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Supporting Information Text12

Parameters for the ground state DFT and time-integration algorithms13

The equilibrium atomic geometry and the ground state electronic structure are obtained by standard density functional theory
(DFT) calculation using Octopus and Quantum Espresso package (1–5). To describe the exchange and correlation of electrons,
Perdew-Burke-Ernzerhof (PBE)-type generalized gradient approximation functional is employed (6). The nuclei potentials are
described by norm-conserving pseudopotentials. The Brillouin zone is integrated using Monkhorst-Pack scheme: the grid of
6× 6× 6, 12× 12× 1, 20× 20× 1, and 9× 9× 1 is used for the solid He, Graphene, half-passivated Stanene, and Bismuthane,
respectively. To optimize the geometry, the forces on each atom are relaxed within 10−5Ry/Bohr. To propagate the KS states,
we start with the ground state orbitals at t = 0, obtained by standard DFT calculation. The wavefunction at t+ ∆t is evolved
from that at t with

ψn (t+ ∆t) = exp
(
−i∆tĤ[ρ(t)]

/
~
)
ψn (t) [1]

For the time-dependent Hamiltonian, the external time-dependent potential is added to the Kohn-Sham Hamiltonian constructed14

as a functional of the density at time t. In Eq. S1, the band index and the Bloch vector are collectively denoted by the15

subscript n. The evolved charge density ρ (t+ ∆t) is calculated from the squared sum of the evolved KS wavefunctions:16

ρ (t+ ∆t) =
∑
n

|ψn (t+ ∆t)|2, from which the KS Hamiltonian at the next time step H [ρ (t+ ∆t)] is again derived. A few17

algorithms have been tested in the literature to achieve a better consistency between wavefunctions and the Hamiltonian. For18

example, the consistency of the density at the intermediate step between that of forward evolution from the previous step19

and that of backward evolution from the next step is a good criterion. Many detailed formalisms regarding this method were20

published by numerous authors including us (2, 7–9).21

Static constant uniform electric field (E-field) is expressed in the velocity gauge as a vector potential through the relation:
E = 1

c
∂A (t)/∂t. However, throughout our works, to achieve a better adiabatic evolution, the E-field is gradually turned-on

during the initial period (τ):

A (t) =
{

cE0χ(t, τ), 0 ≤ t < τ
cE0 (t− τ + χ(τ, τ)) , t ≥ τ . [2]

Note that the physical observables were calculated after the turn-on period (t ≥ τ) when the E-field strength is constant over22

time (E0). The actual shape of χ(t, τ) is not essential but needs to be smoothly increasing, for example, χ(t, τ) = t3/τ2 − 0.5t4/τ3.23

In the present work, we mainly aimed at materials intrinsic topological property and thus focused on the weak-field regime.24

In this context, the vector potential is provided purely externally, and the back reaction of the material into the field is not25

considered. When the material’s feedback is substantial, the response of the vector field needs to be considered as suggested by26

Bertsch et al. (10).27

Time profiles of KS states of the artificial He simple cubic solid28

Here we show a detailed time profile of the four selected states in the valence band of He solid, which was introduced in Fig. 129

of the main text: Γ, X, ∆, and −∆. As shown in Fig. 1A and Fig. S1A, the band gap is so wide (16.5eV ), and the time profiles30

of the KS states follow the static energy band very closely: Figure 1B and Fig. S1B tells that the instantaneous band energy is31

ε (t) = ε (k (t)) with k(t) = k(0)− etE/~. The velocity given by the band energy dispersion, v (k) = 1
~
dε(k)
dk , is presented in32

Fig. S1C -F for each of the state starting from Γ, X, ∆, and −∆. Note that, with the given E-field strength, these velocities33

well produces the oscillation period of T = 375fs, which corresponds to the time required for the Bloch state to travel the34

whole BZ : (eE/~)T = 2π/a0.35

The electronic structure of the half-hydrogenated Sn36

The electronic structure of stanene with the half coverage of the hydrogen passivation, abbreviated as HHS in the main text, is37

presented in Fig. S2A, which is qualitatively the same as the previously reported passivation with halogen atoms (11). Figure38

S2B shows that, when SOC is not counted, the spin-down bands (blue) reveals a gap, while the spin-up bands (red) produce39

metallic states. Upon the inclusion of realistic SOC, the spin-up bands near the Fermi level are inverted, as presented in Fig.40

S2C. In the time profile, the total energy variation is negligible (2.4×10−5eV/fs) and the system preserved the band structure41

of the insulator, which proves the adiabatic nature of the time propagation.42

The spin current operator used in the present work43

For the spin current operator, in the present work, we chose the following form, as represented in the Heisenberg picture,44

ĵSZ = e
d

dt

(
r̂ŜZ

)
= e

2m
{

π̂, ŜZ
}

+ r̂ e
i~
[
ŜZ , Ĥ

]
. [3]45

In the results shown in Fig. 4 of the main text, the effect of second term in Eq. 3 was found to be two orders of magnitude46

smaller than the first term, thus the very classical form of the spin current operator (the first term of Eq. 3) works efficiently.47

In this regard, in discussions of the main text, the second term was not explicitly mentioned, though it was fully accounted for48

in numerical calculations. Note that, since the total spin of the unit-cell is consistently zero, the second term is well defined49

without gauge ambiguity even for the periodic solid.50
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QSH phase of half-hydrogen passivated bismuthane51

As an additional example of a QSHI, here we consider the inversion symmetry broken bismuthane. When hydrogen atoms52

are attached only onto the single side of the bismuthene, as shown in Figure S3A, the spinor bands are split and the spin53

textures are almost lying in the plane, as shown in Figure S3B. The expectation of the spin current operator and charge current54

operator are calculated with the time-evolving Kohn-Sham spinor states. The obtained spin Hall and charge Hall conductivity,55

as defined in Eq. 4. And Eq. 6 in the main text, are summarized in Fig. S3C. In the time profile of the system, the total56

energy variation is negligible (6.8×10−7eV/fs). This result indicates that the time propagation adiabatically preserves the57

band structure of the insulator.58

Effect of a circularly polarized external field on a zig-zag graphene nano-ribbon59

To illustrate how our calculation method of physical observable through the TDDFT can include the effect of external60

time-dependent field, here we calculate the current through a graphene nano-ribbon (GNR) with and without applying a61

circularly polarized external E-field. Figure S4A depicts the real-time variation of electron density when a constant static62

bias (E = 1.68 × 10−3x̂V/Å) is applied along the ribbon axial direction. As described in the main text, we calculate the63

time-evolving Kohn-Sham states, and the time-varying density is obtained from the squared sum of the wavefunctions. As the64

time evolves, the charge accumulates on both edges, depleting the central region of the ribbon, which can be attributed to the65

valley-Hall nature of the ribbon (12). However, the system preserves the overall time-reversal symmetry, and the ribbon does66

not accumulate any charge in the transversal direction, and thus any Hall voltage.67

The effect of particularly selected external drivers, so as to dynamically break the time-reversal symmetry of the system, has68

attracted many recent studies (13, 14, 16–19, 23–27). In this perspective, we apply a circularly polarized time-dependent E-field,69

as an externally-driven time-reversal breaking mechanism. In this computation, the field of E = 6.7× 10−4(x̂+ iŷ)e−iωtV/Å,70

with ω = 1eV, is added to the static bias, and the current along the graphene nano-ribbon is calculated. Remarkably, the two71

edges (L and R) now lose the symmetry, and the system develops an overall charge Hall effect across the ribbon width (13).72

This can be conceived as a real-time manifestation of an effective time-reversal breaking by a circularly polarized external field.73

T. Oka and H. Aoki suggested a model for photo-Hall effect in graphene (13, 14). Our ab initio simulation explicitly proves74

the concept of time-reversal breaking by a circularly polarized light, which results in the photo-induced charge Hall current.75

The present concept can be developed as a theoretical framework to unambiguously address topological features of driven76

states of matter that can be directly linked to experimental observables.77

An extension to 3D topological insulator78

Our method of dynamical sweeping the Brillouin zone (BZ) can be straight forwardly applied to 3D systems. The anomalous79

velocity (~v = − e
~
~E × ~Ω) can be calculated from the dynamical Bloch states, which can be integrated over the surface of the BZ.80

However, beyond a mere identification of a non-zero Chern number, the more important and the more relevant question would81

be whether this dynamical approach can be utilized to discriminate the strong 3D TI from the weak one. In this perspective,82

the descriptions given in J.E. Moore (2013) and others are noteworthy(28, 29). The ‘time-reversal plane’ in the 3D BZ, such as83

(kx, ky, kz = 0) and (kx, ky, kz = ~b3/2), includes all the time-reversal partners within the plane. Thus the plane constitutes84

the periodic BZ torus in the same manner as the 2D quantum spin-Hall plane. Our dynamical approach can be used in the85

calculation of the spin Hall conductivity of these time-reversal planes, which can indicate unambiguously whether the 3D TI86

comprises a strong TI or a weak one.87

As a prototypical example of a weak TI, one might imagine stacked layers of 2D quantum spin Hall insulators coupled88

through weak interlayer interaction. The quantum spin-Hall conductivity for the quasi 2D system of (kx, ky), that can be89

calculated in the same way as in the main text (Figure 4), should result in the same quantum value irrespective of kz. Hence,90

the two time-reversal plane (kx, ky, kz = 0) and (kx, ky, kz = ~b3/2) produces the same quantum of the spin-Hall conductivity,91

indicative of the ‘weakness’ of the topology of the 3D bands. For the case of strong TI, the spin-Hall conductivity from these92

two time-reversal planes would results in a different quantum value, in the same manner as the product of four Z2 invariants in93

each of the plane(30). On the other hand, this feature can be explained with the distributions of the spin-Berry curvature94

(defined below). As schematically illustrated in the Fig. S6, for a case of strong TI, the spin-Berry curvature is localized near95

the Γ point, thus the spin-Hall conductivity in the plane of (kx, ky, kz = ~b3/2) vanishes.96

Our main focus in the present work is to prove that the expectation value of physical observables (such as the spin current97

operators ~̂jSz = Ŝz~̂v) reveals the topological quality of the 2D materials, irrespective of whether the spin is well preserved or98

not. To the best of our knowledge, all the well-known examples of 3D strong TI are derived from a rather big unit-cell. In this99

section, we would only like to describe how the dynamical calculation of the spin Berry curvature points to the signature of the100

strong nature of the 3D TI.101

As an example of 3D strong TI, here we employed Bi2Se3 whose atomic geometry, rhombohedral unit-cell, and the BZ are102

depicted in Fig. S6(A) and S6(B). The band structure near the TRIM point of the 3D Brillouin zone is well established, in which103

the band inversion occurs only near the Γ point (20). The band structures near the Γ point with (black) and without (red) the104

spin-orbit coupling (SOC) are presented in Fig. S6(c). In this case of 3D, the spin current would constitute a second-rank tensor105

〈ψ| ~̂S⊗ ~̂v |ψ〉, and the spin Berry curvature can be defined in analogy to the anomalous velocity:
∑
α

〈ψα| Ŝn~̂v |ψα〉 = − e
~
~E× ~Ωn.106
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For example, when the external E-field is applied along the z-direction, a diagonal component of the spin Berry curvature tensor107

can be written as Ωx,x = − ~
eEz

occ∑
α

〈ψα| Ŝn~̂v |ψα〉. To investigate the distribution of the spin Berry curvature, we calculated the108

Ωx,x along the line of (kx = 0, ky = 0, kz(t)), as shown in Fig. S6(D). This result clearly indicates that the spin Berry curvature109

is sharply concentrated near the band-inverted region (near the Γ point). A full calculation of the quantum spin-Hall aspects110

of these two time-reversal planes would produce a different quantum of spin-Hall conductivity, indicative of the 3D strong111

TI of Bi2Se3: the plane (kx, ky, kz = ~b3/2) and (kx, ky, kz = 0) would result in vanishing and finite spin-Hall conductivity,112

respectively.113

Unitary rotation property in expectation value114

Here, we elaborate how the expectation value of the spin current operator results in the quantized value even in the case
where the spin is not well defined. As stated in the main text, the trace of an operator is invariant under the unitary rotation.
Specifically, let us suppose the degenerate subspace, in which ψ~k,1 and ψ~k,2 are the degenerate two orthogonal state, and
rotation. Specifically, let us suppose the degenerate subspace, in which ϕ~k,1 and ϕ~k,2 are denoted as the two state in which the
spin Ŝ is diagonal:

Ŝ
∣∣ϕ~k,↑〉 = ~

2

∣∣ϕ~k,↑〉 ,
Ŝ
∣∣ϕ~k,↓〉 = − ~

2

∣∣ϕ~k,↓〉 . [4]

These two sets of doubly degenerate states are unitary related as(
ψ~k,1
ψ~k,2

)
= Û

(
ϕ~k,↑
ϕ~k,↓

)
, [5]

where Û is 2× 2 unitary matrix. The unitarity
〈
ψ~k,n

∣∣ ψ~k,m〉 = δn,m requires that the matrix Û should satisfy that Û†Û = 1.

Û†Û =
(

U∗11 U∗21
U∗12 U∗22

)(
U11 U12
U21 U22

)
=
(
|U11|2 + |U21|2 U∗11U12 + U∗21U22

U∗12U11 + U∗22U21 |U12|2 + |U22|2

)
=
(

1 0
0 1

)
. [6]

The expectation value of spin velocity for two states ψ~k,1 and ψ~k,2 is written as

2∑
α=1

〈
ψ~k,α

∣∣Ŝ~̂v∣∣ψ~k,α〉 = ~
2

(
|U11|2 + |U21|2

) 〈
ϕ~k,1

∣∣~̂v∣∣ϕ~k,1〉+ ~
2 (U∗11U12 + U∗21U22)

〈
ϕ~k,1

∣∣~̂v∣∣ϕ~k,2〉
− ~

2 (U∗12U11 + U∗22U21)
〈
ϕ~k,2

∣∣~̂v∣∣ϕ~k,1〉− ~
2

(
|U12|2 + |U22|2

) 〈
ϕ~k,2

∣∣~̂v∣∣ϕ~k,2〉 . [7]

Owing to the unitarity condition given in (Eq. 6), the equation should result in

2∑
α=1

〈
ψ~k,α

∣∣Ŝ~̂v∣∣ψ~k,α〉 = ~
2
〈
ϕ~k,↑

∣∣~̂v∣∣ϕ~k,↑〉− ~
2
〈
ϕ~k,↓

∣∣~̂v∣∣ϕ~k,↓〉 . [8]

Remarkably, this equation tells that the expectation of the spin-current operator is just the difference between the spin-up115

current and spin-down current. The equation does not depend on whether the spin is well defined or not. This formula116

obviously tells that, irrespective of whether the spin is fixed (Ŝz = ±0.5) or varied over ~k-points, the spin-Hall conductivity can117

be calculated as a summation over the Brillouin zone of the difference between the spin-up current and the spin-down current118

locally at ~k(t).119
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Fig. S1. Time evolution of KS states in artificial solid He. (A) Band structure of solid He system in the simple cubic lattice of 3Å lattice constant. (B) Time-variation of the band
energy of the four selected states. The velocity of the Bloch state departed from (C) Γ, (D) X, (E) ∆, and (F ) −∆. Inset in A is the valence band presented in the narrower
energy window, exactly the same as in Fig. 1A
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Fig. S2. Band structure of stanene with hydrogen half passivation. (A) schematic geometry and band structure of stanene with the half coverage of hydrogen passivation (B)
with and (C) without spin orbit coupling. Red and blue indicate spin-up and spin-down states which are polarized along the out-plane direction.
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Fig. S4. Current flow in a graphene nano-ribbon biased by a static E-field. (A) Schematic of valley Hall effect (left) and the calculation results for the time-varying
charge density. (B) The same as A but with a circularly polarized E-field in addition to the static axial bias. In A and B, the time-varying charge density is obtained by
ρxz (y, t) =

∫ ∫
dxdz [ρ(r, t) − ρ0(r)], and ρ̄L

edge and ρ̄R
edge are the time-averaged charge obtained in each edge region of the ribbon (W = 26Å): ρ̄L

edge(t) =

1
t

∫ t

0
dτ

∞∫
0.8W

ρxz(y, τ)dy and ρ̄R
edge(t) = 1

t

∫ t

0
dτ

0.2W∫
−∞

ρxz(y, τ)dy
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A B

Fig. S5. Schematics of the distribution of spin Berry curvature in 3D Brillouin zone for (A) a weak TI and (B) a strong TI. The orange surface indicates the region of non-vanishing
spin Berry curvature. The red square represents the two time-reversal planes of ~kz = 0 and ~kz = ~b3/2.
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D
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C

Fig. S6. (A) Geometry and the rhombohedral unit-cell of Bi2Se3. (B) The first Brillouin zone. (C) Band structure with and without SOC near the Γ point. (D) Spin Berry
curvature along the (0, 0, ~kz) direction calculated from the time-propagating Bloch states when a static E-field is applied along the z-direction. In the B, the orange sphere
schematically depicts the region of non-vanishing spin Berry curvature.
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