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Materials can be classified by the topological character of their electronic structure and, 

in this perspective, global attributes immune to local deformations have been discussed in terms 

of Berry curvature and Chern numbers. Except for instructional simple models, linear response 

theories have been ubiquitously employed in calculations of topological properties of real 

materials. Here we propose a completely different and versatile approach to get the topological 

characteristics of materials by calculating physical observables from the real-time evolving 

Bloch states: the cell-averaged current density reveals the anomalous velocities whose 



2 

 

integration leads to the conductivity quantum. Results for prototypical cases are shown, 

including a spin-frozen valley-Hall and a quantum anomalous Hall insulator. The advantage of 

this method is best illustrated by the example of a quantum spin Hall insulator: the quantized 

spin Hall conductivity is straightforwardly obtained irrespective of the non-Abelian nature in 

its Berry curvature. Moreover, the method can be extended to the description of real 

observables in non-equilibrium states of topological materials. 

 

Ⅰ. INTRODUCTION 

When the Hamiltonian of a system is subject to adjustable periodic parameters, the 

eigenstates can acquire a nontrivial gauge-independent phase over the adiabatic evolution in 

the parameter space [1,2]. In various areas of physics the presence and importance of such 

geometrical phases have been recognized and characterized through the formulation owed to 

Chern-Simons and Berry [1,3,4]. In particular, the geometrical phase resulting from a variation 

of the Bloch vector ( k


) of a periodic Hamiltonian ( ˆ ˆ( ) ik r ik rH k e He− ⋅ ⋅=
 

 



) has recently attracted 

the most attention in the condensed matter community [5-7]. This Bloch geometrical property 

can also be discussed by a local field, known as Berry curvature ( ( )kΩ


 ), defined on the 

parameter space [2], instead of the loop-integrated phase. Once a finite Berry curvature is 

present, a solid will get an intrinsic anomalous Hall conductivity and, in this regard, the Berry 

curvature can be thought of as an intrinsic magnetic field of the material [2,6,8,9]. Furthermore, 

as established by Chern and Simons [4], the integration of the Berry curvature over a closed 

surface is quantized, named as Chern integer, which has been recognized as an essential 

indicator of the band topological nature [3]. For example, for two-dimensional (2D) Bloch 

electrons, the Chern number n can be determined by the integration over the whole Brillouin 
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Zone (BZ): 21 ( , )
2 x y

BZ

n k k d k
π

= Ω∫ . 

In addition to the anomalous charge Hall conductivity, various other transport properties 

can reflect the effects of the Berry curvature, such as, the valley Hall or spin Hall effect and 

others [9-12]. Except for instructionally designed simple models, the calculation of Berry 

curvature and the Chern-Simons number for real materials requisitely involves a perturbative 

approach within linear response theory, which in most cases requires the Wannierization 

technique to cope with the fine-grid integral over the BZ [13-15]. In the linear responses 

formulation, a monochromatic field ( i t
extE e ω


) is introduced to perturb the ground state, and the 

off-diagonal element ( ( )xyσ ω  ) of the conductivity tensor ( )ωσ   is written in terms of the 

unperturbed eigenstates, by means of the Kubo formula [2,10]. In particular, the static Hall 

conductivity ( ( 0)xyσ ω → ) has been assigned the most significant physical meaning owing to 

the work of Thouless, Kohmoto, Nightingale and Nijs (TKNN): the quantized Hall 

conductivity of the Landau level insulator is exactly related to the integer indicator of the 

topology ( n  as 2
xy ne hσ = ) [3]. The intrinsic Chern number n  of a material, as opposed to 

that of a quantum Hall state formed by an external magnetic field, was pursued in the search 

for quantum anomalous phases [16], and Haldane’s suggestion for the spin-frozen Chern 

insulator ignited flourishing interest toward topological states of matter [17]: Kane and Mele 

suggested the topological quantum spin Hall (QSH) effect by considering two copies of 

Haldane’s model, constituting the time-reversal partner to each other [18,19]. Bernevig, 

Hughes, and Zhang presented the same concept of a QSH effect through the exploration of an 

intrinsically band-inverted semiconductor and its surface state [20,21]. Extension to three 

dimensions (3D) and the relevant topological numbers have been pursued, and the 
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topologically protected metallic surface bands at the boundary of distinct topological states 

have been observed and discussed in the perspectives of spin-resolved dissipation-less carrier 

transport [5,22-24]. More comprehensive overviews of the topological phases of materials, and 

their historical developments, have been provided in a few recent review articles [2,5,24]. 

 This work is motivated by the question of whether the Berry curvature can be extracted 

from physical observables, such as the total current or others, that can be obtained from the 

time evolving states of a solid ( , ( )n k tψ  ) through the time-dependent Schrödinger equation. For 

actual time propagation, in the present work, we perform first-principles time-dependent 

density functional theory (TDDFT) calculations, and we show that the Berry curvature and 

Chern-Simons numbers for bands can be obtained from the time profiles of the total current. 

This method does not require the commonly used Wannierzation technique, and physical 

observables (charge or spin current) are directly computed as expectation values from the time-

evolving solid states. Exemplary real-material systems are presented including a trivial 

insulator, a valley-Hall insulator, and a quantum anomalous Hall insulator (QAHI). Using an 

example of a quantum spin Hall insulator (QSHI) we explicitly demonstrate that this dynamical 

approach offers a natural standpoint for spin Hall conductivity when the Berry curvature is 

non-Abelian and thus gauge-dependent.  

 

Ⅱ. THEORETICAL FRAMEWORK AND COMPUTATION METHOD 

The computation method consists in the use of a spatially uniform electric field (E-field) in 

the form of a time-dependent vector potential: ( ) ( )
t

A t c E dτ τ
−∞

= − ∫
 

. Time-evolving solid state 

wavefunctions are computed through the time-dependent Kohn-Sham (KS) equation, as 
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derived within TDDFT [25,26],  

( ) ( )
2

, ,

1 ˆ ˆ( ) ( ) [ ( , )] ,
2 ext Hxc SOCn k n k

ei t i A t V r V r t V t
t m c
ψ ρ ψ

 ∂  = − ∇ + + + +  ∂    
 



 

 

 (1) 

where ˆ ( )extV r   indicates the scalar-type external potential including atomic pseudopotential; 

and [ ]HxcV ρ  and ŜOCV  are Hartree-exchange-correlation density-functional potentials and the 

spin-orbit coupling term, respectively. The Kohn-Sham wavefunctions ( ),n k tψ    are two-

component spinors or a single-component wavefunctions (the spin-frozen or spin-polarized 

ones). Detailed parameters related to standard DFT calculation [27] and the time-integration 

algorithms are described in the Appendix A.  

Once the time-evolving solid states (
, ( )n k tψ  ) are computed the expectation values of an 

observable can be directly computed. For example, the real-time-dependent cell-averaged 

current density can be obtained by taking the expectation value of the gauge invariant 

mechanical momentum:  

, , , ,
, ,

ˆ ˆ( ) ( ) ( ) ( ) ( ) .n k n k n k n k
n k n k

eJ t e t v t t t
m

ψ ψ ψ π ψ= − = −∑ ∑   

 



 

 (2) 

Here the gauge invariant mechanical momentum is defined as

ˆ ˆ ˆ ˆˆ ˆ[ , ] ( ) ,NL
m e imr H p A t V r
i c

π  = = + +  


   

 

, from which the velocity operator is given by ˆ ˆv mπ=  . 

In this computation, the angular momentum dependent atomic potential is described by a 

separable form of a non-local pseudopotential ( N̂LV ), and thus the non-zero commutator with 

the position operator ( r̂ ) should be taken into account, as explained elsewhere [28]. Later for 
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the QSHI, our main interest will be focused on the spin current operator ( ˆ ZSj


) (see below) 

instead of the velocity operator ( ˆ mπ ) used in Eq. (2). 

If the parameters for the Hamiltonian, such as the E-field strength, are suitably chosen to 

make the adiabatic evolution, up to a first order variation of the wavefunctions, the velocity 

expectation can be written as [2], 

, , ,

( , )1 ˆ( ) ( ) ( ) ( ) ( , )n
nn k n k n k

k t ev t t t t E k t
m k

εψ π ψ ∂
= = − ×Ω

∂
  






 






, (3) 

where , ,
ˆ( , ) ( ) ( ) ( )n KSn k n kk t t H t tε ψ ψ=  



  is the instantaneous band energy, and 

, ,( , )n n k n kk t u k u kΩ = ∂ ∂ × ∂ ∂ 

  

 is the Berry curvature with , ( , )n ku r t



 being the periodic part 

of the time-dependent KS wavefunctions , ,( , ) ( , )ir k
n k n kr t e u r tψ ⋅=





 

  . In the adiabatic regime, the 

wavefunction ( , ( , )n ku r t



 ), the band energy ( ( , )n k tε


 ), and the Berry curvature ( ( , )n k tΩ


 ) 

converge to the corresponding stationary values of the Bloch state with Bloch vector of

( )k eA t+
 

. To ensure that the time-propagating electron states adiabatically follow the ground 

state band structure, the E-field in the present calculations is smoothly turned on over a period 

of 10 to 25 fs, and the strength of the E-field ( E


) is well below the Zener tunneling criterion 

[29]. Since the integral of the group velocity ( ( , )n k t kε∂ ∂
 

) over the BZ is zero, the integrated 

Berry curvature of the band can naturally be deduced from the integrated velocity:

2 2
, ( ) ( )nn k

BZ BZ

ev t d k E k d k= − × Ω∫ ∫

  






.  
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Up to now, most first principles topological studies of real materials have employed the 

Wannierzation method utilizing maximally localized Wannier functions (MLWFs) to compute 

the Berry curvature and to derive the topological numbers [13,15,30]. From the standpoint of 

the TKNN’s equality, the topological nontrivial-ness of the insulators can be discussed in terms 

of physical quantity, such as charge or spin Hall conductivity [31,32]. However, such trials 

have mostly been hampered by the non-intuitiveness of spin Hall current, particularly, when 

the Hamiltonian is furnished with a measurable SOC of real materials [18,19,32]. Here, as the 

dynamical approach, noted in Eq.(1), provides a better computational versatility in dealing with 

experimentally accessible observables, we focus on the direct evaluation of the physical gauge-

invariant velocity operator, as given in the left hand side of Eq. (3). This method requires only 

the occupied orbitals, and thus avoids the large sum over states of the response formula [14]. 

The required fine sampling of the BZ is here realized by the adiabatic sweep with a fine time 

step. Furthermore, even when an external field strongly perturbs the system, the expectation 

values, as given in the left hands side of Eq. (3), can naturally be evaluated, which can be 

utilized as a measure to capture the Berry curvature effects in non-adiabatic or non-equilibrium 

regime. 

 

Ⅲ. RESULTS AND DISCUSSION 
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Figure 1. Time propagation of a KS band of a three-dimensional atomic insulator in response 

to an applied E-field. (a) The static band structure of the solid with He atom in a simple cubic 

cell. (b) Time variation of the band energy of four selected KS states. (c) Time variation of 

longitudinal ( xv ) and transverse velocities ( yv  and zv ) of the KS state starting from Γ point. 

Inset of (a) depicts the unit-cell with the indication of the E-field. In (a) and (b), the four 

selected Bloch states are denoted by the symbol of square, circle, triangle, and diamond.  

 

A. Trivial atomic insulator 

To demonstrate the efficiency in obtaining topological chracteristics of materials from real-

time evolving band states, we first consider the time evolution of a trivial insulator. As a 

representative example of an atomic insulator, here we devised a gedanken system by placing 

a He atom in the simple cubic (SC) lattice with a given fixed lattice constant of a0 = 3Å, as 

schematically depicted in inset of Fig. 1(a). The valence band is derived from the atomic 1s 

orbital, and the band dispersion is presented along the x-direction in Fig. 1(a). In this system, 

simultaneous presence of time-reversal and inversion symmetry enforces that ( ) 0n kΩ =


 at every 

k


  point for the spin-frozen bands. Onto this self-consistently converged ground state, we 

applied a weak static electric field along the x-direction, 3 ˆ3.7 10E x−= ×


V/Å, and then the KS 

states are allowed to evolve over time. The selected KS states are depicted with symbols in Fig. 

1(a) in unit of 02b aπ=  : ( )0.25,0,0k = −∆ −


 , ( )0,0,0Γ  , ( )0.25,0,0∆  , and ( )0.5,0,0X  . The 

time-evolving band energy of these KS states ( ˆ( ) ( ) ( ) ( )k k kt t H t tε ψ ψ=   ) is presented in Fig. 

1(b) up to 200 fs. This model of an atomic insulator by construction possesses a large band gap 
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of 16.5gapE = eV, and the real-time evolutions of the KS states strictly follow the ground state 

energy surface. Figure 1(b) demonstrates that these evolving Bloch states ( ( , )k r tψ 



) move 

across the BZ along the ground state band  with a time-evolving Bloch vector: 

0 ( )( , ) ( , 0)k k tr t r tψ ψ= = 

   given by 0( )k t k eEt= −
 




.  

The time-profile of the velocity of the state starting from the Γ point (denoted by the circle 

in Fig. 1(a) and 1(b)) is shown in Fig. 1(c). It is noteworthy that the calculated transverse 

velocityies always remain zero ( ( ) ( ) 0y zv t v t= = ), which is consistent with the absence of Berry 

curvature ( ) 0kΩ =


  in this system. The other three sampled Bloch states also carry 

completely vanishing transversal velocities, as summarized in Appendix B. The calculated 

longitudinal velocity, using the formula given in the left hand side of Eq. (3), is indeed 

consistent with the instantaneous curvature of the band at k


: 
( )

( )x xk k k t
v t kε

=
 = ∂ ∂ 

  . This 

periodic oscillation of the longitudinal velocity, with the period of 1 0 375T b eE fs= =   as 

shown in Fig.1(c), originates from the periodic nature of the energy band in reciprocal cell, 

which can be compared to the Bloch oscillation [33].  
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Figure 2. Time propagation of KS states in an inversion symmetry-broken graphene system. (a) 

The static band structure (upper panel) and the Berry curvature (lower panel) of the graphene 

whose inversion symmetry is broken by adding sublattice-asymmetric Hubbard U potential in 

the DFT+U. (b) Schematics of the BZ and the Dirac cone with three selected k-points in the K 

valley of the BZ. All three points are on the line along x-direction with 00.03 2 aδ π= × , where 

a0=2.46Å is the real-space lattice constant. (c) Time-variation of the band energies of the VBM 

and CBM states at the selected three k-points in the K valley. (d) Time profile of the 

longitudinal velocities of the states of the three k-points in the K valley. Inset shows the same 

longitudinal velocity of the point in the K′ valley. (e) The time profile of the transverse velocity 

of the states starting from the K+δ and K′+δ points. (f) The same as (e) for the state starting 

from the K+δ point with various strength of the E-field: 0E Eρ=  . Here, 0E   indicates the 

strength of the E-field used for (c)(d)(e). The critical E-field in the Zener tunneling model ( cE ) 
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is defined in the text. In the inset of (a), atomic symbols schematically depict the inversion-

broken sub-lattices of two C atoms. All velocities in (d)(e)(f) are for the VBM state.  

 

B. Valley Hall system: inversion symmetry-broken graphene 

We now investigate a system which possesses a locally non-vanishing Berry curvature, but 

the band Chern number is absent owing to the presence of time-reversal symmetry. The 

simplest example in this perspective can be achieved from the spin-frozen bands of the 

graphene by intentionally breaking its inversion symmetry. To that end, we performed standard 

DFT+U calculation by adding an asymmetric U potential of U = 4 eV and 0 eV for A and B 

sites, respectively. As a result, the Dirac cones in the K and K′ valleys develop a band gap of 

gapE = 0.39 eV, as shown in the upper panel of Fig. 2(a). The Berry curvature of this artificially 

inversion-broken graphene bands are calculated and presented in the lower panel of Fig. 2(a) 

[9]. Onto the self-consistently converged ground state, we applied a constant and uniform static 

E-field along the x-direction ( 3
0 ˆ ˆ1.45 10E E x x−= = ×



 V/Å) and performed the time 

propagation. The E-field was gradually turned on over initial 20 fs (see the Appendix A). The 

evolutions of three selected k-points near the K valley (K and K±δ) are displayed in Fig. 2: the 

initial location of these three points is denoted in the BZ in Fig. 2(b), and the time profile of 

the band energies (the valence band maximum (VBM) and the conduction band minimum 

(CBM)) are summarized in Fig. 2(c). Note that, the state starting from the K+δ point (the red 

line Fig. 2(c)) arrives at the top of K valley at 46.4t fs= . This time-evolution of band energies 

is schematically illustrated on the cone surface in Fig. 2(b).  
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The time-evolution of the longitudinal velocities ( )xv t   of these three selected VBM 

states in K valley is presented in Fig. 2(d). The calculated velocities coincide with the 

instantaneous slope of the band energy dispersion: for example, the state starting from the exact 

K point have zero initial velocity. It is noteworthy that, after around 70 fs, the velocities of all 

three states reveal a similar linear trend. After this time, all these three states move down the 

linear surface of the Dirac cone. We also performed the same calculation for the point in the K′ 

valley, which showed the same longitudinal behavior as that in the K valley: the inset of Fig. 

2(d) shows the velocity of the state starting from K′+δ, which is almost identical to that starting 

from the K+δ.  

On the other hand, the transverse velocity of the states in the K valley are contrastingly 

different from those states in K′ valley. Figure 2(e) shows that the transverse velocities of the 

state starting from K+δ and K′+δ points have opposite sign. This demonstrates that the spin-

frozen bands of the inversion-broken graphene can indeed reveal the valley-Hall transport: the 

carriers in the K valley deflect with an opposite anomalous velocity from that in the K′ valley 

[9]. In Fig. 2(c) and 2(d), we demonstrate that the two states arrive at the top of the valley at 

around 46 fs, leading to zero-longitudinal velocity. At this point the instantaneous velocities 

consist only of the anomalous velocity given by 0( )y
ev t E= Ω


, which directly monitors the 

Berry curvature on the peak point [9]. The Berry curvature obtained by this way is

2
, 0 1599 bohrK K yv eE′Ω = = ± , which is comparable to the value of 2

, 1646 bohrK K ′Ω = ±  obtained 

from the Kubo formula with Wannierized bands (See the lower panel of Fig. 2(a)) [14].  
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This example thus suggests that the real-time propagation of the KS equations can indeed be 

employed to evaluate the Berry curvature, Hall conductivity, and consequently the band Chern 

number, by choosing a reasonable parameter, such as a modestly weak E-field. To make the 

time-evolving states follow well the adiabatic energy surfaces, the strength of E-field needs to 

be sufficiently weak compared to the band gap ( gapE  ). This feature can be discussed 

quantitatively in terms of Zener tunneling model [29]: the critical strength of an E-field to 

induce tunneling across the band gap is estimated to be 3

2c r gapE m Eπ
=


, where rm  is the 

reduced effective mass between the CBM and the VBM. The E-field used for Fig. 2(c)(d)(e) 

( 3
0 1.45 10E −= × V/Å) corresponds to 0 0.04 cE E= . In Fig. 2(f), we compare the simulation 

results with four different strengths of the E-field: 0E Eρ=  with 1, 2,3,5ρ =  . It is 

noteworthy that, for 0.08 cE E≥ , an abrupt oscillatory feature emerges as the Bloch state passes 

the Dirac cone region, which indicates the hybridization of CBM and VBM states, and 

consequently a breakdown of the adiabaticity. 

 

 

Figure 3. Time propagation of the KS states of the ideal half-hydrogenated Sn in a quantum 

anomalous Hall phase. (a) Schematic geometry, (b) the band structure and Berry curvature, and 
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(c) the time-averaged Hall conductivity calculated from the time-evolving states. Red and blue 

colors in lines in (b) represent the texture of the spin polarization in positive and negative z-

direction, respectively. The inset of (c) shows the real-time profile (gray) and the time-averaged 

profile (red) of the Hall conductivity after the turning-on period. 

 

C. Quantum anomalous Hall insulator 

Our method of time-propagation can also be directly applied to the QAHI case. Since the 

first experimental realization of the QAH phase on a magnetized topological insulator [16], 

various studies ensued to find a new material that can preserve the intrinsic quantum Hall 

conductivity in an elevated temperature. Several works, in this perspective, have focused on 

the possible transitions of a 2D hexagonal lattice from the QSH to the QAH [23,34]. One of 

the most intriguing examples in this direction is the single layer of Sn [35], named stanene, 

with various hydrogen or halogens coverages: the full coverage of halogens reveals a QSH 

phase, whose band structures can be described with the Bernevig-Hughes-Zhang (BHZ) model 

Hamiltonian, while the ideal half coverage on one side results in QAH phase [34]. Hereafter, 

this half-hydrogenated Sn, as depicted in Fig. 3(a), is abbreviated as HHS. Prior to the 

evaluation of the time-evolving state, we calculated the static ground state band structure, and 

also the Berry curvature using MLWFs, as summarized in Fig. 3(b). In agreement with the 

previous study, HHS exhibits a highly localized peak in the Berry curvature ( 23026 bohrΓΩ = ) 

around the Γ point, which is integrated to a single quantum of the Chern number ( 1C = ) [34].  

To evaluate the charge Hall conductivity from the expectation value of the velocity 

operator, as noted in Eq.(2) and Eq.(3), we applied a static E-field in the x-direction and 
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performed the time propagation of the uniformly sampled Bloch states. Since the band gap in 

this case is quite small, to achieve a reasonable adiabatic quality, we chose smaller strengths of 

the E-field which was turned-on gradually over 25 fs period. The transverse current is 

calculated from the time-evolving Bloch states, and the Hall conductivity is given by 

( ) ( ) ( ), ,
,

1 ˆy
xy yn k n k

n kx x

J
t t t

E mE
σ ψ π ψ= = − ∑  



. (4) 

 The calculation results are presented in Fig. 3(c), which shows that, after the initial turning-

on period ( 0 25t = fs), the time-averaged profile ( )
00

1 ( )
tavg

xy xyt
t d

t t
σ σ τ τ=

− ∫  converges well to the 

single quantum of the conductance. In this QAH phase of HHS, the Berry curvature is not 

dominated by a single band, but rather distributed over multiple bands around the Γ point [34], 

where the inverted VBM and CBM states are intricately hybridized. However, the Hall current 

calculated as a sum of occupied valence bands reveals a good convergence. Detailed electronic 

band structures for HHS is given in the Appendix C.  
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Figure 4. Time propagation of the KS states of the bismuthane in a quantum spin Hall phase. 

(a) Schematics of the geometry and the BZ. (b) Band structures with (solid line) or without 

(dashed line) SOC. Doubly degenerate valence bands are labeled A to D from the highest band. 

(c) The spin Hall conductivity and the charge Hall conductivity calculated from the time-

evolving states. (d) The band-resolved contributions to the spin Hall conductivity from the 

doubly degenerate second valence band (B) and from the rest (A+C+D). Inset of (c) depicts 

the bias static E-field and the spin-resolved current. 

 

D. Quantum spin Hall insulator 

We now extend our example of the time-evolution study to a QSHI. As an example, we 
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calculated the single layer bismuthane in which the hydrogenated Bi atom locates in the 

hexagonal lattice [23,36], as shown in Fig. 4(a). When the spin-orbit coupling (SOC) is 

intentionally turned off, the band structure reveals the typical Dirac cone structure of a 

honeycomb bipartite lattice, as depicted by the dashed line in Fig. 4(b). When we include the 

SOC of Bi atoms, the bands near the Dirac cones open a gap of 0.8 eV at K and K′ points, as 

presented with solid lines. The optimized geometry of the layer has small buckling but 

preserves the inversion symmetry, and thus the spinor states in the K and the K′ valley 

constitute the time-reversal and inversion partners, enforcing the spin-up and spin-down states 

to be degenerated over the whole BZ [18,23]. Results for a similar system without inversion 

symmetry is presented in the Appendix D. In Fig. 4(b), the valence bands are labelled from A 

to D, where the up and down arrows in the subscript (e.g, A↑↓
) indicates the doubly degenerate 

bands. It should be noted that the spin in this case is not well polarized in the z-direction, but 

has varying textures depending on the k-points as a result of the strong SOC.  

We computed the electron dynamics of this QSHI system, by gradually ramping the E-field 

over 10 fs towards a static value of 6 ˆ3.37 10E x−= ×


 V/Å. As we above enumerated the charge 

current as an expectation value from the time-evolving wavefunctions, the spin value and the 

spin current can also be computed as an expectation value from these spinor wavefunctions. 

There has been quite a lot of theoretical works to devise a better form of the spin current 

operator [10,37-39]. Here we choose the operator in the following form, as represented in the 

Heisenberg picture, 

( ) { }ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, ,
2

ZS
Z Z Z

d e ej e rS S r S H
dt m i

π  = = +  


  



. (5) 
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In our actual computation results, the effect of second term in Eq. (5) was found to be two 

orders of magnitude smaller than the first term, thus for this system the very classical form of 

the spin current operator (the first term of Eq. (5)) works efficiently. The second term, though 

not present explicitly in the following discussions, was fully accounted for in numerical 

calculations. Note that, since the total spin of the unit-cell is consistently zero, the second term 

is well defined even for the periodic solid without gauge ambiguity. The spin-Hall conductivity 

of the z-polarized spin, as defined below in Eq. (6), and the charge-Hall conductivity, as defined 

in Eq. (4), are presented in Fig. 4(c). 

( ) ( ) ( ) ( ) { } ( )spin
, , , ,

, ,

1 1 ˆˆˆ ,
2

ZS
xy y Z yn k n k n k n k

n k n kx x

t t j t t S t
E mE

σ ψ ψ ψ π ψ= − = −∑ ∑   

 

 . (6) 

Remarkably, even though ZS   is not a good quantum number and varies over different k-

points [38], the spin-Hall conductivity converges well to the conductivity quantum just after 

the initial turning-on period of the E-field. On the other hand, the charge-Hall conductivity 

consistently remained to zero, which is a natural outcome of the time-reversal symmetry of the 

system. As depicted in the inset of Fig. 4(c), the longitudinal current of the insulator is summed 

to zero, but the Hall current of each spin sector was directed oppositely, as a result, producing 

a finite spin-Hall current.  

The band-resolved contribution of each doubly degenerate valence bands (denoted by A, B, 

C, and D in Fig. 4(b)) to the spin-Hall conductivity is presented in Fig. 4(d). We observe that 

the QSH phase of bismuthane is dominated solely by the second valence bands (B), while the 

effects of the rest (A, C, D) are marginal. This can be explained by the structure of the band 

inversions, which can be inferred from the comparison between the bands with and without 

SOC. The band C and D are inverted at K and K′; and the VBM band (A) has two points of 
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band inversion: one with the CBM band at K and K′, and the other with the band B at Γ . This 

double inversion renders the band A topologically trivial, and the full occupation of the inverted 

pair of C and D bands makes their topology (the spin Chern number) cancel each other. As a 

result, the band B, which is doubly degenerate and is solely inverted from the band A at Γ , 

remains as a single source of the quantized spin Hall state.    

Here, we need to discuss more in-depth the structure of the Berry curvature of the QSHI 

state. The degeneracy in the valence bands requires the Berry curvature to be defined as a 

matrix constructed in the degenerate subspace, putting in evidence its the non-Abelian 

character [2,39]. The components of the Berry curvature matrix (Ω ), and of the spin matrix 

( ZS ), depend on the choice of the basis (gauge-dependent), and thus cannot be observed in an 

experiment. Physical observables are gauge-independent, and it is shown that the charge Hall 

and the spin Hall current can be written in terms of Tr[Ω ] and Tr[ ZS Ω ], respectively [39]. In 

this regard, our approach through the expectation value of the physical observables (charge or 

spin current operator, as given in Eq. (4) and Eq. (6)) is advantageous over other methods: the 

spin Hall current, as presented in Fig. 4(c), do not require any additional cost or separate 

treatment due to the degeneracy. Moreover, since the expectation value of an operator is 

independent of the unitary rotation within the degenerate subspace, the spin current can be 

written in terms of the velocity given by the diagonalized basis at each k-point: 

( ) { } ( ) ( ) { } ( )

( ) ( ) ( ) ( )

†
, , , ,

,

, , , ,

1 1ˆ ˆˆ ˆˆ ˆ, ,
2 2

ˆ ˆ
2 2

Z y Z yn k n k n k k k n k
nn k k

y yk k k k
k k

t S t t U S U t

t t t t

ψ π ψ ψ π ψ

ψ π ψ ψ π ψ
↑ ↑ ↓ ↓

=

= −

∑ ∑∑

∑ ∑

     

 

   

 

 

  

. (7) 

The form of the last expression of Eq. (7) is valid regardless of whether the spin is well defined 
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as a good quantum number throughout the whole BZ or varies over k-points. This suggests that 

the spin-Hall conductivity, as written Eq. (6), can be used to identify the spin Chern number, 

exactly in the same way as introduced in the simplified Kane-Mele model [18,19], even when 

a strong SOC demotes the spin from the status of good quantum number of the system [20,32]. 

In the Appendix D, we present the same results for an inversion symmetry-broken bismuthane, 

in which the degeneracy is modestly lifted, but the calculated spin-Hall conductivity converges 

well into the quantized value, identifying its QSH phase. 

 

Ⅳ. CONCLUSIONS AND OUTLOOK 

In summary, we demonstrated here that the real-time propagation of the Kohn-Sham Bloch 

states, and the corresponding time-dependent current obtained, provides a completely 

alternative method to explore the topological character of solids. Results for exemplary cases 

were presented; including a trivial atomic insulator, a valley Hall system, and a quantum 

anomalous Hall system. On a prototypical example of the quantum spin Hall insulator, we 

discussed that this direct evaluation of the physical observables can serve as a natural platform 

for an adequate description of the non-Abelian Berry curvature. The concept suggested here is 

not necessarily limited to the DFT-based mean-field scheme. One-body physical observables 

(such as charge or spin current), derivable from the time-evolving many-body states, can be 

employed to gauge the anomalous behaviors rooted in the geometrical phase structures of the 

quantum mechanical wavefunctions. 

As an outlook we outline that the flexibility of the proposed computation scheme provides 

an additional important advantage: general time-dependent perturbations that can be included 

in the vector potential (see Eq.(1)) enables the simulation of non-adiabatic or non-equilibrium 
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situations. Recently, many studies have focused on the effect of external forces which 

dynamically perturb the time-reversal symmetry of the system [40-47]. For such driven systems, 

a time-dependent current can be better experimentally accessible than the topological numbers 

defined in the frequency domain [7,48-53]. To illustrate the new possibility offered by our 

approach, we calculated the current flow along a graphene nano-ribbon and show that the 

system develops a Hall voltage when a circularly polarized driving force is applied, as a source 

of externally driven time-reversal breaking mechanism (see appendix E). The present work 

provides the theoretical framework to unambiguously address topological features of driven 

matter that can be linked to experimental observables. 
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APPENDIX A : Parameters for the ground state DFT and time-integration 

algorithms 

  The equilibrium atomic geometry and the ground state electronic structure are obtained by 
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standard density functional theory (DFT) calculation using Octopus and Quantum Espresso 

package [26,27,54-56]. To describe the exchange and correlation of electrons, Perdew-Burke-

Ernzerhof (PBE)-type generalized gradient approximation functional is employed [57]. The 

nuclei potentials are described by norm-conserving pseudopotentials. The Brillouin zone is 

integrated using Monkhorst-Pack scheme: the grid of 6 × 6 × 6, 12 × 12 × 1, 20 × 20 × 1, 

and 9 × 9 × 1 is used for the solid He, Graphene, half-passivated Stanene, and Bismuthane, 

respectively. To optimize the geometry, the forces on each atom are relaxed within 10-5 Ry/Bohr.  

To propagate the KS states, we start with the ground state orbitals at 0t =  , obtained by 

standard DFT calculation. The wavefunction at t t+ ∆  is evolved from that at t with 

( ) ( ) ( )ˆexp [ ( )]n nt t i t H t tψ ρ ψ+ ∆ = − ∆  . (A1) 

For the time-dependent Hamiltonian, the external time-dependent potential is added to the 

Kohn-Sham Hamiltonian constructed as a functional of the density at time t. In Eq. (A1), the 

band index and the Bloch vector are collectively denoted by the subscript n. The evolved charge 

density ( )t tρ + ∆   is calculated from the squared sum of the evolved KS wavefunctions: 

( ) ( ) 2
n

n
t t t tρ ψ+ ∆ = + ∆∑  , from which the KS Hamiltonian at the next time step 

( )H t tρ + ∆    is again derived. A few algorithms have been tested in the literature to achieve a 

better consistency between wavefunctions and the Hamiltonian. For example, the consistency 

of the density at the intermediate step between that of forward evolution from the previous step 

and that of backward evolution from the next step is a good criterion. Many detailed formalisms 

regarding this method were published by numerous authors including us [25,26,58,59]. 

Static constant uniform electric field (E-field) is expressed in the velocity gauge as a 
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vector potential through the relation: ( )1E A t t
c

= ∂ ∂


 . However, throughout our works, to 

achieve a better adiabatic evolution, the E-field is gradually turned-on during the initial period 

(τ ): 

( ) ( )
( )

3 2 4 3
0

0

/ 0.5 / , 0
.

0.5 ,

cE t t t
A t

cE t t

τ τ τ

τ τ

 − ≤ <= 
− ≥

  (A2) 

 Note that after the turn-on period ( t τ≥ ) the E-field strength becomes constant over time 

( 0E ).  

 In the present work, we mainly aimed at materials intrinsic topological property and thus 

focused on the weak-field regime. In this context, the vector potential is provided purely 

externally, and the back reaction of the material into the field is not considered. When the 

material’s feedback is substantial, the response of the vector field needs to be considered as 

suggested by Bertsch et al. [60].  

 

APPENDIX B: Time profiles of KS states of the artificial He simple cubic 

solid 
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Figure 5. Time evolution of KS states in artificial solid He. (a) Band structure of solid He 

system in the simple cubic lattice of 3Å lattice constant. (b) Time-variation of the band energy 

of the four selected states. The velocity of the Bloch state departed from (c) Γ, (d) X, (e) Δ, and 

(f) −Δ. Inset in (a) is the valence band presented in the narrower energy window, exactly the 

same as in Fig. 1(a) 
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Here we show a detailed time profile of the four selected states in the valence band of He 

solid, which was introduced in Fig. 1 of the main text: Γ, X, Δ, and −Δ. As shown in Fig. 1(a) 

and Fig. 5(a), the band gap is so wide (16.5 eV), and the time profiles of the KS states follow 

the static energy band very closely: Figure 1(b) and Fig. 5(b) tells that the instantaneous band 

energy is ( ) ( )( )t k tε ε=


 with ( ) (0)k t k etE= −
 




. The velocity given by the band energy 

dispersion, ( ) ( )1 d k
v k

dk

ε
=









, is presented in Fig. 5(c)-(f) for each of the state starting from Γ, 

X, Δ, and −Δ. Note that, with the given E-field strength, these velocities well produces the 

oscillation period of T=375fs, which corresponds to the time required for the Bloch state to 

travel the whole BZ : 0( ) 2eE T aπ= .  

 

APPENDIX C: The electronic structure of the half-hydrogenated Sn 

 

Figure 6. Band structure of stanene with hydrogen half passivation. (a) schematic geometry 

and band structure of stanene with the half coverage of hydrogen passivation (b) with and (c) 

without spin orbit coupling. Red and blue indicate spin-up and spin-down states which are 

polarized along the out-plane direction.  
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The electronic structure of stanene with the half coverage of the hydrogen passivation, 

abbreviated as HHS in the main text, is presented in Fig. 6(a), which is qualitatively the same 

as the previously reported passivation with halogen atoms [34]. Figure 6(b) shows that, when 

SOC is not counted, the spin-down bands (blue) reveals a gap, while the spin-up bands (red) 

produce metallic states. Upon the inclusion of realistic SOC, the spin-up bands near the Fermi 

level are inverted, as presented in Fig. 6(c).  

 

APPENDIX D: QSH phase of half-hydrogen passivated bismuthane 

 

Figure 7. QSH phase of the inversion symmetry broken Bismuthane. (a) Schematic geometry 

with the hydrogen coverage on one side. (b) The spin resolved band structure. (c) Spin and 

charge Hall conductivity calculated by TDDFT. In (b), the color depicts the magnitude of the 

in-plane component of the spin.  

 

As an additional example of a QSHI, here we consider the inversion symmetry broken 
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bismuthane. When hydrogen atoms are attached only onto the single side of the bismuthine, as 

shown in Figure 7(a), the spinor bands are split and the spin textures are almost lying in the 

plane, as shown in Figure 7(b). The expectation of the spin current operator and charge current 

operator are calculated with the time-evolving Kohn-Sham spinor states. The obtained spin 

Hall and charge Hall conductivity, as defined in Eq. (4). And Eq. (6) in the main text, are 

summarized in Fig. 7(c).  

 

APPENDIX E: Effect of a circularly polarized external field on a zig-zag 

graphene nano-ribbon 

 

Figure 8. Current flow in a graphene nano-ribbon biased by a static E-field. (a) Schematic of 

valley Hall effect (left) and the calculation results for the time-varying charge density. (b) The 

same as (a) but with a circularly polarized E-field in addition to the static axial bias. In (a) and 
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(b), the time-varying charge density is obtained by ( ) [ ]0, ( , ) ( )xz y t dxdz r t rρ ρ ρ= −∫∫
  , and 

edge
Lρ   and edge

Rρ   are the time-averaged charge obtained in each edge region of the ribbon 

(W=26Å): 
0

0.8

1( ) ( , )
tL

edge xz
W

t d y dy
t

ρ τ ρ τ
∞

= ∫ ∫  and 
0.2

0

1( ) ( , )
W

tR
edge xzt d y dy

t
ρ τ ρ τ

−∞

= ∫ ∫   

 

To illustrate how our calculation method of physical observable through the TDDFT can 

include the effect of external time-dependent field, here we calculate the current through a 

graphene nano-ribbon (GNR) with and without applying a circularly polarized external E-field.   

Figure 8(a) depicts the real-time variation of electron density when a constant static bias 

( 3 ˆE 1.68 10 x−= ×


 V/Å) is applied along the ribbon axial direction. As described in main text, 

we calculate the time-evolving Kohn-Sham states, and the time-varying density is obtained 

from the squared sum of the wavefunctions. As the time evolves, the charge accumulates on 

both edges, depleting the central region of the ribbon, which can be attributed to the valley-

Hall nature of the ribbon [9]. However, since the system preserves the overall time-reversal 

symmetry, the ribbon does not develop any transversal charge, and thus any Hall voltage. When 

a time-dependent external field is added, in particular when it is circularly polarized, the 

situation can be remarkably changed: in Figure 8(b), the Kohn-Sham wavefunctions and the 

charge densities are calculated with the circularly polarized E-field of 

4 ˆ ˆE 6.7 10 ( ) i tx iy e ω− −= × +


 V/Å, with 1 eVω = , in addition to the static bias. 

Remarkably, the two edges (L and R) now lose the symmetry, and the system develops an 

overall charge Hall effect across the ribbon width [40]. This can be conceived as a real-time 

manifestation of an effective time-reversal breaking by a circularly polarized external field. 
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Numerous studies have discussed the topological natures of driven states, particularly focusing 

onto the time-reversal broken features effected by a circularly polarized field [40-47]. Our 

method, that calculates the physical observables from time-evolving Kohn-Sham states under 

such external fields provide results directly accessibly in experiments.     
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