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Observation and characterisation of gravitational waves from binary black holes requires accurate knowledge
of the expected waveforms. The late inspiral and merger phase of the waveform is obtained through direct
numerical integration of the full 3-dimensional Einstein equations. The Spectral Einstein Code (SpEC) utilizes
a multi-domain pseudo-spectral method tightly adapted to the geometry of the black holes; it is computationally
efficient and accurate, but— for high mass-ratios and large spins—sometimes requires manual fine-tuning for the
merger-phase of binaries. The Einstein Toolkit (ET) employs finite difference methods and the moving puncture
technique; it is less computationally efficient, but highly robust. For some mergers with high mass ratio and large
spins, the efficient numerical algorithms used in SpEC have failed, whereas the simpler algorithms used in the
ET were successful. Given the urgent need of testing the accuracy of waveform models currently used in LIGO
and Virgo inference analyses for high mass ratios and spins, we present here a synergistic approach to numerical-
relativity: We combine SpEC and ET waveforms into complete inspiral-merger-ringdown waveforms, taking
advantage of the computational efficiency of the pseudo-spectral code during the inspiral, and the robustness of
the finite-difference code at the merger. We validate our method against a case where complete waveforms from
both codes are available, compute three new hybrid numerical-relativity waveforms, and compare them with
analytical waveform models currently used in LIGO and Virgo science. All the waveforms and the hybridization
code are publicly available.

Introduction. In 2015, Advanced LIGO [1, 2] detected the
gravitational wave (GW) event GW150914 corresponding to the
merger of a binary black hole (BBH) system [3]. Subsequently,
five further GW observations from BBH and binary neutron-star
mergers have been reported [4–8], with the Advanced Virgo de-
tector [9] participating in the more recent observations [6, 7].
The parameters of the BBHs were inferred [4–8, 10, 11] using
fast, analytical waveform models [12–17] calibrated to numerical
relativity (NR) simulations [18–22]. The latter are obtained by
directly solving the fully nonlinear Einstein equations for BBH
spacetimes [23]. The detection efficiency and the accuracy of pa-
rameter estimation are directly affected by the accuracy of both
analytical and numerical waveform models [24].

The first complete BBH simulation was obtained by Pretorius
in 2005 [25] using finite difference methods and BH excision. The
finite difference moving puncture method, which does not require
a complex excision algorithm, was developed independently by
two groups in late 2005 [26, 27]; because of its simplicity and
robustness, this method is in widespread use. Finally, the Spec-
tral Einstein Code [28] (SpEC) makes use of accurate pseudo-
spectral collocation methods combined with BH excision. SpEC
improved on existing finite difference solutions in accuracy by one
to two orders of magnitude [29, 30] and roughly doubled the num-
ber of GW cycles in large waveform catalogs [20, 22]. SpEC
has performed the longest BBH simulation to date (350GW cy-
cles) [31], as well as the simulations with the largest BH spins
(spin-magnitudes 0.998) [32]. The largest mass rato simulations,
however, have been performed using moving puncture finite dif-
ference codes [21, 33].

Numerical simulations are computationally expensive, typi-
cally running for months on large supercomputers. The compu-
tational cost to achieve a given accuracy increases with (i) num-
ber of orbits Norbs, (ii) the ratio of the masses of the binaries
q = m1/m2 ≥ 1, and (iii) increasing magnitudes of the BH
spins. So far, analytic waveform models for BBHs used in LIGO
and Virgo follow-up analyses [12–17] have been calibrated to NR

waveforms for mild mass ratios and spin magnitudes (e.g., Fig. 1
in [16]), using NR waveforms of ∼ 8–30 orbits, depending on the
binary’s parameters and the NR code. The most extreme mass-
ratio simulations with spins were presented in [21]. Validation of
waveform models for the earlier inspiral and for BBH parameters
too extreme for NR simulations have relied on internal consistency
tests (e.g., Ref. [34] for nonspinning BBHs), comparison of two-
body dynamics in absence of NR-calibration [35–38], and com-
parisons between NR-calibrated waveform models with common
assumptions and input data1. Thus, the true accuracy of waveform
models in regions of the parameter space without NR simulations
is unknown.

Particularly important are mass ratios q & 4, and BH with a
large spin-projection along the orbital angular momentum, χ1,2 ≡
(S1,2 · L̂)/m2

1,2 & 0.8 (e.g., Fig. 1 in [16]). These cases reach par-
ticularly high orbital frequency near merger and waveform models
needed [16, 22] (or will need [39]) recalibration to new NR wave-
forms when these became Only accurate NR waveforms in this
region of parameter space will ensure that GW parameter mea-
surements in upcoming LIGO and Virgo observations are free of
biases due to errors in the waveform models.

Unfortunately, this region of parameter space is computation-
ally very challenging. Resolving the multiple length and time
scales associated with both the large and small BH — made even
smaller and more distorted by its high spin— requires high res-
olution with consequent high computational cost. BH horizons
near merger become also particularly distorted complicating BH
excision in the SpEC code, so that BBH inspiral simulations with
spins χ1 =χ2 =0.9 at mass-ratios q = 3, 4, 5 through merger fail
shortly before merger.

1 Certain NR waveforms are used in the calibration of both waveform models
from Refs. [15, 16]; moreover, an uncalibrated effective-one-body model [14],
which differs from the one underlying SEOBNRv4 for a few higher-order PN
terms, is used during the construction of IMRPhenomD.
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In contrast, finite difference codes are able to evolve BBHs with
more extreme mass-ratios and spins through merger, albeit only
starting with a higher orbital frequency (i.e. lower separation, and
covering fewer orbits).

The higher initial frequency implies a significantly higher min-
imum total mass, M = m1 + m2, for which the waveform still
covers the entire LIGO frequency band. While these shorter wave-
forms allow calibrating waveform models near merger, the extra
low frequency information of longer SpEC simulations may be
essential to achieve faithful models and avoid biases in parameter
estimation and tests of general relativity from detected GW sig-
nals.

Whilst we are confident that the problems with SpEC will
be solved by improved numerical methods, the upcoming LIGO
and Virgo runs, which promise several tens of GW events from
BBHs [40], increase the urgency for accurate waveforms from
this region of the parameter space. Thus, we explore here a syn-
ergistic approach that combines highly accurate SpEC inspiral
evolutions with shorter merger waveforms from finite difference
codes (in this case, the Einstein Toolkit [41, 42]) to produce NR-
NR hybrid waveforms. In this first study, we restrict to quasi-
circular systems with BH spins parallel or anti-parallel to the or-
bital angular momentum. This choice simplifies the joining of
separate waveforms, because the time shift and spatial rotation
required to align waveforms from two simulations starting at dif-
ferent binary separations can be determined in post-processing of
the simulation data [43, 44], whereas more generic systems re-
quire a more sophisticated treatment, probably involving running
additional simulations. After validating our approach, we pro-
duce three NR-NR hybrid waveforms for high mass ratios and
spin magnitudes, and use them to assess the accuracy of two wave-
form models currently used in LIGO and Virgo science, namely
the spinning effective-one-body waveform model calibrated to NR
called SEOBNRv4 [16], and the inspiral-merger-ringdown phe-
nomenological model called IMRPhenomD [15].

In the remainder of this article, we describe the ET and SpEC
codes in more detail, explain and validate our hybridization pro-
cedure to construct NR-NR hybrid waveforms and then compare
the newly constructed waveforms to existing waveform models.
Throughout the paper, we use units in which G = c = 1.

Numerical-relativity codes and waveforms. SpEC [19, 28, 45,
46] is a pseudo-spectral code for efficiently solving partial dif-
ferential equations, with the primary goal of modeling compact-
object binaries. SpEC evolves the first-order formulation [47] of
Einstein’s equations in generalized-harmonic gauge [48, 49] and
employs BH excision [50, 51]. For more details see [52–58].

The Einstein Toolkit [41] is a collection of open source NR
components built around the Cactus framework [59]. Our BBH
simulations are based on 8th order finite-differencing and the mov-
ing puncture method to solve the BSSN [60–62] or CCZ4 [63, 64]
formulations of the Einstein equations for Bowen-York initial data
[65, 66]. More details of the specific components and techniques
used in the ET can be found in [26, 27, 53, 67–77].

SpEC achieves high accuracy through pseudo-spectral meth-
ods, grids tightly adapted to the shape of the binary and use of
a computational grid which rotates along with the binary. The
ET, in contrast, uses finite-difference methods and straightfor-
ward box-in-box mesh refinement with a global inertial compu-
tational grid. However, the SpEC excision algorithm requires
accurate and careful tracking of the BH horizons, particularly

for high-spin BHs, to preserve purely-outgoing excision bound-
ary conditions [50]. The high accuracy requirement, combined
with strongly deformed BH horizons reduce SpEC’s robustness
in previously unexplored regions of parameter space, specifically
for higher mass-ratio and simultaneous high spins. In contrast, the
finite difference moving puncture method (see Refs. [78, 79] for a
detailed study) requires no special treatment of the BHs, beyond
the choice of suitable coordinate conditions and the requirement to
have sufficient grid resolution near them. While finite difference
moving puncture evolutions have proven to be extremely robust,
great care is needed in the choice of grid-structure to achieve high
accuracy.

The NR simulations used in this work are detailed in Table I,
where we label cases with (q, χ1, χ2), and where for each case
an ET and a SpEC simulation is available. At present, we con-
sider only aligned-spin simulations, so that χ1,2 represent both the
spin-projection onto L as well as the spin-magnitude. The SpEC
simulation for case (3,0.85,0.85) completed successfully, includ-
ing merger and ringdown. It is available in the SXS waveform
catalog [80] under ID SXS:BBH:0293 and was first presented in
Ref. [81]. The remaining SpEC simulations are new, start ∼ 20
orbits before merger, but fail around the merger, leading to incom-
plete waveforms. The ET simulations are all new; their length
was chosen to be relatively short, but long enough to overlap with
the SpEC–inspirals. All simulations are run at multiple numerical
resolutions in order to assess numerical truncation error.

The initial data parameters (q, χ1, χ2) of the ET simulations
are identical to those of the SpEC simulations, but due to uncon-
trolled emission of energy and angular momentum from the initial
data slice [82], the relaxed values after the initial dynamical phase
deviate slightly from those of SpEC. Table I presents these re-
laxed values, which differ by . 2× 10−3 between the two codes.

Some of the ET evolutions became unstable during ringdown
when evolved with the BSSN formulation. Presumably, this in-
stability is related to the high spin of the remnant BH, 0.93, the
highest spin BH we have evolved using the ET code. Ref. [83] re-
ports significant constraint violations in BSSN–evolutions of high
spin BHs, which could be mitigated by use of the CCZ4 formula-
tion. Consequently, we re-ran the failing simulations with CCZ4
and constraint-damping parameters κ1 = 0.1, κ2 = 0. The result-
ing evolutions are stable, but needed higher resolution during the
inspiral to maintain orbital-phase accuracy.

NR-NR hybrid waveforms and their application. We aim to
join an inspiral waveform hinsp and a merger waveform hmerger
representing the same astrophysical BBHs, where hinsp terminates
shortly before the merger peak, and hmerger overlaps hinsp during
the late inspiral. Because the simulations start at different initial
orbital separations, hinsp and hmerger will in general differ by a time
translation and a spatial rotation. We restrict here to a single spin-
weight −2 spherical harmonic ` = 2,m = 2 multipole, and for
notational convenience write h ≡ h22 ≡ Aeiφ, where the second
equivalence defines a decomposition in amplitude and phase.

To construct the NR-NR hybrid waveform, we must first de-
termine the time and phase shifts between hmerger and hinsp. We
determine ∆t and ∆φ from a portion of the waveform in an in-
terval [t1, t2] = [t2 − T, t2] where t2 is the time at which hi
terminates and, say T = 150M , where all times are measured
in the coordinate system of hinsp. We do not utilize the por-
tion of hmerger for t < t1. For quasi-circular BBH systems with
spins aligned with the orbital angular momentum, the instanta-
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ID q(S) q(E) χ
(S)
1 χ

(E)
1 χ

(S)
2 χ

(E)
2 e(S) e(E) N

(E)
orbs M

(S)
min /M� M

(E)
min /M�

(3,0.85,0.85) 2.9992 2.9986 0.850 0.851 0.849 0.851 1× 10−4 2× 10−3 8.0 140.9 279.4
(3,0.9,0.9) 2.9988 2.9979 0.900 0.902 0.899 0.901 7× 10−4 1× 10−3 8.0 180.6 284.5
(4,0.9,0.9) 3.9980 3.9969 0.900 0.902 0.899 0.901 9× 10−4 6× 10−4 7.5 178.3 322.3
(5,0.9,0.9) 4.9974 4.9955 0.900 0.902 0.899 0.901 1× 10−3 8× 10−4 8.5 190.4 321.9

TABLE I. Properties of the NR waveforms. Shown are the case ID, the mass ratio q = m1/m2 ≥ 1, the dimensionless spin χi of each BH (i = 1 or
2) in the direction parallel to the orbital angular momentum, the eccentricity e near the start of the waveform, the number of orbits Norbs, the minimum
masses Mmin for which the waveform is entirely in the detector band at 10Hz. Superscripts indicate SpEC (S) and ET (E).
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FIG. 1. Gravitational-wave strain. Shown is the real part of the dominant
` = 2,m = 2 multipole for the case (5, 0.9, 0.9) from the SpEC inspiral
waveform hinsp, the ET merger waveform hmerger, and the NR-NR hybrid
waveform hhybrid as a function of retarded time t in units of the total mass
M of the binary. The vertical lines indicate the hybridisation interval
[t1, t2], which is enlarged in the inset.

neous GW frequency ω ≡ dφ/dt increases monotonically with
time. We first align ω in time, which is independent of ∆φ, and
then align the phases. All alignments are performed using least-
squares minimisation. We conclude the alignment by redefin-
ing hmerger(t) ← ei∆φhmerger(t + ∆t). We verified that vary-
ing the hybridisation interval introduces a negligible error (i.e.,
a mismatch, as defined below, of less than 10−4). To achieve
a smooth transition between hinsp and hmerger, we blend φinsp
with φmerger and Ainsp with Amerger in the interval [t1, t2] using
a variant of the Planck taper function [84], T (t; t1, t2) = 0 for
t ≤ t1, 1/{exp[(t2 − t1)/(t− t1) + (t2 − t1)/(t− t2)] + 1} for
t1 < t < t2 and 1 for t ≥ t2. Specifically, we construct φhybrid =
(1− α)φinsp + αφmerger , Ahybrid = (1− α)Ainsp + αAmerger where
α(t) = T (t; t1, t2). Finally, we construct hhybrid = Ahybride

iφhybrid .
Figure 1 shows the three waveforms hinsp, hmerger and hhybrid.

There is no visible discrepancy between the inspiral, merger and
hybrid waveforms in the hybridisation interval. In fact, |φmerger −
φinsp| < 6× 10−3 and |1− Amerger/Ainsp| < 4× 10−4 across the
hybridisation interval.

NR waveforms are approximations to the solutions of the Ein-
stein equations, and it is necessary to quantify their uncertainty.
We consider the impact of truncation error and extrapolation er-
ror on the original inspiral and merger waveforms. Truncation
error results from using a nonzero grid spacing in the numerical
method. Extrapolation error arises from the method used to esti-
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FIG. 2. Estimated uncertainties in the NR-NR hybrid waveform aris-
ing from different error sources, expressed in terms of mismatchM for
different total binary masses M . Shown is case (5, 0.9, 0.9).

mate the asymtpotic GWs (at future null infinity) from the GWs
extracted at finite-radius. Moreover, an additional error arises be-
cause the merger simulation represents a slightly different physi-
cal system than the inspiral simulation (as described above). We
will see that this is actually the dominant source of error in the
NR-NR hybrid waveform.

Gravitational-wave signals from BBHs are often compared us-
ing an optimised detector-noise-weighted inner product. Given
two waveforms h1(t) and h2(t), their noise-weighted overlap
is defined as [85] (h1|h2) ≡ 4 Re

∫ fmax

fmin
h̃1(f)h̃∗2(f)/Sn(f)df ,

where h̃1,2(f) are the Fourier transforms of the waveforms and
Sn(f) is the one-sided noise power spectral density, chosen here
as the zero-detuned-high-power variant from [86]. We use fmin =
10 Hz, fmax = 8192 Hz. The match between two waveforms is
then defined as the overlap between the normalized waveforms
maximized over relative time and phase shifts, M(h1, h2) ≡
maxφc,tc (h1(φc, tc) | h2) /

√
(h1|h1)(h2|h2). The match mea-

sures how similar the waveforms appear to a GW detector when
the data is analyzed using matched filtering. For convenience,
since the differences we consider are small, we consider the mis-
matchM(h1, h2) ≡ 1−M(h1, h2). A mismatch of zero indicates
that the waveforms appear identical.

Figure 2 summarizes the error budget for an NR-NR hybrid for
the case (5, 0.9, 0.9) as a function of the total mass M of the
binary (a single NR BBH simulation can represent a binary of
any total mass by a scaling of the waveform). Each curve rep-
resents the mismatch between a NR-NR hybrid waveform and a
perturbed NR-NR hybrid. For the inspiral and merger truncation
error curves, the perturbed hybrid is constructed using a lower res-
olution inspiral and merger waveform, respectively. Similarly, for
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FIG. 3. Mismatch M between SpEC-ET hybrid and complete SpEC
waveforms for the case (3,0.85,0.85) where the SpEC waveform includes
a merger. The shaded region represents the estimated uncertainty in this
computation coming from errors in the SpEC and ET waveforms.

the inspiral and merger extrapolation-error curves, each perturbed
hybrid is constructed using higher-order extrapolation for the in-
spiral or merger waveforms, respectively. Furthermore, the pa-
rameter mismatch curve compares a standard SEOBNRv4 wave-
form [16] with parameters of the inspiral simulation with a hybrid
waveform constructed in the same way as the NR-NR hybrid but
from two SEOBNRv4 waveforms, the first using the parameters
of the inspiral simulation, and the second using the parameters of
the merger simulation. We assume that the mismatch introduced
by hybridising two SEOBNRv4 waveforms with different param-
eters is representative of the same effect with NR waveforms.

The total error budget in Fig. 2 is the quadrature-sum of the in-
dividual contributions, and provides a conservative indication of
the total uncertainty in the waveform as seen by a GW detector.
Figure 2 demonstrates that the error of the hybrid waveform is
dominated by the slightly inconsistent BBH parameters for hinsp
and hmerger. This is also the case for all the other NR configura-
tions. These parameter inconsistencies could be reduced by re-
peating the merger simulation with initial mass ratios and spins
adjusted in such a way that the relaxed values approach those of
the inspiral simulation. In the future, this step should be per-
formed at the same time as the iterative eccentricity reduction,
which already requires multiple simulations.

Figure 3 tests our hybridisation method and our error estimates
for the case (3, 0.85, 0.85), for which complete inspiral-merger-
ringdown SpEC–waveforms are available. Discarding the SpEC
merger, we construct a SpEC–ET hybrid waveform as described
above, and plot its mismatch with the complete SpEC waveform
as the solid black line. The grey band in Fig. 3 represents our
error-estimate on the hybrid, computed as the quadrature sum of
the effects on the mismatch between hhybrid and hinsp of perturbing
the input waveforms by their individual sources of error. Figure 2
indicates that the hybridization introduces only small errors (M .
10−4), and confirms the validity of our error estimate from Fig. 2.

We construct NR-NR hybrid waveforms for each of the config-
urations shown in Table I, with properties of these NR-NR hybrids
given in Table II. All cases have errors comparable to the valida-
tion case (3, 0.85, 0.85) shown in Fig. 2. In each case, the domi-
nant source of error is the parameter mismatch between the inspi-
ral and merger simulations. The maximum estimated uncertainty
in the NR-NR hybrid across all the configurations is a mismatch

of 1× 10−4.
It is not in general known how the mismatch between an ap-

proximate waveform and the true waveform relates to biases in
parameter recovery except in specific configurations which have
been studied. Ref. [24] found that a waveform mismatch of
∼ 5 × 10−3 did not lead to noticeable parameter estimation bi-
ases for binaries comparable to GW1509142, though it is not
clear how to translate this result to the more extreme configu-
rations we study here. Moreover, differences between the ana-
lytical waveform models considered in the next section and our
NR-NR hybrids are ∼ 10-times larger than Mδ

hybrid reported in
Table II. The waveform models SEOBNRv4 and IMRPhenomD
were found to be accurate to NR waveforms to a mismatch of
M . 10−2, so the NR-NR hybrid waveforms are an order of
magnitude more accurate, and hence suitable for comparing with
these waveform models. Finally, the distinguishability criterion
[87–90], M < D/(2ρ2) where ρ is the SNR of the signal and
D is the number of intrinsic parameters that would not be mea-
sured accurately due to inaccuracy of the waveform model. For
aligned-spin systems considered in this paper we take D = 4, and
using the largest mismatch from all the configurations, we find
that the waveforms presented here would be indistinguishable by
Advanced LIGO for signal-to-noise ratios . 140, which includes
most of the expected detectable events. We are therefore satisfied
that the NR-NR hybrid waveforms are sufficiently accurate for use
in waveform modelling.

As a first application of our synergistic approach of combining
NR codes to compute waveforms for large mass ratios and spins,
we compare the new NR-NR hybrid waveforms with the analyti-
cal waveform models SEOBNRv4 and IMRPhenomD currently
employed in LIGO and Virgo science. We evaluate these wave-
form models at the relaxed values of mass ratio and spin computed
from the SpEC simulations in Table I.

Figure 4 shows the mismatch between the NR-NR hybrid and
the waveform models for each case. The very thin, shaded re-
gions around each curve indicate the estimated error of the NR-
NR hybrid, computed as the quadrature sum of the effects on the
mismatch between hhybrid and the model waveforms of perturb-
ing the hhybrid by their individual sources of error. These errors in
the hybrids themselves are negligible in comparison with the dif-
ference between the NR-NR hybrids and the waveform models.
The curves start at the minimum masses for which the NR wave-
forms reach down to 10 Hz, and hence cover the frequency range
of Advanced LIGO and Virgo at design sensitivity. Comparisons
would only be possible at significantly higher total mass if only
the shorter ET waveforms were used.

ID N
(H)
orbs M

δ
hybrid

(3,0.85,0.85) 23.9 3× 10−5

(3,0.9,0.9) 16.3 7× 10−5

(4,0.9,0.9) 19.3 1× 10−4

(5,0.9,0.9) 20.0 1× 10−4

TABLE II. Properties of the NR-NR hybrid waveforms. Shown are the
case ID, the number of orbitsNorbs, and the estimated uncertaintyMδ

hybrid
on the hybrid, computed as described in the text.

2 Except for nearly edge-on systems where errors are dominated by the lack of
sub-dominant modes in the waveform models.
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FIG. 4. MismatchM between SpEC-ET hybrids and the waveform mod-
els SEOBNRv4 (solid lines) and IMRPhenomD (dashed lines) for all
the configurations in Table I.

The waveform models had mismatches of typically . 10−2

with the NR waveforms they were originally tested (or calibrated)
against. We see that for the more extreme configurations presented
here, both waveform models maintain this accuracy. The mass-
range M & 200M� of the comparison in Fig. 4 is determined
by the requirement that the NR-NR hybrid waveforms cover the
entire Advanced LIGO sensitivity band. Waveforms with lower
initial orbital frequency (i.e. more orbits) are required to extend
this calculation to lower mass. The NR waveforms produced here
could now be used to improve the waveform models, if more accu-
racy in this region of the parameter space is required, for example
for future GW detectors with higher sensitivities.

Conclusions. BBH simulations for systems with both high mass
ratio and high spin remain challenging for NR codes, and yet it is
in this region of the parameter space where waveform models typ-
ically depend strongly on calibration to NR simulations [15, 16].
The SpEC code, based on accurate pseudo-spectral methods, so-
phisticated adapted grids and corotating coordinates has a long
history of producing large numbers of long (& 25 orbits) simu-
lations (e.g., see Refs. [20, 81]), but sometimes requires signifi-
cant fine-tuning in order to simulate the merger [51, 91]. Finite
difference codes, on the other hand, have generally been used
to produce shorter simulations, typically . 15 orbits (see, e.g.,
Refs. [21, 92, 93]), possibly reflecting a lower accuracy for a given
computational cost, due to the use of more straightforward numer-
ical methods. However, maybe as a result of this simplicity, these
codes are able to handle some more extreme BBH configurations
where SpEC currently fails to simulate the merger.

We have taken advantage of the strengths of both codes to com-
bine accurate and efficient SpEC inspirals with robust finite dif-
ference mergers, and have expanded the parameter space of avail-
able NR waveforms. With the resulting new NR hybrid wave-
forms, we test the state-of-the-art waveform models SEOBNRv4
and IMRPhenomD. We find that the models agree with the new
NR waveforms to mismatch M . 1%, for total binary masses
for which the entire NR-NR hybrid waveform is in the Advanced
LIGO detector band starting at 10 Hz. This is sufficient accuracy
for current waveform modelling purposes.

While we anticipate that the problems encountered at the
merger with SpEC will be resolved with improved numerical
methods, our synergistic hybridisation approach provides a use-

ful stop-gap measure to extend the science reach of current NR
codes, and hence the parameter space of waveforms available
for waveform-model validation for upcoming GW science with
LIGO and Virgo detectors. The method is completely generic for
aligned-spin binaries and is applicable to any pair of NR codes. A
useful next step would be to apply the method to the subdominant
modes (` > 2), as these are important for systems with the high
mass ratios studied here. For precessing binaries, however, it re-
quires techniques to match the precessing spin-directions between
the two waveforms at a certain reference frequency.

All the waveforms presented here, including the NR-NR hy-
brids, are publicly available [94]. An implementation of the hy-
brid construction method is available in the SimulationTools for
Mathematica [77] package, and a Mathematica notebook demon-
strating the method is provided in [94].
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Phys. Rev. D89, 061501 (2014), arXiv:1311.2565 [gr-qc].

[35] T. Damour, A. Nagar, D. Pollney, and C. Reisswig, Phys. Rev. Lett.
108, 131101 (2012), arXiv:1110.2938 [gr-qc].

[36] A. Le Tiec, A. H. Mroue, L. Barack, A. Buonanno, H. P. Pfeiffer,
N. Sago, and A. Taracchini, Phys. Rev. Lett. 107, 141101 (2011),
arXiv:1106.3278 [gr-qc].

[37] A. Le Tiec, E. Barausse, and A. Buonanno, Phys. Rev. Lett. 108,
131103 (2012), arXiv:1111.5609 [gr-qc].

[38] S. Ossokine, T. Dietrich, E. Foley, R. Katebi, and G. Lovelace,
(2017), arXiv:1712.06533 [gr-qc].

[39] A. Nagar et al., (2018), arXiv:1806.01772 [gr-qc].
[40] B. P. Abbott et al. (VIRGO, KAGRA, LIGO Scientific), Living Rev.

Rel. 21, 3 (2018), [Living Rev. Rel.19,1(2016)], arXiv:1304.0670
[gr-qc].

[41] F. Loffler et al., Class. Quant. Grav. 29, 115001 (2012),
arXiv:1111.3344 [gr-qc].

[42] EinsteinToolkit, “Einstein Toolkit: Open software for relativistic as-
trophysics,” .

[43] Y. Pan, A. Buonanno, J. G. Baker, J. Centrella, B. J. Kelly, S. T.
McWilliams, F. Pretorius, and J. R. van Meter, Phys. Rev. D77,
024014 (2008), arXiv:0704.1964 [gr-qc].

[44] P. Ajith et al., Phys. Rev. D77, 104017 (2008), [Erratum: Phys.
Rev.D79,129901(2009)], arXiv:0710.2335 [gr-qc].

[45] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder, O. Rinne,
and S. A. Teukolsky, Phys. Rev. D74, 104006 (2006), arXiv:gr-
qc/0607056 [gr-qc].

[46] B. Szilagyi, L. Lindblom, and M. A. Scheel, Phys. Rev. D80,
124010 (2009), arXiv:0909.3557 [gr-qc].

[47] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O. Rinne,
Class. Quant. Grav. 23, S447 (2006), arXiv:gr-qc/0512093 [gr-qc].

[48] H. Friedrich, Communications in Mathematical Physics 100, 525
(1985).

[49] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-
qc/0507014 [gr-qc].

[50] D. A. Hemberger, M. A. Scheel, L. E. Kidder, B. Szilágyi,
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