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Abstract: Criticality of chiral phase transition at finite temperature is investigated in a

soft-wall AdS/QCD model, with two, three degenerate flavors (Nf = 2, 3) and two light

plus one heavier flavor (Nf = 2 + 1). It is shown that in quark mass plane (mu/d − ms)

chiral phase transition is second order at a certain critical line, by which the whole plane

is divided into first order and crossover regions. The critical exponents β and δ, describing

critical behavior of chiral condensate along temperature axis and light quark mass axis,

are extracted both numerically and analytically. The model gives the critical exponents

of the values β = 1
2 , δ = 3 and β = 1

3 , δ = 3 for Nf = 2 and Nf = 3 respectively. For

Nf = 2 + 1, in small strange quark mass (ms) region, the phase transitions for strange

quark and u/d quarks are strongly coupled, and the critical exponents are β = 1
3 , δ = 3;

when ms is larger than ms,t = 0.290GeV, the dynamics of light flavors (u, d) and strange

quarks decoupled and the critical exponents for ūu and d̄d becomes β = 1
2 , δ = 3, exactly

the same as Nf = 2 result and the mean field result of 3D Ising model; between the two

segments, there is a tri-critical point at ms,t = 0.290GeV, at which β = 1
4 , δ = 5. In some

sense, the current results is still at mean field level, and we also showed the possibility to go

beyond mean field approximation by including the higher power of scalar potential and the

temperature dependence of dilaton field, which might be reasonable in a full back-reaction

model. The current study might also provide reasonable constraints on constructing a

realistic holographic QCD model, which could describe both chiral dynamics and glue-

dynamics correctly.
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1 Introduction

Spontaneous chiral symmetry breaking, as well as color confinement, characterize the vac-

uum of Quantum Chromodynamics (QCD), which is considered as fundamental theory of

the strong force. It is believed that temperature effect could drive a transition between

the chirally asymmetric phase at low temperature and a chirally symmetric phase at high

temperature. Understanding the nature of this phase transition (usually called ‘chiral

phase transition’), as well as deconfinement phase transition, are of great importance from

theoretical, phenomenological and experimental aspects [1–10].

As pointed out in [1], QCD phase transition might depend on the number of flavors Nf

and masses of quarks (mu,md and ms). Based on theoretical analysis, model calculations

and lattice simulations, the expected phase structure in quark mass plane is summarized

in the so called ‘Columbia plot’ [11], as shown in figure 1 (taken from [12], see also [3, 13]

for other similar forms). In this sketch plot, both in the upper right and lower left corners,

around the three-flavor chiral limit (mu,d,s = 0) and pure gauge (mu,d,s = ∞) limit respec-

tively, the phase transitions are of first order. In the intermediate part, the transition is

widely accepted to be a continuous one, usually called ‘crossover’. The boundaries between

the first order regions and the crossover region are second order lines (the blue and red solid

lines in figure 1), at which the system become critical. Since the long range infrared fluctu-

ations dominate at the critical point, only the dimensionality and relevant symmetries play

important roles in the critical behavior while the microscopic details of the system are less

relevant (for more details, please refer to [14, 15]). Understanding the critical properties
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Figure 1. The expected phase diagram in the quark mass plane mu/d−ms space (Taken from [12]).

and seeking the location of the second order lines are quite meaningful, since they would

affect the location [16, 17] or even the existence [18] of the critical endpoint on the QCD

phase diagram (in T − µ plane), which is one of the essential goals of Relativistic Heavy

Ion Collisions [19–21].

Generally, the second order lines are distinguished by the universality classes, described

by critical behavior of the thermodynamical quantities or the corresponding order param-

eters. Near the small quark mass corner, chiral symmetry in Lagrangian level is a good

approximation and the transition is depicted well by chiral condensate (also called ‘quark

condensate’) σ ≡ 〈ψ̄ψ〉. Chiral symmetry is broken and restored when σ 6= 0 and σ = 0 re-

spectively. Near the critical point, the scaling behavior of chiral condensate are represented

by critical exponents (β, δ)1 along different axis in the following way:

σ ≃ tβ , σ ≃ (m−mc)
1/δ, (1.1)

with t = Tc−T
Tc

and Tc,mc the critical temperature and quark mass respectively. From mean

field calculation, in which the correlation of fluctuations are neglected, one gets β = 1
2 , δ = 3

in three dimension, which is not in agreement with experimental result [22].

Many efforts have been made on going beyond mean field approximation for QCD phase

transition, e.g., from lattice QCD (LQCD)simulations [23–27], functional renormalization

group (FRG) [30, 31], Dyson-Schwinger equations (DSEs) [28, 29], ǫ expansion [1, 32] and

so on. Despite of the possibilities of first order transition in two-flavor chiral limit due to

UA(1) restoration [33–36], it is summarized that when mu/d = 0 and ms is sufficiently large

(the solid blue line in figure 1), the second order line belongs to O(4) class, with β ≈ 0.385,

1In this work, we omit α, γ related to C ≃ tα, χm ≡ ∂σ
∂m

≃ tγ , since in the current model the calculation

of specific heat C and susceptibility χm with finite quark mass requires the regularization of free energy,

which is out of the scope of this paper.
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δ ≈ 4.824 [37–39]; while when mu,d,s is not very large (the solid red line in the lower-left

corner) it belongs to Z(2) classes, with β ≈ 0.327, δ ≈ 4.789 [40–42]. Between the Z(2) and

O(4) segments, there might be a tri-critical point. The relative locations of the tri-critical

point and physical quark masses would affect the properties of critical end point in T − µ

plane, when considering the curvature of the critical surface at µB = 0 [12, 18, 43] together.

Generally speaking, lattice simulations are the most reliable first principle method deal-

ing with strong interactions. However, when the quark mass is small, lattice is expensive,

and it is still hard to control when chemical potential is large. So it is better to investigate

this issue from different kinds of method and try to summarize reliable information from

varies of ways. Besides the traditional methods, the AdS/CFT correspondence [44–46]

(see also reviews [47–50]) provides a new approach for understanding non-perturbative

physics of QCD. For critical phenomena in bottom-up holographic QCD, it is shown that

in Einstein-Maxwell-Dilaton model the critical exponents of thermodynamical quantities

near the critical end pont are still in the mean field level [51–55], due to the suppression

of large N effect. However, from a more general Gauge/Gravity duality point of view and

going out of the limitation of large N phenomenologically, if one believes that the holo-

graphic approach could describe the strong correlation system, one might expect better

description of critical phenomena, which is governed by the strong correlations instead of

the interaction details. Besides, the critical exponents from the order parameter, chiral

condensate, have not been discussed in those models. Therefore, it is still quite interesting

to study critical behavior of chiral phase transition, and try to see whether there are clues

to go beyond mean field approximation.

In bottom-up holographic approach, chiral phase transition has been studied by several

groups [56–72]. In the soft-wall AdS/QCD model [73], which gives a good description of

both chiral symmetry breaking and hadron spectra, the structure of chiral critical line

in quark mass plane agrees very well with the ‘Columbia plot’ in figure 1 [67, 70, 71].

The critical scaling behavior of chiral condensate along the axis of external field has been

studied in a bottom-up holographic model [74]. However, the critical exponents β and

δ of chiral critical point along T and mq axis, as defined in eq. (1.1), has not yet been

analyzed. Accordingly, considering the theoretical and phenomenological importance of

critical phenomena of QCD, we will present an analysis on the critical scaling of chiral

phase transition and try to extract the critical exponents in soft-wall AdS/QCD models.

The paper is organized as follows. We will firstly give a brief introduction about soft-

wall AdS/QCD models in section 2. Then in section 3, we will analyze the critical behavior

of two-flavor soft-wall model. We will give a constraint on the construction of dilaton field

from chiral phase transition. We will also show the possibilities to go beyond mean field

approximation in two-flavor case. Then, in section 4, we will turn to three-flavor case with

an additional t’hooft determinant interaction term representing the instanton effect. In

section 5, we will analyze the Nf = 2 + 1 cases, with mu = md 6= ms. Finally, a short

summary is given in section 6. Moreover, due to the compactness of description, we leave

some technical details on extracting the critical exponents analytically to the appendix.

– 3 –
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2 Chiral dynamics in soft-wall models

As mentioned in the introduction part, the soft-wall model [73] offers a good start point

to describe linear confinement and chiral symmetry breaking, which are the two most

important features of low energy QCD. Its extended models [75–88] could describe hadron

physics in good agreement with experimental data. The action of soft-wall model takes the

form [73]

S = −
∫

d5x
√−ge−ΦTr(DMX+DMX + VX(|X|)). (2.1)

Here, since we will only focus on describing chiral phase transition at finite temperature, we

neglect the part related to gauge field in the original soft-wall model, which is expected to

be vanished at zero chemical potential background. In the above action, X is the Nf ×Nf

matrix-valued scalar field, Φ is the dilaton field, VX(|X|) is the scalar potentail, M is

the space time index taking values from 0, 1, . . . , 4 and g is the determinant of the metric

gMN . The above action is invariant under SUL(Nf ) × SUR(Nf ) gauge transformation.2

In this work, we will mainly consider Nf = 2, 3 along with Nf = 2 + 1 (Nf = 3 with

mu = md 6= ms), and take VX = M2
5X

+X + λ|X|4 + γRe[det(X)], with M2
5 = −3 (we

will always take the AdS radius L = 1 in this work) from the AdS/CFT prescription

M2
5 = (∆ − p)(∆ + p − 4) [46] by taking ∆ = 3, p = 0 . The coefficient γ of the t’hooft

determinant term will reduce to mass term in two-flavor case, and we will only consider this

term in three-flavor case. The term λ|X|4 has been shown to be important for the meson

spectra and spontaneous chiral symmetry breaking, and we will take positive value of λ.

The scalar field Xα,β is supposed to be dual to the operator ψ̄αψα, with ψ the quark

field and α the flavor index. In QCD vacuum, only the diagonal components of this

operator has non-zero expectation value, which is just the chiral condensate. Therefore,

in holographic framework, we assume the diagonal structure of the solution of X, i.e.

X = Diag{χu, χd, . . .}. Phenomenologically, the configuration of the dilaton filed should

be fixed by the experimental data of meson spectra and the requirement of dynamical

breaking of chiral symmetry. In the following study, we will follow our previous study [64]

and take

Φ(z) = −µ2
1z

2 + (µ2
1 + µ2

0)z
2 tanh(µ2

2z
2), (2.2)

which approaches −µ2
1z

2 when z → 0 and µ2
0z

2 when z → ∞, satisfying the requirement

of dynamical chiral symmetry breaking and linear confinement respectively. As in [64], the

free parameters are fixed to be

µ0 = 0.430GeV, µ1 = 0.830GeV, µ2 = 0.176GeV. (2.3)

In view of the symmetry in 4D theory at finite temperature, the metric ansatz would be

taken as

dS2 = gMNdxMdxN = e2A(z)(−f(z)dt2 +
1

f(z)
dz2 + dxidx

i). (2.4)

2Of course, it should be considered in the full form with gauge filed.
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Strictly, A, f,Φ could be solved self-consistently from certain kinds of gravity system(like

what has been done in [80, 82, 89, 90]). Here, for simplicity, we will consider the AdS-

Schwarzchild (AdS-SW) black hole solutions

A(z) = − log(z), (2.5)

f(z) = 1− z4

z4h
. (2.6)

In the above expression, zh is the horizon where f(z) = 0, and it is related to the temper-

ature T by formula

T =
1

πzh
. (2.7)

Generally, one can start from three-flavor case and assume

X =









χu(z)
√

2
0 0

0 χd(z)
√

2
0

0 0 χs(z)
√

2









. (2.8)

If mu 6=md 6=ms, one expects χu 6= χd 6= χs. Then the action eq. (2.1) reduces effectively to

S[χu, χd, χs] = −
∫

d5x
√−ge−Φ

{

Σi=u,d,s

[

gzz

2
χ

′2
i − 3

2
χ2
i + v4χ

4
i

]

+ 3v3χuχdχs

}

. (2.9)

Here χ
′

denotes the derivative with respective to z, and v3 ≡ γ

6
√

2
, v4 ≡ λ

4 are redefinition

of λ, γ. Then one can derive the equation of motion for χu, χd, χs as follows.

χ
′′

u +

(

3A
′

s − Φ
′

+
f

′

f

)

χ
′

u +
e2As

f
(3χu − 3v3χdχs − 4v4χ

3
u) = 0, (2.10)

χ
′′

d +

(

3A
′

s − Φ
′

+
f

′

f

)

χ
′

d +
e2As

f
(3χd − 3v3χuχs − 4v4χ

3
d) = 0, (2.11)

χ
′′

s +

(

3A
′

s − Φ
′

+
f

′

f

)

χ
′

s +
e2As

f
(3χs − 3v3χuχd − 4v4χ

3
s) = 0. (2.12)

Considering only two degenerate flavors with mu = md, χs = 0 and taking v3 = 0, one has

χu = χd ≡ χ and reaches

χ
′′

+

(

3A
′

s − Φ
′

+
f

′

f

)

χ
′

+
e2As

f
(3χ− 4v4χ

3) = 0. (2.13)

Similarly, if considering three degenerate flavors, one has χu = χd = χs ≡ χ and gets

χ
′′

+

(

3A
′

s − Φ
′

+
f

′

f

)

χ
′

+
e2As

f
(3χ− 3v3χ

2 − 4v4χ
3) = 0. (2.14)
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Moreover, if considering two degenerate light flavos plus one heavier flavor, then one has

χu = χd ≡ χl 6= χs and the above equations reduce to

χ
′′

l +

(

3A
′

s − Φ
′

+
f

′

f

)

χ
′

l +
e2As

f
(3χl − 3v3χlχs − 4v4χ

3
l ) = 0, (2.15)

χ
′′

s +

(

3A
′

s − Φ
′

+
f

′

f

)

χ
′

s +
e2As

f
(3χs − 3v3χ

2
l − 4v4χ

3
s) = 0. (2.16)

The asymptotic solution near the boundary z = 0 could be extracted perturbatively

order by order as

χl = clz − 3clcsv3z
2 −

(

µ2
1 − 2c2l v4 +

9

2
c2sv

2
3 +

9

2
c2l v

2
3

)

clz
3 log(z) + dlz

3 + . . . , (2.17)

χs = csz − 3c2l v3z
2 − (µ2

1 − 2c2sv4 − 9c2l v
2
3)csz

3 log(z) + dsz
3 + . . . . (2.18)

Here, cl, dl, cs, ds are four integral constants at ultraviolet boundary of the two coupled

second order ordinary derivative equations (ODEs) eqs. (2.15), (2.16). Since X is supposed

to be dual to chiral condensate, one should map the integral constants to the sources and

the operators (ml,ms, σl ≡ 〈ūu(d̄d)〉, σs ≡ 〈s̄s〉) as [73]

cl = mlζ, (2.19)

dl =
σl
ζ
, (2.20)

cs = msζ, (2.21)

ds =
σs
ζ
, (2.22)

with ζ =
√

3
2π fixed by matching the two point correlation function of 〈ψ̄ψ(q)ψ̄ψ(0)〉 to the

4D calculation [91]. In the calculation, the quark mass ml,ms should be considered as a

physical input. Then one needs two additional boundary conditions in order to solve the

two second order ODEs. Fortunately, we found that there are two natural conditions that

χl, χs should be regular everywhere, especially at horizon

|χl(zh)| < ∞, |χs(zh)| < ∞. (2.23)

Input the quark masses and the above boundary conditions, one can use a shooting method

and solve σl, σs out of the equations of motion eqs. (2.15), (2.16). The procedure for solving

two degenerate and three degenerate flavor could be simply got by taking ml = ms ≡ m

and σl = σs ≡ σ, and we will not repeat here. Based on the above preparation, one

can investigate the temperature and quark mass dependent behavior of chiral condensate

from soft-wall AdS/QCD models. For the progress in this direction, please refer to [62–

71]. In the following sections, we will focus on investigating the critical behavior of chiral

condensate in different situations.

– 6 –
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Figure 2. Chiral condensate σ as a function of temperature T for cases Nf = 2 and Nf = 3.

The corresponding dilaton profile are shown in eqs. (2.2)–(2.3). The metric is taken as the AdS-

Schwarzchild black hole solution as shown in eqs. (2.5), (2.6). Panel.(a) and (b) are results solved

from eq. (2.13) and eq. (2.14) respectively. In panel.(a), the results of m = 0, 5, 15MeV for two

degenerate quarks with v3 = 0, v4 = 8 are shown in red-solid, blue-dashed, cyan-dashed lines

respectively. The black dot denotes the critical point of the second order phase transition at

Tc,2 = 0.1515 . . .MeV,mc,2 = 0, σc,2 = 0. In panel.(b), the results of m = 0,10,37,50MeV for

three degenerate quarks with v3 = −3, v4 = 8 are shown in red-dashed, blue-dashed, black-solid,

cyan-dashed lines respectively. The black dot denotes the critical point of the second order phase

transition at Tc,3 = 0.1888 . . .GeV, mc,3 = 0.036871 . . .GeV, σc,3 = 0.02724 . . .GeV3, at which
dσ
dT = ∞. The blue rectangle and triangle dots are labeled for the description in appendix A.2.

3 Critical exponents with two degenerate light quarks

Firstly, we will consider the case with two degenerate light quarks in the model with dilaton

configuration defined in eqs. (2.2), (2.3) and scalar interaction with v3 = 0, v4 = −8. Here,

following [63, 64], v3 is taken to be zero due to the absence of t’ hooft determinant term

in two flavor case, while v4 is chosen to set the vacuum value of chiral condensate to be

around (300MeV)3, at the same order of the values taken in 4D effective models. The

equations of motion for this case are shown in eq. (2.13). The temperature and quark mass

dependent behavior of chiral condensate have been carefully studied in [63, 64]. For the

convenience of description, part of the results are displayed again in figure 2(a).

In figure 2(a), we give the results of m = 0, 5, 15MeV for two degenerate quarks with

v3 = 0, v4 = 8 in red-solid, blue-dashed, cyan-dashed lines respectively. From the figure,

we could see that there are transitions between the low temperature chirally asymmetric

phase with chiral condensate around σ0 = 0.035GeV3 and the high temperature chirally

symmetric phase with almost vanished chiral condensation. Here, in a strict sense, chiral

symmetry is restored when σ is exactly zero. However, since finite quark mass would break

chiral symmetry of QCD Lagrangian explicitly, one might consider the small value tails

in figure 2(a) as effects of explicit breaking from small quark mass. In this sense, we also

– 7 –
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Figure 3. Temperature and quark mass dependence of chiral condensate with two degenerate

quarks near the critical point Tc,2 = 0.1515 . . .MeV,mc,2 = 0, σc,2 = 0. The corresponding dilaton

profile are shown in eqs. (2.2)–(2.3) and the scalar potential parameters are taken as v3 = 0, v4 = 8.

Panel.(a) gives ln( σσ0
) as a function of ln(t), with fixed quark mass m = mc,2 = 0. The blue dots

are model calculation and the black solid straight line are linear fitting of the dots, which has the

form y = 0.648+0.492x. Panel.(b) gives ln( σσ0
) as a function of ln(mΛ ), with Λ = 1GeV a parameter

introduced to make the quantity inside the logarithmic function dimensionless. The blue dots are

model calculation and the black solid straight line are linear fitting of the dots, which has the form

y = 0.480 + 0.333x.

consider the high temperature tails as symmetry restored phase. It is easy to see that in

chiral limit with m = 0 (the red solid line in figure 2(a)) the phase transition is a second

order transition, while it turns to be a crossover one at any finite quark mass (m > 0).

The critical point (the black dot in figure 2(a)) of the second order transition locates at

Tc,2 = 0.1515 . . .MeV,mc,2 = 0, σc,2 = 0.3 According to the definition of critical exponent

β in eq. (1.1), we tune the temperature T slightly below Tc,2 and solve the corresponding

chiral condensate with fixing quark massm = mc,2 = 0. From eq. (1.1), the critical behavior

of chiral condensate near Tc,2 obeys certain critical scaling σ = σ−σc,2 ∝ (Tc,2−T )β . Then

one expects that ln(σ−σc,2) = ln(σ) will depend linearly on ln(Tc,2−T ) near Tc,2. The slope

of the linear line is just the critical exponent β. Since σ, T are not dimensionless quantities,

we rescale them with σ0, Tc,2 and consider ln( σ
σ0
) as a function of ln(t) ≡ ln(1− T

Tc,2
). It is

easy to understand that this rescaling would not change the critical exponent. Therefore,

we plot ln( σ
σ0
) as a function of ln(t) from ln(t) = −25 to ln(t) = −5 in figure 3(a). From

the plot, we find that all the data points (the blue dots in figure 3(a)) lie perfectly in a

straight line. From a best fitting, the straight line is of the form y = 0.648 + 0.492x with

the slope 0.492. This fact shows that numerically β = 0.492, which is very close to the

value β = 1
2 from 3D mean field calculation.

3In order to determine the critical exponents, one has to determine the critical point to very high

accuracy, but we will not show the digits all here.

– 8 –



J
H
E
P
0
1
(
2
0
1
9
)
1
6
5

Similarly, the critical exponent δ could be extracted based on eq. (1.1). We tune quark

mass m slightly larger than critical value mc,2 = 0 and solve σ with fixing temperature

T = Tc,2. It is expected that σ = σ − σc,2 ∝ (m−mc,2)
1/δ = m1/δ near the critical point.

Equivalently, ln( σ
σ0
) should depends on ln(mΛ ). Here, since mc,2 = 0, we introduced a mass

scale Λ to keep the quantity inside the logarithmic function dimensionless. Since the exact

value of Λ will not affect the slope, we simply take it to be Λ = 1GeV. Then we plot ln( σ
σ0
)

as a function of ln(mΛ ) from ln(mΛ ) ≈ −18 to ln(mΛ ) ≈ −11 in figure 3(b). It is quite obvious

that the numerical data points of (ln(mΛ ), ln( σΛ)) (the blue dots in figure 3(b)) lie perfectly

in a straight line, which reveals the critical scaling. From a best linear fitting, the straight

line has the form 0.480 + 0.333x. From our definition, the slope of this straight line is just

the inverse of critical exponent δ. So, numerically, we get δ ≈ 1
0.333 = 3.003, also very close

to the value δ = 3 from 3D mean field calculation.

The numerical analysis in the above reveals β = 0.492, δ = 3.003. This result is so close

to the 3D mean filed result β = 1
2 , δ = 3 that one might suspect that the difference comes

just from numerical errors. Usually, one can not study the critical scaling exactly at the

critical temperature, which might be the largest source of the numerical errors. Hence, to

be more accurate, we try to investigate the critical scaling behavior analytically. Note that

the critical point locates at Tc,2 = 0.1515 . . .MeV,mc,2 = 0, σc,2 = 0, where both quark

mass and chiral condensate are zero. The critical solution of χ(z) vanishes also. Thus, near

the critical point, χ(z) should be very small and could be expand according to the small

deviation from the critical point δT ≡ Tc,2 − T and δm ≡ m−mc,2. For later convenience,

we can make a coordinate transformation z = zhs = s
πT to eq. (2.13), under which the

horizon would be set to s = 1. Then eq. (2.13) becomes

χ̈(s)−
(

3

s
+

4s3

1− s4
+ φ̇T (s)

)

χ̇(s)− 1

s2(1− s4)
(3− 4v4χ

3) = 0. (3.1)

Here φT (s) ≡ Φ( s
πT ) is the dilaton in new coordinate, and the ‘dot’ in φ̇T (s) representing

derivative with respect to s. Unlike the original form Φ(z), the apparent form of φT (s) will

depend on T , so we label it with a lower index T . The expansion of χ near the critical

point would be

χ = χmc,1δT
ǫ1 + χmc,2δT

ǫ2 + . . . (3.2)

under small T deviation δT together with fixing m = mc,2 = 0, and

χ = χTc,1δm
κ1 + χTc,2δm

κ2 + . . . (3.3)

under small m deviation δm together with fixing T = Tc,2. Without loss of generality, we

assume that the power ǫi and κi satisfy 0 < ǫi < ǫi+1 and 0 < κi < κi+1. The functions

χmc,i, χTc,i should be considered as functions of s with fixing m = mc,2 and T = Tc,2.

Inserting the expansion into eq. (3.1), one can obtain the equation for χmc,i and χTc,i

order by order perturbatively. Studying the properties of the solution χmc,i and χTc,i, it

is possible to get the information of ǫi and κi. Since the analytical derivation is quite

technical, we leave it to appendix A.1 and only discuss the main physical result here (for

details, please refer to appendix A.1).
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Firstly, we go to the leading expansion with respect to δT . It is not hard to get

χ̈mc,1 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇mc,1 +
3

s2(1− s4)
χmc,1 = 0. (3.4)

All the functions above should be considered as functions of s. Since we are expanding

around the critical point, we have taken T = Tc,2 in φT . The other condition m = mc,2 =

0 are reflected in the boundary condition of χmc,1. Note that the boundary z = 0 is

transformed to s = 0. The boundary expansion in z coordinate χ(z) = mqζz+ . . . becomes
mζ
πT s + . . .. So, keeping m = mc,2 = 0 means keeping χ̇0 ≡ χ̇mc,1(s = 0) = 0. In another

side, the regularity of χ requires the leading expansion taking the form χmc,1(s) = c0(1 +
3
4(s−1)+o((1−s))). Actually, all these conditions give us a very simple criteria on whether

the dilaton profile could describe the spontaneous symmetry breaking or not. Given that

eq. (3.4) is linear, we can simply take c0 = 1 and solve it. Supposing that now we are

dealing with a general dilaton profile φT (s). If φT (s) could give a second order phase

transition in chiral limit from σ 6= 0 to σ = 0. Then, there should be a certain value of T ,

at which the solution of χmc,1(s) satisfying both χmc,1(s) = c0(1+
3
4(s−1)+o((1−s))) and

χ̇0 = 0. One can solve eq. (3.4), replacing φ̇Tc with φ̇T and taking c0 = 1. After getting the

solution, one can extract χ̇0. If there is a certain T1 giving χ̇0, then the dilaton profile can

give second order phase transition in chiral limit and T1 is just the transition temperature.

In order to make this point clearer, we take three well studied dilaton configurations

(see ref. [64]), Φ(z) in eq. (2.2) and Φ(z) = ±z2, as examples to show it in an explicit way.

Inserting the dilaton profiles and taking m = 0, v3 = 0, v4 = 8, one can get the temperature

dependent chiral condensate from eq. (3.1). The results are shown in figure 4(a). From

the figure, chiral symmetry breaking and restoration are realized in cases with dilaton in

eq. (2.2) and Φ = −z2, while no symmetry breaking appears in case with Φ = z2. In

figure 4(b), we calculate χ̇0 from eq. (3.4) with boundary condition c0 = 1. From this

figure, we could see that in the results of both Φ(z) = −z2 and dilaton in eq. (2.2) there

is an intersect with χ̇0 = 0, while nothing in the results of Φ(z) = z2. The temperature

of the intersects are T = 0.1515 . . .GeV and T = 0.198 . . .GeV for dilaton in eq. (2.2) and

Φ(z) = −z2 respectively. Comparing to figure 4(a), we could see that they are exactly the

same as the second order phase transition temperature in the corresponding cases. At large

T region, χ̇0 of all the three cases will approach a limit value − Γ2( 1
4
)

2
√

π(ψ(0)( 1
4
)−ψ(0)( 3

4
))
≈ 1.18,

which could be extracted by solving the equations setting φ(s) ≡ 0. Here, ψ(n)(z) is the

nth derivative of the digamma function ψ(z) ≡ Γ
′

(z)
Γ(z) .

Therefore, by solving the simple linear eq. (3.4), one can check whether the dilaton

profile could give a well description of chiral phase transition in chiral limit. The transition

temperature could be extracted from eq. (3.4) as well, which would be much easier than

from the full solution. Since eq. (3.4) depends only on the mass term of the scalar inter-

action, in two-flavor case the second order transition temperature depends only on dilaton

configuration if the metric is fixed to AdS-SW black hole solution. The scalar potential

will not affect the location of σ = 0, which is consistent with our previous numerical study

in [64]. This conclusion could be considered as a first test on the dilaton profile.
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Figure 4. Temperature dependent chiral condensate (panel.(a)) and the corresponding solution of

χ̇0 (panel.(b)), with dilaton in eq. (2.2)(the red solid lines), Φ = −z2 (the blue dashed lines), Φ = z2

(the cyan dashed lines). The scalar potential takes the form v3 = 0, v4 = 8. The red and blue dots

represent the transition temperature, which locates at T = 0.1515 . . .GeV and T = 0.1980 . . .GeV

for dilaton in eq. (2.2) and Φ = −z2 respectively. The high temperature limit of all the three lines

are the same and approach − Γ2( 1
4 )

2
√

π(ψ(0)( 1
4 )−ψ

(0)( 3
4 ))

≈ 1.18, with ψ(n)(z) the nth derivative of the

digamma function ψ(z) ≡ Γ
′

(z)
Γ(z) .

Up to the leading expansion, one does not have the information about the value of ǫ1
and κ1. So we can turn to higher order expansion. We find that ǫ1 = 1

2 and κ1 = 1
3 when

taking dilaton in eq. (2.2) and scalar interaction v3 = 0, v4 = 8 (for the details, please refer

to appendix A.1). Given that χ ≃ σ
ζ z

3 + o(z3) in chiral limit, one can easy get σ ∝ δT ǫ1

and σ ∝ δmκ1 from the near critical point expansion. So one has β = ǫ1 = 1
2 , δ = 1

κ1
= 3

in the given two-flavor model. So, the exact value of the critical exponents β and δ do

equal to the 3D mean field result β = 1
2 and δ = 3. Moreover, we find that for dilaton

profile independent on temperature and for scalar interaction v3 = 0, v4 = 8, the critical

exponents are always β = 1
2 , δ = 3, independent on dilaton configuration. It seems that

the current model can only produce a mean field result. Here, different from [52], we are

considering a more realistic case with finite Nf , Nc and the suppression of large N effect

should not be too large. There should be other reasons that suppress the contributions of

the long wave length fluctuations.

3.1 Go beyond mean field approximation

Going back to the current model, if we consider the dilaton field representing dynamics

from gluon sectors, it is quite natural that it has its dynamics also. In a full back-reaction

framework, one can imagine that the dilaton field should present some kinds of critical

scaling behavior, which is neglected in the current model. For example, in holographic

superconductor model [92], at the critical point, the complex scalar field might present a
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scaling behavior Φ ∝ (Tc − T )1/2. But unlike QCD, the superconductor model discussed

requires non-zero chemical potential to introduce instabilities and phase transition. A

more relevant study might be the one discussed in Einstein-scalar theory in ref. [93]. When

properly tuning the potential of the real scalar field without chemical potential, the system

would undergo second order phase transition and the fields would present certain non-

analytical scaling around the transition point. Furthermore, in the current model, we only

consider a simple version of scalar interaction with only the quartic potential, which could

be extend to higher order interactions. In order to taking this effect into account, instead

of studying the full back-reaction, we take a simple dilaton field4

φT (s) = Φ
( s

πT

)

(

1 + cγ

(

1− T

Tc

)γ)

(3.5)

to mimic the critical scaling behavior of dilaton field in the full back-reaction scenario. Here

Φ(z) is just the dilaton in eq. (2.2), (2.3), and Tc is the corresponding transition temperature

in chiral limit Tc,2 = 0.1515 . . .GeV. The scaling exponent γ and the coefficient cγ are

considered as free parameters. We also consider a more general scalar interaction with

n-th power of χ. Then eq. (3.1) becomes

χ̈−
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇− 1

s2(1− s4)
(3− nvnχ

n−1) = 0. (3.6)

Inserting the dilaton field eq. (3.5) into the above equation and doing the same expansion,

one reaches (for the details, please refer to appendix A.1)

β =
γ

n− 2
, δ = n− 1. (3.7)

From the analysis in appendix A.1, we find that the coefficient depends only on γ, n.

The coefficient of vn will not affect the critical exponents in two-flavor case. If one takes

γ = 1, n = 4, then the results β = 1
2 , δ = 3 from the model in the above section is

reproduced. In figure 5, we also test this formula with several groups of γ, cγ , n numerically.

As mentioned above, vn would not affect β, δ, in all these numerical tests, we take vn = 1

for different n. From the slope of the linear fitting, we get β = 0.356, 0.250, 0.209, 0.167

for {n = 4, γ = 2
3 ,

γ
n−2 = 1

3 ≈ 0.333}, {n = 6, γ = 1, γ
n−2 = 1

4 ≈ 0.250}, {n = 4, γ = 2
5 ,

γ
n−2 = 1

5 ≈ 0.200}, {n = 8, γ = 1, γ
n−2 = 1

6 ≈ 0.166} respectively. As for δ, the numerical

results are δ = 3.003, 5.000, 6.993 for {n = 4, γ = 1, n− 1 = 3}, {n = 6, γ = 1, n− 1 = 5},
{n = 8, γ = 1, n − 1 = 7} respectively. We could see that both the numerical results of δ

agree very well with the analytical result δ = n−1. Up to maximal numerical errors 7%, the

numerical results of β agree with the analytical result β = γ
n−2 . The main numerical errors

might come from the deviation of the numerical Tc from the exact transition temperature.

As a short summary, though the results in temperature independent dilaton model are

still at mean field level, we show the possibility to go beyond mean field approximation us-

ing an extended dilaton field with critical scaling and higher power scalar potential. In such

4Here, for γ = 1, cγ = 0 we mean that there is no additional term in eq. (3.5), and of course the first

expansion of Φ would be at order Tc − T .
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Figure 5. Temperature and quark mass dependence of chiral condensate near the critical point

Tc,2 = 0.1515 . . .MeV,mc,2 = 0, σc,2 = 0 with the extended dilaton profile in eq. (3.5) and higher

power of scalar potential χn. Panel.(a) gives ln( σΛ ) as a function of ln(1− T
Tc
), with fixed quark mass

m = mc,2 = 0. Λ = 1GeV is a parameter introduced to make the quantity inside the logarithmic

function dimensionless. The red circle, blue triangle, cyan rectangle and black cross dots are model

calculation for {n = 4, γ = 2
3 , cγ = 0.5}, {n = 6, γ = 1, cγ = 0},{n = 4, γ = 2

5 , cγ = 0.5}, and
{n = 8, γ = 1, cγ = 0} respectively. The solid straight lines are the corresponding linear fitting of

the dots, which has the form y = −1.882 + 0.356x, y = −1.749 + 0.250x, y = −2.063 + 0.209x and

y = −1.806+0.167x respecitvely. Panel.(b) gives ln( σΛ ) as a function of ln(mΛ ). The red circle, blue

triangle and cyan rectangle are model calculation for {n = 4, γ = 1, cγ = 0}, {n = 6, γ = 1, cγ = 0}
and {n = 8, γ = 1, cγ = 0} respectively. The solid straight lines are the corresponding linear fitting

of the dots, which has the form y = −2.184+0.333x, y = −2.075+0.200x and y = −2.030+0.143x

respecitvely.

an simple extension, one can derive the exact critical exponents as β = γ
n−2 , δ = n− 1.5 If

one build a model with full back-reaction, it is possible to go beyond the mean field approx-

imation. However, this is out of the scope of this work, and we will leave it to the future.

4 Critical exponents with three degenerate light quarks

In this section, we will continue to analyze the case with three degenerate light quarks.

Here, following [63, 64], we keep v4 = 8 as two flavor case and take v3 = −3 to set the

phase transition temperature to be around 173MeV, which is close to the value of transition

temperature extracted from lattice simulations for Nf = 2+1. Under the same coordinate

transformation in the last section, the equation of motion for the scalar field χ becomes

χ̈(s)−
(

3

s
+

4s3

1− s4
+ φ̇T (s)

)

χ̇(s)− 1

s2(1− s4)

(

3− 3v3χ
2 − 4v4χ

3
)

= 0. (4.1)

5We emphasize that this results are valid only for our simplest settings. In a full back-reaction model, the

background metric might be changed and it could also have some kinds of critical scaling in the metric. Here,

we just want to use the simple toy model to show the possibility to go beyond mean field approximation.
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Figure 6. Temperature and quark mass dependence of chiral condensate near the critical point

Tc,3 = 0.1888GeV,mc,3 = 0.036871 . . .GeV, σc,3 = 0.027GeV3 with three degenerate quarks. The

dilaton filed is kept as that in eq. (2.2) and the scalar interaction takes the configuration v3 =

−3, v4 = 8. Panel.(a) gives ln(
σ−σc,3

σc,3
) as a function of ln(1 − T

Tc,3
), with fixed quark mass m =

mc,3 = 0.036871 . . .GeV. The blue dots are model calculation and the black solid straight line are

linear fitting of the dots, which has the form y = 1.165 + 0.340x. Panel.(b) gives ln(
σ−σc,3

σc,3
) as a

function of ln(
m−mc,3

mc,3
). The blue dots are model calculation and the black solid straight line are

linear fitting of the dots, which has the form y = 1.417 + 0.340x.

Here the dilaton profile would be simply kept as in eq. (2.2). Imposing the boundary

condition described in section 2, one can solve the temperature and quark mass dependence

of chiral condensate. The results are shown in figure 2(b).

From figure 2(b), we could see that at small quark mass region m < mc,3 = 0.036871

. . .MeV the phase transition is a first order one, while it turns to be crossover transition

only at quark masses larger than mc,3 = 0.036871GeV. The critical point of the second

order transition locates at Tc,3 = 0.1888GeV,mc,3 = 0.036871 . . .GeV, σc,3 = 0.027GeV3

Here, due to the mass effect, chiral condensate is no longer zero in the critical point. Here,

we define the critical point where dσ
dT diverges and calculate critical exponents from the

near critical point scaling behavior. According to the definition of critical exponent β in

eq. (1.1), we tune the temperature T slightly around Tc,3 = 0.1888 . . .GeV and solve chiral

condensate with fixing quark mass mc,3 = 0.36871 . . .GeV. Because the critical behavior

of chiral condensate near Tc,3 obeys certain critical scaling σ−σc,3 ∝ (Tc,3−T )β . Then one

expects that ln(
σ−σc,3

σc,3
) depends linearly on ln(t) ≡ ln(1− T

Tc,3
). Here, given that σc,3, Tc,3

are finite, we use them to rescale condensate and temperature deviation to be dimensionless.

The slope of the linear line is just the critical exponent β. Then, in figure 6(a), we plot

ln(
σ−σc,3

σc,3
) as a function of ln(t) from ln(t) = −17 to ln(t) = −10. From the plot, it is

quite obvious that the model calculated data points (the blue dots) lie in a straight line,

indicating the critical power scaling of chiral condensate. From the best linear fitting, we

get the straight line in the form 1.165 + 0.340x, which shows β = 0.340.
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Similarly, the critical exponent δ could be extracted from the definition eq. (1.1). We

tune quark mass m slightly larger than the critical value mc,3 and solve σ with fixing

temperature T = Tc,3. It is expected that σ − σc,3 ∝ (m−mc,3)
1/δ, so it is expected that

ln(σ − σc,3) depends on ln(m−mc,3) linearly. Then, in figure 6(b), we plot ln(
σ−σc,3

σc,3
) as a

function of ln(m−mc,3) from ln(m−mc,3) = −17 to ln(m−mc,3) = −10. From the plot, it

is quite obvious that the model calculated data points (the blue dots) lie in a straight line,

indicating the critical power scaling of chiral condensate with respective to quark mass.

From the best linear fitting, we get the straight line in the form 1.417 + 0.340x, which

shows 1
δ = 0.340. Therefore, we get δ = 1

0.340 ≈ 2.941.

From the above numerical analysis, we get β = 0.340, δ = 2.941. As discussed in

last section, there could be errors due to the errors in extracting the critical temperature

numerically. Thus, we also present an analytical study here. Different from two-flavor

case, both the critical values of quark mass and chiral condensate are non-zero. Thus, the

critical solution of χ is non-zero. Therefore, we have to expand the near critical solution as

χ = χmc,0 + χmc,1δT
ǫ1 + χmc,2δT

ǫ2 + . . . (4.2)

under small T deviation δT together with fixing m = mc,2 = 0, and

χ = χmc,0 + χTc,1δm
κ1 + χTc,2δm

κ2 + . . . , (4.3)

with χmc,0 representing the solution at the critical point. After the technical analysis given

in appendix A.2, we could extract the exact values of the critical exponents, which gives

β = 1
3 ≈ 0.333, δ = 3. It shows that β is different from that in two-flavor case while δ is kept

the same. Furthermore, we note that the value of β is quite close to the value β = 0.327

in Z(2) class, while the value of δ is still far from δ = 4.789 in Z(2) class. In some sense,

this results might shows that the contribution from the gluon sectors is not as important

as in two-flavor case. However, this still requires more test in a full back-reaction model.

5 Critical exponents in Nf = 2 + 1 soft-wall AdS/QCD

In the previous sections, we have studied critical scaling in cases with two and three de-

generate flavors. Though in a model without full back-reaction it is still unable to give

the exact value of critical exponents as in 4D theory, the results obtained does show that

the critical line in two-flavor region and in three-flavor region belong to different univer-

sality classes. Thus, in this section, we would like to investigate critical scaling behavior in

Nf = 2 + 1 case, the mass plane phase diagram of which has been studied in [67, 70, 71].

Here, we will focus on extracting the critical exponents. Before that, for the compactness

of this paper, we will give a brief introduction on the results of mass plane phase diagram

from soft-wall AdS/QCD.

As discussed in section 2, when mu = md 6= ms, the expectation value of X field is

of the form X = Diag{χl, χl, χs}. The equation of motion are given in eq. (2.15), (2.16).

The boundary conditions for χl, χs are given in eq. (2.17), (2.18), (2.23). Based on this

boundary conditions, one can solve eq. (2.15), (2.16) with different quark masses and

temperature. Taking the dilaton profile in eq. (2.2), (2.3) and v3 = −3, v4 = 8, we solved

– 15 –



J
H
E
P
0
1
(
2
0
1
9
)
1
6
5

●●

1st order region
crossover region

β 0.333,δ 3

ml > 0, ms < 0.29 GeV

ml = 0, ms = 0.29 GeV

β=0.25,δ=5

ml = 0, ms > 0.29 GeV

β=0.5,δ=3

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.1

0.2

0.3

0.4

mu/d/GeV

m
s
/G

e
V

Figure 7. The mass plane (mu/d−ms) phase diagram. The lower left corner is first order transition

region. The upper right corner is crossover region. The critical line are divided by a tri-critical point

ml,tri = 0,ms,tri = 0.290 . . .GeV. The blue segment of the critical line has the critical exponents

β = 1
3 ≈ 0.333, δ = 3, while the red segment takes the value β = 1

2 = 0.5, δ = 3. At the tri-critical

point, β = 1
4 = 0.25, δ = 5.

chiral condensate as functions of quark masses and temperature in [67]. We found that

below certain critical quark masses, the phase transition is first order, while above the

critical value it turns to crossover. All the critical points form a critical line. The results

are shown in figure 7. In [67], we only solved the system up to ms = 0.2GeV, and

we got the blue segment in figure 7 only. Later, the study in [70] solved the results

up to a much larger ms, and they found that there is a tri-critical point, above which

χl, χs would decoupled at large temperature. This fact was observed in a recent work

in [71] from a different model. Thus, here, we also extend our calculation to larger ms,

and we find that χl, χs does decoupled at high temperature above a tri-critical point at

ml = 0, ms = 0.290GeV. When ml = 0,ms > ms,tri, the solution of σ as a function

of T would be like the structure in figure 8(a). In the figure, we could see that when

ml = 0, ms = 0.300GeV, above T = 0.2053 . . .GeV, σl becomes zero and χl ≡ 0. It is

quite different from the situation at critical line below the tri-critical point. For example,

we take another point ml = 0.010GeV, ms = 0.120105GeV < 0.290GeV, which locates at

the critical line also. The temperature dependent chiral condensate is shown in figure 8(b).

From the figure, we could see that σl, σs are strongly coupled with each other even after

phase transition. So, we could see that qualitatively the blue segment and the red segment

in the critical line are quite different. At the red segment, above the transition temperature

both σl and σs vanishes.

To see the quantitative difference of the two segments, we would try to investigate the

critical exponents here. Firstly, we take a point ml,c1 = 0,ms,c1 = 0.300, which locates

at the red segment of the chiral critical line. The critical values at the second order
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Figure 8. Temperature and quark mass dependence of chiral condensate at the red and blue seg-

ments of critical line. Panel.(a) gives the result for ml,c1 = 0,ms,c1 = 0.300 . . .GeV. The blue and

cyan dashed lines represent results of σl and σs respectively, which show a second order phase tran-

sition. The critical values of T, σl, σs at the phase transition point are T = 0.2063571 . . .GeV, σl =

0, σs = 0.010GeV3. Panel.(b) gives the result for ml = 0.040GeV,ms = 0.030792 . . .GeV. The

blue and cyan dashed lines represent results of σl and σs respectively, which also show a sec-

ond order phase transition. The critical values of T, σl, σs at the phase transition point are

T = 0.18883 . . .GeV, σl = 0.0271GeV3, σs = 0.0274GeV3.

phase transition point are Tl,c1 = 0.2063571 . . .GeV, σl,c1 = 0, σs,c1 = 0.010GeV3. Like

in previous sections, we plot ln(
σl−σl,c1

Λ3 ) = ln( σl

Λ3 ) as a function of ln(t) ≡ ln(
Tl,c1−T
Tl,c1

) and

ln(
ml−ml,c1

Λ ) = ln(ml

Λ ) in figure 9(a) and (b) respectively. Here Λ = 1GeV is a parameter

introduced to make the quantities inside logarithmic function dimensionless. Figure 9(a)

and (b), we could see that near the second order phase transition point σ have good scaling

behavior. The data points (ln(t), ln(
σl−σl,c1

Λ3 )) and (ln(
ml−ml,c1

Λ ), ln(
σl−σl,c1

Λ3 )) lies in straight

lines of forms y = 0.093+0.490x and y = −1.022+0.312x respectively. This gives β = 0.492,

δ = 1
0.312 ≈ 3.205. In fact, since in the red segment of critical line, near the transition

temperature, χl, χs decouple with each other. So it is easy to understand that the exact

value of critical exponent should be the same as in two-flavor case. That is β = 1
2 , δ = 3.

The numerical calculation has checked this exact value up to 7% numerical errors.

Then, we take another point ml,c2 = 0.010GeV,ms,c2 = 0.120105 . . .GeV, locating at

the blue segment of the critical line. Like in three-flavor case, at high temperature, chiral

condensate is not exactly zero due to the explicit symmetry breaking from finite quark

masses. Thus, we define the transition temperature where dσ
dT diverges. According to this

definition, we determine the phase transition point at Tl,c2 = 0.19123136679 . . .GeV, σl,c2 =

0.0271 . . .GeV3, σs,c2 = 0.0232 . . .GeV3. In figure 10(a) and (b), we plot ln(
σl−σl,c2

σl,c2
) as

functions of ln(1 − T
Tl,c2

) and ln(
ml−ml,c2

ml,c2
) respectively. We could see that all the data

points lie in straight lines, which show the good critical scaling behavior. From linear

fitting, the straight lines have the form y = 1.304+0.339x and y = −3.63952+0.343x for β
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Figure 9. Temperature and quark mass dependence of chiral condensate near the critical point

Tl,c1 = 0.2063571 . . .GeV,ml,c1 = 0,ms,c1 = 0.300 . . .GeV, σl,c1 = 0, σs,c1 = 0.010GeV3, which

locates at the red segment of the chiral critical line. Panel.(a) gives ln(
σl−σl,c1

Λ3 ) = ln(σl

Λ ) as a

function of ln(t) ≡ ln(
Tl,c1−T
Tl,c1

), with fixed quark mass ml = ml,c1 = 0,ms = ms,c1 = 0.300 . . .GeV.

The blue dots are model calculation and the black solid straight line are linear fitting of the dots,

which has the form y = 0.093 + 0.490x. Panel.(b) gives ln(
σl−σl,c1

Λ3 ) = ln(σl

Λ ) as a function of

ln(
ml−ml,c1

Λ ) = ln(ml

Λ ). The blue dots are model calculation and the black solid straight line are

linear fitting of the dots, which has the form y = −1.022 + 0.312x.

and δ calculation respectively. It gives β = 0.339, γ = 1
0.343 ≈ 2.915, very close to the exact

value of three-flavor. Actually, one can get the exact value β = 1
3 , δ = 3 analytically, using

the same method discussed in appendix A.2. The numerical results and the analytical

results match with each other up to 3% numerical errors.

Finally, we turn to the tri-critical point with ml,t = 0,ms,t = 0.290 . . .GeV. Solving

the equation of motion, we find that the second order phase transition point locate at

Tl,t = 0.2053135 . . .GeV, σl,c = 0, σs,t = 0.010GeV3. In figure 11(a) and (b), we plot

ln(
σl−σl,t

Λ3 ) = ln( σl

Λ3 ) as a function of ln(t) ≡ ln(
Tl,t−T
Tl,t

) and ln(
ml−ml,t

Λ ) respectively. Again,

we find that all the data points lie in straight lines, verifying the critical scaling behavior.

From the linear fitting, we get the straight lines of the forms y = −1.912 + 0.250x and

y = −2.022 + 0.201x, for β and δ respectively. Accordingly, we get β = 0.250, δ = 1
0.201 ≈

4.975. Actually, one can get the exact value β = 1
4 , δ = 5 analytically, which is shown in

appendix A.2. It is interesting to note that δ at the tri-critical point is quite close to the

value δ = 4.824 in O(4) class and δ = 4.789 in Z(2) class, while β = 0.333 is quite close

to β = 0.385 in O(4) class and β = 0.327 in Z(2) class. Probably, the full back-reaction

study could have important improvement. We will leave it to the future.

As a short summary, we study the critical scaling behavior of chiral condensate in

Nf = 2 + 1 model with mu = md 6= ms. We get β = 0.5, δ = 3 in the red segment,

β = 0.333, δ = 3.0 in the blue segment, and β = 0.250, δ = 5.0 in the tri-critical point. We

also label this results in figure 7. This results confirm that the red segment, blue segment

and tri-critical point in the chiral critical line belong to different universality classes.
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Figure 10. Temperature and quark mass dependence of chiral condensate near the criti-

cal point Tl,c2 = 0.19123136679 . . .GeV,ml,c2 = 0.010GeV,ms,c2 = 0.120105 . . .GeV, σl,c2 =

0.0271 . . .GeV3, σs,c2 = 0.0232 . . .GeV3, which locates at the blue segment of the chiral crit-

ical line. Panel.(a) gives ln(
σl−σl,c2

σl,c2
) as a function of ln(1 − T

Tl,c2
), with fixed quark mass

ml = ml,c2 = 0.010GeV,ms = ms,c2 = 0.120105 . . .GeV. The blue dots are model calculation and

the black solid straight line are linear fitting of the dots, which has the form y = 1.304 + 0.339x.

Panel.(b) gives ln(
σl−σl,c2

σl,c2
) as a function of ln(

ml−ml,c2

ml,c2
). The blue dots are model calculation and

the black solid straight line are linear fitting of the dots, which has the form y = −3.63952+0.343x.
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Figure 11. Temperature and quark mass dependence of chiral condensate near the tri-critical

point Tl,t = 0.2053135 . . .GeV,ml,t = 0,ms,t = 0.290 . . .GeV, σl,c = 0, σs,t = 0.010GeV3. Panel.(a)

gives ln(
σl−σl,t

Λ3 ) as a function of ln(1 − T
Tc
), with fixed quark mass ml = ml,t = 0,ms = ms,t =

0.290 . . .GeV. Λ is taken as 1GeV. The blue dots are model calculation and the black solid straight

line are linear fitting of the dots, which has the form y = −1.912+0.250x. Panel.(b) gives ln(
σl−σl,t

Λ3 )

as a function of ln(
ml−ml,t

Λ ). The blue dots are model calculation and the black solid straight line

are linear fitting of the dots, which has the form y = −2.022 + 0.201x.
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Nf = 2 extended Nf = 2 Nf = 3

β 1
2

γ
n−2

1
3

δ 3 n− 1 3

Nf = 2 + 1 ms > ms,t ms = ms,t ms < ms,t

β 1
2

1
4

1
3

δ 3 5 3

Table 1. Summarization of critical exponents in different cases from soft-wall AdS/QCD model.

Except for the tri-critical point (only numerical result), all the results are exact values checked by

analytical analysis in the appendix.

6 Conclusion and discussion

In this work, we investigate chiral phase transition in soft wall AdS/QCD models. Based on

our study in [63, 64, 67], we focus on extracting the critical scaling behavior of chiral con-

densate. Starting from a general SU(Nf )×SU(Nf ) soft wall model, we derive the effective

action and equations of motion in different situations, especially for two, three degenerate

quarks and Nf = 2+1 with mu = md 6= ms. Then we solve the critical points and calculate

the critical exponents around the critical points. The results are summarized in table 1.

For Nf = 2 case, we calculate the critical exponents both numerically and analytically.

The exact value of critical exponents are β = 1
2 , δ = 3 in this case. It equals to the

3D mean field calculation exactly. Since in some sense the holographic approach have

taken the running with energy scale into account, it is quite unreasonable that there is

no correction from the mean field approximation. After careful study, it is found that the

full back-reaction might be important to improve the result. Since the current study is in

probe limit and the dilaton field is input by hand, there is no temperature dependence in

the dilaton. Thus, we have not considered the running effect with temperature correctly.

Instead of doing a full back-reaction analysis, we take a simple dilaton configuration Φ1 =

Φ(1 + cγ(1 − T
Tc
)γ) to mimic the possible critical behavior of dilaton field due to the full

back-reaction. Furthermore, we extend the quartic interacting term |X|4 to higher power

|X|n. Then we get the critical exponents analytically. It gives β = γ
n−2 , δ = n − 1, which

could be reduced to β = 1
2 , δ = 3 when taking γ = 1, n = 4. Of course, this toy model

is still a very rough one, omitting the critical scaling of metric and other terms. But it

does show that the full back-reaction could have important improvement on the critical

exponents. As a byproduct, when deriving the expression of critical exponents, we find a

simple criteria of dilaton field, on whether it can produce the correct behavior of chiral

phase transition in two-flavor case. One can simply solve the linear eq. (3.4) and check

whether there is a temperature giving χ̇mc,1(s = 0) = 0. Since the linear equation would

be much easier to solve numerically, this criteria could provide a simple first test on the

dilaton field, as well as a simple calculation on the transition temperature.

For Nf = 3 case, we also calculate the critical exponents by numerical method and

analytical analysis. The exact value of critical exponents are β = 1
3 , δ = 3 in this case. The
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different values of critical exponents from Nf = 2 case shows that they belongs to different

universality classes. From the analytical calculation, we find that the critical exponents

would not depend on the coefficients of the scalar potential. It is consistent with the fact

that the critical exponents are independent on the interacting details.

Then, for Nf = 2+1, we find that the chiral critical line are divided into two different

segments by a tri-critical point at ml = 0,ms = 0.290GeV. The segment above the tri-

critical point belongs to the same universality class as the two-flavor limit with β = 1
2 , δ = 3,

while the segment below the tri-critical point belongs to the same universality classes as

Nf = 3 case with β = 1
3 , δ = 3. Furthermore, the tri-critical point belongs to another

universality class with β = 1
4 , δ = 5.

The study in this work provides a preliminary analysis on chiral criticality. Qualita-

tively, the phase diagram agrees with that from 4D analysis. The critical exponents in

certain cases is close to the 4D results. However, the model studied here is still in probe

limit and in some cases it can not take the running behavior with temperature and other

quantities into account. Therefore, it is quite interesting to consider a full back-reaction

model based on this probe limit study. The study here does show that there is possibility

to build a correct full back-reaction model based on the soft wall model. One might couple

the Einstein-Dilaton system with the soft-wall model. By finding proper couplings of the

fields, one might solve background geometry providing similar critical behavior of chiral

phase transition qualitatively. But to find the proper form of the action might be quite

non-trivial. We will leave this to the future.
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A Extracting critical exponents analytically

A.1 Expansion around χ = 0

In this section, we would present a analytical derivation on the critical exponents β, δ in

soft-wall model with two degenerate quarks. The start point would be eq. (2.13). For

later convenience, we firstly make a coordinate transformation z = zhs =
s
πT to eq. (2.13),

under which the horizon would be set to s = 1 and the boundary is at s = 0. Doing this

coordinate transformation, eq. (2.13) becomes

χ̈−
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇− 1

s2(1− s4)
(3− 4v4χ

3) = 0. (A.1)
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Here the ‘dot’ stands for derivative with respective to s and φT (s) ≡ Φ( s
πT ) are dilaton

field in the new coordinate s. To get a general conclusion, here we consider φT (s) as a

general regular function. Then, as we mentioned in the introduction, in chiral limit of

two-flavor system, chiral phase transition would be second order. A successful holographic

description should satisfy this condition first. Therefore, at the critical point both m and

σ should be zero for two-flavor model. Thus the solution of χ should be zero at the critical

temperature Tc also. If T slightly deviates from Tc from the left hand side (T < Tc), we

expect that χ would deviate from χ = 0 slightly, of a certain power of the temperature

deviation δT ≡ Tc − T . So we expand the solution of χ at Tc as

χ = χmc,1δT
ǫ1 + χmc,2δT

ǫ2 + . . . . (A.2)

Here ǫ1 and ǫ2 are two positive real number and without loss of generality we assume

ǫ1 < ǫ2. χm,1 and χm,2 are two functions of s, independent on T . The lower index mc

means fixing m = mc. Inserting eq. (A.2) into eq. (A.1) and keeping only the leading

expansion on Tc − T , we get

χ̈mc,1 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇mc,1 +
3

s2(1− s4)
χmc,1 = 0. (A.3)

The above equation is a second order linear equation. The near horizon expansion of

χmc,1(s) could be easily extracted as

χmc,1(s)= c0

(

1+
3

4
(s−1)

)

+c1 ln(1−s)

(

1+
3

4
(s−1)

)

−c1

(

(3+φ̇Tc(1))(1−s)
)

, (A.4)

with c0, c1 the two integral constants. It is obvious that the c1 branch is divergent at the

horizon s = 1. Thus, the regularity of χmc,1 requires c1 = 0. Imposing this condition,

we can solve the full solution of χmc,1(s) numerically and extract χ̇mc,1(s = 0), which

is proportional to the quark mass and equals to zero in chiral limit. Then it is easy to

understand that if there exists a second order phase transition point in chiral limit, there

should exist a non-trivial solution of eq. (A.3) satisfying both χ̇mc,1(s = 0) and eq. (A.4)

with c1 = 0. Actually, this condition could be used as a first test of the holographic model

setting, especially to check whether the correct behavior of chiral symmetry breaking and

restoration in chiral limit has been well described or not. In section 3, we have taken several

examples to show this conclusion in a more explicit way. So we would not repeat it here.

The leading order expansion of eq. (A.1) has the information about the second order

phase transition point. However, there is no information about the critical exponent β. In

order to get the exact value of β, we have to go to the next leading order. Before that, we

assume a more general form of the dilaton field

φT (s) ≃ φTc(s) + gTc(s)δT
γ , (A.5)

which can be considered as the near Tc expansion of the dilaton field in a full back-reaction

model. The critical scaling of dilaton field is control by γ. To reach more general conclusion,

we also extend the quartic scalar interaction v4χ
4 to a general power vnχ

n in the discussion
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here. Given these and assuming ǫ2 = γ + ǫ1 = (n − 1)ǫ1, i.e. ǫ1 = γ
n−2 , the leading order

expansion are kept as eq. (A.3), while the next to leading order becomes

χ̈mc,2 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

)χ̇mc,2 +
3

s2(1− s4)
χmc,2 = gTcχ̇mc,1 +

nvnχ
n−1
mc,1

s2(1− s4)
. (A.6)

Actually, it is just eq. (A.3) with an additional source J(s) ≡ gTcχ̇mc,1 +
nvnχ3

mc,1

s2(1−s4)
. The

general solutions of χ2 would have the form6

χmc,2(s) = y1(s)

∫ s1

s
dτ

y2(τ)
(

gTc(τ)ẏ2(τ) +
nvn(y2(τ))n−1

τ2(1−τ4)

)

y1(τ)ẏ2(τ)− ẏ1(τ)y2(τ)

+ y2(s)

∫ s

s2

dτ
y1(τ)

(

gTc(τ)ẏ2(τ) +
nvn(y2(τ))n−1

τ2(1−τ4)

)

y1(τ)ẏ2(τ)− ẏ1(τ)y2(τ)
, (A.7)

with y1(s), y2(s) two independent solutions of eq. (A.3). Since we assume that we are

expanding around a critical point with mc = 0, σc = 0, χc =≡ 0, eq. (A.3) should have a

non-vanishing solution χ1(s) with boundary condition χ̇1(0) = 0 and χ1(1) = 1. Therefore,

without loss of generality, we could assume y2(s) = cχ1(s). It is easy to see that the other

branch y1(s) satisfies the boundary condition y1(s) = c1 log(1 − s) + o(1) near s = 1 and

y1(s) ∝ s near the boundary s = 0. In order to make sure that χmc,2(s) in eq. (A.7)

is regular near s = 1, one should fix the integral constant s1 = 1, which gets rid of the

singular branch y1(s) at the boundary. Furthermore, to make sure that we are considering

chiral limit (here we need χ̇mc,2(0) = 0), the following condition is required

∫ 1

0
dτ

gTc(τ)ẏ2(τ)y2(τ) +
nvn(y2(τ))n

τ2(1−τ4)

y1(τ)ẏ2(τ)− ẏ1(τ)y2(τ)
= 0. (A.8)

Then, inserting y2(s) = cχ1(s) into eq. (A.8), we have

∫ 1

0
dτ

gTc(τ)χ1(τ)χ̇1(τ)

y1(τ)χ̇1(τ)− ẏ1(τ)χ1(τ)
= −cn−2nλ

∫ 1

0
dτ

(χ1(τ))
n

τ2(1− τ4)(y1(τ)χ̇1(τ)− ẏ1(τ)χ1(τ))
,

(A.9)

from which we can have

cn−2nλ = −
∫ 1

0
dτ

(χ1(τ))
n

τ2(1− τ4)(y1(τ)χ̇1(τ)− ẏ1(τ)χ1(τ))
/

∫ 1

0
dτ

gTc(τ)χ1(τ)χ̇1(τ)

y1(τ)χ̇1(τ)− ẏ1(τ)χ1(τ)
.

(A.10)

Since χ0(t) and y1(t) depends only on the linear equation eq. (A.3), it is easy to understand

cn−2nλ depends only on configuration of Φ. Rewriting in coordinate z, χ1(t) = ct3 =

6Generally, if y1(x), y2(x) are two independent solutions of the second order derivative equation Y
′′

(x)+

q(x)Y
′

(x)+h(x)Y (x) = 0, then one can prove that the general solutions of Y
′′

(x)+q(x)Y
′

(x)+h(x)Y (x) =

J(x) would be Y (x) = y1(x)
∫ x1

x

y2(x)J(x)

y1(x)y
′

2(x)−y
′

1(x)y2(x)
+ y2(x)

∫ x

x2

y1(x)J(x)

y1(x)y
′

2(x)−y
′

1(x)y2(x)
with x1, x2 related to

the two integral constants, which should be fixed by boundary conditions.
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c(πTc)
3z3 = σ

ζ z
3 near t = 0, with ζ =

√

3
2π for the number of colors Nc = 3 [91]. Then

the critical behavior of chiral condensate σ(T ) ≃
√

3c
2π (πTc)

3(Tc − T )
γ

n−2 , where the critical

exponent γ
n−2 depends not only on γ but also on n. The slope of the critical scaling equals

√

3c
2π (πTc)

3 =
√

3
2π (πTc)

3( C
nλ)

1
n−2 , with

C ≡ −
∫ 1

0
dτ

(χ1(τ))
n

t2(1− t4)(y1(τ)χ̇1(τ)− ẏ1(τ)χ1(τ))
/

∫ 1

0
dτ

gTc(τ)χ1(τ)χ̇1(τ)

y1(τ)χ̇1(τ)− ẏ1(τ)χ1(τ)
.

(A.11)

The above derivation depends on the assumption ǫ2 = γ+ǫ1 = (n−1)ǫ1, i.e. ǫ1 =
γ

n−2 .

Actually, one can easy understands that this is the only way to get non-trivial branch of

σ near Tc. If ǫ2 = γ + ǫ1 < (n − 1)ǫ1 or ǫ2 = (n − 1)ǫ1 < γ + ǫ1, then one of the two

terms in eq. (A.8) would be absence, which would stop the cancelation of the two terms

and eq. (A.8) can not be satisfied. Therefore, in fact, ǫ2 = γ+ ǫ1 = (n− 1)ǫ1 is a necessary

condition. So, we have prove that ǫ1 = γ
n−2 . Considering χmc,1(s) ∝ σ, we could get

β = ǫ1 =
γ

n−2 .

For the critical exponent δ, the analytical analysis are almost the same. One can

assume

χ = χTc,1δm
κ1 + χTc,2δm

κ2 + χTc,3δm
κ3 + . . . . (A.12)

Then the leading expansion are almost the same as eq. (A.3), replacing χmc,1 with χTc,1:

χ̈Tc,1 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇Tc,1 +
3

s2(1− s4)
χTc,1 = 0. (A.13)

Thus, the solutions are exactly the same as eq. (A.3). The non-singular solution χ1 satisfies

χ̇1(s = 0) = 0 and χ1(1) = 1. For the next to leading expansion, there are slightly

differences. Since we fix the temperature to Tc, there is no next to leading expansion of

dilaton field φT (s). Assuming κ2 = κ1(n− 1), one gets

χ̈Tc,2 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇Tc,2 +
3

s2(1− s4)
χTc,2 =

nλχn−1
m,1

s2(1− s4)
. (A.14)

Since there is no cancellation from dilaton expansion term gT , only the regularity condition

0 < |χm,2| < ∞ could be satisfied. χ̇m,2(s = 0) could not be zero. But because we are

tuning quark mass away from the critical value m = 0, the boundary condition of χm,2

would be different. In the z coordinate, we have χ(z) = mqζz + o(z2), which gives the s

coordinate expansion of δχ = δmζzhs when tuning mq from 0 to δm. This would require

κ2 = 1. Considering all the above, one reaches κ1 =
κ2
n−1 = 1

n−1 and δχ = χm,1δm
1

n−1 + . . ..

Considering the relationship between χ1 and σ, one gets δ = n− 1.

From the above analysis, one gets β = γ
n−1 and δ = n−1 analytically. From this result,

we could see that both the profile of Φ and V (χ) are important for the critical behavior

of chiral condensate. If dilaton field stands for the affect from gluon sector and the scalar

potential stands for the effective interaction in flavor sector, it is reasonable to see that both
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the two interactions are important for the critical behavior of chiral condensate. Now we

consider the more realistic model, the dilaton field in eq. (2.2) and V (χ) = −3
2χ

2 + v4χ
4.

Then we have γ = 1, n = 4, which gives β = 1
2 , δ = 3, consistent with our numerical

calculation. In section 3, we also take several different γ, n groups to test this analytical

formula. There, we could see that the numerical results agree with the analytical analysis.

A.2 Expansion around χ 6= 0

To reduce numerical errors, we also try to extract the critical exponents for Nf = 3

analytically. The procedure is almost the same as in two-flavor case, except that the

critical solution at Tc is not zero. For β, we begin with the expansion of χ as

χ = χmc,0 + χmc,1δT
ǫ1 + χmc,2δT

ǫ2 + χmc,3δT
ǫ3 + . . . , (A.15)

with 0 < ǫ1 < ǫ2 < ǫ3. Inserting this expansion into eq. (4.1) and keeping the leading

order, we get

χ̈mc,0(s)−
(

3

s
+

4s3

1−s4
+φ̇T

)

χ̇mc,0−
1

s2(1−s4)

(

3−3v3χ
2
mc,0−4v4χ

3
mc,0

)

=0, (A.16)

which is just the rewriting of eq. (4.1) and still a non-linear equation. In principle, we should

expand the solution at Tc. However, at this stage, we can consider the expansion around

a general temperature T . Actually, we have already solved χmc,0 when getting figure 2(b).

Since in z coordinate χ(z) ≈ mqz ∼ mqs
πT , it is easy to have δχ̇(0) ∝ δT . Thus, for any

power ǫi smaller than 1, the corresponding χmc,i should satisfy χ̇mc,i(0) = 0. Having this

condition, we can continue to analyze the next to leading order solution. There are several

different situations. Firstly, if ǫ1 = 1, one gets the next to leading order expansion as

χ̈mc,1−
(

3

s
+

4s3

1−s4
+φ̇Tc

)

χ̇mc,1+
3−6v3χmc,0−12v4χ

2
mc,0

s2(1−s4)
χmc,1=−gT χ̇mc,0. (A.17)

Generally, the solution of χmc,1 in the above equation satisfies χ̇mc,1(0) 6= 0, so the bound-

ary condition δχ̇(0) ∝ δT could be satisfied. In this case, the expansion power of σ is just

ǫ1 = 1, which is just the normal case as the blue rectangle dot in figure 2(b). However,

at certain point, this condition could not be satisfied together with 0 < |χmc,1(1)| < ∞.

In this case, in order to make sure δχ̇(0) ∝ δT , it requires 2ǫ1 = ǫ2 = 1, and the next to

leading order and the next-to-next-to-leading order expansion become

χ̈mc,1 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇mc,1 +
3− 6v3χmc,0 − 12v4χ

2
mc,0

s2(1− s4)
χmc,1 = 0, (A.18)

χ̈mc,2 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇2mc,2 +
3− 6v3χmc,0 − 12v4χ

2
mc,0

s2(1− s4)
χmc,1

= −gT χ̇mc,0 +
3v3 + 12v4χmc,0

s2(1− s4)
χ2
mc,1. (A.19)

Actually, this is the situation of the blue triangle dot in figure 2(b). However, when quark

mass changes, this condition can not be satisfied again. Then, it requires 3ǫ1 = ǫ1 + ǫ2 =
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ǫ3 = 1, and the corresponding expansion become

χ̈mc,1 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇mc,1 +
3− 6v3χmc,0 − 12v4χ

2
mc,0

s2(1− s4)
χmc,1 = 0, (A.20)

χ̈mc,2 −
(

3

s
+

4s3

1− s4
+ φ̇Tc

)

χ̇mc,2 +
3− 6v3χmc,0 − 12v4χ

2
mc,0

s2(1− s4)
χmc,2

=
3v3 + 12v4χmc,0

s2(1− s4)
χ2
mc,1, (A.21)

χ̈mc,3 −
(

3

s
+

4s3

1− s4
+ φ̇Tc(s)

)

χ̇mc,3 +
3− 6v3χmc,0 − 12v4χ

2
mc,0

s2(1− s4)
χmc,3(s)

= −gT χ̇mc,0 +
6v3 + 24v4χmc,0

s2(1− s4)
χmc,1χmc,2 +

4v4
s2(1− s4)

χ3
mc,1. (A.22)

This is just the situation of the critical point in figure 2(b). Thus, we get the leading

expansion of χ around the critical point as χ ≃ χmc,0 +χmc,1δT
ǫ1 , with ǫ1 =

1
3 . According

to the expansion of χmc,1, we have σ − σc ≃ δT
1
3 , which gives β = 1

3 . It is quite easy to

understand that the analysis on critical exponent δ are almost the same, except that we

do not have to expand φT (s), which does not depend on quark mass in current settings.

Though, in a full back-reaction model, it should depend on quark mass. Therefore, it is

easy to get δ = 3. The expansion for Nf = 2 + 1 in the blue segment is similar. The only

difference is that we should expand the coupled equations, which are more complicated.

Since the method is the same, we would not repeat it here.

For the tri-critical point, the expansion method is almost the same, but more compli-

cated. We will start from the red segment in figure 7 and approach the tri-critical point

tuning ms towards ms,t. Firstly, we rewrite eqs. (2.15), (2.16) in coordinate s = z/zh, and

they become

χ̈l −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l +
3χl − 3v3χlχs − 4v4χ

3
l

s2(1− s4)
= 0, (A.23)

χ̈s −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s +
3χs − 3v3χ

2
l − 4v4χ

3
s

s2(1− s4)
= 0. (A.24)

From the numerical solution, one finds χl,0 ≡ 0, χs,0 6= 0 at the critical point with

ml = 0,ms 6= 0 (the red segment in figure 7). To do perturbative analysis around the

critical point, we assume that the expansions of χl, χs are of the form

χl = χl,0 + χl,1ǫ
l1 + χl,2ǫ

l2 + χl,3ǫ
l3 + . . . , (A.25)

χs = χs,0 + χs,1ǫ
s1 + χs,2ǫ

s2 + χs,3ǫ
s3 + . . . . (A.26)

Here, ǫ stands for δT when dealing with β while it stands for δm when dealing with δ.

Without loss of generality, we assume 0 < l1 < l2 < l3, 0 < s1 < s2 < s3. Inserting these

expansions into eqs. (A.23), (A.24), the leading expansions of these equations become

χ̈s,0 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,0 +
3χs0 − 4v4χ

3
s0

s2(1− s4)
= 0, (A.27)

together with χl,0 ≡ 0.
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Then, from the next order expansion of eq. (A.24), one gets s1 = 2l1. Next, from

the next-to-next order expansion of eq. (A.23), one gets l2 = l1 + s1 = 3l1. Like in last

section for chiral limit of Nf = 2 case, one requires l2 = l1 + 1 to get a regular solution

satisfying χ̇l = 0(or equivalently keep ml = 0 when tuning temperature slightly away from

Tc). Furthermore, for the next-to-next order expansion of eq. (A.24), one gets s2 = l1+l2 =

2s1 = 4l1. Then one gets the full perturbative expansion of eqs. (A.23), (A.24) as

χ̈l,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,1 +
3− 3v3χs,0

s2(1− s4)
χl,1 = 0 (A.28)

χ̈s,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,1 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,1 = gTcχ̇s,0 +

3v3χ
2
l,1

s2(1− s4)
(A.29)

χ̈l,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,2 +
3− 3v3χs,0

s2(1− s4)
χl,2 = gTcχ̇l,1 +

3v3χl,1χs,1 + 4v4χ
3
l,1

s2(1− s4)

(A.30)

χ̈s,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,2 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,2 = gTcχ̇s,1 +

6v3χl,1χl,2 + 12v4χs,0χ
2
s,1

s2(1− s4)

(A.31)

From the above analysis, one has l1 = 1
2 , s1 = 1, l2 = 3

2 , s2 = 2, which gives β = l1 = 1
2 ,

consistent with the numerical results in section 5.

Similarly, for the critical exponent δ in the red segment, one gets the same expansion

s1 = 2l1, l2 = l1+s1 = 3l1, s2 = l1+ l2 = 2s1 = 4l1. However, the boundary condition here

is slightly different. For li smaller than 1, one requires χ̇l,i = 0, while there should be one

lj equaling 1 and χ̇l,j 6= 0 (remember that δml ∝ χ̇l). Thus, here one has l2 = 1 instead of

l2 = 1 + l1. Accordingly, the full perturbative expansion of eqs. (A.23), (A.24) become

χ̈l,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,1 +
3− 3v3χs,0

s2(1− s4)
χl,1 = 0 (A.32)

χ̈s,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,1 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,1 =

3v3χ
2
l,1

s2(1− s4)
(A.33)

χ̈l,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,2 +
3− 3v3χs,0

s2(1− s4)
χl,2 =

3v3χl,1χs,1 + 4v4χ
3
l,1

s2(1− s4)
(A.34)

χ̈s,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,2 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,2 =

6v3χl,1χl,2 + 12v4χs,0χ
2
s,1

s2(1− s4)
(A.35)

From the above analysis, we have l1 =
1
3 , s1 =

2
3 , l2 = 1, s2 =

4
3 , which gives δ = 3 exactly.

When ms decreases to the value of the tri-critical point, the above perturbative expan-

sions could not provide regular solutions satisfying the required boundary condition again.

Thus, one has to go to the next-to-next-to-next order expansion. From the expansion,

one has s1 = 2l1, l2 = l1 + s1 = 3l1, s2 = l1 + l2 = 4l1, l3 = l2 + s1 = l1 + s2 = 5l1,

s3 = 2l2 = l1+ l3 = 6l1. To satisfying χ̇l = 0 when dealing with β, one requires l3 = l1+1,
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and the expansion becomes

χ̈l,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,1 +
3− 3v3χs,0

s2(1− s4)
χl,1 = 0, (A.36)

χ̈s,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,1 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,1 =

3v3χ
2
l,1

s2(1− s4)
, (A.37)

χ̈l,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,2 +
3− 3v3χs,0

s2(1− s4)
χl,2 =

3v3χl,1χs,1 + 4v4χ
3
l,1

s2(1− s4)
, (A.38)

χ̈s,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,2 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,2 =

6v3χl,1χl,2 + 12v4χs,0χ
2
s,1

s2(1− s4)
, (A.39)

χ̈l,3 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,3 +
3− 3v3χs,0

s2(1− s4)
χl,3

= gTcχ̇l,1 +
3v3χl,1χs,2 + 3v3χl,2χs,1 + 12v4χ

2
l,1χl,2

s2(1− s4)
, (A.40)

χ̈s,3 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,3 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,3

= gTcχ̇s,1 +
3v3χ

2
l,2 + 6v3χl,1χl,3 + 4v4χ

3
s,1 + 24v4χs,0χs,1χs,2

s2(1− s4)
, (A.41)

which gives regular solutions of χl with χ̇l(s = 0) = 0 again. From the above, we have

l1 =
1
4 , s1 =

1
2 , l2 =

3
4 , s2 = 1, l3 =

5
4 , s3 =

3
2 , which gives β = l1 =

1
4 .

Finally, for δ at the tri-critical point, the relations for li, sjs are the same as that for

β. But the boundary condition requires l3 = 1, which gives l1 = 1
5 and δ = 5 exactly. In

this situation, the perturbative expansions become

χ̈l,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,1 +
3− 3v3χs,0

s2(1− s4)
χl,1 = 0, (A.42)

χ̈s,1 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,1 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,1 =

3v3χ
2
l,1

s2(1− s4)
, (A.43)

χ̈l,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,2 +
3− 3v3χs,0

s2(1− s4)
χl,2 =

3v3χl,1χs,1 + 4v4χ
3
l,1

s2(1− s4)
, (A.44)

χ̈s,2 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,2 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,2 =

6v3χl,1χl,2 + 12v4χs,0χ
2
s,1

s2(1− s4)
, (A.45)

χ̈l,3 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇l,3 +
3− 3v3χs,0

s2(1− s4)
χl,3

=
3v3χl,1χs,2 + 3v3χl,2χs,1 + 12v4χ

2
l,1χl,2

s2(1− s4)
, (A.46)

χ̈s,3 −
(

3

s
+

4s3

1− s4
+ φ̇T

)

χ̇s,3 +
3− 12v4χ

2
s,0

s2(1− s4)
χs,3

=
3v3χ

2
l,2 + 6v3χl,1χl,3 + 4v4χ

3
s,1 + 24v4χs,0χs,1χs,2

s2(1− s4)
. (A.47)
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It is easy to see that the above analysis depends only on the existence of tri-critical

point, and the critical exponents at the tri-critical point would not depend on the param-

eters taken in the model, though the parameters would affect the location or even the

existence of tri-critical point.
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