ

(
y(s ∧ τm), Aδz∗m(s)

)
−R(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
]ds

+

T∫

t

1[0,τm)(s)e
−A(s−t)[G∗(A−2αΦm(s))−R(λ)G∗(A−2αR(λ)Φm(s, λ))]ds

+

T∫

t

1[0,τm)(s)A
γe−A(s−t)[I −R(λ)]Aγ (y(s ∧ τm)− yd(s)) ds−

T∫

t

e−A(s−t)[Φm(s)− Φm(s, λ)]dW (s).

Recall that the operators AαB∗
δ (y(t), ·) : H → H for t ∈ [0, τm) and G∗ : L(HS)(Q

1/2(H);D(Aα)) → H are linear
and bounded. Hence, we find for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t)− z∗m(t, λ)

= −
T∫

t

1[0,τm)(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), [I −R(λ)]Aδz∗m(s)

)
ds

−
T∫

t

1[0,τm)(s)A
αe−A(s−t)[I −R(λ)]AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s)

)
ds

−
T∫

t

1[0,τm)(s)A
αe−A(s−t)R(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδ [z∗m(s)− z∗m(s, λ)]

)
ds

+

T∫

t

1[0,τm)(s)e
−A(s−t)G∗(A−2α[I −R(λ)]Φm(s))ds

+

T∫

t

1[0,τm)(s)e
−A(s−t)[I −R(λ)]G∗(A−2αR(λ)Φm(s))ds

+

T∫

t

1[0,τm)(s)e
−A(s−t)R(λ)G∗(A−2αR(λ)[Φm(s)− Φm(s, λ)])ds

+

T∫

t

1[0,τm)(s)A
γe−A(s−t)[I −R(λ)]Aγ (y(s ∧ τm)− yd(s)) ds−

T∫

t

e−A(s−t)[Φm(s)− Φm(s, λ)]dW (s).
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Note that each integrand of the Bochner integrals on the right hand side satisfies the assumptions of Lemma 13
and Corollary 5, respectively. Let T1,m ∈ [0, T ). Using inequality (35) and inequality (37), we get for all λ > 0

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) ≤ 7 I1(λ) + 7 I2(λ) + 7 I3(λ), (47)

where

I1(λ) = ĉ(T − T1,m)2−2α−2δ
E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥R(λ)AαB∗
δ

(
y(t ∧ τm), R(λ)Aδ [z∗m(t)− z∗m(t, λ)]

)∥∥2
H

]

+ c∗(T − T1,m)1−2δ
E

T∫

T1,m

1[0,τm)(t)
∥∥R(λ)G∗(A−2αR(λ)[Φm(t)− Φm(t, λ)])

∥∥2
H
dt,

I2(λ) = ĉ(T − T1,m)2−2α−2δ
E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥AαB∗
δ

(
y(t ∧ τm), [I −R(λ)]Aδz∗m(t)

)∥∥2
H

]

+ ĉ(T − T1,m)2−2α−2δ
E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥[I −R(λ)]AαB∗
δ

(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2
H

]
,

I3(λ) = c∗(T − T1,m)1−2δ
E

T∫

T1,m

1[0,τm)(t)
∥∥G∗(A−2α[I −R(λ)]Φm(t))

∥∥2
H
dt

+ c∗(T − T1,m)1−2δ
E

T∫

T1,m

1[0,τm)(t)
∥∥[I −R(λ)]G∗(A−2αR(λ)Φm(t))

∥∥2
H
dt

+ c∗(T − T1,m)1−2γ−2δ
E

T∫

T1,m

1[0,τm)(t) ‖[I −R(λ)]Aγ (y(t ∧ τm)− yd(t))‖2H dt.

By inequality (2), there exist constants C1, C2 > 0 such that for all λ > 0

I1(λ) ≤ C1(T − T1,m)2−2α−2δ
E sup

t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ)

+ C2(T − T1,m)1−2δ
E

T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt. (48)

Moreover, there exists a constant C∗ > 0 such that for all λ > 0

I2(λ) ≤ C∗
E sup

t∈[T1,m,T ]

∥∥[I −R(λ)]Aδz∗m(t)
∥∥2
H

+ C∗
E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥[I −R(λ)]AαB∗
δ

(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2
H

]
,

I3(λ) ≤ C∗
E

T∫

T1,m

‖[I −R(λ)]Φm(t))‖2H dt+ C∗
E

T∫

T1,m

∥∥[I −R(λ)]G∗(A−2αR(λ)Φm(t))
∥∥2
H
dt

+ C∗
E

T∫

T1,m

1[0,τm)(t) ‖[I −R(λ)]Aγ (y(t ∧ τm)− yd(t))‖2H dt.

32



Using equation (4) and Lebesgue’s dominated convergence theorem, we can conclude

lim
λ→∞

I2(λ) + lim
λ→∞

I3(λ) = 0. (49)

Due to inequality (36) and inequality (38), we get for all λ > 0

E

T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt ≤ 7 I4(λ) + 7 I5(λ) + 7 I6(λ), (50)

where

I4(λ) = ĉ(T − T1,m)2−2α
E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥R(λ)AαB∗
δ

(
y(t ∧ τm), R(λ)Aδ [z∗m(t)− z∗m(t, λ)]

)∥∥2
H

]

+ c∗(T − T1,m)E

T∫

T1,m

1[0,τm)(t)‖R(λ)G∗(A−2αR(λ)[Φm(t)− Φm(t, λ)])‖2Hdt,

I5(λ) = ĉ(T − T1,m)2−2α
E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥AαB∗
δ

(
y(t ∧ τm), [I −R(λ)]Aδz∗m(t)

)∥∥2
H

]

+ ĉ(T − T1,m)2−2α
E sup

t∈[T1,m,T ]

[
1[0,τm)(t)

∥∥[I −R(λ)]AαB∗
δ

(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2
H

]
,

I6(λ) = c∗(T − T1,m)E

T∫

T1,m

1[0,τm)(t)
∥∥G∗(A−2α[I −R(λ)]Φm(t))

∥∥2
H
dt

+ c∗(T − T1,m)E

T∫

T1,m

1[0,τm)(t)
∥∥[I −R(λ)]G∗(A−2αR(λ)Φm(t))

∥∥2
H
dt

+ c∗(T − T1,m)1−2γ
E

T∫

T1,m

1[0,τm)(t) ‖[I −R(λ)]Aγ (y(t ∧ τm)− yd(t))‖2H dt.

Again, there exist constants C1, C2 > 0 such that for all λ > 0

I4(λ) ≤ C1(T − T1,m)2−2α
E sup

t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ)

+ C2(T − T1,m) E

T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt. (51)

Similarly to equation (49), we get
lim
λ→∞

I5(λ) + lim
λ→∞

I6(λ) = 0. (52)
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By inequalities (47), (48), (50) and (51), we have for all λ > 0

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) + E

T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt

≤ K1,m


E sup

t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) + E

T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt




+ 7 I2(λ) + 7 I3(λ) + 7 I5(λ) + 7 I6(λ),

where K1,m = max
{
C1(T − T1,m)2−2α−2δ + C1(T − T1,m)2−2α, C2(T − T1,m)1−2δ + C2(T − T1,m)

}
. We chose

the point of time T1,m ∈ [0, T ) such that K1,m < 1. Thus, we get for all λ > 0

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) + E

T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt

≤ 7 I2(λ) + 7 I3(λ) + 7 I5(λ) + 7 I6(λ)
1−K1,m

.

Due to equation (49) and equation (52), we can conclude

lim
λ→∞

E sup
t∈[T1,m,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ) = 0, lim
λ→∞

E

T∫

T1,m

‖Φm(t)− Φm(t, λ)‖2L(HS)(Q1/2(H);H) dt = 0.

Similarly to Lemma 10, we can conclude that the result holds for the whole time interval [0, T ].

7 Design of the Optimal Controls

Based on the results provided in the previous sections, we are able to show a duality principle, which gives us
a relation between the local mild solution of system (14) and the mild solution of system (31). Note that the
local mild solution of system (8) depends on the control u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))). Hence, the mild solution

of system (31) depends on the control u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) as well. Let us denote this mild solution by
(z∗m(t;u),Φm(t;u))t∈[0,T ].

Theorem 9. Assume that the processes (y(t;u))t∈[0,τu) and (z(t;u, v))t∈[0,τu) are the local mild solutions of

system (7) and system (14) corresponding to the controls u, v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))), respectively. More-
over, let the pair (z∗m(t;u),Φm(t;u))t∈[0,T ] be the mild solution of system (31) corresponding to the control

u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). Then we have for fixed m ∈ N

E

τu
m∫

0

〈Aγ(y(t;u)− yd(t)), A
γz(t;u, v)〉H dt = E

τu
m∫

0

〈z∗m(t;u), Fv(t)〉H dt. (53)

Proof. For the sake of simplicity, we omit the dependence on the controls. First, we prove the result for the
approximations derived in Section 6. Let (zm(t, λ))t∈[0,T ] be the mild solution of system (41). Using Lemma 14,
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we have for all λ > 0, all t ∈ [0, T ] and P-a.s.

zm(t, λ) =−
t∫

0

Azm(s, λ) + AδR(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))] ds

+

t∫

0

R(λ)Fv(s)ds +

t∫

0

R(λ)G(R(λ)zm(s, λ))dW (s). (54)

Next, let the pair of stochastic processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solution of system (46). By Lemma
17, we get for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) =−
T∫

t

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

+

T∫

t

1[0,τm)(s)R(λ)G
∗(A−2αR(λ)Φm(s, λ))ds+

T∫

t

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

−
T∫

t

Φm(s, λ)dW (s). (55)

Since the process (z∗m(t, λ))t∈[0,T ] is predictable, we find for all λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) = −E




T∫

0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

∣∣∣∣Ft




+ E




T∫

0

1[0,τm)(s)R(λ)G
∗(A−2αR(λ)Φm(s, λ))ds+

T∫

0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

∣∣∣∣Ft




+

t∫

0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

−
t∫

0

1[0,τm)(s)R(λ)G
∗(A−2αR(λ)Φm(s, λ))ds −

t∫

0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds.

By Proposition 3 with (M(t))t∈[0,T ] satisfying for all t ∈ [0, T ] and P-a.s.

M(t) = −E




T∫

0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

∣∣∣∣Ft




+ E




T∫

0

1[0,τm)(s)R(λ)G
∗(A−2αR(λ)Φm(s, λ))ds+

T∫

0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

∣∣∣∣Ft


 ,

there exists a unique predictable process (Ψm(t, λ))t∈[0,T ] with values in L(HS)(Q
1/2(H);H) such that for all
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λ > 0, all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) = −E




T∫

0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds




+ E




T∫

0

1[0,τm)(s)R(λ)G
∗(A−2αR(λ)Φm(s, λ))ds +

T∫

0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds




+

t∫

0

1[0,τm)(s)
[
Az∗m(s, λ) +AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

−
t∫

0

1[0,τm)(s)R(λ)G
∗(A−2αR(λ)Φm(s, λ))ds −

t∫

0

1[0,τm)(s)A
γR(λ)Aγ (y(s ∧ τm)− yd(s)) ds

+

t∫

0

Ψm(s, λ)dW (s). (56)

Since the pair (z∗m(t;u),Φm(t;u))t∈[0,T ] satisfies equation (55) uniquely, we can conclude Ψm(t, λ) = Φm(t, λ) for
all λ > 0, almost all t ∈ [0, T ] and P-almost surely. Applying Lemma 5 to equation (54) and equation (56), we
get for all λ > 0, all t ∈ [0, T ] and P-a.s.

〈zm(t, λ), z∗m(t, λ)〉H = I1(t, λ) + I2(t, λ) + I3(t, λ) + I4(t, λ) + I5(t, λ),

where

I1(t, λ) =
t∫

0

1[0,τm)(s) 〈zm(s, λ), Az∗m(s, λ)〉H ds−
t∫

0

〈z∗m(s, λ), Azm(s, λ)〉H ds,

I2(t, λ) =
t∫

0

1[0,τm)(s)
〈
zm(s, λ), AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)〉
H
ds

−
t∫

0

〈
z∗m(s, λ), AδR(λ)A−δ [B(R(λ)zm(s, λ), πm(ym(s))) +B(πm(ym(s)), R(λ)zm(s, λ))]

〉
H
ds,

I3(t, λ) =
t∫

0

〈R(λ)G(R(λ)zm(s, λ)),Φm(s, λ)〉L(HS)(Q1/2(H),H) ds

−
t∫

0

1[0,τm)(s)
〈
zm(s, λ), R(λ)G∗(A−2αR(λ)Φm(s, λ))

〉
H
ds,

I4(t, λ) =
t∫

0

〈z∗m(s, λ), R(λ)Fv(s)〉H ds−
t∫

0

1[0,τm)(s) 〈zm(s, λ), AγR(λ)Aγ (y(s ∧ τm)− yd(s))〉H ds,

I5(t, λ) =
t∫

0

〈zm(s, λ),Φm(s, λ)dW (s)〉H +

t∫

0

〈z∗m(s, λ), R(λ)G(R(λ)zm(s, λ))dW (s)〉H .
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By Lemma 16, we obtain for all λ > 0 and P-a.s.

0 = I1(τm, λ) + I2(τm, λ) + I3(τm, λ) + I4(τm, λ) + I5(τm, λ). (57)

Since the operator A is self adjoint, we have for all λ > 0 and P-a.s.

I1(τm, λ) = 0. (58)

Recall that R(λ) is self adjoint on H and y(t) = πm(ym(t)) for all t ∈ [0, τm) and P-almost surely. Using Lemma
2, equation (3) and equation (32), we find for all λ > 0 and P-a.s.

I2(τm, λ) = 0. (59)

Due to Lemma 1 (i), we get A2αA−2α = I, where I is the identity operator on H . Using Lemma 2 and equation
(33), we obtain for all λ > 0 and P-a.s.

I3(τm, λ) = 0. (60)

By equations (57) – (60) and the fact that E I5(τm, λ) = 0, we get for all λ > 0

0 = E I4(τm, λ).

Hence, we have for all λ > 0

E

τm∫

0

〈R(λ)Aγzm(t, λ), Aγ (y(t)− yd(t))〉H dt = E

τm∫

0

〈R(λ)z∗m(t, λ), Fv(t)〉H dt. (61)

Next, we show that the right and the left hand side of equation (61) converges as λ→ ∞. Let (ym(t))t∈[0,T ] and
(zm(t))t∈[0,T ] be the mild solutions of system (8) and system (15), respectively. By definition, we have for all
t ∈ [0, τm) and P-a.s. y(t) = ym(t), ‖ym(t)‖D(Aα) ≤ m and z(t) = zm(t). Using Lemma 15, we obtain

lim
λ→∞

E sup
t∈[0,τm)

‖z(t)− zm(t, λ)‖2D(Aα) = 0. (62)

By the Cauchy-Schwarz inequality, inequality (2) and Lemma 1 (v), there exists a constant C∗ > 0 such that for
all λ > 0

∣∣∣∣∣∣
E

τm∫

0

〈Aγz(t), Aγ (y(t)− yd(t))〉H dt− E

τm∫

0

〈R(λ)Aγzm(t, λ), Aγ (y(t)− yd(t))〉H dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣
E

τm∫

0

〈[I −R(λ)]Aγz(t), Aγ (y(t)− yd(t))〉H dt

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣
E

τm∫

0

〈R(λ)Aγ(z(t)− zm(t, λ)), Aγ (y(t)− yd(t))〉H dt

∣∣∣∣∣∣

2

≤ C∗


E

τm∫

0

‖[I −R(λ)]Aγz(t)‖2H dt+ E sup
t∈[0,τm)

‖z(t)− zm(t, λ)‖2D(Aα)


 .

Using equation (4), equation (62) and Lebesgue’s dominated convergence theorem, we can conclude

lim
λ→∞

E

τm∫

0

〈R(λ)Aγzm(t, λ), Aγ (y(t)− yd(t))〉H dt = E

τm∫

0

〈Aγz(t), Aγ (y(t)− yd(t))〉H dt.
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Recall that the operator F : D(Aβ) → D(Aβ) is bounded. Similarly as above, there exists a constant C∗ > 0
such that for all λ > 0

∣∣∣∣∣∣
E

τm∫

0

〈z∗m(t), Fv(t)〉H dt− E

τm∫

0

〈R(λ)z∗m(t, λ), Fv(t)〉H dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣
E

τm∫

0

〈[I −R(λ)]z∗m(t), Fv(t)〉H dt

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣
E

τm∫

0

〈R(λ)(z∗m(t)− z∗m(t, λ)), Fv(t)〉H dt

∣∣∣∣∣∣

2

≤ C∗


E

T∫

0

‖[I −R(λ)]z∗m(t)‖2H dt+ E sup
t∈[0,T ]

‖z∗m(t)− z∗m(t, λ)‖2D(Aδ)


 .

By equation (4), Lebesgue’s dominated convergence theorem and Lemma 18, we can infer

lim
λ→∞

E

τm∫

0

〈R(λ)z∗m(t, λ), Fv(t)〉H dt = E

τm∫

0

〈z∗m(t), Fv(t)〉H dt.

We conclude that the right and the left hand side of equation (61) converges as λ → ∞ and equation (53)
holds.

Based on the necessary optimality condition formulated as the variational inequality (30) and the duality
principle derived in the previous theorem, we are able to deduce a formula the optimal control has to satisfy.
First, we introduce a projection operator. Note that the set of admissible controls U is a closed subset of the
Hilbert space L2

F(Ω;L
2([0, T ];D(Aβ))). We denote by PU : L2

F(Ω;L
2([0, T ];D(Aβ))) → U the projection onto U ,

i.e.
‖PU (v)− v‖L2

F (Ω;L2([0,T ];D(Aβ))) = min
u∈U

‖u− v‖L2
F (Ω;L2([0,T ];D(Aβ)))

for every v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). It is well known that

u = PU (v)

for v ∈ L2
F(Ω;L

2([0, T ];D(Aβ))) if and only if

〈v − u, ũ− u〉L2
F (Ω;L2([0,T ];D(Aβ))) ≤ 0 (63)

for every ũ ∈ U , see [29, Lemma 1.10 (b)]. We get the following result.

Theorem 10. Let (z∗m(t;u),Φm(t;u))t∈[0,T ] be the mild solution of system (31) corresponding to the control

u ∈ L2
F(Ω;L

2([0, T ];D(Aβ))). Then for fixed m ∈ N, the optimal control um ∈ U satisfies for almost all t ∈ [0, T ]
and P-a.s.

um(t) = −PU

(
F ∗A−2βz∗m(t;um)

)
, (64)

where PU : L2
F(Ω;L

2([0, T ];D(Aβ))) → U is the projection onto U and F ∗ ∈ L(D(Aβ)) is the adjoint operator of
F ∈ L(D(Aβ)).

Proof. Using inequality (30) and Theorem 9, the optimal control um ∈ U satisfies for every u ∈ U

E

τum
m∫

0

〈z∗m(t;um), F (u(t)− um(t))〉H dt+ E

T∫

0

〈
Aβum(t), Aβ(u(t)− um(t))

〉
H
dt ≥ 0.
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By Corollary 6, we have
1[0,τum

m )(t)z
∗
m(t;um) = z∗m(t;um)

for all t ∈ [0, T ] and P-almost surely. Due to Lemma 1 (i), we get A2βA−2β = I, where I is the identity operator
on H . Using Lemma 2, we obtain for every u ∈ U

E

τum
m∫

0

〈z∗m(t;um), F (u(t)− um(t))〉H dt = E

T∫

0

〈
1[0,τum

m )(t)z
∗
m(t;um), F (u(t)− um(t))

〉
H
dt

= E

T∫

0

〈
AβA−2βz∗m(t;um), AβF (u(t)− um(t))

〉
H
dt

= E

T∫

0

〈
AβF ∗A−2βz∗m(t;um), Aβ(u(t)− um(t))

〉
H
dt.

Hence, we find for every u ∈ U

E

T∫

0

〈
−F ∗A−2βz∗m(t;um)− um(t), u(t)− um(t)

〉
D(Aβ)

dt ≤ 0.

We obtain inequality (63) and thus, the solution is given by equation (64). Since the mild solution of system (31)
is a pair of predictable processes (z∗m(t;u),Φm(t;u))t∈[0,T ] such that especially E supt∈[0,T ] ‖z∗m(t;u)‖2D(Aδ) < ∞
holds for every u ∈ L2

F(Ω;L
2([0, T ];D(Aβ))), we get F ∗A−2βz∗m(·;um) ∈ L2

F(Ω;L
2([0, T ];D(Aβ))). This justifies

the application of the projection operator PU .

Remark 8. Let us denote by (y(t))t∈[0,τ) and (z∗m(t),Φm(t))t∈[0,T ] the local mild solutions of system (7) and
the mild solution of system (31), respectively, corresponding to the optimal control um ∈ U . As a consequence
of the previous theorem, the velocity field (y(t))t∈[0,τ) can be computed by solving the following system of coupled
forward-backward SPDEs:





dy(t) = −[Ay(t) +B(y(t)) + FPU

(
F ∗A−2βz∗m(t)

)
]dt+G(y(t))dW (t),

dz∗m(t) = −1[0,τm)(t)[−Az∗m(t)−A2αB∗
δ

(
y(t), Aδz∗m(t)

)
+G∗(A−2αΦm(t)) +A2γ (y(t)− yd(t))]dt

+Φm(t)dW (t),

y(0) = ξ, z∗m(T ) = 0.

Corollary 7. Let the control um ∈ U satisfy equation (64). Then we have for fixed m ∈ N

E

T∫

τum
m

‖um(t)‖2D(Aβ)dt = 0.

Proof. Let (z∗m(t;um),Φm(t;um))t∈[0,T ] be the mild solution of system (31) corresponding to the optimal control
um ∈ U . By Corollary 6, we have E supt∈[τum

m ,T ] ‖z∗m(t;um)‖2D(Aδ) = 0. Moreover, note that the operators in

equation (64) are linear and bounded. Using Lemma 1 (v), there exists a constant C∗ > 0 such that

E

T∫

τum
m

‖um(t)‖2D(Aβ)dt = E

T∫

τum
m

∥∥PU

(
F ∗A−2βz∗m(t;um)

)∥∥2
D(Aβ)

dt ≤ C∗
E sup

t∈[τum
m ,T ]

‖z∗m(t;um)‖2D(Aδ) = 0.
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Finally, we show that the optimal control um ∈ U given by equation (64) satisfies the following sufficient
optimality condition.

Proposition 4 (Theorem 4.23, [45]). Let K be a convex subset of a Banach space B. Moreover, let the functional
f : B → R be twice continuous Fréchet differentiable in a neighborhood of x ∈ K. If x satisfies

dF f(x)[x− x] ≥ 0

for every x ∈ K and there exists a constant κ > 0 such that

dF (f(x))2[h, h] ≥ κ‖h‖2B
for every h ∈ B, then there exist constants ε1, ε2 > 0 such that

f(x) ≥ f(x) + ε1‖x− x‖2B
for every x ∈ K with ‖x− x‖B ≤ ε2.

Note that the set of admissible controls U is a convex subset of the Hilbert space L2
F(Ω;L

2([0, T ];D(Aβ))).
By Corollary 4, the cost functional Jm given by equation (13) is twice continuous Fréchet differentiable in a
neighborhood of the optimal control um ∈ U . Recall that um ∈ U satisfies the necessary optimality condition
(29), which are also valid for the Fréchet derivative due to Corollary 3. Moreover, we have for every v ∈
L2(Ω;L2([0, T ];D(Aβ)))

dF (Jm(um))2[v, v] = E

τum
m∫

0

‖Aγz(t;um, v)‖2H dt+ E

T∫

0

‖Aβv(t)‖2Hdt ≥ E

T∫

0

‖v(t)‖2D(Aβ)dt.

Hence, the assumptions of Proposition 4 are fulfilled and the optimal control um ∈ U given by equation (64) is a
local minimum of the cost functional Jm. Due to Theorem 3, we can conclude that this minimum is also global.

8 Conclusion

In this paper, we considered a control problem constrained by the stochastic Navier-Stokes equations on mul-
tidimensional domains with linear multiplicative noise introduced in [2]. Here, we treated the special case of a
Wiener noise.

We calculated the Gâteaux derivatives of the cost functional up to order two, which coincide with the Fréchet
derivatives. Using the Gâteaux derivative, we stated the necessary optimality condition as a variational inequality.
Introducing the adjoint equation given by a backward SPDE, a duality principle was derived such that we deduced
explicit formulas for the optimal controls. As a consequence, the optimal velocity field can be obtained by solving
a system of coupled forward and backward SPDEs. Moreover, we showed that the optimal control satisfies a
sufficient optimality condition.

In future work, we will include nonhomogeneous boundary conditions such that control problems with bound-
ary controls might be considered.
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[45] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications. Ameri-
can Mathematical Society, 2010.

[46] M. Ulbrich. Constrained optimal control of Navier–Stokes flow by semismooth Newton methods. Systems
Control Lett., 48:297–311, 2003.

[47] W. von Wahl. The Equations of Navier–Stokes and Abstract Parabolic Equations. Vieweg + Teubner Verlag,
1985.

[48] I. Vrabie. C0–Semigroups and Applications. Elsevier, Amsterdam, 2003.

[49] D. Wachsmuth. Regularity and stability of optimal controls of nonstationary Navier–Stokes equations.
Control Cybernet., 34(2):387–409, 2005.

[50] E. Zeidler. Nonlinear Functional Analysis and its Applications III: Variational Methods and Optimization.
Springer, New York, 1985.

43


	1 Introduction
	2 Preliminaries
	2.1 Functional Background
	2.2 Stochastic Processes and the Stochastic Integral

	3 The Stochastic Navier-Stokes Equations
	4 A Generalized Control Problem
	4.1 The Linearized Stochastic Navier-Stokes Equations
	4.2 The Derivatives of the Cost Functional

	5 The Adjoint Equation
	6 Approximation by a Strong Formulation
	6.1 The Forward Equation
	6.2 The Backward Equation

	7 Design of the Optimal Controls
	8 Conclusion

