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Abstract

Compensatory mutations between protein residues in physical contact can manifest them-

selves as statistical couplings between the corresponding columns in a multiple sequence

alignment (MSA) of the protein family. Conversely, large coupling coefficients predict

residue contacts. Methods for de-novo protein structure prediction based on this approach

are becoming increasingly reliable. Their main limitation is the strong systematic and statisti-

cal noise in the estimation of coupling coefficients, which has so far limited their application

to very large protein families. While most research has focused on improving predictions by

adding external information, little progress has been made to improve the statistical proce-

dure at the core, because our lack of understanding of the sources of noise poses a major

obstacle. First, we show theoretically that the expectation value of the coupling score

assuming no coupling is proportional to the product of the square roots of the column entro-

pies, and we propose a simple entropy bias correction (EntC) that subtracts out this expec-

tation value. Second, we show that the average product correction (APC) includes the

correction of the entropy bias, partly explaining its success. Third, we have developed

CCMgen, the first method for simulating protein evolution and generating realistic synthetic

MSAs with pairwise statistical residue couplings. Fourth, to learn exact statistical models

that reliably reproduce observed alignment statistics, we developed CCMpredPy, an imple-

mentation of the persistent contrastive divergence (PCD) method for exact inference. Fifth,

we demonstrate how CCMgen and CCMpredPy can facilitate the development of contact

prediction methods by analysing the systematic noise contributions from phylogeny and

entropy. Using the entropy bias correction, we can disentangle both sources of noise and

find that entropy contributes roughly twice as much noise as phylogeny.

Author summary

Knowledge about the three-dimensional structure of proteins is key to understanding

their function and role in biological processes and diseases. The experimental structure

determination techniques, such as X-ray crystallography or electron cryo-microscopy, are
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labour intensive, time-consuming and expensive. Therefore, complementary computa-

tional methods to predict a protein’s structure have become indispensable. Over the last

years, immense progress has been made in predicting protein structures from their amino

acid sequence by utilizing highly accurate predictions of spatial contacts between amino

acid residues as constraints in folding simulations. However, contact prediction methods

require large numbers of homologous protein sequences in order to discriminate between

signal and noise. A major obstacle preventing progress on the statistical methodology is

our limited understanding of the different components of noise that are known to affect

the predictions. We provide two tools, CCMpredPy and CCMgen, that can be used to

learn highly accurate statistical models for contact prediction and to simulate protein evo-

lution according to the statistical constraints between positions of residues as specified by

these models, respectively. We showcase their usefulness by quantifying the relative con-

tribution of noise arising from entropy and phylogeny on the predicted contacts, which

will facilitate the improvement of the statistical methodology.

Introduction

In the course of evolution, proteins are under selective pressure to maintain their function and

correspondingly their structure. A possible mechanism to maintain structural integrity is the

compensation of deleterious mutations between residue pairs in physical contact, known as

compensatory mutations: Upon the mutation of one residue the contacting residue has an

increased probability to mutate into a residue that will locally restabilize the protein structure,

for instance by regaining a lost interaction between them. In multiple sequence alignments

(MSAs) of related proteins, this effect leads to correlations between columns of residues in

contact among most protein family members [1–4]. Many of these correlations are indirect,

though, and arise through transitive chains of contacting residue pairs [5–8].

By applying statistical techniques that can distinguish mere correlation from direct statisti-

cal coupling of residue positions [5, 7, 9], many false positive predictions could be eliminated.

The adoption of this class of statistical models, known as Markov random fields (MRFs), or

Potts models in statistical physics, led to a breakthrough in de-novo (template-free) protein

structure prediction: The predicted contacts proved sufficiently accurate to be used as spatial

restraints to reliably predict protein 3D structures purely from sequence information [10–20].

The requirement for large MSAs for sufficiently precise predictions has limited the applica-

bility of contact-assisted de-novo protein structure prediction, all the more because large pro-

tein families are more likely to contain at least one member whose structure has been solved

and which can be used as a template for homology modelling. Therefore, most research has

focused on making contact prediction reliable enough for medium-sized protein families

[20–25].

The background noise effects arising in residue-residue contact prediction have been postu-

lated to arise from three sources [5, 26–32]: random sampling noise due to the limited number

of sequences, phylogenetic noise due to the evolutionary relatedness of sequences in the MSA,

and entropic noise or rather bias, which biases high-entropy columns towards higher scores.

Unfortunately, the relative contribution and properties of the three different sources of noise

are difficult to study in real alignments, mainly because the true values of coupling parameters

are not known. In addition, the stochastic noise, entropy-dependent noise and phylogenetic

noise cannot be modified independently (for example by subsampling), as these noise sources
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are indirect, complex consequences of learning on only a limited number of sequences that are

statistically dependent on each other according to their phylogenetic relationship.

Many correction schemes for removing noise from the matrix of predicted contact scores

have been examined [27, 29, 30, 33–36], and the average product correction (APC) [26] came

out as a clear winner and is used in almost all recent studies. However, it is widely acknowl-

edged in the field that our limited understanding of what noise effects APC is correcting and

why it is so effectively correcting them is severely impeding progress in developing better sta-

tistical methods to predict contacting residue pairs. We repeatedly made the experience that a

promising extension to the standard MRF model that considerably improved the contact pre-

diction performance before applying the APC was doomed to failure because it inexplicably

yielded worse results than the baseline method after applying APC.

Based on theoretical considerations (Material and methods), we propose a simple entropy

bias correction (EntC) that is computed solely from per-column entropies of the input MSA

and corrects for entropy-dependent bias without affecting noise from phylogenetic effects. We

find that the EntC eliminates nearly as much noise as the APC. The observation that both cor-

rections can be expressed as a product of two factors depending only on each column sepa-

rately explains partly the success of APC and suggests that it mainly corrects for entropy noise.

Whereas the APC is applied as a post-correction to the matrix of predicted contact scores, the

EntC can be applied directly on the statistical couplings of the MRF model, prior to computing

a contact score and other post-processing treatments.

To systematically study the sources of noise limiting the accuracy of contact predictions

from MSAs and to facilitate progress in the development of better contact prediction methods,

we have developed CCMgen, a method for generating realistic synthetic protein sequence

alignments whose residues obey the selection pressures described by a MRF with pairwise sta-

tistical couplings between residue positions.

For that purpose, CCMgen requires an exact statistical model that will reliably reproduce

the empirical alignment statistics, such as single-site, pairwise or even higher-order amino acid

frequencies, of the input MSA that was used to learn the MRF model in the first place. A typical

strategy to obtain estimates of the MRF model parameters would involve maximizing the loga-

rithm of the likelihood function over all sequences in the MSA. However, the normalization

factor in the likelihood function requires to sum 20L terms, where L is the protein length, and

methods to optimize the full likelihood are very slow for realistic proteins [5, 37–41]. The most

popular approximation is to maximize the pseudo-likelihood instead of the likelihood, as it

can be shown that it converges to the same solution for large numbers of samples and it is fast

to compute [42–44]. Even though pseudo-likelihood maximization gives results of the same

quality of predicted residue-residue contacts as those using the full likelihood optimization,

several studies unveiled that the pseudo-likelihood model is inaccurate and not able to accu-

rately reproduce the empirical alignment statistics [37, 45].

We provide an implementation of an alternative precise inference technique, persistent

contrastive divergence (PCD) [46] with our tool CCMpredPy. Compared to pseudo-likelihood

maximization, PCD achieves identical precision for contact prediction while the inferred MRF

model reproduces empirical marginals much more precisely. The increased quality of the

models comes at the expense of longer run times, which are however still practical for even

large proteins and alignments using a single desktop computer. High quality MRF models

learned with PCD might prove beneficial beyond the purpose of contact prediction when

problems require exact model statistics, e.g. when studying mutational effects or designing

new protein features using the model energies.

Finally, we employ CCMgen in combination with MRF models that have been learned

with the PCD algorithm and our entropy bias correction to quantify the relative effect sizes of
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phylogenetic and entropic bias on the precision of contact prediction. We find that the contri-

bution of entropy noise in contact prediction is on average twice as big as that of phylogenetic

noise.

Results

Persistent contrastive divergence allows accurate inference of MRFs

An exactly inferred MRF will reliably reproduce the empirical single-site and pairwise

amino acid frequencies, fi(a) and fij(a, b) for all positions i, j in the MSA and all amino acids

a, b 2 {1, . . ., 20} [7, 47]. Several studies demonstrated that pseudo-likelihood maximization,

while being the method of choice for contact prediction, yields models that cannot accurately

reproduce the empirical alignment statistics [37, 39, 45].

We developed a method that uses an inference technique called persistent contrastive diver-

gence(PCD) [46] to learn MRF models that accurately reproduce the empirical alignment sta-

tistics. As in the study by Figliuzzi et al. [37], we computed for all Pfam MSAs in the PSICOV

dataset the single-column and paired-column amino acid frequencies as well as covariances,

covðda;xi ; db;xjÞ ¼ fijða; bÞ � fiðaÞfjðbÞ, where δa,x is the Kronecker symbol. We compared these

statistics with those from sequences obtained by Markov chain Monte Carlo (MCMC) sam-

pling from MRFs that were trained on the Pfam MSAs using either pseudo-likelihood maximi-

zation or PCD.

We find that the empirical single-site amino acid frequencies are well reproduced by both

models. But whereas the empirical pairwise amino acid frequencies and covariances correlate

strongly with the corresponding statistics computed from the PCD samples, the correlation is

much weaker for samples obtained from pseudo-likelihood MRF models (Fig 1A and 1B and

S1 Fig).

Furthermore, as in Figliuzzi et al. [37], we investigated how well the generated MCMC

samples reproduce the alignment substructure of the original Pfam alignments with respect to

the organisation of subfamilies in sequence space. We projected the protein sequences of the

MCMC samples onto the first two principle components obtained from a principal compo-

nent analysis (PCA) of the original Pfam MSA (for details see S2 Text). Again, we find that the

alignment substructure described by the grouping of sequences that can be observed in the

two-dimensional PCA space, is reproduced more reliably by MCMC samples generated from

PCD models than from pseudo-likelihood models (S2b and S2d Fig).

It has been argued that for the purpose of predicting residue contacts an approximate

model such as those obtained by maximizing the pseudo-likelihood for a MRF is sufficiently

accurate to infer the correct topology of the interaction network of residues [45]. Fig 1C shows

the mean precision of the predicted contacts from a PCD model and a pseudo-likelihood

model versus the number of predictions per columns in the MSA. The precision for one MSA

is the fraction of correctly predicted contacting pairs of positions (i, j) out of all predicted

pairs. The correctly predicted pairs (i, j) are those for which the Cβ − Cβ distance in the refer-

ence protein structure of the Pfam MSA is below 8Å. Residue pairs that are separated by less

than six positions along the protein sequence are not considered for the evaluation as they typ-

ically correspond to contacts within secondary structure elements and reflect local geometrical

constraints. Indeed, predicted contacts from a PCD model achieve equal precision as predic-

tions from a pseudo-likelihood model. S3 Fig shows further analysis, comparing the APC-cor-

rected contact scores from pseudo-likelihood and PCD models.

However, more complex problems such as prediction of mutational effects or generating

realistic samples of sequences, require exact model statistics. Several methods have been

developed that exactly infer MRF models, such as bmDCA and ACE [5, 37–41], but they are
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Fig 1. Persistent contrastive divergence permits the inference of high-quality models. A and B Comparing single amino acid frequencies

(left), pairwise amino acid frequencies (center) and covariances (right) computed from natural sequences (Pfam alignment) and from Markov

chain Monte Carlo (MCMC) samples generated from Markov random field (MRF) models trained with either pseudo-likelihood maximization

(A) or persistent contrastive divergence (PCD) (B) for protein 1bkrA in the PSICOV dataset. C Mean precision of contacts, predicted as (APC

corrected) L2 norm of pair couplings of a MRF trained with either pseudo-likelihood maximization or PCD. D Distribution of run times in

minutes when learning MRF models with CCMpredPy (run on 4 cores). The median runtime in minutes with pseudo-likelihood is 7 minutes

and with PCD is 43.5 minutes. Dashed line in boxplots represents the mean, solid line represents the median of the distribution. C and D are

computed over the 150 proteins in the PSICOV dataset.

https://doi.org/10.1371/journal.pcbi.1006526.g001
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computationally intensive which renders them impractical for real proteins. In comparison,

our PCD-based CCMpredPy method is only about a magnitude slower than pseudo-likelihood

maximization (Fig 1D).

Correcting for entropy bias removes a major source of noise

A major obstacle for improving the statistical methods for residue-residue contact prediction

is our lack of understanding of the sources of noise. The background noise effects have been

postulated to arise from at least three sources, whose size and properties are difficult to quan-

tify: phylogenetic, entropic and sampling noise.

Phylogenetic noise originates from the violation of the assumption of independence of

sequences in the MSA [48]. This assumption has been made by all methods that have been

employed for contact prediction so far. To understand the origin of phylogenetic noise, con-

sider the example in Fig 2. The MSA is composed of two subtrees whose last common ancestor

sequences, DSMF and ETMF, had a mutation at the second and first position respectively. All

descendants of the first ancestral sequence whose first two residues have not mutated in the

meantime will have a DS at first and second position, while all descendants of the other ances-

tral sequence whose first two residues have not mutated yet will have a ET at those positions.

Therefore, pairs DS and ET are more likely than would be expected from the frequencies of D

and E in the first column and of S and T in the second column. The first and second position

will therefore appear to be statistically coupled even though they are not.

Entropic bias describes the tight correlation of the expectation value of the contact score cij
between columns i and j of a MSA under the assumption of no coupling between both col-

umns with the product of the square roots of column entropies si ¼ �
P20

a¼1
fia log fia:

E½cij� /
�
s

1
2
i s

1
2
j : ð1Þ

Put simply, higher column entropies lead to higher expected contact scores cij even if no

coupling exists. To understand the origin of this bias, we need a bit of notation. From the

MSA we compute coefficients wij(a, b) that quantify the statistical coupling between residue

a 2 {1, . . ., 20} occurring in column i and residue b 2 {1, . . ., 20} in column j of the same

sequence (Materials and methods). A coefficient wij(a, b) = 0.1 signifies that residue a in col-

umn i and residue b in column j in the same sequence is exp(0.1) times more likely to occur

than what would be expected if the amino acids in both columns were independent of each

other.

Fig 2. The phylogenetic dependence of closely related sequences can produce covariation signals. Here, two

independent mutation events (highlighted in red and blue) in two branches of the tree result in a covariation signal for

the two affected positions.

https://doi.org/10.1371/journal.pcbi.1006526.g002
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To predict contacts, we estimate the coupling coefficients wij(a, b), for example by maximiz-

ing the pseudo-likelihood, and obtain estimates ~wijða; bÞ, from which we can calculate a score

to predict contacts. The commonly used contact score between columns i and j of a MSA is

simply the norm of the 400-dimensional vector ~w ij,

cij :¼ k~w ijk ¼
X20

a;b¼1

~wijða; bÞ
2

 !1=2

: ð2Þ

It sums up the squared coupling coefficients over all possibly coupled amino acid pairs.

Let us assume that a MSA has no statistically coupled residue pairs, meaning that the true

coupling coefficients are all zero. But the estimation of the coefficients results in errors, which

contribute a systematic bias, as we will now see. The regularization of the MRF will ensure that

the coupling coefficients wij(a, b) for those amino acid pairs (a, b) without counts will be zero

and will therefore not contribute to the overall contact score cij for this residue pair. For those

pairs (a, b) with one or more counts, the wij(a, b) will be distributed around zero but will rarely

be exactly zero, just as fij(a, b) is rarely exactly equal to fi(a) × fj(b). So each amino acid pair

(a, b) that occurs at least in one sequence will make a contribution E½~wijða; bÞ
2
� to the sum in

Eq 2. These contributions to cij stemming from noisy estimates wij(a, b) create a bias that will

increase with the number of pairs (a, b) of bins over which the N counts are distributed. Col-

umns with high entropy tend to disperse the counts of amino acid pairs over more bins (a, b)

than columns with low entropy. It is shown in Materials and Methods that the expectation

value of this bias on cij can be approximated by a term proportional to product of the square

roots of the entropies of the two columns.

The factorization of the EntC into two factors depending only on each column separately

explains partly the success of APC and suggests that it mainly corrects for entropy noise

(Materials and methods).

Sampling noise on the estimated coupling coefficients would remain, even if we correct for

entropic bias and phylogenetic effects, because with a finite sample of sequences we cannot

estimate fractions arbitrarily accurately. For example even if the sequences could be assumed

to be independent of each other, the probability of an amino acid pair (a, b) that has been

observed n� N times out of N is only estimated to a relative accuracy of approximately

s=m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1 � n=NÞ

p
=n � 1=

ffiffiffi
n
p

, according to the standard deviation of the binomial distri-

bution. More precisely, whereas the entropy bias describes the systematic offset of the contact

score cij stemming from the non-zero expectation values E½~wijða; bÞ
2
�, the sampling noise origi-

nates from the variance of the coefficients, var½~wijða; bÞ
2
�, which is due to the finite number of

measurements (sequences) N taken.

The APC and the EntC in action. Fig 3A shows the contact scores cij (see Eq 2) in grey

scale computed from a MRF that has been trained from a typical example MSA. The striping

patterns in horizontal and vertical directions reflect strong systematic row- and column-

dependent score biases. Some positions seem to obtain generally higher scores than others.

Without correction, ranking by these scores would severely overpredict contacts between posi-

tions with positive score bias and underpredict contacts between positions with negative bias.

Applying the APC eliminates the systematic effects leading to the striping patterns (Fig 3B).

It thereby greatly improves the performance of all contact prediction scores for local pairwise

measures such as mutual information as well as for global statistical coupling methods such as

the MRF-based contact score referred to here [8, 26, 49–51].

To disentangle the entropic bias from the phylogenetic noise, we first propose an entropy-

dependent correction, EntC, of the contact scores cij that depends solely on the per-column

Synthetic protein alignments by CCMgen
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entropies si of the MSA from which the MRF was trained,

cEntCij ¼ cij � as
1
2
i s

1
2
j ð3Þ

with an analytically determined constant α that depends on all column entropies s1, . . ., sL. For

a motivation of this score, see Materials and methods. Fig 3C shows how the entropy correc-

tion removes almost as much of the striping effects as APC.

Fig 4A reveals how strongly these two corrections correlate (see S4 Fig for the whole data

set). Moreover, the correlation is high (Pearson correlation ρ = 0.972) also between the col-

umn-specific factors in the APC and EntC, that is, ci�=
ffiffiffiffic��
p

and
ffiffiffiffiffiffi
asi
p

(compare Eqs 17 and 18).

To analyze whether the correlation of APC and EntC is influenced by the phylogenetic depen-

dence between the sequences, we generated synthetic MSAs with CCMgen using a binary and

a star tree topology and trained an MRF on these two alignments (for details see next section).

The correlation between the column-column APC and EntC correction terms remains as high

Fig 3. Entropy correction eliminates major source of noise. Raw and corrected contact score matrices for protein

1c9oA. The gray scale indicates the contact scores for each residue pair (i, j) for raw uncorrected scores computed from

a Markov random field (MRF) model trained with persistent contrastive divergence (PCD) (A, Eq 2), average product

corrected scores (B, Eq 17) and entropy corrected scores (C, Eq 18). The striping pattern in A arises from systematic

score biases, which originate mainly from entropy.

https://doi.org/10.1371/journal.pcbi.1006526.g003

Fig 4. The average product correction (APC) and entropy bias correction (EntC) term correlate strongly. A For protein 1c9oA in the PSICOV data

set the correction defined by the APC correlates well with the correction determined by our entropy bias correction strategy when learning a Markov

random field (MRF) model with persistent contrastive divergence (PCD). B Also the factors appearing in the APC and EntC corrections, ci�=
ffiffiffiffic��
p

and
ffiffiffiffiffiffi
asi
p

., correlate well. C,D The Pearson correlation is similarly large when the MRF model is learnt from synthetic alignments generated with CCMgen

using binary tree topologies (C) or using star tree topologies (D), both in the example of protein 1c9oA shown here and also across all 150 proteins in

the Pfam dataset (S4 Fig).

https://doi.org/10.1371/journal.pcbi.1006526.g004
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as for the real Pfam MSA (Pearson correlations 0.983 (binary tree) and 0.975 (star tree) versus

0.971 (Pfam MSA)) (see Fig 4C and 4D). These results suggest that the APC predominantly

corrects out entropy bias [26] rather than phylogenetic bias. Our theoretical analysis in Materi-

als and Methods further supports this (see also the Discussion).

However, the relative contributions of entropic and phylogenetic noise limiting the preci-

sion of contact prediction are yet unclear. In the following we will use our tool CCMgen to dis-

tinguish between both sources of noise.

Quantifying noise effects with CCMgen reveals entropy as dominating

source of noise

Our workflow to analyse the relative contributions of noise sources is described in Fig 5. First,

we estimate the parameters of a second order MRF model with PCD using CCMpredPy for

each of the 150 Pfam MSAs in the PSICOV data set. To obtain models with few but precise

constraints, we set coupling parameters to zero for non-contacting residue pairs (Cβ distance

>12Å) during parameter learning.

In a second step, we use CCMgen with the learned model parameters to generate realistic

synthetic MSAs of interdependent sequences with pairwise statistical couplings between some

positions as they are observed in MSAs between residues in physical contact. CCMgen pro-

vides full control over the generation of the synthetic MSAs by allowing us to specify the evolu-

tionary times and phylogeny along which the sequences are sampled. We sample two sets of

synthetic MSAs: one set with a star tree topology and the other with a binary tree topology

(Fig 6). Given sufficient evolutionary time, the phylogenetic dependencies between sequences

drawn according to the star tree topology should be negligible, whereas sequences drawn

along the binary tree are expected to contain stronger interdependencies.

Because the accuracy of predictions strongly depends on alignment depth and diversity [49,

52], we ensured that the synthetic alignments contain the same number of sequences and have

similar diversities as the original Pfam alignments (for details see Material and methods).

These provisions justify a direct comparison of the results for sampling sequences along the

star and binary topologies.

Fig 5. Workflow for quantifying noise effects. Artificial multiple sequence alignments (MSAs) are generated with

CCMgen using a binary tree phylogeny for sequences with strong interdependencies and using a star tree phylogeny

for nearly independently sampled sequences. Then, contacts are predicted and post-corrected using the average

product correction (APC) and entropy bias correction (EntC)for both sets of alignments.

https://doi.org/10.1371/journal.pcbi.1006526.g005
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Third, we run CCMpredPy on each of the synthetic MSAs and predict residue-residue con-

tacts by ranking the pairs according to the descending raw contact scores (Eq 2), or by the

APC-corrected contact scores (Eq 17) or by entropy corrected scores (Eq 18). Since we know

the ground truth of which pairs are coupled from the MRF model used for generating the syn-

thetic MSAs, we can use these alignments to investigate and quantify the effect of phylogenetic

noise on the precision of residue-residue contact prediction.

Fig 7A and 7B plot the mean precision of the predicted contacts from both types of syn-

thetic MSAs versus the number of predictions per columns in the MSA. As expected, the mean

precision drops as more predictions are considered and lower ranks are included.

Both APC and EntC correction have a huge effect in reducing noise and increasing the pre-

cision of predictions. Both corrections give very similar results for MSAs generated with star

topology trees, which are not expected to show phylogenetic noise, while the APC performs

slightly better than the EntC on MSAs with binary tree topologies. This suggests that the APC

corrects out a small part of the phylogenetic noise. This would be plausible because this noise

source affects some positions more than others (Fig 2) and would thereby also cause striping,

which could be corrected by APC.

We estimate the strength of the phylogenetic noise as the drop in precision between the

EntC-corrected precisions on MSAs with star topology and EntC-corrected precision on the

Fig 6. Idealized phylogenetic tree topologies available with CCMgen. CCMgen can generate multiple sequence

alignments (MSAs) based on a Markov random field (MRF) model and a phylogenetic tree supplied either as Newick

file or as one of the two shown, idealized topologies: A binary tree and B star-shaped tree.

https://doi.org/10.1371/journal.pcbi.1006526.g006

Fig 7. Effect of phylogenetic noise on contact prediction accuracy. MSAs generated with phylogenetic trees with star

topologies do not contain phylogenetic noise. Therefore, the entropic bias is fully responsible for the difference in

mean precision of predicted contacts between the uncorrected raw coupling scores (green) in (B) and the APC- or

EntC-corrected scores. On MSAs generated with binary tree topologies, the precision of EntC-corrected scores drops

due to phylogenetic noise (A). APC seems to correct out a small fraction of this noise, whereas EntC can only correct

for entropy-related bias. (C) We can estimate the effect of phylogenetic noise as the drop in precision of the entropy-

corrected scores (blue) from binary to star tree topology.

https://doi.org/10.1371/journal.pcbi.1006526.g007
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MSAs with binary tree topology (Fig 7C). The strength of the entropy noise is shown in terms

of the drop in precision between the EntC-corrected and uncorrected, raw contact scores,

both for the star tree topology and for the binary tree topology. The contribution of entropy

noise to the drop in precision is roughly two times larger than that of the phylogenetic noise.

Discussion

The average product correction explained

The success of the average product correction (APC) (Eq 17) is in part explained by three key

insights: First, as we have seen, the entropy bias explains a large part of the noise in residue

contact prediction. Second, as shown in Material and Methods, the EntC factorizes over col-

umns, that is, it can be written as a product of two factors, each of which depends only on

one column. Third, as we show now, the APC boils down to subtracting from the score cij an

approximation to its expectation value under the null model of no couplings, if this expecta-

tion value factorizes into two terms, each of which depend only on one column,

E½cij� � ui uj : ð4Þ

Taken together, these three insights explain why the APC includes the EntC, which corrects

for most of the bias.

To demonstrate the third insight, we approximate

ci� ¼
XL

j¼1

cij �
XL

j¼1

E½cij� �
XL

j¼1

uiuj ¼ ui hu�i ð5Þ

ci�� ¼
XL

i;j¼1

cij �
XL

i;j¼1

E½cij� �
XL

i;j¼1

uiuj ¼ hu�i
2
; ð6Þ

because the sum over L terms averages out the fluctuations around the expectation value of

each term. This approximation is probably the reason why the APC works better on cij than on

c2
ij because for c2

ij the values in the sum are much more dispersed and dominated by one or a

few terms, which renders the above approximation much less accurate. The APC correction is

then

ci�c�j
c��
¼
ui hu�i hu�i uj
hu�i

2
¼ uiuj ¼ E cij

h i
: ð7Þ

Hence the APC subtracts approximately the expectation value from cij if it factorizes over

columns.

EntC can overcome a major impediment to progress, the APC

As we have seen, the success of the average product correction (APC) (and other denoising

techniques such as LRS [33]) depends on the specific form of the bias it can correct. The com-

bination of pseudo-likelihood maximization, L2 regularization, and the definition of the con-

tact score as the norm of the coupling vector k~w ijk lead to a factorized form of the entropy, the

leading cause of bias to correct for. It is plausible that changing the statistical model, its method

of optimization, the regularization, or the contact score will usually result in the entropy bias

to not factorize any more. For example, exchanging the L2 regularization by an L1 regulariza-

tion destroys the factorization property. Therefore, even though the latter regularizer might
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work better, it can still perform worse after APC because APC does not correct its entropy bias

well any more. A potentially very valuable result of this work is therefore the insight into what

the APC actually corrects. If we can work out the expectation value of the contact score under

the L1 regularization, for example, we could apply the appropriate entropy bias correction spe-

cifically for that model and regularization.

As another example, consider the following contact score, which uses amino acid pair-spe-

cific weights βab to upweight those pairs that are more predictive of contacts than others:

c0ij ¼
X20

a;b¼1

bab wijða; bÞ
2
: ð8Þ

The expectation value of this score does not factorize into separate terms for i and j any

more and therefore the average product correction fails. Similarly, even neural networks

would have a hard time to combine the coupling coefficients wij(a, b)2 while learning to sub-

tract the correct expectation value at the same time. This explains why it has been so difficult

to improve on the popular combination of L2 regularization and contact score cij ¼ k~w ijk in

combination with the APC.

But by subtracting the correct expectation value for each pair (a, b),

E½w2

ijða; bÞ� �
N2

l
2

wðN � 1Þ
fiað1 � fiaÞ fjbð1 � fjbÞ ð9Þ

we should be able to overcome this roadblock. For instance we can now define a score with

weights βab whose expectation value under the null model is near 0, as it should,

sij ¼
X20

a;b¼1

babðwijða; bÞ
2
� E½w2

ijða; bÞ�Þ : ð10Þ

This equation allows for the correction of individual couplings wij(a, b). It could therefore

be used to train deep neural networks directly on the EntC-corrected coupling coefficients

wij(a, b), combining the advantages of entropy correction with learning directly from the full

set of coupling coefficients [21, 24] instead of only from their EntC-corrected norms kwijk, as

given in Eq 3.

Persistent contrastive divergence facilitates inference of high quality

models

Pseudo-likelihood maximization is the state-of-the-art inference technique for MRF models in

contact prediction. Whereas the approximate nature of the model is sufficient for the correct

ranking of residue pairs, the model is not exact in a way that it can reliably reproduce the

empirical amino acid statistics of the original MSA. We implemented an alternative inference

technique for MRFs, known as persistent contrastive divergence (PCD) which yields similar

precision for predicted contacts but permits learning the fine statistics of the MRF model with

higher precision. Even though other accurate model inference methods such as ACE [39] or

bmDCA [37] can infer model parameters up to arbitrary precision, they are computationally

intensive and their applicability is limited to small proteins. On the PSICOV dataset, our open

source Python implementation of the PCD algorithm, CCMpredPy, was only about seven

times slower than pseudo-likelihood maximization. (Its speed is proportional to the number of

Markov chains and thereby depends on the required accuracy.) CCMpredPy might therefore

be of use for large-scale studies that require exact models, such as investigating mutational

effects or designing new protein features.
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CCMgen allows the generation of realistic synthetic alignments

We developed CCMgen, the first tool for generating realistic MSAs of protein sequences for a

given phylogenetic tree whose residues follow the pairwise coupling constraints from a Mar-

kov random field model. CCMgen provides full control of parameters that determine the

interdependencies between sequences through the specification of the phylogenetic topology

and the evolutionary rate of the sampling process. It enables to distinguish different sources of

noise observed in alignments and how they affect the performance of residue-residue contact

predictions. We believe CCMgen will prove to be useful for improving and validating contact

prediction methods.

In this study, we demonstrated how CCMgen can be applied to analyse the noise contribu-

tions from entropy and phylogeny. Given MRF models learnt on real MSAs, we generated syn-

thetic MSAs with statistically coupled amino acid columns from two types of phylogenetic

trees, one in which the sequences are maximally independent (star topology) and one in which

the statistical dependences are much stronger (binary tree). By predicting contacts from the

two types of synthetic alignments and correcting the predicted contacts either with the APC or

with our proposed entropy bias correction, we were able to elucidate the effect of phylogenetic

and entropic noise on contact prediction accuracy.

According to the quantification of noise effects, the most important goal for residue-residue

contact prediction is an accurate treatment of entropic bias, as it accounts for roughly twice

the amount of correctable noise and is especially important for correctly identifying the stron-

gest evolutionary couplings. However, phylogenetic noise has an important contribution to

the predictions and only a fraction of it is probably corrected by the popular average product

correction (APC). This result shows that it might be very worthwhile to develop methods for

contact prediction and for learning of MRFs that can explicitly take the statistical dependencies

of sequences by common descent into account.

Materials and methods

Recap: MRFs model statistical couplings between columns in a MSA

To predict contacts between residues, a popular approach is to train a Markov random field

(MRF) model describing the probability to observe a sequence x = (x1, . . ., xL) of length L with

xi 2 {1, . . ., 20} representing the 20 amino acids,

pðxjv;wÞ ¼
1

Z
exp

XL

i¼1

viðxiÞ þ
XL

i<j

wijðxi; xjÞ

 !

: ð11Þ

The couplings wij(a, b) describe the preference to find amino acid a at position i and b at j
in the same sequence in relation to the probability if these positions were independent, as

parametrized by the single-column amino acid preferences vi(a). Z is the normalization con-

stant, equal to the sum of the exp function in the numerator summed over all possible 20L

sequences.

To estimate the parameters vi(a) and wij(a, b) of the MRF, the logarithm of the likelihood

for all sequences in the MSA, equal to the sum over the log-likelihood of each sequence xn,

could be maximized:
PN

n¼1
log pðxnjv;wÞ ! max. A regularization term that pushes all

parameters towards zero needs to be added to prevent overtraining, most commonly a L2
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penalty,

RðwÞ ¼ �
1

2
l
XL

i<j

X20

a;b¼1

wijða; bÞ
2
: ð12Þ

But the huge number 20L of terms in Z renders an exact solution infeasible for realistic pro-

tein lengths.

A number of approximations have been developed for this general class of problems. The

approach that has consistently been found to work best for residue contact prediction is the

pseudo-likelihood approximation, in which we replace the likelihood with the pseudo-likeli-

hood and maximize the regularized log pseudo-likelihood [42–44],

PLðv;wÞ ¼
YN

n¼1

YL

i:xni 6¼0

pðxnijxn;ni;v;wÞIðxni 6¼ 0Þ

PLregðv;wÞ ¼
YN

n¼1

YL

i:xni 6¼0

1

Zni
eviðxniÞþ

PL

i<j
wijðxni;xnjÞ

þ expðRðwÞÞ!
v;w

max:

ð13Þ

Here, xn,ni denotes the vector obtained from xn by removing the i’th component and

Zni ¼
P20

c¼1
exp viðcÞ þ

PL
j:j6¼i wijðc; xnjÞ

� �
is a normalization constant, which can therefore be

evaluated easily. The second product runs over all columns i for which xni is not a gap (repre-

sented by a 0).

Once the parameters v, w are estimated from a MSA, we can predict contacts for pairs of

positions i and j using their statistical couplings. The most widely used score for residue con-

tact prediction simply takes the L2 norm kwijk2 of the 20 × 20-dimensional vector wij with ele-

ments wij(a, b) (Eq 2) [42, 43, 51, 53, 54]. In this study, we chose the regularization strength

λ = 0.2(L − 1) [51].

Sequence weighting and gap treatment

Sequences in a MSA do not represent independent draws from a probabilistic model. To

reduce the effects of redundant sequences, we employ a popular sequence reweighting strategy

that has been found to improve contact prediction performance. Every sequence xn of length L
with n 2 {1, . . ., N} in an alignment with N sequences has an associated weight ωn = 1/mn,

wheremn represents the number of similar sequences:

mn ¼
XN

m¼1

IðIdðxn; xmÞ � 0:8Þ ; ð14Þ

Idðxn; xmÞ ¼
1

L

XL

i¼1

Iðxin ¼ ximÞ : ð15Þ

An identity threshold of 0.8 has been used for all analyses. Amino acid counts and frequen-

cies are computed with respect to the sequence weights. For example,

fiðaÞ ¼
XN

n¼1

onIðxni ¼ aÞ
�
XN

n¼1

on ð16Þ

is the weighted fraction of sequences that have an amino acid a in column i.

Synthetic protein alignments by CCMgen

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006526 November 5, 2018 14 / 25

https://doi.org/10.1371/journal.pcbi.1006526


We treat gaps as missing information and not as a 21st character. An example is Eq 13,

where the second product runs over all MSA columns i except those having a gap in sequence

n, xni = 0. This gap treatment leads to very minor changes both to the results and to the equa-

tions with respect to treating gaps as 21st character, e.g. the weighted number of sequences
PN

n¼1
on gets replaced by Ni ¼

PN
n¼1
onIðxni 6¼ 0Þ (the summed weight of sequences that do

not contain a gap at positions i of the MSA), or by Nij ¼
PN

n¼1
onIðxni 6¼ 0; xnj 6¼ 0Þ. See, for

example, Eqs 24 and 31 (for details see subsection 3.7.2 of PhD thesis of Susann Vorberg, avail-

able from soeding@mpibpc.mpg.de).

Recap: Average product correction

The APC subtracts from each score cij = kwijk2 the product of the average score ci• for row i
times the average score cj• for column j divided by the average score c•• over all cells [26]:

cAPCij ¼ cij �
ci�cj�
c��

: ð17Þ

The APC ensures that the average of the corrected coupling score over each column and over

each row is 0. This can be verified by summing Eq 17 over all i or j. The assumption made is

that, since each residue is only in contact with a small fraction of all residues, the mean cou-

pling score over a column or row is dominated by the systematic score bias on all pairs in the

column or row rather than by the coupling scores on a small fraction of contacting residues.

APC can also be interpreted as an approximation to the first principal component of the raw

contact matrix [33]. It therefore removes the highest variability in the raw contact matrix that

is assumed to arise from background biases.

Entropy correction

We define the following entropy bias correction (EntC), which depends solely on the per-col-

umn entropies of the MSA from which the MRF was trained:

cECij ¼ cij � a s
1
2
i s

1
2
j ð18Þ

where α is a coefficient determining the strength of the correction, and

si ¼ �
X20

a¼1

fiðaÞ log2
fiðaÞ ð19Þ

is the entropy of column i.
We determine α by analytically minimizing the sum of squares of the corrected off-diagonal

coupling scores,

XL

i6¼j

cij � a s
1
2
i s

1
2
j

� �2

! min
a

; ð20Þ

By setting the derivative to zero we obtain the optimal α value,

a ¼

PL
i6¼j cij s

1
2
i s

1
2
j

PL
i6¼j si sj

: ð21Þ

We also investigated other correction strategies using entropy statistics computed from the

input MSA, such as the joint entropy for pairs of columns or different exponents in Eq 18. The
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resulting variations of the entropy correction performed comparably regarding the average

correlation with APC as well as precision of contact predictions.

Quantitative motivation of the entropy correction

We are given an MSA under the model that the sequences evolved under no pair couplings,

that is, wij(a, b) = 0 for all columns i, j and all amino acids a, b. The square of the coupling

score for columns i and j is c2
ij ¼

P20

a;b¼1
~wijða; bÞ

2
, where ~wijða; bÞ are our estimates of the cou-

pling coefficients learnt by maximizing the regularized pseudo-likelihood PL(v, w) in Eq 13.

Our task is to calculate the expectation value of the coupling scores cij ¼
P20

a;b¼1
~wijða; bÞ

2
� �1=2

.

This expectation value under the null model of no couplings will be subtracted from the score

to obtain the entropy-corrected score. For simplicity, we first assume that all sequences are

independent draws from an MRF (with zero pair couplings).

From Eq 13 we derive the logarithm of the regularized pseudo-likelihood,

PLLregðv;wÞ ¼
XN

n¼1

XL

i:xni 6¼0

viðxniÞ þ
XL

j:j6¼i

wijðxni; xnjÞ � logZniðv;wÞ

 !

�
l

2

XL

i6¼j

X20

a;b¼1

wijða; bÞ
2
:

ð22Þ

At the local and global optimum, its partial derivatives with respect to the coupling coeffi-

cients must vanish:

@ PLLreg
@wijða; bÞ

¼
XN

n¼1

Iðxni ¼ a; xnj ¼ bÞ �
XN

n:xni 6¼0

1

Zniðv;wÞ
@Zniðv;wÞ
@wijða; bÞ

 !

� lwijða; bÞ ¼ 0

@ PLLreg
@wijða; bÞ

¼ nijab �
XN

n:xni 6¼0

pðxni ¼ ajxn;ni; v;wÞ Iðxnj ¼ bÞ � lwijða; bÞ ¼ 0 ;

ð23Þ

where nijab :¼
PN

n¼1
Iðxni ¼ a; xnj ¼ bÞ counts how often a appears in column i at the same

time as b in column j.
Under the hypothesis that none of the columns is coupled to any other and that the regular-

ization λ is sufficiently strong, the estimated coupling coefficients ~wijða; bÞ will all be fairly

small and scattered around zero. Therefore, the model probabilities pðxni ¼ ajxn;ni; ~v; ~wÞ can

be approximated by the empirical frequency fia :¼ nia=N ¼
PN

n¼1
Iðxni ¼ aÞ=N. Hence Eq 23

reduces to

l~wijða; bÞ � nijab �
N
Ni
fia
XN

n¼1

Iðxni 6¼ 0; xnj ¼ bÞ : ð24Þ

Because under the null model gaps at position i occur approximately independently from b
at j,

PN
n¼1

Iðxni 6¼ 0; xnj ¼ bÞ � ð1=NÞ
PN

n¼1
Iðxni 6¼ 0Þ �

PN
n¼1

Iðxnj ¼ bÞ ¼ ðNi=NÞNfjb, we

obtain

l~wijða; bÞ � nijab � Nfiafjb: ð25Þ
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We now show that the counts nijab are distributed according to a hypergeometric distribu-
tion,

pðk ¼ nijabjfia; fjb;NÞ ¼ Hypergeomðk ¼ nijabjn;K;NÞ: ð26Þ

with k = nijab|, n = Nfia, and K = Nfjb. Suppose you draw n objects (here: sequences) without

replacement from a set of N objects, and K of these N objects have a certain feature (here:

xnj = b) while N − K don’t. Then the probability that k out of the n drawn objects have the fea-

ture is given by the hypergeometric distribution. In our case, the subset of objects = sequences

that is drawn is the set of n = Nfia sequences that have an a in column i. The number nijab of

these sequences that also have the feature xnj = b is therefore distributed according to the

hypergeomteric distribution.

The expectation value for a variable k = nijab is E[nijab] = nK/N = N fia fjb. Therefore, the

square of the coupling score cij can be expressed as

c2

ij ¼ jjwijjj
2

2
¼
X20

a;b¼1

~wijða; bÞ
2
�

1

l
2

X20

a;b¼1

ðnijab � E½nijab�Þ
2
: ð27Þ

The expectation value of the numerator is (nijab − E[nijab])2 = var[nijab] which is nK
N
N� K
N

N� n
N� 1

,

or, using our notation n = Nfia, and K = Nfjb,

E½c2
ij� �

1

l
2

X20

a;b¼1

Nfiað1 � fiaÞNfjbð1 � fjbÞ
N � 1

:

E½c2
ij� �

N2

l
2
ðN � 1Þ

X20

a¼1

fiað1 � fiaÞ

 !
X20

b¼1

fjbð1 � fjbÞ

 !

:

ð28Þ

Remarkably, the expectation value factorizes into a term depending only on i and one

depending only on j. The factorization is in fact the reason why the APC (Eq 17) works so well,

since the APC subtracts a product of two terms, ci�=c1=2
��
� cj�=c1=2

��
, one depending only on i

and the other only on j.
The factors in Eq 28 are highly correlated with the column entropies si (Fig 8A), so that we

can write

E½c2

ij� /
�

N2

l
2
ðN � 1Þ

sisj : ð29Þ

Finally, the variance of cij is small in comparison to E½c2
ij� because usually many approxi-

mately independent terms (nijab − E[nijab])2 contribute to c2
ij such that the fluctuations around

the expectation value of each such term tend to average each other out. We can therefore

approximate the entropic bias as

E½cij� ¼ ðE½c
2

ij� � var½cij�Þ
1=2
� E½c2

ij�
1=2
/
�

N1=2

l
s1=2

i s1=2

j : ð30Þ

Given that Eq 28 is a more accurate estimate for E½c2
ij� than Eq 30 is for E[cij], we were

expecting better results by predicting contacting residues (i, j) based on a ranking by

c2
ij � auiuj with ui ¼

P20

a¼1
fiað1 � fiaÞ than when we ranked by the entropy bias corrected

score cij � as
1=2

i s1=2

j . To our surprise, the entropy bias correction worked slightly better.

Investigation of this puzzling result is left for future work.
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We used a regularization strength proportional to the number of residues L in the MSA,

λ = 0.2L. Therefore, without sequence weighting, N
1=2

l
should be proportional to the α parame-

ter from Eq 21 that defines the optimum strength of the entropy bias. Indeed, Fig 8B shows

a tight correlation of α with
ffiffiffiffi
N
p

=L. We cannot expect the relationship to be strictly linear,

because in our theoretical analysis we had assumed that sequences are independent and have a

weight of 1, whereas in the example of Fig 8B the coupling coefficients ~wijða; bÞ where learned

from Pfam MSAs using sequence weighting.

Learning MRFs with persistent contrastive divergence

While the log likelihood function cannot be efficiently computed because of the exponential

complexity of the normalization constant Z, it is possible to approximate its gradient with an

approach called contrastive divergence [55]. The gradient of the log likelihood with respect to

the couplings wij(a, b) can be written as

@

@wijða; bÞ

XN

n¼1

XL

i¼1

viðxiÞ þ
XL

i<j

wijðxi; xjÞ

 !

� logZ

" #

¼ Nijqðxi ¼ a; xj ¼ bÞ

� Nij pðxi ¼ a; xj ¼ bjv;wÞ ;

ð31Þ

where Nij ¼
PN

n¼1
onIðxni 6¼ 0; xnj 6¼ 0Þ is the summed weight of sequences that have no gap

in either column i or j, qðxi ¼ a; xj ¼ bÞ ¼ 1

Nij

PN
n¼1
onIðxni ¼ a; xnj ¼ bÞ represents the empir-

ically observed pairwise amino acid frequencies that are normalized over a, b 2 {1, . . ., 20},

and p(xi = a, xj = b|v, w) corresponds to the model probabilities of the MRF for observing

an amino acid pair (a, b) at positions i and j. The empirical amino acid counts, given by

Nijq(xi = a, xj = b), are constant and need to be computed only once from the alignment.

The marginal distributions of the MRF cannot be computed analytically as it involves the

normalization constant Z. Markov chain Monte Carlo (MCMC) algorithms can be used to

generate samples from probability distributions that involve the computation of complex inte-

grals such as the normalization constant Z. Given that the Markov chains run long enough, the

Fig 8. Entropy bias correction. (A) Each dot shows the entropy �
P20

a¼1
fa log fa of a randomly sampled probability

distribution over the 20 amino acids versus
P20

a¼1
fað1 � faÞ for the same distribution. (B) For each of the 150 Pfam

MSA we plot the strength of the entropy bias correction α from Eq 21 versus
ffiffiffiffi
N
p

=L, whereN is the number of

sequences in the MSA and L is the number of columns. Without sequence weighting, a linear dependence would be

expected from Eq 30.

https://doi.org/10.1371/journal.pcbi.1006526.g008
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equilibrium statistics of the samples will be identical to the true probability distribution

statistics. Thus, an estimate of the marginal distribution of the MRF in the gradient in Eq 31,

p(xi = a, xj = b|v, w), can be obtained by simply computing the expected amino acid counts

from MCMC samples. However, MCMC methods require many sampling steps to obtain

unbiased estimates from the stationary distribution which comes at high computational costs.

Hinton suggested contrastive divergence (CD) as an approximation to MCMC methods

[55]. The idea is simple: instead of starting a Markov chain from a random point and running

it until it has reached the stationary distribution, we run C chains in parallel, each being initial-

ized with one of the sequences from the input MSA and we evolve them for only a small num-

ber of steps. Obviously the chains do not converge to the stationary distribution in only a few

steps and the sequence samples obtained from the current configuration of the chains present

biased estimates. The intuition behind CD is that even though the resulting gradient estimate

from the biased samples will also be noisy and biased, it points roughly into the same direction

as the true gradient of the full likelihood. Therefore the approximate CD gradient should

become zero approximately where the true gradient of the likelihood becomes zero.

We apply CD and generate sequence samples to estimate the marginal probabilities by

evolving Markov chains which have been initialized with randomly selected protein sequences

from the original Pfam MSAs for one full step of Gibbs sampling. We set the number of Mar-

kov chains to C = max(500, 0.1N), with N being the number of sequences in the MSA, which

seems to give a good trade-off between performance and runtime. Gibbs sampling requires

updating at each sampling step all sequence positions xi with i 2 {1, . . ., L} (L = sequence

length). For each position, a new amino acid a is chosen according to the conditional probabil-

ity

pðxtþ1

i ¼ ajxt
� i; v;wÞ / exp viðaÞ þ

XL

j6¼i

wijða; x
t
jÞ

 !

: ð32Þ

This Gibbs sampling approach is known to generate samples x0, . . ., xt that are distributed

according to the model probability in Eq 11 [56, 57]. Note that we do not update positions rep-

resenting a gap and we thereby retain the gap structure of the initial sequence.

A modification of CD known as persistent contrastive divergence (PCD) does not reinitia-

lize the Markov chains at data samples every time a new gradient is computed [46]. Instead,

the Markov chains are kept persistent: they are evolved between successive gradient computa-

tions. The assumption behind PCD is that the model changes only slowly between parameter

updates given a sufficiently small learning rate. Consequently, the Markov chains will not be

pushed too far from equilibrium after each update but rather stay close to the stationary distri-

bution [46, 58, 59].

Tieleman and others observed that PCD performs better than CD in all practical cases

tested, even though CD can be faster in the early stages of learning [46, 58, 60]. Therefore

we start optimizing the full likelihood with CD and switch to PCD at later stages of learning.

CCMpredPy settings for training a MRF with persistent contrastive divergence are listed in

S1 Text.

Generating MCMC samples from MRFs with CCMgen

MCMC samples for the analysis in Fig 1 have been generated with CCMgen by evolving 10000

Markov chains by repeated Gibbs sampling as described in Eq 32. The Markov chains, each

representing protein sequences of length L (length of protein in the PSICOV data set) have

been randomly initialized with the 20 amino acids. Since the alignment substructure is
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strongly impacted by the non-random distribution of gaps in the sequences (S2a Fig), in a sec-

ond step the gap structure of randomly selected sequences from the original Pfam alignment is

copied over (gaps represented as 21st amino acid). Thus, it is ensured that the sampling proce-

dure reproduces the original alignment substructure as closely as possible (S2b and S2c Fig).

The number of Gibbs steps before drawing samples was set to 500. Increasing the number of

Gibbs steps to e.g. 1000 does not change the statistics of the MCMC samples, hence we can

assume that the Markov chains have reached the equilibrium distribution. CCMgen settings

for MCMC sampling are listed in S1 Text.

Sampling sequences from MRFs along phylogenies with CCMgen

Instead of evolving sequences along a linear path, the MRF model can also be used to sample

protein sequences according to an arbitrary phylogenetic tree.

CCMgen can simulate the evolution of sequences along any given phylogenetic tree con-

strained by a MRF model, such as those calculated from CCMpred for example. The user can

either supply a phylogenetic tree in Newick format that has been generated by a phylogenetic

reconstruction program such as FastTree [61] on a real alignment or choose between two

types of idealized trees, a binary and a star-shaped topology. For these idealized trees the user

can specify the number of leaf nodes and the total depth of the tree, which is the total number

of mutations per position from the sequence at the root to the leaf nodes. The root sequence

can either be supplied by the user or be generated by evolving an all-alanine sequence with a

number of mutations (i.e. Gibbs sampling steps according to the MRF as described in Eq 32).

Sequences at subsequent child nodes are generated one by one, by duplicating the sequence

at the parent node and evolving the respective child node sequences each with a number of

mutations proportional to the edge length. The output of CCMgen is a MSA file with the

sequences at the leaf nodes of the tree. CCMgen is released as open-source python command-

line application.

Workflow for quantification of noise in contact prediction with CCMgen. We used

CCMpredPy to learn MRF models for all Pfam alignments in the PSICOV data set using PCD.

In order to obtain models with few but precise constraints, we set coupling parameters to zero

for non-contacting residue pairs (Cβ distance > 12Å) by initializing them to zero and setting

the gradients to zero in the optimization. This procedure ensures that the majority of residue

pairs not forming contacts in the protein structure will not be coupled in the MRF model.

We used CCMgen with the learned MRF models to generate synthetic alignments by evolv-

ing sequences along idealized star and binary tree topologies. The ancestral sequence at the

root of a tree, xt with t = 0, is obtained by evolving an all-alanine sequence for 10 steps of

Gibbs sampling as described in Eq 32. The synthetic alignments have the same number of

sequences as the corresponding Pfam alignments from the PSICOV set.

We also ensure that the diversity of the resulting MSAs is within 1% of the diversity of the

original Pfam MSA from the PSICOV set by adjusting the depth of the trees, which is equiva-

lent to adapting the mutation rate (S5a Fig). We measure diversity as the number of effective

sequences, Neff, defined as the exponential of the average column entropies, as defined in the

HH-suite software package [62].

For each new CCMgen run with adapted mutation rate a new ancestral sequence is sampled

by evolving an all-alanine sequence for 10 Gibbs steps. We found that the aforementioned pro-

cedure of masking non-contacting residue pairs during training of the MRF model has the

advantageous effect of allowing smaller mutation rates to be used to achieve the desired diver-

sity compared to sampling sequences with a fully parametrized model, likely due to the smaller

number of constraints trapping the sampling procedure in local optima. Enforcing small
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mutation rates is essential for preserving the interdependence between sequences when sam-

pling along binary topologies, which consequently controls the amount of phylogenetic bias.

The mutation rates used to obtain synthetic alignments of similar diversity as the original

Pfam alignments are very similar regardless of the phylogenetic topology along which

sequences were sampled (S5b Fig).

CCMpredPy and CCMgen settings for training the MRF with persistent contrastive diver-

gence and generating the synthetic alignments along binary and star tree topologies are listed

in S1 Text.

Dataset and preprocessing

We used the PSICOV data set that was published together with the PSICOV method [49] and

which comprises MSAs for 150 Pfam domains with known crystal structures. For each Pfam

MSA in the PSICOV set we first removed sequences with more than 75% gaps and columns

with more than 50% gaps, similarly as in [50, 51, 63], to reduce the well-known impact of gaps

on the analysis.
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Investigation: Susann Vorberg, Stefan Seemayer.

Methodology: Susann Vorberg, Johannes Söding.
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