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Abstract. To facilitate quantum simulation of open quantum systems at finite

temperatures, an important ingredient is to achieve thermalization on a given time-

scale. We consider a Rydberg aggregate (an arrangement of Rydberg atoms that

interact via long-range interactions) embedded in a laser-driven atomic environment.

For the smallest aggregate (two atoms), suitable laser parameters can be found by brute

force scanning of the four tunable laser parameters. For more atoms, however, such

parameter scans are too computationally costly. Here we apply Gaussian processes

to predict the thermalization performance as a function of the laser parameters for

two-atom and four-atom aggregates. These predictions perform remarkably well using

just 1000 simulations, demonstrating the utility of Gaussian processes in an atomic

physics setting. Using this approach, we find and present effective laser parameters for

generating thermalization, the robustness of these parameters to variation, as well as

different thermalization dynamics.

1. Introduction

One often encounters a situation where the outcome of an experiment depends on many

control parameters that can be varied over a large range. Usually, one is interested

in achieving a particular outcome. This scenario emerges in both experimental and

theoretical settings.

Achieving the target outcome can be a demanding task, in particular when the

space of tunable parameters is high dimensional, and when there is no simple dependence

of the outcome on the parameters. If one is only interested in the optimal outcome,

then various approaches have been developed for this task (e.g. the methods in [1–3]).

However, one is typically also interested in the ’stability’ of the outcome, not (just)

the parameter values that give the optimal outcome. Additionally, one would like to

know the regions of parameter space where one is close to the desired outcome. We

quantify ’closeness’ to the target outcome by a cost function (or simply cost); when we

speak about ’close to the desired outcome’ we mean loosely that the result is below a

certain value of the cost. Similarly, when we speak about ’optimal’ we mean the set

of parameters that gives a result that is closest to the desired outcome; yielding the
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minimal cost. For convenience, we will denote the manifold of the cost function over

parameter space as the cost landscape.

In the ideal case one would like to know the full cost landscape: the respective values

of the cost for all choices of the tunable parameters. However, analytic descriptions

of the cost landscape can rarely be found for complex systems. Also, brute force

scans of the parameter space are often precluded by the time required to perform an

experiment/calculation for a single set of parameters. One powerful approach is based

on Gaussian processes (GPs) [4]. GPs are not only able to search for an optimum but

also provide information on the full cost landscape. This is performed by regression:

a Gaussian process provides a prediction of the cost landscape by fitting known data,

using Bayesian updates to prior assumptions for the model. This method can provide

predictions of the full cost landscape from few data points, and has been applied to

predict interatomic potentials [5,6], and the related kernel ridge regression method has

also been applied to predict properties of atoms in molecules [7, 8].

Knowledge of the predicted cost landscape also provides valuable information for

choosing subsequent parameters for the experiment/simulation ’well’, to use resources

efficiently. This is related to reinforcement learning, where previous ’policies of action’

inform the following action policies, with some trade-off between exploring new policies

and exploiting those that have worked well previously. Reinforcement learning has

been applied recently for quantum control [9–12] and even to design quantum optics

experiments [13]. The idea of using known points in the cost landscape to choose

subsequent parameters for evaluation is known as active learning [14]. Active learning

has been applied in physical settings to produce Bose-Einstein condensates [15], and for

materials design [16, 17]. Active learning is particularly useful when each simulation is

computationally expensive.

Here we consider such a problem in the context of using interacting Rydberg

molecules for simulating open quantum system dynamics. Rydberg systems have strong

interactions, and can be optically addressed and positioned [18–20]. These properties

can be exploited to simulate quantum systems [21–27]. In addition, Rydberg atoms

exhibit state-changing interactions similar to molecular interactions [28, 29]. Since the

parameters of Rydberg atomic systems are considerably simpler to control than the

molecular counterparts, these systems are a promising setting for simulating molecular

dynamics such as excitation transport in light-harvesting complexes. Features necessary

for simulating molecular systems have been demonstrated using Rydberg atoms,

including tunable excitation transport [30–32], non-Markovian behaviour induced in

the system [33], as well as controllable thermalization [34]. We will use the same setup

as in [34] (related to the setups in [31, 33]), as shown in figure 1, with a laser-driven

atomic environment. Our setup has thus been used to demonstrate thermalization and

flexible system dynamics, with remarkable control provided by the laser parameters.

In this work, we denote the tunable laser parameters (Rabi frequencies and detunings)

our laser control parameters, and parameter space is the space of possible laser control

parameters.
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Figure 1. Setup: linear arrangements of system and background atoms, with lasers

addressing the background atoms. The atomic energy levels of system and background

atoms are shown. The lasers drive the atomic transitions in the background atoms,

and the Rabi frequencies Ωp, Ωc and detunings ∆p, ∆c are the control parameters for

our setup.

There are key remaining questions about thermalization and thermalization

dynamics to show that quantum simulation of molecular systems is possible. The first

questions are about locating effective laser control parameters: which sets of parameters

give rise to thermalization for a given setup? How robust are these parameters to

variation? It is also important to understand the relationship between parameters

and thermalization temperature: for parameters that generate thermal states, is

there a smooth relationship between the parameters and thermal-state temperature?

Additionally, quantum simulation requires a system with sufficient size to mimic the

target system. This typically requires more than a couple of system atoms, so we also

have questions about scalability: do the parameters that produce thermalization change

as we scale the number of atoms in the system? If so, how? Finally, approaching

a thermal state in the ’right’ way - the same way as a target molecular system -

is just as important as the thermalization itself. This leads to important questions

about the thermalization dynamics: are there different sets of parameters that generate

thermalization, with different thermalization dynamics? By varying parameters, what

control do we have over the timescale of thermalization relative to interaction timescales

within the system?

Given the significance of these open questions in our setup, our outcome of interest

in this work is the thermalization of the Rydberg system atoms. Before we can approach

the open questions, however, we require a method for exploring the cost landscape. Here

the cost is a measure of the distance between the actual state and the target thermal

state, and the cost landscape is over the laser control parameters.

In this paper, we will focus on the primary problem of exploring the cost landscape

for a multidimensional parameter space, and costly simulations of our setup. This

investigation will provide insights into some of the various questions we have posed

to facilitate quantum simulation of open systems, and provide a methodology for
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approaching any of these questions.

The structure of the manuscript is as follows: first we introduce our setup,

methodology and performance measures in section 2. We then present results from

scanning the parameter space for a dimer (two atom) aggregate system in section 3.

GPs are applied to predict the cost landscape for a dimer system in section 4. Here the

predicted landscape is presented and analysed using our performance measures. Then,

in section 5, the cost landscape is predicted using GPs for a quadromer system, and we

discuss the physical utility and the performance of the prediction. Finally, we present

our conclusions in section 6.

2. Setup, basic definitions and methods

2.1. The system and its tunable parameters

We consider the setup shown in figure 1. This model has been discussed in detail in

Refs [31, 34].

The system is a Rydberg k-mer of k atoms interacting via resonant-dipole-dipole

interactions. These atoms remain in one of two Rydberg states: the lower-energy |s〉
state and the excited |p〉 state. The Hamiltonian for the system is given by:

Hsys =
∑
n6=m

Wnm |πn〉 〈πm| , (1)

where |πn〉 = |s · · · sps · · · s〉 represents the system when a single |p〉 excitation is

localized at atom n. A single excitation is shared between the system atoms in our

setup. The resonant dipole-dipole interaction Wnm = C3/(Rn − Rm)3, where Rn is

the position of atom n and C3 is a state-dependent coefficient. The system atoms are

arranged linearly, with separation distance d between atoms.

The environment is composed of laser-driven atoms. These atoms are a distance

δ from the system atoms, such that the vectors along d (between system atoms) and δ

(between a system atom and environment atom) are perpendicular. The environment

atoms are treated as ’three-level’ atoms: they have a ground state |g〉, a short-lived

excited state |e〉 and a Rydberg state |r〉 6= |p〉 , |s〉. The excited state is coupled to the

zero-temperature photonic continuum, inducing spontaneous emission with decay rate

Γp to the ground state |g〉. Both the |g〉 ↔ |e〉 and |e〉 ↔ |r〉 transition are optically

driven, with Rabi frequencies Ωp and Ωc and detunings ∆p and ∆c respectively. The

Hamiltonian for the environment atoms, in the rotating wave approximation, is given

by:

Henv =
∑
α

[
Ωp

2
[|e〉 〈g|]α +

Ωc

2
[|r〉 〈e|]α + H.c.

]
−∆p [|e〉 〈e|]α

− (∆p + ∆c) [|r〉 〈r|]α +
∑
α<β

V
(rr)
αβ [|r〉 〈r|]α [|r〉 〈r|]β . (2)

The final term in the environment Hamiltonian corresponds to the inter-atomic van der

Waals interaction V
(rr)
αβ between atoms in Rydberg states |r〉, where α and β label the
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environment atoms.

The system and environment atoms interact via the Rydberg states of the

environment atoms, |r〉. These interactions depend on the state of the system atoms:

Hint =
∑
n,α

V̄nα |πn〉 〈πn| [|r〉 〈r|]α , (3)

where V̄nα = V
(pr)
nα +

∑
m6=n V

(sr)
mα is the strength of the interaction between the system

in the state |πn〉 and a specific environment atom α in the Rydberg state |r〉. The

interaction between system atom n in state |p〉 (|s〉) and environment atom α in state |r〉
is given by V

(pr)
nα (V

(sr)
nα ). These pairwise interactions depend strongly on distance, such

that the strongest interactions are between adjacent environment and system atoms,

α = n.

For the given setup, we can obtain the system dynamics in the following manner.

We first define an initial state for our setup that is experimentally accessible and

corresponds to a localized excitation: ρ(0) = (|π1〉 ⊗ |g...g〉) (〈π1| ⊗ 〈g...g|). The state ρ

is then propagated in time according to the master equation:

d

dt
ρ(t) = −i[H, ρ(t)] +

∑
α

D[Lα]ρ(t), (4)

whereH = Hsys+Henv+Hint and D[Lα]ρ = LαρL
†
α− 1

2

(
L†αLαρ+ ρL†αLα

)
terms describe

the effect of spontaneous emission on the setup. Here Lα =
√

Γp [|g〉 〈e|]α.

We specify the inter-atomic distances, atoms and states in the setup as in [34]. The

aggregate spacing is d = 5 µm and the aggregate-environment atom spacing is δ = 2 µm.

We choose the states of the aggregate atoms to be |p〉 = |43p〉 and |s〉 = |43s〉 of 87Rb.

A dimer (two system atoms) then has a lifetime of approximately 56 µs [35], which is

much longer than the timescale of dynamics that we will consider. For the environment

atoms we choose the states |g〉 = |5s〉, |e〉 = |5p〉 and |r〉 = |38s〉 of 87Rb. The decay

rate from |e〉 is Γp = 6.1 MHz.

In this setup, we want to obtain thermalization of the system. This provides a

resource for quantum simulation of systems in real (thermal) environments. We are

thus interested in preparing a thermal state:

ρth
Teff

=
1

Z

∑
n

e−En/(kTeff) |ϕn〉 〈ϕn|, (5)

where Teff is the effective temperature, k is the Boltzmann constant, and Z =

Tr{e−Hsys/(kTeff)}. The eigenstates and eigenenergies of Hsys (equation 1) are denoted by

|ϕn〉 and En, respectively.

Note that the temperature scale kTeff is not given by an ambient temperature of a

thermal bath. The ambient temperature is typically on the order of µK, and we also

have an additional atomic component of our environment. Here the temperature scale

is given in terms of the interaction strength W , which determines the eigenenergies En.

We set a time tf for which thermalization should have happened to a given thermal

state. As addressed in the introduction, control over the thermalization timescale and
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the temperature of the target thermal state are important aspects for simulating general

open systems. In this work, we focus on cost landscape prediction and analysing the

results. We thus fix the thermalization timescale to be faster than a given tf , where

the target thermal state has a given temperature kTeff . However, our approach can be

extended by varying the values tf and kTeff . We will comment on the choices of tf and

kTeff in section 3.

In Ref. [34], it was shown that for the given setup, thermalization to a tunable

temperature can be achieved for particular choices of the laser driving parameters (Ωp,

Ωc, ∆p and ∆c). Here, we are similarly interested in investigating thermalization of the

system by controlling the laser driving parameters for the background atoms. However,

unlike in Ref. [34], in this paper we are interested in knowing the cost landscape generally

(how well thermalization can be performed over the full parameter space). This in

turn equips us to answer other physical questions about the setup (e.g. robustness of

thermalization to parameter variations or scaling the system size), as described in the

introduction.

2.2. Quantifying the outcome

We want to quantify how well we prepare the target thermal state. To do this, we apply

the trace distance D(ρS(tf ), ρ
th
Teff

) to measure the distinguishability of a given state of

the system ρS(tf ) from the target thermal state ρth
Teff

:

D(ρS(tf ), ρ
th
Teff

) =
1

2
Tr
{
|ρS(tf )− ρth

Teff
|
}
, (6)

with |ρ| =
√
ρ†ρ. The state ρS(tf ) is obtained by time-propagation of our setup

ρ(t) (equation (4)), followed by tracing out the environment atoms. We will use

D(ρS(tf ), ρ
th
Teff

) (denoted by D for convenience) as our cost function.

Note that the cost function is based on a state comparison at a single point in

time, tf . We assume that the cost quantifies how well states have thermalized to the

target state. However, the cost does not distinguish whether the propagated state is

still changing in time; such a state could dynamically pass ’close’ to the target state

without being effectively thermalized. In section 3 of the SI, we show that states that

are not yet steady have a minimal effect in our case, validating our association of the

cost with effective thermalization. We also provide an alternate cost function in the SI

that could be used in cases where this transience issue arises.

2.3. Gaussian processes

In this manuscript, we numerically investigate the cost landscape. The challenge is that

simulations of our setup are computationally costly. Also, an analytic model for the

cost landscape has not been found for our setup. The ideal case - knowing the full

cost landscape - is thus impractical even for a Rydberg dimer system (just two system

atoms).
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Using machine learning, we can gain insight into the full cost landscape through

Gaussian process (GP) regression and prediction. GP regression fits known points in

the landscape (parameters with known associated costs) and can then predict the full

cost landscape. This prediction of the cost landscape attributes a Gaussian predictive

distribution for the cost at any given ’test’ parameter set. From this distribution, the

predicted mean cost and standard deviation can be extracted. A functional form is

assumed for the covariance of predicted costs over parameter space. The covariance

can depend on length-scales for characteristic variation in the cost as a function of each

parameter, and these length-scales can also be estimated to provide the best fit of the

cost landscape by the GP regression.

The predicted cost landscape can be used within a numerical routine to balance

optimization (landscape exploitation) with landscape exploration. We are most

interested in sets of parameters providing a low cost (close to 0). However, we are not

just interested in the minimal cost and its associated parameters. We want to know every

low-cost parameter region, along with its extent in parameter space. This information

requires an exploration of the cost landscape, with higher ’priority’ of exploration given

to regions that may have low cost values. As explained in the SI (section 4), the

predicted cost landscape can be used to identify likely low-cost regions of the cost

landscape. Similarly, the standard deviation for the predicted cost landscape can

identify regions of parameter space that should be explored due to a lack of knowledge

(uncertainty in the predicted costs, such that the costs could be low). In this way, we

obtain a numerical routine that uses previous runs (simulations and GP regression)

to guide the parameters for subsequent simulations. We use the optimization package

MLOOP [15,36], based on the Gaussian process regression algorithm (2.1) from [4] and

implemented in scikitlearn [37].

2.3.1. Performance measures We would like quantitative measures of how well the

GP-based numerical routine performs. We will consider measures that compare GP-

predicted regions of the cost landscape with exact calculations of these same cost-

landscape regions by scanning parameter space (extrinsic measures). These scans are

only possible for limited regions of the cost landscape, and for small system sizes. Thus,

we will also consider measures that only depend on the (region of the) cost landscape

predicted by the numerical routine (intrinsic measures). In both cases, we evaluate 2D

cross-sections of the cost landscape.

Extrinsic measures The extrinsic measures allow us to analyse the accuracy of the

predicted landscape: how well it matches the exact landscape. We introduce three

measures to quantify this: (a) accuracy, (b) accuracy for D < Cl, and (c) penalty.

(a) The accuracy measure is the absolute difference between the scanned cross-sections

and the predicted cross-sections. The absolute difference is taken point-wise, then

averaged over every point in the cross-sections. Note that the costs obtained by

both parameter scans and predictions are discrete samples from the cost landscape.
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(b) The accuracy for D < Cl follows the same procedure as (a), but only points where

the scanned cross-sections have trace distance D below some low-cost threshold Cl
are included in the average. This measure thus quantifies accuracy for the low-cost

regions of the cost landscape, with the choice of Cl discussed in section 4.1.

(c) The penalty is a measure for how closely the real cost landscape fits within the

standard deviation for the predicted cost landscape. The contribution to the penalty

for a given cost-landscape point is the absolute distance between the real cost and

the standard-deviation interval about the predicted cost (this distance is 0 when

the real point is within the interval). To calculate the penalty, we take the sum of

these point-wise contributions over every point in each cross-section, then average

over the cross-sections.

It is important to note that we would like to apply the routine in a regime where

such extrinsic measures are not possible. The main benefit of using Gaussian processes

to predict the landscape is that this prediction can occur where scans are not feasible:

in such cases, we will need to rely on intrinsic measures.

Intrinsic measures We introduce four intrinsic measures: (d) precision, (e) precision

for D < Cl, (f) absolute convergence and (g) best cost.

(d) The precision is the standard deviation averaged over every point in the cross-

sections.

(e) The precision for D < Cl follows the same procedure as (d), but only points where

the predicted cost cross-sections have trace distance D < Cl are included in the

average.

(f) The absolute convergence is the absolute difference between the current and

previous predicted cost landscapes (averaged over points). This measure is a

function of the number of runs performed by the numerical routine. A single run of

the numerical routine involves selection of parameters to test, and one simulation

(see section 4 of the SI for details). We calculate the predicted cost landscape

(cross-sections) to evaluate the performance measures every 20 runs, for numerical

convenience. The ’previous’ predicted cost landscape is thus calculated using 20

fewer runs than the ’current’ predicted cost landscape.

(g) The best cost is the lowest cost that has been obtained: it is the optimal cost from

the set of known (evaluated) points of the cost landscape.

3. Scanning parameter space for a dimer

The naive approach to obtain the cost landscape is to simply scan the variable

parameters. Recall that we have four such parameters: (Ωp,Ωc,∆p,∆c), which means

an enormous number of calculations.
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Figure 2. Parameter scan for a Rydberg dimer. The cost D is evaluated after

2 µs. The cross marks the center of the 2D cross-sections: (Ωp,Ωc,∆p,∆c) =

(37.1, 40.1,−26.6,−74.7), which has D = 6 × 10−5. The solid black lines mark the

contour defined by D = 0.2, for comparison with the cost landscapes to follow.

As a reference for the Gaussian process approach of the following sections we

perform such a scan for the simplest nontrivial setup where a scan is tractable: a

Rydberg dimer.

We choose the target thermal state temperature to be given by kTeff = 1.2 W .

This temperature has no special significance for the thermal state, except that it is not

a limiting case of nearly zero or infinite temperature (in these cases all population is

in the lowest eigenstate, and the eigenstates are equally populated, respectively). The

methods we present can be applied for any temperature.

In addition, we require that this thermal state is reached before a certain time,

which we choose here to be tf = 2 µs. Again, as for the choice of the temperature this

time is chosen arbitrarily (but is much smaller than the lifetime of the Rydberg states

of the system (∼ 56 µs [35]). As discussed in section 2.1, by choosing a time tf we set

the maximal timescale of thermalization. We propagate the state for 2 µs and compare

the resulting state with the reference thermal state as described in section 2.2.

Even though we look at just two system atoms, a full scan of the cost landscape

is not feasible. Therefore in figure 2 we present exemplary 2D cross-sections of the

4D parameter space. We choose a low-cost central point for these cross-sections:

(Ωp,Ωc,∆p,∆c) = (37.1, 40.1,−26.6,−74.7) ≡ x, which has cost D = 6 × 10−5. The

ranges of the laser parameters are chosen to be experimental achievable [38, 39], with

detunings small enough to avoid unwanted resonances.

Each of the 2D cross-sections in figure 2 are composed of 100×100 points (i.e. we

evaluated 10,000 sets of parameters by time-propagating the state). This number of

points allows us to resolve features in parameter space up to one or two MHz. The

computational time for each point in a given 2D cross-section was ∼ 1 s (on a single

core). Many such 2D cross-sections are required to obtain information about the full
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Figure 3. Population dynamics for different parameters from the 2D cost landscape

cross-sections centered at x (as in figure 2). (x) corresponds to the center of the cross-

sections, and (x), (y) and (z) are marked in the six cross-sections from varying each

pair of parameters shown in figure 1 in the SI. Each point satisfies D < 0.01. The

eigenstates and the off-diagonal element ρ01 are plotted over time, and black dashed

lines show the target eigenstate populations. The target value of ρ01 is zero. The inset

is zoomed in on the initial dynamics of the corresponding subplot, for clarity.

4D parameter space.

In the introduction, we raised various questions about simulation of open quantum

system dynamics with Rydberg atoms, and about thermalization in particular. For the

dimer system, the cross-sections in figure 2 begin to answer some of these questions. We

can observe a range of parameters that give rise to low-cost thermalization (though still

within a small subspace of the full parameter space). We can observe the robustness of

these parameters in the planes of the 2D cross-sections. From the low-cost parameter

regions, we can also sample particular sets of parameters to observe the thermalization

dynamics. As shown in figure 3, we found that different thermalization dynamics can be

obtained from different sets of parameters. However, note that due to the computational

cost, this (scanning) approach is not scalable to larger systems, and nor can it be

extended generally to explore the larger 4D parameter space even for the Rydberg

dimer.

4. Predicting the cost landscape using Gaussian processes for a dimer

We have seen that the computational cost is a fundamental challenge for numerical

investigation of thermalization in our setup (and also more generally for simulation of

scalable quantum systems). We thus want to obtain as much information as possible

from as few simulations as possible. The information that we desire is a balance of

optimization and landscape exploration: we are interested in the (multiple) regions of
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Figure 4. Predicted D landscape (left) and its standard deviation (right) for

thermal state preparation of a Rydberg dimer. The cross marks the center of the

cross-sections, which is the same is in Figure 2. The solid black lines mark the

contour defined by D = 0.2. The landscape is predicted for a 2 µs evolution

time, using 1000 runs of the Gaussian process routine. All four parameters were

allowed to vary: for (Ωp,Ωc,∆p,∆c)/(2π) (MHz): the minimum boundary, maximum

boundary and optimal parameters were (0.1, 0.1,−100.,−100.), (100., 100., 100., 100.)

and (18.9, 92.4, 9.3, 42.5) respectively.

parameter space that give rise to low-cost thermal states, including the breadth of these

regions.

4.1. Gaussian process prediction

We use GPs, outlined in section 2.3, to predict the cost landscape for the Rydberg dimer

setup. We apply a numerical routine that uses a GP to both explore the cost landscape,

and to exploit the landscape by focusing on low-cost regions as explained in section 4

in the SI.

In figure 4 we show the predicted landscape and its associated standard deviation

after 1000 runs of our numerical routine (i.e. 1000 sets of parameters were simulated).

To compare directly with the numerical scans of the parameter space, we display the

2D cross-sections centered at the same point x as the scans in figure 2. This comparison

shows that qualitatively, the landscape prediction is very good, i.e. it identifies almost

all low-cost regions. This is remarkable since just 1000 simulations have been performed.

The four laser control parameters are allowed to vary freely within the ranges shown in

the cross-sections; the parameters can be sampled from the full 4D parameter space and

are not restricted to lie within the displayed cross-sections. This is in contrast to the

100×100 points for each cross-section displayed for the parameter scans, where each of

the 10,000 points lies within the displayed cross-sections.

We have noted that the parameters can vary within the full 4D space; the 2D

cross-sections displayed in figure 4 are not ’preferred’ in any sense by the numerical

routine. For instance, the optimal set of parameters (Ωp,Ωc,∆p,∆c)/(2π) (MHz)
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= (18.9, 92.4, 9.3, 42.5), with D < 0.001, does not lie within these cross-sections. Since

these arbitrary 2D cross-sections of the predicted 4D landscape are very good, we expect

that the full 4D space is predicted similarly well.

In figure 4, we show the predicted landscape after 1000 runs. This number of runs is

chosen based on the following considerations. Firstly, in our implementation, prediction

is more expensive for a GP with more completed runs. A possible way to circumvent this

issue is described in [4]. Secondly, the standard deviation of the predicted cost landscape

typically decreases with the number of runs, see e.g. figure 5. There is thus a trade-off

between the computational resources required for a GP-based numerical routine, and

the precision of the predicted cost landscape. For the dimer setup, 1000 runs is well

within the ’sweet spot’: firstly, it is computationally much cheaper to use Gaussian

processes than to scan parameters to investigate the cost landscape. Secondly, the

predicted landscape is very close to the actual landscape after 1000 runs: the typical

accuracy< 0.1, as shown in figure 5. Similarly, considering an intrinsic measure, the

standard deviation in the predicted cost is sufficiently small to identify likely low-cost

regions of the cost landscape. As seen in figure 4, after 1000 runs, the standard deviation

for the predicted cross-sections typically takes a value between 0.2 and 0.3 for the

low-cost regions. Note that the ’sweet spot’, where there is both accurate landscape

prediction and a computational resource reduction from scans, grows as each simulation

becomes computationally more expensive (for more details, see section 4 in the SI).

We now specify our choice of threshold Cl for low-cost regions of the landscape. We

have noted that the standard deviation for the predicted cross-section is ∼ 0.2− 0.3 for

regions with cost D below 0.4, as seen in figure 4. It is thus prudent to choose a value

for Cl close to this standard deviation value: then we include regions with predicted low

cost, where the standard deviation for the prediction is around the size of the distance

from zero cost (perfect thermalization). This way, the intrinsic likelihood (from the

predicted cost) of a low cost guides our low-cost threshold. By focusing on regions

of the cost landscape with a predicted cost below 0.2, we can rule out vast regions

of the cost landscape after 1000 runs. This is demonstrated by the contours in the

predicted-cost cross-sections of figure 4 (left), and we expect arbitrary cross-sections to

have smaller low-cost regions (the cross-sections in figure 4 are centered on a particularly

low-cost point). We thus set the ’low-cost’ threshold Cl = 0.2.

4.2. Quantifying prediction performance

To provide a quantitative analysis of the GP performance, we apply the extrinsic and

intrinsic performance measures defined in section 2.3.1. Each of these measures (aside

from the best cost) is averaged over the six 2D cross-sections produced by varying the

four laser parameters (pairwise) about the central point.

Note that the numerical routine is stochastic, so the resulting landscape prediction,

as in figure 4, varies for each instance of the numerical routine. To quantify how well

the GP-based numerical routine predicts the cost landscape, we have performed 100
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Figure 5. Performance measures for the six 2D cross-sections centered as in figures 2

and 4. These measures are defined in section 2.3.1. The upper three measures displayed

are extrinsic, comparing the predicted cost landscape cross-sections with the scans. The

lower four measures are intrinsic, using just the predicted cost landscape cross-sections

and their standard deviations. The measures are calculated using 100 instances of

the (stochastic) numerical routine, each of which were used to generate six 2D cross-

sections of the predicted cost landscape and the associated uncertainty. We calculated

the performance measures for each instance, and display the mean and the standard

deviation of the performance measures from the resulting measure distributions. Note

that we do not show a standard deviation below the mean in plots where this is often

less than zero, for clarity.

instances of the numerical routine. In figure 5, the mean over the instances is plotted

for each performance measure, along with the standard deviation.

One would expect that with more runs, i.e. more samples of the cost landscape,

the landscape prediction becomes more accurate, more precisely known and approaches

convergence (the landscape predictions become more similar as the number of samples

increases). In figure 5, this expectation is validated: the measures are almost always

improving with the number of runs. The accuracy (for D < Cl) decreases with

the number of runs to a final value ∼ 0.05 (∼ 0.04), which means that this is the

average distance between the predicted and exact landscapes for all points (points with

D < 0.2) after 1000 runs. The precision and precision for D < Cl measures in figure 5

demonstrate poor initial predictions of the landscape, where the standard deviation is

under-estimated prior to around 100 runs, most noticeably for theD < Cl regions. Then,

after around 100 runs, the precision measures decrease with the number of runs (the

precision improves for the predicted landscape). As expected, the absolute convergence

also demonstrates increasing consistency in the predicted landscape as the number of
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runs increases.

The improvement in the precision measures, along with the improvement in

accuracy, reflects successful landscape exploration by our numerical routine. The best

cost also improves with the number of runs: this demonstrates the optimization aspect

of our numerical routine.

Recall that the penalty grows when actual cost values lie outside the predicted

standard deviation in the predicted cost. In figure 5, the penalty decreases as the

prediction improves, then increases fractionally with the number of runs. The main

change in this measure is the decrease in the penalty due to the improving landscape

prediction (and more accurate standard deviation). Initially the prediction and its

standard deviation are poor due to very little information from few previous samples

of the cost landscape. The penalty measure improves significantly within 100 runs.

The subsequent slight increase in the penalty could be due to narrow features in the

landscape that have not been sampled. The penalty for these features would become

worse as the standard deviation in these incorrect regions of the predicted landscape is

reduced with the number of runs.

If we did not have access to the scanned landscape, we would only have the intrinsic

measures. It is thus encouraging to note that the precision measure (which averages

the standard deviation in the cost landscape) is an upper bound for the accuracy of the

landscape. This means that knowing the precision allows us to conservatively estimate

the landscape accuracy, at least for the Rydberg dimer setup. The standard deviation

predictions are dependent on the choice of the covariance function for the Gaussian

process (as well as the optimized fitting parameters within the covariance function). The

covariance function describes how the predicted landscape can change away from the

known points in the landscape. We have seen that the squared-exponential covariance

function [40] employed by our routine (see section 4 of the SI) provides conservative

standard deviation predictions. We thus expect the same behaviour when we consider

larger systems using the same covariance function. Then the precision could be used as

a conservative estimate of the accuracy for general system sizes.

From another intrinsic measure, the absolute convergence measure, it appears that

we could set a certain convergence threshold as a criteria to stop the numerical routine.

That is, when the predicted landscapes change less than a given amount between

subsequent predictions, we might expect that the routine has converged ’close’ (as

determined by the threshold) to the correct cost landscape. This approach is limited,

however, when we consider individual instances of the numerical routine. Although in

figure 5 the absolute convergence measure (almost) monotonically decreases with the

number of runs for 100 routine instances, figure 7 for the quadromer demonstrates that

a single instance involves much more fluctuation in this measure. This is due to the

stochastic nature of both the sampling and the GP regression to fit the known points

in the cost landscape.

The results that we have presented are for a particular choice of numerical routine,

which we have found to work well for our setup. This choice is explained in detail in



Gaussian processes for parameter selection for Rydberg aggregates 15

Figure 6. 2D slices of the quadromer (left) predicted cost landscape and (right) its

standard deviation, after 1000 runs of the numerical routine. The crosses mark the

center of each cross-section. Contours are at D = 0.2 in the cost landscape cross-

sections.

Figure 7. Intrinsic performance measures calculated using six 2D cross-sections of

the cost landscape, centered at x. The six cross-sections are shown in figure 3 of the

SI.

section 5 of the SI, along with alternative routines.

5. Predicting the cost landscape using Gaussian processes for a quadromer

We have seen that scanning parameter space does not provide an approach that can

be scaled to larger system sizes within a reasonable computational time. However, the

prediction procedure using Gaussian processes performed remarkably well within a much

shorter time. We now apply this approach to gain insights from the cost landscape of a

Rydberg quadromer system.

We use our numerical routine to predict 2D cross-sections of the cost landscape

centered at the same point x as for figures 2 and 4, for comparison. These cross-sections

are presented in figure 6. Here, as for the predicted cost landscape for the dimer in

figure 4, 1000 points are sampled from the full 4D space to predict the landscape.
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In figure 6, low-cost regions are predicted within the given cross-sections. The

predicted landscape gives us a sense of the robustness of these regions. The low-cost

regions are similar to those in figure 4 for the dimer. This similarity suggests that

the dimer and quadromer setups possess related parameter dependence with respect to

thermal state preparation. This parameter-dependence could be extrapolated (with

more data) to larger systems. It was found in [34] that particular laser control

parameters were associated with low-cost thermal state preparation in different-sized

systems. This finding was for particular points in the cost landscape of different-sized

systems. In this paper, access to the (predicted) cost landscape over large regions of

parameter space allows us to explore the relationship between parameters and system

size in much more detail. For example, for the cross-sections displayed in figure 6,

the minimal cost regions have higher cost than the dimer predictions. We expect this

increase to continue with system size, and one could investigate whether the lower cost

’peaks’ for each system size can be smoothly followed through the landscape as a function

of the laser parameters.

Since scanning the cost landscape is too computationally expensive, the extrinsic

performance measures were not calculated for the quadromer. This is an example of a

setup where simulations are costly (a single run takes ∼ 200 s on two cores), however

a single instance of our numerical routine can be used to predict the cost landscape (as

in figure 6).

The intrinsic performance measures were calculated using the six 2D cross-sections

of the cost landscape produced by fixing four laser parameters and varying two at a

time about the central point (four of the cross-sections are shown in figure 6, all six

are shown in section 1 of the SI). The results are shown (as a function of the number

of runs) in figure 7. Since the performance measures here are calculated using a single

instance of the numerical routine, rather than 100 instances as in figure 5, we observe

much more fluctuation. Nonetheless, it can be observed from figure 7 that there is an

improving trend for each measure, which is similar to the trend in figure 5 for the dimer

setup.

In figure 7, the precision drops to ∼ 0.23 after 1000 runs. Thus, we again set

the ’low-cost’ threshold Cl = 0.2. The final value of the precision for D < Cl, which

is typically lower than the precision, is ∼ 0.16. As for the dimer, we expect that

the precision measures provide a conservative upper bound on the accuracy of the

predicted landscape (see the discussion in section 4.2). Thus, we expect the predicted

cost landscape for the quadromer to have accuracy < 0.23 overall, and we expect the

accuracy for D < Cl measure to be less than 0.16.

The best cost in figure 7 reaches a value of ∼ 4×10−3 after 300 runs and remains at

this value. This is a little higher than the mean best cost over 100 instances for the dimer

case (∼ 1.5 × 10−3). Nonetheless, this best cost value demonstrates that very-low-cost

(D ∼ 0.01) regions exist for the quadromer setup. These can be seen in the predicted

cost landscape and standard deviation centered on the best cost, which are shown in the

SI (figure 4).
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Figure 8. Quadromer dynamics plots. The parameters are chosen from the predicted

cost landscape cross-sections, as marked in the 2D cross-sections (figure 3 and figure 4)

in the SI. Each set of parameters was chosen from predicted low-cost regions. Here

the population in the jth lowest energy eigenstate |ϕj〉 is denoted by pϕj
. We only

show the eigenstate population dynamics for clarity, and the target thermal state

populations are also shown (dashed lines). The cost compares the full state with the

target thermal state; the predicted cost Dp (with standard deviation) and the actual

cost Da are shown for each subplot. The inset is a zoomed-in display of the first 0.2 µs

from the respective subplot.

Achieving a target precision for D < Cl could be used as a stopping criterion for

the numerical routine (such that no more runs are performed), as it is a useful low-cost

identification measure and has a relatively smooth dependence on the number of runs.

In contrast, the absolute convergence fluctuates dramatically, which would make this

measure difficult to apply as a stopping criterion.

As we did for the dimer, we can now use the predicted cost landscape to provide

a preliminary investigation of how or whether different parameters give rise to different

thermalization dynamics. In figure 6, as well as in figure 4 in the SI (which is centered

at the best cost), different low-cost regions are identified in the predicted cost landscape.

We sampled points from these regions and we show their dynamics in figure 8. The four

eigenstate populations undergo different dynamics, which is shown with an inset zoomed

in on the initial dynamics for clarity. The predicted costs for each point are provided

with the actual costs in the figure, and the differences in each case are much lower

than the standard deviation in the predicted cost (as is also the case in almost every

point that we validated from the quadromer landscape). While the populations in the

subplots (a), (c) and (d) become steady very close to the desired eigenstate populations,

the dynamics in (b) are not as close (with higher cost). Nonetheless, this point in the

cost landscape (which also has a faster timescale to reach a steady-state) could be used
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to perform local optimization and locate a nearby lower cost with similar associated

dynamics.

6. Conclusions

We have tackled the general problem of extracting much information from few costly

simulations. We demonstrated that Gaussian processes perform admirably at this task

in the setting of quantum simulation in atomic physics.

The successful application of GPs also provided physical insight into various

questions required for simulating molecular systems. In particular, we identified sets of

parameters that give rise to thermalization, as well as the robustness of these parameter

regions. Using the parameter space information provided by GPs, we demonstrated

that different thermalization dynamics can be observed in our setup. We also obtained

preliminary information about how parameters that result in thermalization vary as the

system size changes. Our method provides a useful approach for further study of this

relationship. Similarly, one could vary the temperature of the target thermal state, and

observe the resulting changes in the low-cost regions of parameter space. Our approach

thus supports the development of physical insight into the controllability of our setup

for molecular simulation.

It is important to note that the cost landscape could be scanned experimentally,

since the experiment duration is just 2 µs (independent of the system size), and we are

interested in a parameter space described by experimentally tunable laser parameters.

Our investigations in this paper confirmed that our setup does provide key elements

required for molecular simulation, and added to the quantum simulation toolbox

by identifying low-cost parameter regions, robustness, and different thermalization

dynamics. This provides a foundation and motivation for experimental exploration

of the setup.
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[28] F. Robicheaux, J. V. Hernández, T. Topçu, and L. D. Noordam, “Simulation of coherent

interactions between Rydberg atoms,” Phys. Rev. A, vol. 70, no. 042703, 2004.

[29] C. S. E. van Ditzhuijzen, A. F. Koenderink, J. V. Hernández, F. Robicheaux, L. D. Noordam, and

H. B. v. L. van den Heuvell, “Spatially resolved observation of dipole-dipole interaction between

Rydberg atoms,” Phys. Rev. Lett., vol. 100, no. 243201, 2008.

[30] G. Günter, H. Schempp, M. Robert-de Saint-Vincent, V. Gavryusev, S. Helmrich, C. S. Hofmann,

S. Whitlock, and M. Weidemüller, “Observing the Dynamics of Dipole-Mediated Energy

Transport by Interaction-Enhanced Imaging,” Science, vol. 342, no. 6161, p. 954, 2013.

[31] D. W. Schönleber, A. Eisfeld, M. Genkin, S. Whitlock, and S. Wüster, “Quantum Simulation of
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