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8)École Polytechnique Fédérale de Lausanne, Swiss Plasma Center,

CH1015 Lausanne, Switzerland

(Dated: 25 September 2018)

Fast particles in fusion plasmas may drive Alfvén modes unstable leading to fluc-

tuations of the internal electromagnetic fields and potential loss of particles. Such

instabilities can have an impact on the performance and the wall-load of machines

with burning plasmas such as ITER. A linear benchmark for a toroidal Alfvén eigen-

mode (TAE) is done with 11 participating codes with a broad variation in the physical

as well as the numerical models. A reasonable agreement of around 20% has been

found for the growth rates. Also, the agreement of the eigenfunctions and mode fre-

quencies is satisfying. however, they are found to depend strongly on the complexity

of the used model.

a)Electronic mail: axel.koenies@ipp.mpg.de
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I. INTRODUCTION.

Fast particles in ITER may originate from the fusion process itself or from external heating,

such as Neutral Beam Injection (NBI). It is well known that those non-thermal populations

of fast particles may interact with otherwise stable Alfvén waves in the bulk plasma driving

them unstable1,2. This process takes place as a resonance phenomenon that requires a kinetic

treatment of the fast particles but not necessarily a kinetic treatment of the bulk plasma.

The oscillating electro-magnetic field in the plasma may lead to a loss of supra-thermal

particles. As a consequence, damage to in-vessel components of the machine is possible.

In the last decades, much effort has been invested in the development of theory and codes

that can be used to describe and explain the related phenomena. However, up to now, there is

no well-understood standard case that these models have been tested against quantitatively.

After studying mode damping, by providing the first comprehensive quantitative code com-

parison for the fast particle drive, the ITPA Energetic particle Topical Group is contributing

to the design activity of the ITER operation scenario3. The benchmark of different codes

and models for the energetic ion driven modes is necessary for evaluating the accuracy of

their predictions. Prior to an application to the plasma behavior in ITER, the international

benchmarking effort between a variety of codes shall ensure scientific quality and reliability

when predictions for ITER are made.

In this paper, we present a comprehensive benchmark of different gyrokinetic and hybrid

MHD-gyrokinetic codes on the linear dynamics of the toroidicity-induced Alfén Eigenmode

(TAE). This international benchmark was originally introduced in Ref. 4, and the complete

list of results is shown here.

II. THEORY

As it has been outlined in the previous section, a kinetic description of fast particles or an

appropriate closure of the fluid equations is necessary. In this section, different physical

models in different implementations are described.

A. MHD/kinetic hybrid approach

Historically, the waves have been obtained from ideal MHD theory while the interaction

with the wave has been treated with a drift or gyro-kinetic model. There are different levels
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of sophistication to couple both models. In the following we will address the hole class as

“MHD/kinetic hybrid” models.

If the calculation is done perturbatively, the linear drift- or gyro-kinetic equation for the

fast particles is solved in the given field of a pre-calculated MHD wave. The growth rate

is calculated from the power transfer of the particles in relation to the energy stored in the

mode. Linear versions of this model are the NOVA-K6, CAS3D-K5, CKA-EUTERPE11,

VENUS12 and AE3D-K9.

It is interesting to note but not a topic of this paper that the perturbative model can be

generalized to a non-linear version. Then, the mode structure is also a pre-calculated MHD

eigenfunction but their phase and amplitude can change in time7,8.

In some codes, the kinetic equation is solved with a particle-in-cell (PIC) method. Here,

numerical marker particles are distributed in phase space and represent a large number of

real particles. As the gyro-kinetic equation is of first order, it can be solved using the method

of characteristics, i.e. by following particle orbits. PIC codes have advantages in difficult

geometries such as stellarators but noise issues have to be properly addressed. A widely used

method is the so-called δf model where the distribution function is split into a background

distribution function f0 which is usually a function of the constants of the unperturbed

motion and a perturbation δf . An insightful description can be found in Ref. 13. While it

is straight-forward to implement orbit losses in a full f simulation, it can be tricky for δf

codes (see below).

The Tables I and II summarize the most important properties of the perturbative kinetic

MHD codes participating in the benchmark.

code MHD code PIC FOW FLR reference

NOVA-K NOVA no 2nd order J0 6

VENUS CAS3D δf yes no 12

CAS3D-K CAS3D no no no 5

TABLE I. Linear perturbative ideal full MHD/kinetic hybrid codes.

While in the first theoretical models the radial extent of the fast particle orbits had not

been considered, meanwhile almost all codes consider the full orbit width (FOW). However,

the effects of the finite Larmor radius (FLR) of the fast particles still are not commonly

accounted for.
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code MHD code PIC FOW FLR reference

AE3D-K AE3D δf yes no 9

CKA-EUTERPE CKA δf yes adaptive (4-32) points 11

TABLE II. Linear perturbative ideal reduced MHD/kinetic hybrid codes.

The non-perturbative MHD/kinetic hybrid codes, such as MEGA14, and HMGC15, solve

the time-dependent non-linear MHD equations. The fast particles contribute to the plasma

pressure and thus influence the evolution of the modes. This contribution is calculated from

the non-linear drift- (HMGC) or gyro-kinetic (MEGA) equation for the fast particle species,

where the MHD field enters as an external force.

B. Completely gyro-kinetic

There are also completely kinetic codes which solve the gyro-kinetic equations for all ion

species and the electrons together with the Poisson equation and Ampères law. The LIGKA

code16 is an eigenvalue solver which uses pre-calculated orbits from the HAGIS code to

integrate the kinetic equations.

Furthermore, there are fully kinetic δf - PIC codes solving the time dependent kinetic equa-

tions with marker particles but with a consistently evolving field from the solution of the

Maxwell equations.

The GYGLES code17 is two-dimensional in space and uses an ad-hoc equilibrium (see Ap-

pendix) while the EUTERPE code18,19 is able to use a realistic 3D equilibrium generated

with the VMEC code20. Note, that the EUTERPE code is participating in this benchmark

as a part of CKA-EUTERPE hybrid model, as well as a completely gyrokinetic model.

The ORB5 code21,22 is a global PIC code originally developed for turbulence studies, and

extended to its multi-species, electromagnetic version.

C. Gyro-fluid approach

The TAEFL code24 solves the time dependent reduced MHD equations for the bulk plasma

plus energetic ions in a tokamak; the fast particle component is introduced through two ad-

ditional moment equations (for the density and parallel velocity moments) that couple to the
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bulk plasma through their perturbed pressure gradient via the momentum balance relation.

The fast particle moment equations include Hammett-Perkins10 closure relations that simu-

late, in an average sense, the phase-mixing effects resulting in Landau damping/growth. The

closure coefficients are obtained through comparison with analytic TAE growth rate models

and fits to the plasma dispersion function; development of improved closure relations and

higher order moments for this model is a topic of ongoing research. The bulk + fast ion

moment model is solved as a fully coupled system so that non-perturbative effects on the

Alfvn mode structure and real frequency are retained. FLR effects are introduced into the

model using Padé approximations to the Bessel functions, while the FOW effects enter only

to lowest order based on a velocity average of passing particle drifts. The equations are

solved using Fourier expansions in poloidal/toroidal angle and finite differences in the flux

(radius) coordinate. Both initial value and eigensolver solution methods are available, with

the eigensolver option used for the results given in this paper.

III. BENCHMARK SETUP

A circular large aspect ratio tokamak (A = 10, R = 10 m) has been chosen as a test case.

This was dictated by restrictions of the participating codes with respect to geometry or

numerical properties. The minor radius is a = 1 m. The profile of the rotational transform

is given by q(r) = 1.71+0.16 (r/a)2, and the magnetic field is 3 T in the center (cf. Ref. 17).

For the MHD calculations, the equilibria have been calculated using VMEC or with an

appropriate Grad-Shafranov solver while GYGLES, ORB5 and HMGC use an ad-hoc equi-

librium (see Appendix).

A TAE mode with m = 10, 11 and n = −6 is calculated in a hydrogen plasma. Note, that

with this convention the decomposition of the mode is done as ∼ ei(mθ+nφ). We use a flat

density profile for both electrons and ions, i.e. ne = ni = 2.0·1019 m−3, while Te = Ti = 1 keV

holds for the electron and ion temperatures. Note that in fully kinetic codes like GYGLES,

EUTERPE and ORB5, the electron density is calculated from the quasi-neutrality condition

if fast particles are present. In the hybrid codes, where the electron density does not enter

explicitly, quasi-neutrality is simply assumed.

The pressure has to be zero at the boundary for an MHD equilibrium code. Therefore the

bulk pressure decays towards the edge for the hybrid models: p(s) = (7.17 · 103 − 6.811 ·

103 s − 3.585 · 102 s2) Pa with s = Ψtor/Ψtor(a). However, for the kinetic model the bulk
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FIG. 1. Growth rates from calculations without FLR effects (a) and with FLR effects (b). The

dashed line from CAS3D-K is valid in the limit of zero orbit width (small energies) and is shown

for comparison. The shaded grey area marks the ±15% margin around the mean value for (a) and

±20% for (b).

pressure which can be calculated from the background distribution function is taken to be

constant to avoid gradient driven modes to become important, i.e. p(s) = pi + pe = 6408.0

Pa. Near the axis the values are quite close and the plasma β is at around 0.2%.

The influence of the fast particle pressure on the equilibrium has not been taken into account

in any of the simulations.

The fast particle (deuterons) distribution is taken to be a Maxwellian and is varied in the

temperature range from 0 keV to 800 keV. The fast particle density profile is given by

n(s) = n0c3 exp
(
− c2
c1

tanh

√
s− c0
c2

)
(1)

with n0 = 1.44131 · 1017m−3 and the coefficients c0 = 0.49123, c1 = 0.298228, c2 = 0.198739,

c3 = 0.521298.

IV. RESULTS

A. Frequencies and growth rates

The ideal MHD frequency of the TAE mode found with CAS3D is ω = 4.01 · 105 rad s−1,

while ω = 4.13 · 105 rad s−1 has been found with GYGLES. The dominating mode numbers
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FIG. 2. Results for the modes frequencies:

(a) MHD results which stay constant in perturbative approaches.

(b) Results from CAS3D-K and TAEFL with limited approximation of orbit width and FLR effects.

(c) Results from non-perturbative codes changing the mode frequency by the fast particle pressure.
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radius and the radial orbit width are com-

pared with the width of dominating eigen-

mode harmonics at half maximum to es-
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was calculated using the large aspect ratio

estimate23.

are m = 10, n = −6 and m = 11, n = −6.

The growth rate has been calculated for different fast ion temperatures. In Fig. 1a the

growth rates have been calculated without the effects caused by a finite Larmor radius of

the fast ions. Although this limit is appropriate only for small energies, it provides a good

comparison as not all participating codes are able to consider FLR effects.

The energy scaling of CAS3D-K can be explained by the missing FOW effects and is shown

for comparison.

The growth rates in Fig. 1b are smaller than those without the FLR effects included, but

show good agreement among themselves. The gyrofluid model of the TAEFL code gives

considerably smaller growth rates at lower energies and deviates strongly from the kinetic
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models for higher energies.

Note, that Fig. 1 illustrates only the drive of fast particles implemented in the models. The

numerical damping present in the non-perturbative codes and the physical of the fully gyro-

kinetic codes are subtracted from the data. So, the comparision is truly that of the included

fast particle physics.

To compare the frequencies, the codes have been sorted into three groups. In Figure 2a,

there are the MHD results shown which are used by the perturbative codes. These are

not changed when the fast particle energy increases as the fast particle pressure does not

influence the MHD mode. The results from LIGKA have been obtained in the MHD limit

and are shown for comparison. If the background equilibrium pressure is neglected, the MHD

mode is somewhat higher than the full MHD result (straight lines compared with dashed).

In Figure 2b, the results of those codes are shown which have only a limited account for

the orbit width effects. CAS3D-K calculates the frequency response perturbatively and fails

to reproduce the rise of the frequency with higher fast particle pressure which is visible in

Figure 2c. See Ref. 26 for a discussion and Ref. 17 for similar observations.) Figure 2c

collects the results of the most complete physical models including orbit width and FLR

effects.

To get an impression when the orbit width reaches the mode width, Fig. 3 compares the

thermal gyro radius of the fast particles and large aspect ratio estimates of their orbit width

with that of the mode at half maximum. For this case, both, the orbit width as well as the

gyro radius are quite large which explains the relatively pronounced effect on growth rates

and frequency shifts.

It has been found from analysis of the kinetic MHD results of HMGC and MEGA that

the resonances at vf/vA = 1/3 and at vf/vA = 1/5 contribute mostly to the energy transfer

between fast particles and waves (Fig. 4).

From our point of view, it was not clear in this field of research how different models would

compare with each other. In this light, the relatively large variance of the results for both,

FLR and ZLR, is not that surprising. Nevertheless it deserves discussion. One point is

certainly that already the frequencies in the MHD limit disagree by around 4%. The same

is true for the non-perturbative codes, also here already the frequencies disagree. However,

there is no unexpected behavior of the frequency visible. Therefore, it is correct to assume

that all codes where addressing the same mode despite their very different models. Judging

from the growth rates, the frequency shifts and the little change in the eigenmodes (next
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FIG. 4. Spatially averaged energy transfer between waves and the fast particles over velocity space

at a given point in time. For HMGC (a) and MEGA (b). The fast particle temperature is 400 keV.

In (a), the radial interval considered was 0.448 < s < 0.552 while for (b) 0 < s < 1 has been taken.

subsection), the deviation from the MHD result is not large and the case can be treated

perturbatively. The remaining sources of error are the different equilibria (ad-hoc, MHD

and flat profiles) and numerical differences in the codes.

B. Eigenfunctions

The qualitative agreement between the eigenfunctions is good: Some examples are shown

in Fig. 5 and also in Fig. 6 for comparison.

The agreement in the ideal MHD limit (Fig. 5) is very good, especially between the codes

which use eigenvalue solvers such as CAS3D, AE3D, CKA, LIGKA and CASTOR. Here, the

non-perturbative (time dependent) codes deviate and show a more pronounced side band

structure although they have different physical models. This structure, however, might be

due to the ad-hoc (without Shafranov shift) equilibrium model used in HMGC and GYGLES.

C. Physical damping mechanisms

The physical damping mechanisms cannot be addressed by all participating codes. Colli-

sional damping can only be calculated by NOVA-K and is found to be γcoll = −0.237 ·103s−1
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FIG. 5. Eigenfunctions in the

ideal MHD limit or the kinetic
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species) without fast particles for
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for the contribution of the trapped electron population.

Using VENUS for an electron species, the electron Landau damping has been found to be

γelLD = −1.3 · 103s−1. All collision-less damping mechanisms of the bulk plasma can only

be calculated by the fully gyro-kinetic codes LIGKA, GYGLES and EUTERPE (see Table

III). For this calculation, both GYGLES and EUTERPE used the ad-hoc equilibrium.

code γ/s (co) γ/s (counter)

LIGKA -1052 -1517

EUTERPE -567 -1705

GYGLES -1103

TABLE III. Damping rates from gyrokinetic codes

In the GYGLES code, the diagnostics was not been able to distinguish between the two coun-

terpropagating MHD modes. The values agree fairly well, although PIC-codes are routinely

plagued with noise issues and the two co-existing MHD modes cause additional numerical

problems. Only the δf method together with the elaborated numerical algorithms17,18 used

here allows a quite accurate calculation.

For the comparison with the results of the other codes it must be remembered that the fully

kinetic codes consistently include the damping by the bulk plasma. As stated above, the
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benchmarks aims to compare the drive of fast particles.

We have corrected all growth rates in Fig. 1 by subtracting the respective damping rates

(both collisional and collisionless) that were found for each code, so that γ = 0 for Tf = 0.

Note that, in some codes (namely MEGA and HMGC), these damping rates depend on Tf .

In those cases, the applied correction was also Tf -dependent.

D. Numerical issues and model limitations

1. Proper choice of the distribution function

In the kinetic part of the theory, the initial distribution function of the fast particles has

to be chosen such that the distribution function is a function of the constants of motion.

This choice guarantees that no relaxation occurs without a perturbation and justifies a

linearization of the Vlasov equation.

However, in this work, the distribution function has been chosen to be a function of the flux
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label s rather than the toroidal momentum Pφ = q
c
Ψpol + mRv‖

Bφ

B
. This was partly due to

technical reasons but also because the stellarator codes do not use Pφ as it is not conserved in

stellarators. Note that with the transition to an analogous distribution function depending

on Pφ (cf. Ref. 6) the growth rate is smaller by approximately a factor of two (NOVA-K

calculation). The terms leading to a relaxation of f0 have been switched off in all codes.

2. Lost marker particles in δf PIC simulations

Due to their large orbit width, the fast particles may leave the simulation domain. The

same is true for the marker particles in PIC simulations.(Please note, that for δf simulations

one has to distinguish between marker particles and the weight they carry. The weight is

measuring the physical distribution function f.) Having not considered an explicit particle

source, lost markers violate the assumptions used to derive the numerical scheme. Here, two

heuristic fixes to this problem have been used and compared (Fig. 7). It can be seen that

the re-insertion procedure matters for the result and deserves to be explored further as the

issue is relevant for other particle following codes as well.

LIGKA pre-caluclates the particles orbit properties on a fixed energy grid. Therefore, at

high energies (T > 400 keV) the grid would need to be refined in order to resolve properly

the lost-particle boundary that influences significantly the EP drive. This convergence study

was not carried out here and therefore no LIGKA results for T > 400 keV are available.

3. Numerical damping in time dependent MHD codes

The non-perbaturbative MHD-kinetic hybrid codes like MEGA and HMGC inherently have

numerical damping. This is due to the finite viscosities and resistivities which have to be

used in those models to suppress numerical instabilities. Varying the fast particle density

in growth rate calculations, the damping value can be extrapolated. The growth rates in

this work have been corrected by adding the damping value. Note, that damping rates vary

with temperature. For example, for the MEGA code without FLR, the damping rate is

−1.2 · 103 s−1 for T = 200 keV. and −4.4 · 103 s−1 for T = 400 keV. They are comparable

to the collisionless damping rate from LIGKA and GYGLES. Of course this agreement is

coincidental. Nevertheless, it may explain why MHD/kinetic-hybrid codes can successfully

reproduce non-linear saturation levels which depend also on the damping of the mode. A
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discussion of the choice of damping parameters can be found in Ref. 27.

V. CONCLUSIONS

A linear benchmark for the calculation of the growth rate of a TAE mode17 has been per-

formed by a number of codes using fully gyro-kinetic, kinetic MHD and gyro-fluid models.

The importance of FLR effects has been illustrated, which is in agreement with earlier re-

search6. The MEGA code has been upgraded for this benchmark, to include FLR effects

and an extended version of HMGC is under construction25. Leaving aside the particular

behavior of the gyro-fluid model, the overall agreement of the codes is satisfactory for fast

particle energies below 400 keV and lies within ± 20% for the codes including FLR effects

and ± 15% for those without such effects. The source of the deviations seems to rest in the

different physical models used.

The frequency changes with a rising temperature of the fast particles have been investigated

for those participating codes which where able to calculate them. It has been found that

the models with full orbit width show qualitatively similar behavior. The mode frequency

drops for lower fast particle energy and increases as soon as Tf exceeds 100− 200 keV.
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For higher energies, the orbits become large and numerical problems (lost particles, orbits

outside the plasma boundary) become more severe.

With respect to calculations for burning plasmas in large machines the relative effect of the

orbit size might be smaller, however the question of lost particles should be addressed in

further research.

The results of the paper show that although there is agreement, further code verification is

necessary to decrease the deviation of the results. Further code improvements should focus

on the inclusion of more physical effects, especially of damping and realistic equilibriums to

allow a successful application to ITER.
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Appendix A: Ad hoc equilibrium

The ad-hoc equilibrium is a circular tokamak with concentric flux surfaces and is defined by

~B = F (Ψ)∇φ+∇Ψ×∇φ (A1)

where Ψ is the poloidal toroidal flux, F = B0R and B0 is the reference magnetic field. In

order to complete the specification, we define

dΨ

dr
=
B0r

q̄(r)
(A2)

where q̄ is given by the safety factor via q̄(r) = q(r)
√

1− ( r
R

)2.
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