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Zusammenfassung

An den Signaltransduktionsvorgängen in der Zelle ist eine Vielzahl von Molekü-
len beteiligt, die sich gegenseitig beeinflussen. Diese Moleküle bilden komplexe,
hoch regulierte Signalnetzwerke. Um ein ganzheitliches Verständnis von diesen
Netzwerken zu erhalten, werden Methoden der Systembiologie eingesetzt, welche
mathematische und computergestützte Methoden mit experimentellen Daten kom-
binieren. Die experimentellen Daten, die zur Verfügung stehen, ermöglichen es zum
Teil, detaillierte quantitative Informationen zu erhalten; manchmal liefern sie jedoch
auch nur ein qualitatives Bild. Bei manchen Signalwegen ist die Netzwerktopolo-
gie bereits im Detail bekannt, bei anderen ist diese gänzlich unbekannt. Um diesen
Unterschieden in der Qualität der vorliegenden Information zu begegnen, wurden
in den letzten Jahren Modellierungsmethoden von unterschiedlicher Komplexität
entwickelt.

Physiko-chemische Modellierungsmethoden, beispielsweise gewöhnliche Differen-
tialgleichungssysteme mit Massenwirkungskinetiken, erlauben eine detaillierte Be-
schreibung des zeitlichen Systemverhaltens. Diese Art der Modellierung erfordert
eine gute Kenntnis der biologischen Mechanismen und kinetischen Parameter, so
dass die Anwendung auf kleinere und bereits relativ gut beschriebene Netzwerke
beschränkt ist.

Im Gegensatz dazu stehen qualitative Modellierungsmethoden, die hauptsäch-
lich die Netzwerkstruktur beschreiben und keine Information über die kinetischen
Parameter benötigen. Somit sind diese Methoden im Allgemeinen für großskalige
Netzwerke geeignet. Einfache Graphenmodelle, bei denen die biologischen Spe-
cies als Knoten und die Interaktionen zwischen den Species als Kanten dargestellt
werden, wurden bisher hauptsächlich zur Beschreibung topologischer Eigenschaf-
ten von Netzwerken mit bis zu mehreren Tausend Proteinen eingesetzt. Erweiterte
Graphenmodelle, wie zum Beispiel Constraint-based Modellierung, Petrinetze oder
Logische Netzwerke leiten sich auch rein von der Netzwerkstruktur ab, ermöglichen
jedoch die Analyse wichtiger funktionaler Eigenschaften und ermöglichen darüber-
hinaus bestimmte Vorhersagen zum qualitativen Systemverhalten.

Parameterfreie Methoden im Kontext der gewöhnlichen Differentialgleichungssy-
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Zusammenfassung

steme haben zum Ziel, Aussagen über das qualitative dynamische Verhalten eines
Systems zu treffen. Eine typische Frage ist beispielsweise, ob die Stuktur eines ge-
gebenen Differentialgleichungssystems ein bestimmtes dynamisches Verhalten er-
möglicht, das heißt ob es Parameterwerte gibt, mit denen das System beispielsweise
mehrere stationäre Lösungen besitzt oder Oszillationen zeigt. Auch wenn diese
Methoden parameterfrei sind, so ist dennoch ein detailliertes mechanistisches Ver-
ständnis der einzelnen Reaktionen nötig.

In der vorliegenden Arbeit wurden mathematische Modellierungsmethoden ent-
wickelt, um die Netzwerkstruktur von zellulären Signaltransduktionswegen anhand
experimenteller Daten und qualitativer Beobachtungen der Dynamik zu analysieren.
Dabei wurden drei verschiedene Modellierungsformalismen eingesetzt: Interaktions-
graphen, logische Modelle und gewöhnliche Differentialgleichungssysteme. Diese
drei Formalismen hängen eng miteinander zusammen. Ein Interaktionsgraph be-
schreibt paarweise Zusammenhänge zwischen biologischen Species. Ein logisches
Modell kann von einem Interaktionsgraph abgeleitet werden, indem logische Regeln
ergänzt werden, die beschreiben, wie verschiedene Eingänge an einem Knoten des
Graphen kombiniert werden. Bestimmte Systemeigenschaften eines gewöhnlichen
Differentialgleichungssystems können anhand des zugrundeliegenden Interaktions-
graphen abgeleitet werden, welcher die Vorzeichenstruktur der Jacobi-Matrix des
Systems repräsentiert. In dieser Arbeit wird gezeigt, dass insbesondere die Kom-
bination der verschiedenen Modellierungsmethoden von unterschiedlicher Komple-
xitiät es ermöglicht, wichtige Erkenntnisse über die Struktur und Funktion von Si-
gnaltransduktionswegen zu erhalten. Als Anwendungsbeispiele wurden Modelle
der Signalwege des Epidermalen Wachtumsfaktors (EGF) und des Hepatozyten-
Wachstumsfaktors (HGF) erstellt und analysiert, was neue Einblicke in diese Singal-
wege ermöglichte. Beide Wege spielen eine zentrale Rolle bei der Leberregeneration.

Basierend auf Informationen aus der Literatur wurde ein großskaliges Modell der
Signalwege erstellt, die von der Familie der EGF Liganden aktiviert werden. Die-
ses Interaktionsgraph-Modell wird in dieser Arbeit präsentiert. Neue Methoden
und Algorithmen zur Analyse der Netzwerkstruktur – basierend auf Interaktions-
graphen – werden beschrieben. Die Anwendung dieser Methoden auf das EGF
Modell zeigt, dass Abweichungen zwischen den experimentellen Daten und der ka-
nonischen Netzwerkstruktur bestehen, welche zum Teil Zelltyp-abhängig sind. Dies
erlaubte die Formulierung von neuen Hypothesen. Außerdem werden Erweiterun-
gen eines bestehenden Formalismus zur statischen Analyse von logischen Model-
len präsentiert. Diese beinhalten unter anderem neue Algorithmen zur Berechnung
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von Interaktionsstrategien. Zudem wird gezeigt, wie das qualitative Input–Output
Verhalten automatisiert mit diskretisierten experimentellen Daten verglichen wer-
den kann. Die Anwendung dieser neuen Methoden auf ein ebenfalls innerhalb
dieser Arbeit erstellten logischen Modells ergänzt die Ergebnisse der Analyse des
Interaktionsgraph-Modells. In einem neuen Modellierungsansatz, der in dieser Ar-
beit präsentiert wird, werden qualitative und quantitative Modellierungsmethoden
miteinander kombiniert. Gezeigt wird die Analyse der HGF-induzierten Aktivie-
rung zweier zentraler Signaltransduktionswege. Eine datengetriebene Analyse er-
möglicht es, aus einer Vielzahl von möglichen Modellstrukturen, die sich aus der
Kombination verschiendener Crosstalk- und Feedback-Mechanismen ergeben, eine
Vorselektion verschiedener Interaktionsgraph-Modelle zu treffen. Eine darauffol-
gende Analyse mit gewöhnlichen Differentialgleichungssystemen erlaubt, die Netz-
werkstruktur zu identifizieren, die das transiente dynamische Verhalten, welches in
den experimentellen Daten widergespiegelt wird, am besten beschreibt. Die Dif-
ferentialgleichungssysteme wurden dabei von den vorselektierten Interaktionsgra-
phen abgeleitet. Im letzten Teil der Arbeit werden Interaktionsgraphen analysiert,
die einem gewöhnlichen Differentialgleichungssystem zu Grunde liegen. Es werden
neue graphentheoretische und algebraische Methoden präsentiert, die es ermögli-
chen, bestimmte steady-state Antworten auf Perturbationen für chemische Reakti-
onsnetzwerke auszuschließen. Schließlich wird die Verbindung zu bereits bekannten
strukturellen Bedingungen für mehrfach stationäre Zustände gezeigt.

xv





1 | Introduction

Cellular signaling is made up of complex networks of interacting molecules that are
tightly interconnected and regulated. In order to gain an integrated understanding
of these networks, systems biology approaches combining mathematical and com-
putational methods with experimental data are becoming increasingly important.
Available experimental data might provide a detailed quantitative knowledge or just
a qualitative view, and detailed prior knowledge on the network topology might or
might not exist. To account for the different quality of information that is available
for a network under study, modeling formalisms of different levels of complexity
have been developed over the last years (de Jong 2002; Kestler et al. 2008).

Physicochemical modeling approaches, typically networks of differential equa-
tions, provide a detailed description of the biochemical processes that is based on
physical and chemical theory (Aldridge et al. 2006). Most widely used are sets of
coupled ordinary differential equations (ODEs) that describe the system’s develop-
ment over time using mass action kinetics for the rates of production and consump-
tion of the biomolecular species (e.g., Swameye et al. (2003)). This type of model-
ing requires sufficient knowledge of biological mechanisms and kinetic parameters,
what limits its applicability to small and well-characterized networks.

In contrast, qualitative modeling approaches are primarily based on the network
structure and do not require information on the kinetic parameters. This makes them
generally applicable to large-scale networks. The class of qualitative modeling ap-
proaches comprises various formalisms of different complexity. Graph models rep-
resenting biological species as nodes and interactions between the species as edges
are arguably the simplest mathematical description of signaling networks. They have
mainly been applied to study global topological properties of networks containing
up to several thousand proteins (Barabási and Oltvai 2004; Jeong et al. 2001). More
refined qualitative modeling approaches include constraint-based modeling (Papin
and Palsson 2004), Petri nets (Chaouiya 2007; Hardy and Robillard 2004), and log-
ical modeling (Klamt et al. 2006; Morris et al. 2010; Wang et al. 2012). As graph
models, these frameworks solely rely on the network structure, yet they enable the
analysis of important functional properties of large-scale signal transduction net-
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1 Introduction

works such as input–output relationships, feedback loops, or signal transfer routes,
and they also allow certain predictions, for instance, regarding the expected quali-
tative response to perturbations. Besides static investigations, Petri nets and logical
models enable to derive qualitative properties of the system’s dynamics by means
of discrete dynamic modeling (Chaouiya 2007; Wang et al. 2012). Other parameter-
free approaches also aim at gaining insights into the qualitative dynamic properties
of the system, however, in the context of ODE systems (Angeli and Sontag 2003;
Conradi and Flockerzi 2012; Craciun and Feinberg 2005; Feinberg 1987; Radde et al.
2010). A typical question that is tackled by these approaches is whether a given ODE
network structure is able to exhibit, for some parameter values, a certain qualitative
behavior such as multistationarity, oscillatory behavior, or non-monotonicity. Al-
though these approaches are parameter-free, a detailed knowledge of the involved
reactions, particularly mechanistic details, is usually required, whereas Petri nets
and logical models are based on a more abstract understanding.

Within this thesis, methods to interrogate network structures of cellular signaling
pathways based on experimental data and qualitative dynamic observations were
developed. To this end, three modeling formalisms that are of different complex-
ity were used (Figure 1.1). As representatives of graph models, interaction graphs
capture pairwise relationships between biological compounds. Applications of in-
teraction graphs to cellular signaling networks include the identification of signaling
pathways and feedback loops, and the analysis of global interdependencies, which
is useful to check the consistency of experimental data with a given network struc-
ture. In logical models, the information that is contained in an interaction graph is
extended by rules defining how the discrete state of a node is governed by the states
of other nodes. This enables one to compute the qualitative input–output behav-
ior of a signaling pathway under study as well as the identification of intervention
strategies. Based on ODE models, it is possible to explain and predict quantitative
and dynamic system behavior. Interaction graphs, logical models, and ODE models
are tightly interlinked since every logical model and every ODE model has an under-
lying interaction graph (Figure 1.1): Logical models can be derived from interaction
graphs by introducing logical rules specifying how to combine different inputs into
one node. For an ODE model, several system properties can be derived from its
underlying interaction graph, which represents the sign structure of the Jacobian.
Within this thesis, it was shown that by combining modeling approaches of different
complexity, important insights into the structure and functioning of signaling path-
ways can be gained. As application examples, different models of the Epidermal
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Growth Factor (EGF) and of Hepatocyte Growth Factor (HGF) signaling pathways,
which both play a central role in liver regeneration, were built and analyzed. This
led to new biological insights about these pathways.

The outline of this thesis is as follows: In Chapter 2, a general introduction on cel-
lular signaling is given and the signaling systems that will be studied in this work
are introduced. Furthermore, the different modeling approaches that will be used
are described. In Chapter 3, a large-scale interaction graph model of signaling path-
ways activated by ligands of the EGF ligand family is presented, which was built
from literature information. New methods for the interrogation of network struc-
tures based on interaction graphs are described. By applying these methods to the
EGF model, cell-type specific discrepancies between the canonical model structure
and experimental data were identified, and new hypotheses were derived. In Chap-
ter 4, some extensions of the methods introduced by Klamt et al. (2006) for the static
analysis of logical models are presented. In addition, it is shown how the qual-
itative input–output behavior and discretized experimental data can be compared
in an automated way. The application of the newly derived methods to the EGF
logical model complements the results received from the interaction graph analysis.
In Chapter 5, the benefit from combining different modeling techniques gets even
more concrete. There, a novel hybrid modeling approach is presented, which com-
bines qualitative and quantitative modeling approaches. Considering HGF-induced
activation of two central signaling pathways, data-driven interaction graph analysis
enabled to pre-select interaction graph model structures out of a large number of
possible structures resulting from different combinations of possible feedback and
crosstalk regulations. A subsequent analysis of ODE models revealed which net-
work structure reflected the transient behavior observed in the experimental data
best. While in Chapter 5 ODE models are derived from interaction graphs, Chap-
ter 6 is dedicated to analyze the properties of interaction graphs underlying an ODE
model. In this way, conclusions on possible dynamic behaviors of a model can be
drawn that depend solely on the system structure and not on parameter values. This
kind of analysis also enables the identification of network structures that can cause
an observed dynamic behavior. In particular, methods to exclude certain responses
to perturbations in steady state for chemical reaction networks are presented. Both
graph-theoretic and algebraic results were derived. Finally, the connection to previ-
ously derived structural requirements for multistationarity are shown.

Several publications by the author of this thesis are included in this work. These
are D’Alessandro, Samaga, Maiwald et al. (2015), Melas, Samaga et al. (2013), Sam-
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1 Introduction

aga and Klamt (2013), and Samaga et al. (2009, 2010). Text passages taken from these
publications are not explicitly marked as citation in this thesis, but the publications
are referred to in the respective chapter or section introductions.

Figure 1.1: Different modeling formalisms for cellular signaling. Interaction graphs can
often be directly derived from biological databases. By choosing logical combinations for the
edges, logical models can be built. A particular hypergraph representaion of logical models en-
ables one to derive the underlying interaction graph from the logical model by splitting the AND
gates (Klamt et al. 2006). Based on interaction graph structures, ODE models can be derived
by adding kinetic descriptions and parameters. Each ODE model has an underlying interac-
tion graph which represents the sign structure of the Jacobian matrix and enables predictions
on the possible dynamic behavior from the network structure (Thieffry 2007). For further ex-
planations see text. Illustration of the pathway scheme reproduced courtesy of Cell Signaling
Technology [2]. Whole figure adapted from Samaga and Klamt (2013).
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2 | Systems Biology of Signal Transduction

Networks

The aim of this chapter is to give a general introduction to Systems Biology of signal-
ing networks and to introduce the signaling systems that will be studied in this work.
After a short introduction to Cell Signaling (Section 2.1), we will give an overview of
liver regeneration (Section 2.2). Liver regeneration is a highly complex phenomenon,
and it has become an example of use of systems biology approaches. We built and
analyzed mathematical models of two signaling pathways playing a major role in
liver regeneration, and we will introduce these pathways in Section 2.3. Finally, we
will give a detailed description of the different modeling methods that are central to
this work (Section 2.4).

2.1 Cell Signaling

Multicellular organisms use complex mechanisms to enable cell-to-cell communi-
cation and to respond to their environment. Various signal transduction pathways
link mechanical or chemical stimuli to a cellular response. In general, extracellular
signaling molecules bind to receptors at the cell surface, thus activating intracellu-
lar signaling pathways. The components of these pathways are signaling proteins
such as kinases, phosphatases, small GTPases, or adapter proteins, and they are con-
nected by activating and deactivating mechanisms, each of which passes the signal
from one species to another. Examples of these include chemical modifications such
as phosphorylations, triggering of conformational changes, and colocalizations. In
this way, the initial stimulus is transduced to target proteins such as transcription
factors, metabolic enzymes, or cytoskeletal proteins, and changing their activity af-
fects the cellular response by changing, for example, protein syntheses, the cellular
metabolism, or cell movement (see, e.g., Alberts et al. 2004, Krauss 2003).
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2 Systems Biology of Signal Transduction Networks

2.2 Liver Regeneration

A phenomenon that already fascinated ancient Greeks and that is regulated by
a well-concerted interplay of various signaling processes is liver regeneration (re-
viewed in Fausto et al. 2006; Michalopoulos 2007; Taub 2004). The liver as important
organ—it plays a central role in metabolic homeostasis and is the main detoxifying
organ of the body—has the capacity to return to normal size after loss of liver mass.
The main functional cells of the liver are hepatocytes, which make up about 80 %
of hepatic cells (Taub 2004). Although being highly differentiated and long-lived
cells, hepatocytes are still able to proliferate: During liver regeneration, activation of
cytokines provokes that quiescent hepatocytes re-enter the cell cycle. Growth factors
then drive cell cycle progression by overriding a restriction point in the late G1 phase
(Fausto et al. 2006). Two growth factor signaling systems play a major role in liver
regeneration. These are the hepatocyte growth factor (HGF) and its receptor Met,
and the epidermal growth factor (EGF)-like ligands with their receptor family ERBB
(Michalopoulos and Khan 2005). In order to understand liver regeneration, it is im-
portant to unravel the complexity of these systems. Therefore, we built within this
work mathematical models of signaling through ERBB receptors and of HGF/Met
signaling and applied newly developed methods for their analysis in combination
with experimental data from hepatocytes. This was part of the funding initiatives
HepatoSys [6] and Virtual Liver Network [8] of the German Federal Ministry for Ed-
ucation and Research. In the next section, we give an overview of these two signaling
systems and briefly describe the developed models.

2.3 Signaling through the EGF Ligand Family and through HGF

2.3.1 The Signaling System of the EGF Ligand Family

The signaling cascade that is stimulated by epidermal growth factor (EGF)-like lig-
ands is among the best studied signaling pathways in mammalian cells. Aside
from EGF, members of the EGF ligand family include transforming growth fac-
tor alpha (TGF-α), the neuregulins (NRGs), amphiregulin (AR), betacellulin (BTC),
heparin-binding EGF-like growth factor (HB-EGF), and epiregulin (EPR). EGF-like
growth factors bind to receptors of the ERBB protein family1, which consists of four

1The name ERBB was originally chosen because of the homology to the erythroblastoma viral gene
product, v-erbB (Citri and Yarden 2006).
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2.3 Signaling through the EGF Ligand Family and through HGF

receptor tyrosine kinases: epidermal growth factor receptor (EGFR/ERBB1), ERBB2
(HER2/Neu), ERBB3, and ERBB4. Ligand binding induces the formation of ERBB
receptor homo- and heterodimers and subsequent autophosphorylation of specific
tyrosine residues, which provide docking sites for proteins containing Src homol-
ogy 2 (SH2) or phosphotyrosine binding (PTB) domains (Olayioye et al. 2000). Due
to distinct biochemical properties, the individual ERBB ligands activate different
ERBB dimers and also show differential binding affinities. Furthermore, each re-
ceptor dimer displays an individual pattern of autophosphorylation sites and, thus,
recruits distinct effector proteins (Olayioye et al. 2000). Two of the four ERBB re-
ceptor types do not form functional homodimers, but only heterodimers : ERBB3
receptors have impaired kinase activity, whereas ERBB2 does not bind any ligand of
the EGF family (Citri and Yarden 2006). The latter is regarded as a non-autonomous
amplifier of ERBB signaling (Citri and Yarden 2006); it is the preferred heterodimer-
ization partner of the other ERBB receptors and as such impairs the formation of
ERBB1/ERBB3, ERBB1/ERBB4, and ERBB3/ERBB4 heterodimers (Graus-Porta et al.
1997; Olayioye et al. 1998). All in all, this complex system made up of multiple lig-
ands, which signal through eight potential receptor homo- and heterodimers, gives
rise to a great signaling diversity: signaling through ERBB receptors regulates vari-
ous cellular processes such as survival, proliferation, development, and growth (Citri
and Yarden 2006; Oda et al. 2005; Olayioye et al. 2000). Furthermore, ERBB recep-
tors play an important role in the development and malignancy of human cancers
(Olayioye et al. 2000) and are targets for new and existing anti-cancer drugs (Schoe-
berl et al. 2009).

In order to untangle the complexity of ERBB signaling, various mathematical mod-
els have been developed within the last years (reviewed in Citri and Yarden (2006)
and Wiley et al. (2003)). The first models focused on EGFR and described its in-
ternalization, ligand binding, and homodimerization (Wiley and Cunningham 1981;
Wofsy et al. 1992). Later models included downstream signaling events (e.g., Kholo-
denko et al. (1999), Resat et al. (2003), and Schoeberl et al. (2002)) and also addressed
homo- and heterodimerization among members of the ERBB receptor family and the
effects on downstream signaling in response to different ligands (e.g., Birtwistle et al.
(2007), Chen et al. (2009), Hatakeyama et al. (2003), and Hendriks et al. (2006)). All
these models describe the dynamics of the involved species, but cover only limited
parts of the ERBB pathway.

Regarding liver regeneration, it has been shown that the different ERBB ligands
have differing effects; thus, it is crucial to disentangle the complexity of signaling of
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2 Systems Biology of Signal Transduction Networks

the ERBB family members in hepatocytes (Michalopoulos and Khan 2005). Within
the last years, high-throughput experimental techniques were developed that enable
the generation of data where various readouts are measured in response to sev-
eral stimuli and to perturbations all over considered networks. Thus, system-wide
analyses have come into reach. However, there is now also the need for large-scale
mathematical models and for techniques that enable the assessment of these data
with the models. In this work, we present a large-scale model that comprises the
main and also the side routes of ERBB signaling. This model is based on the EGFR
pathway map developed by Kitano and colleagues (Oda et al. 2005) and additional
information from the literature. We use a logical modeling formalism (Klamt et al.
2006), which is of a qualitative nature, but still enables to derive important func-
tional properties and predictions. The model describes signaling induced by thir-
teen members of the EGF ligand family through the four ERBB receptors, leading
to the activation of various kinases and transcription factors that affect proliferation,
growth, and survival (Samaga et al. 2009). This model is studied in Section 4.4 of
this work. The list of included species and mechanisms is given in Appendix C. Fur-
thermore, we analyzed the underlying interaction graph of this model; this is subject
of Section 3.3. Both modeling formalisms are described in Section 2.4, and graph-
ical representations of the logical ERBB model and the interaction graph are given
in Figures 4.3 and 3.2, respectively. Our ERBB model describes ligand binding and
subsequent autophosphorylation, what is followed by binding of adapter proteins
such as GAB1, GRB2, and SHC. These proteins transmit signals to the small GTPases
Ras and Rac, leading to the activation of mitogen-activated protein kinase (MAPK)
cascades. Among these, ERK1/ERK2 is the best studied, but our model also contains
the p38 and JNK cascades. Highly interconnected with the MAPKs and also down-
stream of the ERBB receptors is phosphatidylinositol 3-kinase (PI3K)/AKT signal-
ing, another major branch of the model. Furthermore, activation of different STATs
and the PLCγ/PKC pathway are included. Both the logical ERBB model and the
interaction graph were used to analyze phosphoproteomic data from primary hu-
man hepatocytes and the human liver carcinoma cell line HepG2 in order to reveal
hepatocyte-specific characteristics of the network (see Sections 4.4 and 3.3).

Besides the large-scale model of ERBB signaling, for illustration purposes, we
will use a smaller version, which was manually derived from the large-scale model,
and which we introduced in Samaga and Klamt (2013). From the thirteen EGF-
like ligands, we chose EGF and NRG1. EGF binds specifically to ERBB1, whereas
NRG1 binds to ERBB3 and ERBB4 (Olayioye et al. 2000). The main purpose of the
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2.3 Signaling through the EGF Ligand Family and through HGF

EGF/NRG1 example network is to illustrate the presented methods; thus, we tried
to keep the network simple while still being biologically plausible.

Figure 2.1: Interaction graph of the EGF/NRG1 network example. Activation of MAPK
signaling through ERBB receptors requires the recruitment of SOS to the receptors via the
adapter protein GRB2. SOS activates the small GTPase Ras by provoking guanine nucleotide ex-
change, and GTP-bound Ras activates Raf, a MAP-Kinase-Kinase-Kinase, what initiates the MAPK
signaling cascade. Activated Raf phosphorylates the MAP kinase kinase (MEK), which in turn
phosphorylates ERK. PI3K signaling in response to EGF-like ligands is initiated by PI3K binding to
the receptors, either directly, or indirectly via GAB1. Activated PI3K generates phosphatidylinos-
itol (3,4,5)-trisphosphate (PIP3), which serves as a docking site for the serine/threonine protein
kinase AKT at the plasma membrane. AKT is then activated by phosphorylation of two specific
phosphosites. Black arrows indicate positive (activating) edges, red blunt-ended lines negative
(inhibiting) edges. Figure adapted from Samaga and Klamt (2013).

Of the different downstream signaling pathways, we focused on two major ones,
the MAPK signaling cascade activating ERK, and the PI3K signaling pathway acti-
vating AKT. In the example network, both pathways are described in a compressed
way, neglecting some of the intermediate species. Furthermore, we did not consider
all the various feedback and crosstalk mechanisms that have been reported for both
pathways (see, e.g., Mendoza et al. (2011)), but focused on some exemplary ones.
In order to keep the activation mechanisms at the receptor level simple, ERBB4 was
not included, and only three out of the four functional dimers formed by ERBB1,
ERBB2, and ERBB3 are part of the network. Including ERBB3 rather than ERBB4
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was motivated by the fact that ERBB3 can directly activate PI3K, whereas ERBB4 can
only indirectly activate PI3K via GAB1 and thus shows a similar signaling response
as ERBB1 (see, e.g., Citri and Yarden (2006)). Again, we study a logical model (Fig-
ure 2.3) and the interaction graph (Figure 2.1) of the EGF/NRG1 example network.

2.3.2 Hepatocyte Growth Factor Signaling

Hepatocyte growth factor (HGF) signals through the receptor tyrosine kinase Met
(reviewed in Birchmeier et al. (2003), Furge et al. (2000), and Gentile et al. (2008)).
Ligand binding induces autophosphorylation of two tyrosines within the tyrosine
kinase domain, what activates the intrinsic kinase activity of the receptor (Naldini
et al. 1991). Phosphorylation of two additional tyrosines in the C-terminal tail of Met
activates a multisubstrate docking site, which binds several adapter proteins via their
SH2 or PTB domains (Ponzetto et al. 1994). A key player in HGF signaling is the
adapter protein GAB1, which binds to the multisubstrate docking site via its specific
Met binding domain. Receptor-bound GAB1 then recruits other signaling molecules
(Birchmeier et al. 2003; Gentile et al. 2008). HGF/Met signaling activates different
signaling branches through which it regulates various biological responses such as
proliferation, survival, migration, and morphogenesis (Birchmeier et al. 2003; Furge
et al. 2000). It plays a key role in cancer progression and seems to be a promising
target for cancer treatment (Furge et al. 2000).

Intact HGF/Met signaling is crucial to enable hepatocyte proliferation (Borowiak
et al. 2004). Two signaling pathways that are activated by HGF are the MAPK and
the PI3K pathway. Both pathways were shown to be regulated during liver regenera-
tion: in conditional Met mutant mice, no MAPK activation and a reduced activation
of the PI3K pathway was observed in response to partial hepatectomy; as a conse-
quence, cell cycle progression of hepatocytes was inhibited (Borowiak et al. 2004).
In response to HGF, PI3K binds to the Met receptor both directly and indirectly via
GAB1 (Furge et al. 2000; Ponzetto et al. 1993). As in ERBB signaling, activation
of PI3K is followed by generation of PIP3 and AKT recruitment and phosphoryla-
tion. MAPK signaling is initiated by SOS binding to the activated Met receptor via
GRB2, what, again as in ERBB signaling, results in ERK phosphorylation via activa-
tion of Ras, Raf, and MEK. PI3K and MAPK signaling are highly interlinked, and
both pathways are regulated by feedforward and feedback mechanisms. In order
to understand the mechanisms controlling hepatocyte proliferation during liver re-
generation, it is necessary to unravel which crosstalk, feedback, and feedforward
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mechanisms are relevant in hepatocytes.

To this aim, mathematical models provide unique tools to disentangle the com-
plexity and to predict the impact of perturbations. Mathematical models of the
MAPK signaling pathway have been developed that only consider negative feedback
(Kholodenko 2000), negative and positive feedback loops (Shin et al. 2009), or that
analyze the signal-to-response relation (Schoeberl et al. 2002). Mathematical models
describing both PI3K and MAPK signaling pathways upon single or combinatorial
stimuli revealed the presence of crosstalk mechanisms between MAPK and PI3K
pathways (Borisov et al. 2009; Klinger et al. 2013; Won et al. 2012) or differences in
the stimulus-specific network topology (Cirit and Haugh 2012; Santos et al. 2007). As
indicated, most of the studies considered only single feedbacks or a limited number
of crosstalk mechanisms. Therefore, to unravel a more complex network structure, a
systematic unbiased approach is required.

We built an interaction graph model describing MAPK and PI3K signaling in re-
sponse to HGF that contains reported crosstalk, feedback, and feedforward mecha-
nisms. This model serves as starting point for a novel hybrid modeling approach,
which combines qualitative and quantitative modeling techniques to unravel the
HGF-induced activation of MAPK and PI3K signaling in primary mouse hepato-
cytes based on time-resolved experimental data (subject of Chapter 5). The list of
species and mechanisms that are included in the interaction graph model is given in
Appendix E, and a graphical representation is shown in Figure 5.2.

2.4 Modeling Approaches for Signaling Networks

In the following, we introduce the modeling concepts that are subject of this work.
Parts of this section are derived from a review article we published (Samaga and
Klamt 2013).

2.4.1 Interaction Graphs

Cellular signaling networks can intuitively be described as signed directed graphs,
known as interaction graphs (sometimes also called influence graphs or regulatory graphs).
The nodes in these graphs represent the components of signaling such as hormones,
receptors, protein kinases and phosphatases, adapter proteins, transcription factors,
second messengers, or genes. The activating and deactivating mechanisms connect-
ing these components in a signaling network (e.g., chemical modifications such as

11



2 Systems Biology of Signal Transduction Networks

phosphorylations) are represented as edges in the interaction graph: each edge con-
nects a pair of nodes and is directed from the species passing the signal to the species
receiving it. Furthermore, an associated sign indicates whether the edge represents
an activating (positive sign) or deactivating mechanism (negative sign). Formally, an
interaction graph G consists of a set V = V(G) of nodes (or vertices), a set A = A(G)

of edges (or arcs) that are defined as ordered pairs of nodes, and a sign mapping
σ : A(G) → {−1, 1}. Given an edge (u, v) pointing from node u ∈ V to node v ∈ V , u
is called tail and v head of the edge. A node’s in-degree is the number of edges point-
ing to the node. Accordingly, a node’s out-degree is the number of edges pointing
from the node.

Interaction graphs are often represented as “pathway cartoons” and can thus be
seen as the prevalent formalism describing signaling networks in the biological lit-
erature. They are also commonly used to represent signaling pathways in path-
way databases such as Reactome (Joshi-Tope et al. 2005), KEGG (Ogata et al. 1999),
WikiPathways (Kelder et al. 2012), or in public repositories provided, for example,
by BioCarta [1], or Cell Signaling Technology [2].

Graph models such as interaction graphs can be used to study global topologi-
cal network properties (such as degree distributions) and thus to unravel common
design principles of biological networks (reviewed in (Aittokallio and Schwikowski
2006; Albert 2005; Barabási and Oltvai 2004)). For instance, many biological net-
works were found to have a scale-free topology, where the majority of nodes has a
low degree, while still a relatively large number of nodes (compared to random net-
works) is connected to many compounds. A well-known example for such a highly
connected “hub” is the tumor suppressor protein p53 (Vogelstein et al. 2000). In
addition to these statistical features characterizing the overall architecture of a given
biological network, an interaction graph encodes other important properties highly
relevant for understanding basic network functions.

Before discussing those properties, it is important to realize that interaction graphs
are often implicitly contained as underlying network structure in models of more
complex formalisms. In particular, this holds true for Boolean and ODE models. For
example, given an ODE system, the entries of its Jacobian matrix reflect pairwise in-
fluences between species. Therefore, we can associate with the system an interaction
graph that is defined on the basis of the signs of these entries (Thieffry 2007). Ac-
cordingly, functional properties derived from interaction graphs are directly relevant
for all models having this graph as underlying structure (Radde et al. 2010). We will
further discuss interaction graphs in the context of ODE modeling in Section 2.4.3.2.
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The relation between Boolean models and interaction graphs will be explained in
Section 2.4.2.1.

2.4.1.1 Cycles in Interaction Graphs

Feedback loops are sequences of edges by which components can influence their own
activation level (Thomas and D’Ari 1990). They are found in almost all known sig-
naling pathways and have been shown to have major impacts on network dynamics
and to mediate important biological functions (Brandman and Meyer 2008; Tyson
et al. 2003).

Formally, a feedback loop is a directed cycle and is defined as alternating se-
quence of nodes and edges starting and ending at the same node, while visiting
no node (except the start/end node) twice. Thus, a feedback loop is a sequence
v1a1v2a2 . . . vk−1ak−1vk such that (i) node v1 is equal to node vk, (ii) the tail of edge
ai is node vi, and the head of edge ai is node vi+1, and (iii) all nodes v1, . . . , vk−1

are distinct. Depending on the parity of the number of negative edges the sequence
contains, a feedback loop is said to be negative (odd number of negative edges) or
positive (zero or even number of negative edges). Equivalently, the sign of a feed-
back can also be determined by multiplying the sign of all edges making up the
loop.

The interaction graph representation of the EGF/NRG1 network (Figure 2.1) con-
tains two feedback loops: (i) the sequence PI3K → PIP3 → GAB1 → PI3K forms a
positive feedback loop as all edges are positive, and (ii) the sequence SOS → Ras →
ERK → SOS forms a negative feedback loop as it contains one negative edge (ERK
→ SOS).

Positive feedback loops may cause a discontinuous switch in the cellular response
(Tyson et al. 2003) as has been, for example, shown in frog oocytes, where a posi-
tive feedback loop (in combination with ultrasensitivity) triggers the conversion of
a continuous stimulus (progesterone) into an all-or-none biological response (oocyte
maturation; Ferrell and Machleder (1998)). A bistable behavior like this is in gen-
eral associated with positive feedback loops, and, indeed, it was shown that a sys-
tem that displays more than one steady state—both in a Boolean or ODE model
representation—must contain a positive feedback loop in its interaction graph (Cin-
quin and Demongeot 2002; Gouzé 1998; Plahte et al. 1995; Snoussi 1998; Soulé 2003;
Thomas and Kaufman 2001a,b). We will come back to this in Section 2.4.3.2.

Negative feedback loops stabilize the system’s response and are a common de-
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sign principle of biochemical systems to achieve homeostasis, that is, to keep the
(activation) level of certain components at an optimal value (Brandman and Meyer
2008; Novák and Tyson 2008; Thomas and D’Ari 1990; Tyson et al. 2003). They
have also been shown to create oscillations, and, given an ODE model, just as a
positive feedback loop in the associated interaction graph is necessary for multista-
tionarity, a negative feedback loop is a prerequisite for an oscillatory behavior for
constant signed Jacobian (Angeli et al. 2009; Gouzé 1998; Plahte et al. 1995; Richard
and Comet 2011; Snoussi 1998). Although sustained biochemical oscillations can be
generated by a single negative feedback loop, as, for example, in NF-κB signaling
(Hoffmann et al. 2002), they often arise from motifs containing both positive and
negative feedbacks (Brandman and Meyer 2008; Novák and Tyson 2008). An exam-
ple is that of periodic calcium spikes as they have been observed after growth factor
or hormone stimulation (Meyer and Stryer 1988).

Thus, the identification and investigation of feedback structures might help to un-
derstand core design principles of non-trivial dynamic behavior (see Section 2.4.3.2).

2.4.1.2 Dependency Matrix

Perhaps the most direct questions that can be answered with an interaction graph
at hand are related to signaling paths between pairs of nodes. A signaling path from
node v1 to node vk is a sequence v1a1v2a2 . . . vk−1ak−1vk, where all nodes v1, . . . , vk
are distinct, and edge ai points from node vi to node vi+1. Just as for feedback loops,
a path is negative if it contains an odd number of negative edges, else positive. We
will refer to v1 as the source node and vk as the target node of the signaling path.

First of all, one might be interested in identifying all different signaling routes that
exist between a given pair of nodes, for example, the different paths through which
a ligand influences the activity of a transcription factor. Signaling paths reveal how
the often well-known local interactions are combined to network-wide influences. If
applied in a systematic manner, this enables one to classify a source species with
respect to a target species, depending on the sign(s) of the signaling path(s) connect-
ing them (Klamt et al. 2006): (1) if all paths from the source to the target node are
positive, the source is an activator of the target; (2) if all paths from the source to
the target node are negative, the source is an inhibitor of the target; (3) if there exist
positive and negative paths from the source to the target node, the source is said to
be an ambivalent factor of the target; and (4) if there exists no path from the source
to the target node, the source has no influence on the target and is therefore called
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neutral factor. For certain predictions it is advantageous to refine the classification
of activators and inhibitors by considering also information about negative feedback
loops: if A is an activator of B and none of the species lying on a path from A to B is
part of a negative feedback, B behaves monotone with respect to changes in A (see
Kunze and Siegel (1994) and Section 2.4.3.2 how this translates to ODE systems), that
is, increasing A results (after some time) in an increase of B. In this case, we call A a
strong activator for B in contrast to weak activators, where at least one of the activating
paths touches a negative feedback loop (Klamt et al. 2006, 2007). Accordingly, if A
is an inhibitor of B and none of the species lying on a path from A to B is part of
a negative feedback loop, increasing A results in a decrease of B, and A is called a
strong inhibitor of B, otherwise weak inhibitor. For weak activators and inhibitors, we
can only predict that the initial response (starting from a steady state) of the target
nodes will be positive/negative, but nothing can be said on the asymptotic behavior.

The information how the species influence each other can be stored in a compact
manner in a dependency matrix (Klamt et al. 2006). The dependency matrix for
the EGF/NRG1 example model is shown in Figure 2.2. The diagonal entries of
this matrix represent how a species acts on itself: just as the influence of a species on
another is characterized by the sign of the connecting paths, the influence of a species
on itself is characterized by the sign(s) of the feedback loop(s) it is involved in. Based
on the dependency matrix, the effect of stimulation or perturbation experiments can
be predicted and then be compared with the measured behavior. Within this work,
we will present new methods for data analysis and network inference that make use
of this concept (Chapters 3 and 5).

Although the computation of the dependency matrix is in general an NP-complete
problem, the algorithms we are using compute the matrix reasonably fast (less than
one second) in realistic networks we considered (Klamt and von Kamp 2009). Al-
ternatively, algorithms delivering approximations with high precision are available,
and in networks without negative feedbacks, an exact polynomial algorithm can be
used (Klamt and von Kamp 2009).

2.4.1.3 Minimal Cut Sets

A task that is of particular importance for medical applications is the problem of
identifying possible strategies to prevent signal propagation through certain signal-
ing paths. If, for example, one is interested in blocking the activation of AKT in
response to NRG1 or EGF in the EGF/NRG1 example (Figure 2.1), one possibility
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Figure 2.2: Dependency matrix of the EGF/NRG1 example model. Shown is the depen-
dency matrix of the EGF/NRG1 example model given in Figure 2.1. The color of row i, column j

indicates the influence of species i on species j (see legend). Figure adapted from Samaga and
Klamt (2013).

is to prevent signaling through the essential PI3K by inhibiting its kinase activity
or by removing it from the system. To block AKT activation by intervening at the
receptor level, one has to make sure that signaling through all three receptor dimers
ERBB11, ERBB13, and ERBB23 is prevented as they give rise to redundant routes.
To tackle those problems, Minimal Cut Sets (MCSs) can be computed in interaction
graphs which are minimal sets of compounds or/and edges that have to be removed
to interrupt a given set of paths and/or feedback loops (Klamt et al. 2006). MCSs
correspond to feedback arc sets or feedback vertex sets in the special case where feed-
back loops are to be disrupted (Festa et al. 2009). MCSs in interaction graphs are
also very similar to MCSs introduced for metabolic networks, which disrupt a given
set of metabolic pathways, for example, those synthesizing an undesired product
(Klamt 2006). Both types of MCSs can be computed by the minimal hitting set al-
gorithm, and it is also possible to consider side constraints, for example, to keep
certain (desired) paths/pathways intact (Hädicke et al. 2011).

2.4.2 Logical Models of Signal Transduction Networks

Given a signaling pathway, a question that immediately arises is whether pathway
stimulation leads eventually to full activation of a certain downstream protein, for
example, a transcription factor. This is an example for a question of qualitative
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nature that can often not directly be answered based on an interaction graph, but
requires more complex and deterministic modeling formalisms. First of all, the state
of a node—in the easiest case active or inactive—is not defined in an interaction
graph; rather, state changes can be considered (up or down). Furthermore, interac-
tion graphs reflect pairwise interactions, whereas the biochemical processes in the
cell often involve more than two players. Thus, whether a signal can be transmitted
from a source node to a target node often depends on a third node. An example
from Figure 2.1 is the activation of ERBB11: both the receptor monomer ERBB1 and
the ligand EGF are needed to get the phosphorylated receptor dimer that is able to
trigger downstream signaling events. This shows that information on how the differ-
ent interactions influencing a species are combined is necessary to make functional
predictions on a node’s state. One possibility is to decode this information into a
logical function. Together with logical variables associated with each species and
representing the activation level as discrete states, these functions define a logical
network.

Logical modeling of biological systems was pioneered by Kauffman (1969) and
has since then emerged as valuable formalism in systems biology (for recent reviews
see, e.g., Morris et al. (2010), Wang et al. (2012), and Wynn et al. (2012)). Various
applications to modeling gene regulatory and signaling networks can be found in
the literature (Albert and Othmer 2003; Christensen et al. 2009; Giacomantonio and
Goodhill 2010; Huard et al. 2012; Li et al. 2004; Naldi et al. 2010; Ryll et al. 2011;
Schlatter et al. 2009; Zhang et al. 2008). Most frequently, Boolean networks are
studied where the logical variables are only allowed to take the values 0 (inactive
or absent) or 1 (active or present). In more general approaches, the variables can
take an arbitrary number of discrete (multivalued logical models; see Thomas and
D’Ari (1990)) or even continuous values (fuzzy logic models; see, e.g., Aldridge et al.
(2009) and Morris et al. (2011)). In the following, we focus on Boolean models.

As mentioned above, every node in a logical network possesses a logical function
defining how the state of the node (that is, the value of the asssociated logical vari-
able) can be derived from the state of other nodes. Generally, a logical function can
be composed by using arbitrary logical operations (such as AND, OR, NOT, XOR,
NAND etc.), and different representations of one and the same logical function may
exist (Thomas and D’Ari 1990). It is often useful and intuitive to restrict the log-
ical operators to AND (also called logical product), OR (also called logical sum),
and NOT, and then to express the logical functions as sum of products (SOP): AND
terms consisting of several logical variables or their negated form are ORed together
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(Thomas and D’Ari 1990). The SOP representation is also known as disjunctive nor-
mal form (DNF). Any Boolean function can be expressed in this way.

We exemplify the SOP representation by means of activation of ERBB13 in the
EGF/NRG1 model (Figure 2.1). Dimerization of ERBB1 and ERBB3 and subsequent
autophosphorylation of the receptor dimer arises both after EGF and NRG1 stim-
ulation and is impaired if ERBB2 is present (see introduction on ERBB signaling
in Section 2.3.1). Thus, assuming each species can be either active/present (1) or
not (0), and using the symbols · for AND, + for OR, and ! for NOT, the logical
function describing ERBB13 activation reads in SOP representation

ERBB13 = EGF · ERBB1 · ERBB3 · !ERBB2 + NRG1 · ERBB1 · ERBB3 · !ERBB2. (2.1)

Usually, logical variables in a Boolean network are binary, that is, they take only
the values 1 or 0. Here, we consider a formalism that uses a third value * to repre-
sent an undefined or unknown state. The Boolean operators can be generalized to
the three-valued logic in a straighforward way (Abramovici et al. 1990): the AND
operation returns 1 if and only if all of its inputs are 1; it returns 0 iff at least one
input is 0, and it returns * in all other cases. The OR operation returns 0 if and only
if all of its inputs are 0; it returns 1 iff at least one input is 1, and it returns * in all
other cases. Finally, the negated value of * is * and, as in the binary case, NOT(0) is
1 and NOT(1) is 0.

In the following, we consider logical networks as follows: Given a set of species
V = {v1, . . . , vn}, each species vi has an associated logical variable xi that can be
determined by its corresponding logical function fi : x → {0, 1, ∗}, x = (x1, . . . , xn)T .
Furthermore, we assume that all logical functions are given in SOP representation.

2.4.2.1 Hypergraph Representation of Logical Models

A representation of logical networks that is well suited to study signal transduction
pathways is based on directed hypergraphs, which in turn relies on SOP-represented
logical functions (Klamt et al. 2006). Hypergraphs are generalizations of graphs,
as an edge in a hypergraph (also called hyperedge) is not restricted to connect a
pair, but can connect an arbitrary number of nodes. Accordingly, a hyperedge in a
directed hypergraph connects a set of start nodes with a set of end nodes (Klamt
et al. 2009). In our particular case, the set of end nodes consists of only one element.
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Just as in interaction graphs, the nodes of the hypergraph represent the biological
species. Now, each summand (which is an AND term or a single, possibly negated,
logical variable) within the SOP-represented logical function of a node A becomes a
hyperedge pointing into this node A.

Thus, each hyperedge in the hypergraph can be interpreted as a signaling event,
that is, one mode of activation of the downstream node. If a hyperedge has several
start nodes, the associated logical variables are inputs of an AND operation. In case
of a single start node, the hyperedge becomes a simple edge, which indicates that
the activation level of a single species determines the state of the downstream node.
Furthermore, each edge branch has an associated sign indicating whether the value
of the node it arises from is negated by a NOT operation (−) or not (+). Different
activation modes of one species, that is, edges that point into the same node, are
connected by an OR operation.

Considering again the logical function of ERBB13 given in Equation (2.1), each
summand (AND term) is represented as a hyperedge pointing into ERBB13 in the
hypergraph: the first hyperedge connects the start nodes EGF, ERBB1, ERBB3, and
ERBB2 with the end node ERBB13; the second hyperedge connects the start nodes
NRG1, ERBB1, ERBB3, and ERBB2 with ERBB13 (Figure 2.3). In both hyperedges,
the branch coming from ERBB2 is marked in red, indicating that it enters the logical
function in its negated form. Figure 2.3 shows the complete hypergraph representa-
tion of the logical model of EGF/NRG1 signaling from which the logical functions
of each node can easily be derived.

The typical workflow when building a logical model is to first determine and
analyze the interaction graph before defining the logical functions for each node.
Choosing an appropriate logical function for a signaling process is not an easy task
and requires a competent knowledge of the molecular mechanisms behind; there-
fore, this step often involves an intense literature study. Obviously, several logical
models can be derived from the same interaction graph. Even in the Boolean case—
as long as a node has more than one ingoing edge—one has to decide whether to use
an AND or an OR operation, or, in the case of three or more inputs, a combination
thereof.

In cases where one cannot gather from the available knowledge whether an AND
or an OR operation is the more apposite description of a biological process, an alter-
native is to use logical operators with an incomplete truth table (Klamt et al. 2006).
In general, this limits the determinacy of the model. However, as signaling pathways
often feature redundant network structures, a model containing logical operations
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Figure 2.3: Logical model of the EGF/NRG1 network example. Shown is the hypergraph
representation of a Boolean model (right) with underlying interaction graph shown on the left
(this interaction graph was already given in Figure 2.1). Blue circles denote AND operations,
that is, a hyperedge with n inputs is represented as n arrows pointing into a blue circle and
one arrow pointing out of it. Red blunt-ended lines indicate that the respective input value is
negated. Several arrows pointing into one node are OR-connected. Figure adapted from Samaga
and Klamt (2013).

with incomplete truth tables can still have a high predictive power (see Chapter 4).

A further advantage of the hypergraph representation is that it enables one, if
desired, to return to the interaction graph which underlies the logical model and
from which the logical model was built: one only needs to split the hyperedges
representing AND operations into simple edges (with a minus sign if the edge stems
from a negated branch of the hyperedge) followed by a removal of possibly arising
duplicate edges (Klamt et al. 2006). In this way, the characteristics of the interaction
graph are preserved in the logical description and can easily be derived from it, for
example, if the user wants to compute the feedback loops (implicitly) contained in
the logical network.

2.4.2.2 Dynamical Analysis of Logical Models

One reason that logical models have emerged as valuable modeling approach for
biological systems is the fact that the logical description—despite its simplicity—is
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able to capture essential qualitative features of the system’s dynamics (Glass and
Kauffman 1973; Thomas and D’Ari 1990). In the classical approach, the dynamics
of a logical model are defined by a synchronous updating scheme (Kauffman 1969):
the value of node vi at time t + 1 is determined by the logical values of its input
nodes vi1 , . . . , vik at time t as given by its logical function fi :

xt+1
i = f(xti1 , xti2 , . . . , xtik). (2.2)

All states are updated simultaneously, assuming that the modeled biological pro-
cesses all have the same duration. The synchronous scheme is deterministic as each
state is followed by one subsequent state. In contrast, with the asynchronous logi-
cal description a more realistic updating scheme was introduced by which different
time delays for the individual biological events can be accounted for (Thomas 1973).

Of particular importance when studying logical models of biological systems is
the identification of attractors. These attractors represent the long-term behavior of
the system and can often be associated with cellular phenotypes or steady cellular
states (Wang et al. 2012). The simplest attractors are made up of a single state,
referred to as fixed point or (logical) steady state. Complex (cyclic) attractors are
made up of several states among which the system oscillates.

2.4.2.3 Logical Steady State and Signal Flow Analysis

Dynamical modeling of logical networks has been successfully applied to a variety
of biological regulatory networks (e.g., Albert and Othmer 2003; Giacomantonio
and Goodhill 2010; Li et al. 2004; Naldi et al. 2010; Zhang et al. 2008). However, as
the knowledge of initial conditions and timescales is often incomplete in biological
systems, an application to large-scale networks is difficult (Wang et al. 2012). Thus,
in addition to the described dynamic simulations of a logical network, there are
static methods particularly suited for the analysis of large-scale networks.

As already stated above, a fundamental question that arises when studying sig-
naling pathways is how the system reacts to different stimulations, for example,
different combinations of ligands and inhibitors. Given a logical network, the quali-
tative input–output response can be computed by propagating the logical values of
a set of fixed input nodes according to the logical functions. Apart from the inputs,
all other logical values are assumed to be unknown. The goal of this procedure is to
infer the logical steady state that results from the given inputs (Klamt et al. 2006).
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We consider a given input state x0 = (x0
1, . . . , x0

n)
T , where x0

i ∈ {0, 1, ∗}, and denote
with I0 ⊆ {1, . . . ,n} the species indices whose associated value is fixed to 0 or 1,
that is, I0 = {i : x0

i ∈ {0, 1}}. The species vi with i ∈ I0 represent, for example,
external stimuli or knock-ins/knock-outs. For all i ∈ I0, the Boolean functions fi

are overwritten by the simple binary values x0
i ∈ {0, 1}. The logical steady state

resulting from the initial state x0 is then a state vector xS(x0) = (xS1(x
0), . . . , xSn(x0))T ,

xSi ∈ {0, 1, ∗}, for which holds that xSi = fi(x
S) for all i ∈ {1, . . . ,n} \ I0, whereas

xSi = x0
i for all i ∈ I0. While in the case of two-valued Boolean networks several

logical steady states might result from a given set of fixed values, or a logical steady
state may not exist at all, a unique logical steady state follows for any given set of
clamped values in the three-valued logic. For example, if no value is fixed in the
network, all nodes will have state ∗ in the associated logical steady state. Logical
states with value ∗ in logical steady state can be interpreted as states which cannot
be uniquely resolved to a 0/1 value, either because the initial values of some other
nodes need to be known to infer a unique 0/1 value, or because these nodes will
never reach a fixed value because they are part of a negative feedback loop inducing
oscillations in the Boolean (and possibly also in the continuous) dynamics.

The logical steady state in three-valued logic can be determined in an interactive
and intuitive way by signal propagation using the logical functions for three-valued
logic. The algorithm actually simulates the signal propagation taking place in the
real situation: First, we initializes the state vector x with x0and introduce an index
set IK, which contains all those node indices for which we have found a 0 or 1 value
that cannot change in the future. Clearly, at the beginning we have IK = I0. In each
iteration, we then look for states xi, i /∈ IK, for which we can deduce a value 0 or
1 given the current state vector x. If we can change a state xm from ∗ to 0 or 1,
we include the index m in IK and start a new iteration. The algorithm stops if no
further indices can be added to IK, and x then represents the logical steady state
xS(x0). The algorithm is polynomial in input size and will terminate at latest after
n − #I0 iterations, where #I0 denotes the cardinality of I0. This follows from the
conservative nature of three-valued logic: a node will not change its state once it has
been assigned a 0/1 value.

As an example, suppose the system in Figure 2.3 is stimulated with EGF in pres-
ence of all receptors, that is, x0

egf = 1, x0
nrg1a = 0, x0

erbb1 = x0
erbb2 = x0

erbb3 = 1. By
clamping these values and initializing the states of all other nodes with ∗, the states
of the receptor dimers ERBB11, ERBB13, and ERBB23 will be updated in the first
iteration of the algorithm (see Table 2.1). In the next step, we can only conclude
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xSgrb2 = 1. Then the algorithm stops as no further node with state ∗ can be updated.
The other states cannot be uniquely determined due to the positive and negative
feedback loops: as GRB2 is 1, the state of SOS depends on the activation level of
ERK that is in turn dependent on SOS. The state of GAB1 depends on PIP3 activ-
ity and thus on the state of PI3K. However, as two of the OR-connected inputs of
PI3K are 0 (ERBB13 and ERBB23) and the state of another one cannot be determined
(Ras), the state of PI3K depends on the state of its fourth input, which is again GAB1.
Stimulation with NRG1 results in a different situation (see Table 2.1): in this case,
PI3K can be activated directly by ERBB23, thus, independently of the states of the
other nodes in the positive feedback loop, PIP3 and GAB1. As the state of one node
of the positive feedback is now determined, the other states in the loop can also
be computed. The values of the nodes forming the negative feedback loop are still
undefined. The subset of 0/1 values in the logical steady state corresponds to the
term partial logical steady state in Klamt et al. (2006).

Table 2.1: Logical steady states in the EGF/NRG1 example model.

With negative
feedback

Negative feedback
removed

Fixed input values egf 1 0 1 0
nrg1a 0 1 0 1
erbb1 1 1 1 1
erbb2 1 1 1 1
erbb3 1 1 1 1

Computed logical
steady state values

erbb11 1 1 1 1
erbb13 0 0 0 0
erbb23 0 1 0 1
grb2 1 1 1 1
sos ∗ ∗ 1 1
ras ∗ ∗ 1 1
mek ∗ ∗ 1 1
erk ∗ ∗ 1 1
gab1 ∗ 1 1 1
pi3k ∗ 1 1 1
pip3 ∗ 1 1 1
akt ∗ 1 1 1

The logical variables of the input nodes were set to the specified value and, according to the
logical functions (see Figure 2.3), propagated through the network. The entry ∗ indicates that
the respective steady state value could not be uniquely resolved to a 0/1 value. Table adapted
from Samaga and Klamt (2013).

The example showed that, in presence of functional feedback loops, it might hap-
pen that a 0/1 value in logical steady state can only be determined for a subset of
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nodes. Thus, negative feedback loops are sometimes removed before computing the
logical steady state. This is often justifiable as, from a qualitative perspective, one
might only be interested in which signals can be activated at all and does not want
to consider the downregulating effect of a negative feedback loop coming into play
once the initial response occurred (Klamt et al. 2006). In our example model, we can
break the negative feedback loop by removing the negative effect of ERK on SOS. As
a consequence, all states can be computed in response to both EGF and NRG1 (see
Table 2.1).

Positive feedback loops amplify the signaling response. Thus, their effect can often
not be described in a satisfactory way using Boolean states. The biology behind the
positive feedback loop in our example model is as follows (Rodrigues et al. 2000):
in response to growth factor stimulation, GAB1 is recruited to the plasma mem-
brane through binding to the ERBB1-GRB2 complex. This leads to activation of PI3K
and, in turn, generation of PIP3. The latter recruits additional GAB1 molecules to
the receptor complex at the plasma membrane what enhances downstream signal-
ing. In this case, a multi-level logical description would be most appropriate: active
GRB2 (i.e., GRB2 bound to ERBB1 homo- or heterodimers) activates GAB1 to level
1, whereas GRB2 AND PIP3 activate GAB1 to level 2.

In Chapter 4, we will show that computing the qualitative network response as
described above enables to compare predictions derived with a given network struc-
ture with discretized data from stimulus-response experiments. Of course, one has
to ensure that the measured time points and possible assumptions that are made
for the logical steady state analysis, for example, regarding the activity of feedback
loops, are valid (MacNamara et al. 2012).

2.4.2.4 Minimal Intervention Sets

Another problem that uses the concept of logical steady states is the identification
of sets of interventions (an intervention representing logical values fixed to a cer-
tain value thus corresponding to knock-outs or constitutive activations) to achieve a
predefined intervention goal, for example, a certain phenotypic response of the cell
(Klamt et al. 2006). Similar as minimal cut sets in interaction graphs, a concept of
Minimal Intervention Sets (MISs) can be introduced for logical models, and the result-
ing sets in interaction graphs and logical models tackling the same target nodes are
naturally correlated. However, whereas minimal cut sets in interaction graphs are
restricted to questions regarding signaling paths and feedback loops (e.g., “How can
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all negative feedback loops be interrupted?”), in logical models a certain functional
behavior (state) should be achieved. Typical problems that can be addressed by the
computation of MISs in logical models are the identification of drug targets, the
identification of failure modes that might cause an observed pathological behavior
(diagnosis problem), and the identification of nodes that are of central importance
for a certain biological function. Furthermore, MISs can be used to identify nec-
essary changes in a proposed network structure to remove inconsistencies between
model predictions and data (Saez-Rodriguez et al. 2007).

In the logical model of the example network (Figure 2.3), we looked for interven-
tions to activate ERK (ERK = 1) and deactivate PI3K (PI3K = 0) in presence of all
receptors. The identified MISs are given in Table 2.2. At least three interventions are
required. MEK has to be set to 1 in all MISs: a more upstream intervention with
the goal to activate ERK would at the same time lead to activation of PI3K through
Ras, although deactivating PI3K is desired. In order to achieve PI3K = 0, two further
interventions are required: (i) set NRG1 or ERBB23 to 0, and (ii) set EGF, ERBB11,
GRB2, GAB1, or PIP3 to 0.

Table 2.2: Minimal intervention sets in the EGF/NRG1 logical model.

Intervention goal: erk = 1, pi3k = 0

Side constraints: erbb1 = 1, erbb2 = 1, erbb3 = 1

egf nrg1 erbb11 erbb13 erbb23 grb2 sos ras mek gab1 pip3

1 0 0 1
2 0 0 1
3 0 0 1
4 0 1 0
5 0 1 0
6 0 0 1
7 0 0 1
8 0 0 1
9 0 1 0

10 0 1 0

Shown are the computed minimal intervention sets to activate ERK and deactivate PI3K in pres-
ence of ERBB1, ERBB2, and ERBB3 (see Figure 2B). An entry 1 means constitutive activation,
whereas 0 indicates a required deactivation. Interventions for species with fixed values (i.e.,
ERBB1, ERBB2, ERBB3) and the target species ERK and PI3K have not been considered.
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2.4.3 Ordinary Differential Equation Modeling

Cells behave as nonlinear dynamical systems (Sontag 2005). Thus, in order to derive
a comprehensive quantitative understanding, dynamical modeling approaches are
indispensable. The most accurate descriptions of signaling pathways are mechanis-
tic models (also termed physicochemical models). Characteristic for these models
is that equations refer to identifiable processes such as phosphorylations, and pa-
rameters can be interpreted physically, representing, for example, binding affini-
ties or concentrations (Aldridge et al. 2006). The mathematical formulations of
physicochemical models are in terms of ordinary or partial differential equations,
which can be deterministic or stochastic. To date, the most widely used represen-
tation of biological pathways are coupled systems of ordinary differential equations
(ODEs) using mass-action kinetics for the rates of production and consumption of
the biomolecular species (Becker et al. 2010; Chen et al. 2009; Huang and Ferrell
1996; Kholodenko et al. 1999). However, this type of modeling requires sufficient
knowledge of biological mechanisms and parameters, what limits its applicability
to well-characterized networks of small to medium size. In the following, we will
discuss comparatively simpler differential equation models and parameter-free ap-
proaches in the context of ODE modeling.

2.4.3.1 Differential Equation Models Derived from Boolean Models

An alternative to physicochemical ODE models are ODE models where mass-action
kinetics are approximated by other kinetics, for example, Michaelis-Menten or Hill-
type kinetics, what reduces model complexity, however, at the expense of loss of
mechanistic details.

Among the simplest ODE models are ODE models that are continuous counter-
parts of Boolean models and as such closing the gap between qualitative and mech-
anistic dynamical modeling (Mendoza and Xenarios 2006; Wittmann et al. 2009).
One possibility to translate Boolean models into ODE models is to use multivari-
ate polynomial interpolation (Wittmann et al. 2009). Continuous counterparts of
the discrete Boolean functions can be derived, for example, by linear interpolation
of the functions. Alternatively, linear interpolation can be performed after apply-
ing Hill functions to the function arguments (Wittmann et al. 2009). The resulting
ODE models must be considered as phenomenological models, whose reactions and
parameters lack a physical interpretation. Nevertheless, these models can be fitted
against time-resolved experimental data and can, in principle, be used to explain
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and predict the quantitative and dynamic behavior of the system. As an example,
an ODE model derived from a Boolean model of T cell activation has been shown to
be able to reproduce time courses in response to different ligand concentrations and
to predict binding affinities of different ligands (Wittmann et al. 2009).

Already in 1973, systems of piecewise-linear (PL) differential equations were in-
troduced as continuous counterparts of Boolean models (Glass and Kauffman 1973).
In a PL model, the Boolean functions are replaced by sums and products of step
functions. The use of step functions implies discontinuities hampering the simula-
tion of a PL model with standard numerical integrators. Instead, PL models can
be analyzed by means of state transition graphs, that is, in a similar manner as the
qualitative dynamics in logical networks are studied (De Jong et al. 2004).

2.4.3.2 Qualitative Analysis of Dynamical Models

A major challenge in ODE modeling is that a sufficient amount of quantitative data
is needed, while many of the available data are qualitative or semi-quantitative.
Within the last years, there has been substantial effort to improve the experimen-
tal setup and subsequent data analysis in order to generate quantitative data (e.g.,
Schilling et al. (2005)). Furthermore, analytic methods such as mass spectrometry,
which enable the collection of large amounts of quantitative data, are advancing
forward. Nevertheless, mathematical methods that allow incorporating qualitative
information in ODE modeling are still desirable. An example for such an effort is
the approach presented in Rumschinski et al. (2012), which enables the invalidation
of ODE models based on qualitative and semi-quantitative data.

Qualitative information about a biological system can be available at different
levels. Besides information about the interactions between different players, for ex-
ample, “addition of species A increases the activity of species B”, qualitative knowl-
edge about more global system properties might exist. For example, one might
know from experimental observations that a system exhibits bistability. Obviously,
a dynamical model reflecting the system should also be able to reflect the observed
properties. A common strategy is to explore parameter spaces and initial condi-
tions, which have been estimated before based on experimental data, by means of
numerical simulations. This is often combined with methods such as bifurcation
analysis that enable to determine the classes of dynamical behavior a parameterized
model can produce (Aldridge et al. 2006; Sontag 2005). However, the determination
of parameter values, especially in large systems, is very difficult. High-dimensional
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parameter and state spaces give rise to high-dimensional and nonlinear optimization
problems, which are difficult to solve. In addition, incomplete, noisy, and often only
semi-quantitative data contribute to parameter uncertainty. Furthermore, conclu-
sions from numerical simulations are local and it is difficult to derive a fundamental
understanding (Radde et al. 2010; Sontag 2005). This again shows the desirability
of parameter-free, qualitative approaches, here in the context of ODE models. The
typical question that is tackled by these approaches is whether a given ODE network
structure is able to exhibit, for some parameter values, a certain observed dynamical
behavior.

Qualitative ODE models. The structure of an ODE system ẋ = f(x) is of-
ten analyzed by considering the sign pattern of the Jacobian matrix J with entries
Jij(x) =

∂fi(x)
∂xj

. In a biological system, the state variables xi usually denote the species
concentrations, and functions fi describe the rate of production and consumption of
the species. A monotonicity assumption on the rate functions fi is often required to
guarantee that the sign pattern of the Jacobian is constant over all time points. A set
of models whose sign patterns of the Jacobian are identical can be considered as a
qualitative model (Radde et al. 2010). The qualitative information determining the sign
pattern of the Jacobian matrix is often available in biological systems. A special class
of ODE models are dynamic models that derive from chemical reaction networks. A
dynamic chemical reaction network is a system of the form ẋ = Nv(x), where N is
known as the stoichiometric matrix of the system, and v is a vector of reaction rates.
Assuming that the reaction rates fall into certain classes, for example, mass-action
kinetics, the network structure is solely represented by the stoichiometric matrix N,
as conclusions on the sign pattern of the Jacobian matrix can in this case be derived
from the entries in N.

Graphical representation of ODE models. As already stated in Section 2.4.1,
the structure of an ODE system can be represented by an interaction graph. Consid-
ering a system ẋ = f(x) with xi denoting the concentration of species Si, the nodes
in the interaction graph underlying the ODE model represent the species Si. A pos-
itive edge from Sj to Si is drawn in the interaction graph if ∂fi

∂xj
(x) > 0 for some x,

and a negative edge is drawn if ∂fi
∂xj

(x) < 0 for some x. Note that, in general, the
interaction graph constructed in this way can contain both a positive and a negative
edge between a pair of species nodes. Under certain monotonicity assumptions on
the rate functions fi, the interaction graph only contains a single edge of unique sign
between each pair of nodes. Many functions describing regulatory functions and
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chemical kinetics show the requested monotonicity property; hence, their structure
is represented by a constant interaction graph structure.

For dynamic chemical reaction networks, bipartite graphs containing species and
reaction nodes have been shown to be a valuable representation. We will discuss
these Species–Reaction graphs (SR graphs) and their relation to interaction graphs
in more detail in Chapter 6.

In the following, we will briefly discuss multistationarity and static response to
perturbations as examples of dynamical system properties that have been tackled
with parameter-free approaches.
Multistationarity. Given an ODE system ẋ = f(x), one can ask whether this

system has several steady states, that is, whether the function f has several zeros.
Considering systems arising in biology, one is usually interested in the existence of
more than two positive steady states. Feinberg, Horn, and Jackson already intro-
duced in the 1970s with their chemical reaction network theory an approach aiming
at receiving results on the system behavior that are valid independently of chosen
rate constants (Feinberg 1987; Horn and Jackson 1972). Feinberg’s deficiency zero
and deficiency one theorems enable to exclude multistationarity based on the sys-
tem’s structure (Feinberg 1987). In subsequent works, Feinberg and coworkers also
derived structural conditions guaranteeing multistationarity (Ellison and Feinberg
2000). All these methods apply to chemical reaction networks with mass-action ki-
netics and were implemented in the Chemical Reaction Network Toolbox [4]. With
subnetwork analysis, a complementary approach was provided by Conradi et al.
(2007). This type of analysis also requires mass-action kinetics and enables the as-
sertion of multistationarity in some cases where the Chemical Reaction Network
Toolbox cannot decide about it.

Another class of methods is based on the attempt to find sufficient conditions
for injectivity: only non-injective systems have the capacity for multiple equilib-
ria. Craciun and Feinberg (2005) derived criteria for injectivity of a system which
concern the determinant expansion of the system’s Jacobian matrix. The original
results were obtained for chemical reaction networks with mass-action kinetics; ad-
ditionally, it was assumed that each species can feed in and flow out of the system
(“fully open” network; Craciun and Feinberg (2005)). In subsequent works, the re-
sults were generalized to chemical reaction networks with less-restrictive kinetics
(Banaji et al. 2007; Wiuf and Feliu 2013) and to networks where some species were
considered not to enter or leave the system (Craciun and Feinberg 2006a, 2010). In
parallel, graphical methods were derived from the injectivity conditions on the Jaco-
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bian. First, it was shown that a positive cycle in the interaction graph is necessary
for multistationarity (Cinquin and Demongeot 2002; Gouzé 1998; Plahte et al. 1995;
Snoussi 1998; Soulé 2003; Thomas and Kaufman 2001a,b). For chemical reaction
networks, stronger graphical requirements were stated in terms of SR graphs (Ba-
naji and Craciun 2010; Craciun and Feinberg 2006b), and this work was extended to
general interaction networks (Banaji and Craciun 2009). Recently, Shinar and Fein-
berg (2012) introduced concordant chemical reaction networks. This class of networks
is equivalent to the class of networks that give—under certain assumptions on the
kinetics—rise to injective dynamical systems. Notably, the decision whether a chem-
ical reaction network is concordant or not is not derived from the Jacobian matrix,
but from algebraic properties based on the stoichiometric matrix. Algorithms that
enable to decide about network concordance have been integrated in the previously
mentioned Chemical Reaction Network Toolbox [4]. Additionally, graph-theoretic
criteria for concordance based on SR graphs have been derived (Knight et al. 2015;
Shinar and Feinberg 2013), thus connecting the theory of concordant networks to
previous work (Banaji and Craciun 2010; Banaji and Craciun 2009; Craciun and
Feinberg 2006b).
Static response to perturbations. Qualitative system properties are often stud-

ied by steady-state-shift experiments: given a system at steady state, one changes
system parameters or inputs and observes the resulting change of the variables once
the system reaches a new steady state. Steady-state-shift experiments have been
shown to allow the recovery of chemical reaction mechanisms (Chevalier et al. 1993)
and to unravel interactions between modules in gene regulatory and signaling net-
works (Kholodenko et al. 2002; Klinger et al. 2013). To predict the qualitative effect
a certain perturbation has on the system variables, one often uses linear approxima-
tions. The deviation of a state variable is expressed by a local functional relation
between this state variable and the directly perturbed variables, which follows from
the implicit function theorem. However, results obtained from the linear system may
be valid only if the perturbations are sufficiently small. In order to obtain global
results, additional assumptions are usually required. One possibility is to restrict
oneself to the study of systems whose structure excludes the existence of multiple
steady states. In this case, the global existence of the implicit function is guaranteed
(Radulescu et al. 2006; Siegel et al. 2006). Alternatively, one can consider a particular
path, known as homotopy path, which connects the two steady states and whose anal-
ysis allows to derive global conclusions from local observations (Shiomura 1995).
For this analysis it is required that the perturbation induces a continuous steady-
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state shift. We will consider the application of homotopy methods to perturbation
analysis in Chapter 6.

Siegel et al. (2006) developed a framework to connect the network topology of a
given gene regulatory network to experimental data resulting from a steady-state-
shift experiment. The dynamics of the system is supposed to be described by a set of
ordinary differential equations, and the network topology is given by an interaction
graph representing the Jacobian matrix. In many applications, the interaction graph
is directly reconstructed from literature information or databases (see Section 2.4.1)
without explicitly defining the ODE system. The data retrieved from the steady-
state-shift experiment are assumed to provide the qualitative information whether
the perturbation leads to an increased, decreased, or not significantly changed state
of a measured species. In order to compare experimental results and network topol-
ogy, Siegel et al. (2006) derived a system of linear qualitative equations from the
interaction graph and the differential dynamics defined by it: the quantitative equa-
tions resulting, for example, from the implicit function theorem as indicated above
were transformed into a linear system in the sign algebra (Kuipers 1994). Solutions
of the system describe, under certain assumptions, the possible qualitative responses
of the state variables to small and large perturbations (Siegel et al. 2006). Several ap-
proaches and application examples for network inference resulted from this work, all
based on the basic result that the direction of change of the state of a variable must
be explainable by the direction of change of at least one of its predecessor nodes in
the interaction graph (Gebser et al. 2011; Guziolowski et al. 2009; Veber et al. 2008).
In Chapter 3 of this work, we will present another framework for interrogating and
training of interaction graphs, which is based on a similar sign consistency rule as the
one derived by Siegel et al. (2006).

Predicting the possible effects of perturbations in a qualitative system also plays
an essential role in fault diagnosis in chemical process systems. Again, the system
structure is assumed to be given by an interaction graph, and consistency rules in
terms of sign conditions are derived (Iri et al. 1979; Oyeleye and Kramer 1988). A
quite intuitive rule is that an observed effect results from propagating the perturba-
tion along the paths in the interaction graph (Iri et al. 1979). We already discuss this
in terms of the dependency matrix (Section 2.4.1.2). However, when a variable ex-
hibits certain types of complex dynamics resulting from negative feedback, a simple
propagation along the paths is not possible any more (Oyeleye and Kramer 1988).
This is accounted for in the dependency matrix by the notion of weak activators and
inhibitors. Oyeleye and Kramer (1988) derived graph-theoretic conditions to iden-
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tify variables that have the potential to show such a complex dynamic response. In
Chapter 6, we revisit this work. In particular, we show how conditions for the class
of chemical reaction networks can be derived.
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3 | Data-Driven Interrogation and Training of

Signaling Network Structures Based on

Interaction Graphs

Although interaction graphs merely capture the positive and negative influences be-
tween pairs of species, their structure already constrains the possible qualitative be-
havior of the nodes in response to stimulations or perturbations. Thus, one can com-
pare predictions derived from an interaction graph model with qualitative changes
in the activation levels of certain components that are caused by introducing, for
example, a ligand or inhibitor. In this chapter, we present two approaches for the
analysis of experimental data based on interaction graphs. In both cases, one con-
siders changes of the system caused by a perturbation added in steady state. The
first method we will present is based on the dependency matrix (Section 3.1). This
method is suited to analyze the qualitative transient system response, in particular
the initial response to a perturbation. In Section 3.2, we present a method based on
the concept on sign consistency, and which considers steady state shifts. By appli-
cation to ERBB signaling in hepatocytes, we demonstrate how both analyses enable
the identification of cell-type-specific discrepancies between model structure and ex-
perimental data. Furthermore, new hypotheses about the ERBB signaling topology
and conclusions on missing or probably inactive interactions could be derived (Sec-
tion 3.3).

In the first approach, model predictions are derived from the dependency matrix
(Klamt et al. 2006). We already introduced the presented technique for analyzing
phosphoproteomic data and its application to ERBB signaling in Samaga et al. (2009),
and the descriptions in Section 3.3.2.2 were adapted from this publication.

The second approach is based on the concept of sign consistency (Gebser et al.
2011; Guziolowski et al. 2009; Siegel et al. 2006), for which we developed an integer
linear programming (ILP) formulation. Within this framework, we defined opti-
mization problems (i) to detect discrepancies between experimental data and model
structure, (ii) to identify possible places in the network structure causing these dis-
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crepancies and, (iii) to propose changes in the network structure to minimize them.
These results have been derived in close collaboration with Ioannis Melas from the
National Technical University of Athens, who made substantial contributions to the
ILP formulations. We published the approach and its application to ERBB signaling
in Melas, Samaga et al. (2013), and Sections 3.2 and 3.3.2.3 were derived from this
work.

3.1 Data Analysis Based on the Dependency Matrix

The dependency matrix contains the information how the species of the interaction
graph model influence each other (see Section 2.4.1.2). Based on this information,
one can predict the qualitative effect a stimulation or perturbation of certain species
has on the activation levels of other species of the model. We briefly describe this
idea with the help of the EGF/NRG1 example model, whose dependency matrix
is given in Figure 2.2. Stimulating the cell with EGF should result in increased
phosphorylation levels of ERBB11 and ERBB13 compared to the unstimulated case as
EGF is a strong activator of these two receptor dimers. In contrast, phosphorylation
of ERBB23 should, according to the model, not be influenced by EGF stimulation. As
another example, the phosphorylation level of ERK should be increased in response
to EGF when considering the initial response after stimulation. However, as EGF is
only a weak activator of ERK, at later time points the negative feedback loop might
cause a decrease even beneath the phosphorylation level of ERK in the unstimulated
cell; thus, no predictions can be derived from the dependency matrix for the later
time points (see Section 2.4.1.2). Introducing an inhibitor blocking the MEK kinase
activity should lead to an increase in Ras activity. As MEK is a weak inhibitor of Ras,
this prediction is limited to the early time points. However, if we assume that MEK
kinase activity is completely blocked by the inhibitor, Ras activity must be increased
also at later time points as the negative feedback loop is disconnected. Finally, a
change in the expression level of ERBB2 might lead to an increased, decreased, or
unchanged state of a number of downstream nodes of which ERBB2 is an ambivalent
factor: these nodes can be reached by positive paths running over ERBB23, while
at the same time being targets of negative paths from ERBB2 via ERBB13. The
qualitative response is in this case dependent on the strength of the respective paths,
which cannot be revealed solely from the structural information represented by the
interaction graph.

We will use this concept for the analysis of stimulus–response data. As starting
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point for the data analysis, we assume we are given an interaction graph model,
for example, a “master topology” of a signaling pathway that contains all reported
interactions, and a set of experimental scenarios showing the up- or downregulation
of measured readout nodes in response to perturbations of some nodes. Typically,
such an experimental scenario is derived by comparing the measured responses of
the readouts under two different treatments. As an example, one might compare
the phosphorylation state of a particular readout in response to adding a ligand L

with the phosphorylation state in response to adding the ligand L in combination
with an inhibitor I. The perturbation characterizing the scenario is given by the dif-
ference of both treatments; in the example, this is the addition of the inhibitor I. A
perturbation can be positive (e.g., the addition of a ligand) or negative (e.g., the ad-
dition of an inhibitor), and a scenario may contain several positive and/or negative
perturbations.

Given a set of experimental scenarios, one can derive predictions for the qualitative
response of the readouts to the perturbations of each scenario from the dependency
matrix: (i) if all positively perturbed nodes are strong activators and all negatively
perturbed nodes are strong inhibitors of the readout, the model predicts “increase”
in response to the perturbation; (ii) if all positively perturbed nodes are strong in-
hibitors and all negatively perturbed nodes are strong activators of the readout, the
model predicts “decrease”; (iii) if all perturbed nodes are neutral factors of the read-
out, the model prediction is “no change”; (iv) if all positively perturbed nodes are
activators and all negatively perturbed nodes are inhibitors, and if at least one of
the perturbed nodes is a weak activator/inhibitor, the initial response to the per-
turbation is “increase”, but, due to negative feedback loop(s), the response at later
time points is not restricted by the model; (v) if all positively perturbed nodes are
inhibitors and all negatively perturbed nodes are activators, and if at least one of
the perturbed nodes is a weak activator/inhibitor, the initial response is “decrease”,
whereas, for later time points, the response is not restricted by the model; (vi) in all
other cases, the model does not restrict the response to the perturbation; this applies
if one of the perturbed nodes is an ambivalent factor or if two perturbations have
opposing effects on the readout.

We can compare the measured effect of the perturbations with the model predic-
tions from the interaction graph to see whether the experimental data are in accor-
dance with the model structure. In this way, it is possible to uncover inconsistencies
between experimental results and the qualitative knowledge captured in the model
in a systematic way, and, hence, to get insights into cell-type and context specific
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network structures. We show this in two applications: in Section 3.3.2, the analysis
of experimental data of ERBB signaling is studied, and in Chapter 5, the described
concept is used in combination with ODE modeling to untangle MAPK and PI3K
signaling in response to HGF.

In order to compare a measured effect with the model predictions derived from
the dependency matrix, the effect has to be classified as increase, decrease, or no
change. This can be achieved in different ways. We describe the data discretization
in the context of the two applications (Section 3.3.2 and Chapter 5). Furthermore,
the time point the measurements are taken has to be chosen carefully: the positive
effect of a weak activator can, for example, only be predicted for the initial response.

3.2 Detection and Removal of Inconsistencies between Data

and Signaling Network Topologies Using the Concept of

Sign Consistency

The dependency matrix is particularly useful to get an overview on how a node can
potentially influence the other nodes in the network; however, it may become lim-
iting if multiple node values are measured in one experimental scenario. Given an
interaction graph topology, state changes measured for certain nodes are, in general,
not independent; thus, one can derive stronger constraints. This is particularly true
if we assume that the system moves from one steady state to another. Consider the
small example model given in Figure 3.1(a) and assume there would be another node
Z that is activated by F (edge F → Z). As A is an ambivalent factor for F and Z, we
would predict from the dependency matrix that the levels of F and Z can decrease
or increase in response to a perturbation in A; however, it is not possible that their
new steady-state levels change in different directions.

This is considered by a class of methods that are relying on a sign consistency rule
and that have also been developed to detect discrepancies between topology and
experimental data (Gebser et al. 2011; Guziolowski et al. 2009; Siegel et al. 2006).
The key idea is that, in a steady state shift experiment, the direction of change of
the state of a node must be explainable by the direction of change of at least one of
its predecessor nodes (except for the directly perturbed node(s)). For example, in
Figure 3.1(a), after a perturbation in A, the steady-state level of F may have become
larger only if E decreased its activation level (as E inhibits F) or/and if C increased
its level (as C activates F). The sign consistency rule gives rise to constraints on
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Figure 3.1: A simple example network used for illustration purposes. The interaction
graph consists of seven nodes and seven edges. The green nodes A and D can be perturbed
externally; the gray nodes F, G, and H are the readouts of the network, whose activation states
are measured in the experiments; the white nodes C and E are latent nodes, which are neither
perturbed nor measured (see scenarios in Table 3.1). (a) The initial topology of the interaction
graph representing the prior knowledge. This graph produces a total fitting error of 5 over the
three scenarios in Table 3.1. (b) The unique optimal subgraph of (a) minimizing the total fitting
error of the experimental scenarios to 2 (see Table 3.1). (c) Two optimal graphs obtained from
(a) by applying OPT_GRAPH: by adding edge A → G and either (left) removing E � F or (right)
removing E � F and C → D, the fitting error is eradicated completely and becomes 0 (cf.
Table 3.1). Figure adapted from Melas, Samaga et al. (2013).
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the possible patterns of ups and downs of the nodes’ activation levels in a given
interaction graph. These constraints can be encoded, for example, by Answer Set
Programming (Gebser et al. 2011). Confronting these constraints with experimental
data may then lead to the detection of topological inconsistencies, namely if no sign
pattern complying with the given measurements and perturbations can be found
(Gebser et al. 2011; Guziolowski et al. 2009; Siegel et al. 2006).

The methods we will present in this section are based on a similar sign consistency
rule; however, they differ in a number of aspects. First, we will encode the sign
constraints as an Integer Linear Programming (ILP) problem. This formulation gives
us the opportunity to utilize the large corpus of effective algorithms developed for
ILP problems. Second, we explicitly allow a “0” change to mark non-affected node
states. Furthermore, for the situation that multiple stimulus–response experiments
are available, we will address aspects that go beyond the detection of inconsistencies
from single experiments, namely to correct a given network structure such that the
number of mismatches is minimized. For the structure optimization process we will
consider edge removals as well as edge additions.

3.2.1 General Framework

As in Section 3.1, we assume we are given an initial interaction graph topology and
a set of experimental scenarios in each of which some nodes were perturbed and
the resulting up- or downregulation of some readout nodes was measured in the
new steady state. Figure 3.1(a) and the three experimental scenarios in Table 3.1 de-
fined by the columns Perturbations and Measurements provide an illustrative example.
Here, A and D are nodes that can be perturbed; F, G, and H are the readout nodes,
which are measured, and C and E are latent nodes, which are neither perturbed nor
measured.

Our goal is now to analyze and improve the consistency of an interaction graph
topology with respect to a given set of experimental data. Central to all algorithms
presented herein is the following definition of sign consistency.

Definition 3.1. (Sign Consistency). Let G denote an interaction graph with node set
V , edge set A, and sign mapping σ. Furthermore, let s denote a node labeling (sign
pattern), which stores for each node vi ∈ V a sign si ∈ {−1, 0, 1}. We say that s is sign
consistent with respect to G if the following conditions hold for each node vi ∈ V :

a) If si = −1: either si was fixed to −1 (perturbed node), or there is a predecessor
node vj ∈ V and an edge a = (vj, vi), a ∈ A, with σ(a) · sj = −1.
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b) If si = 1: either si was fixed to 1 (perturbed node), or there is a predecessor
node vj ∈ V and an edge a = (vj, vi), a ∈ A, with σ(a) · sj = 1.

c) If si = 0: either (i) si was fixed to 0, or (ii) vi has no predecessor, or (iii) for all
vj ∈ V with a = (vj, vi), a ∈ A, we have sj = 0, or (iv) there is a predecessor
node vj ∈ V and an edge a = (vj, vi), a ∈ A, with σ(a) · sj = −1, and another
predecessor node vk ∈ V and an edge b = (vk, vi), b ∈ A, with σ(b) · sk = 1.

In our setting, the signs of the external perturbations as well as the measured
signs of the readout nodes can be described by a specific node labeling, which we
call the associated labeling of the scenario. In realistic applications one usually has
latent nodes, which are neither perturbed nor measured; hence, the associated node
labeling of an experimental scenario may contain unknown values, which we denote
by NaN. We call incomplete sign patterns partial labelings. A partial labeling s̃ is
sign consistent if there exists a complete sign consistent labeling s for which we
have s̃i = si wherever s̃i �= NaN. In this sense, we say that an experimental scenario
is sign consistent if its associated (partial) labeling is sign consistent. Finally, if we
have a collection of scenarios, we say that this collection is sign consistent with the
interaction graph if all the (partial) labelings associated with the scenarios are sign
consistent.

We can now consider four fundamental problems on the consistency of experi-
mental scenarios with respect to a given interaction graph:

(1) SCEN_FIT. Given a single experimental scenario, we fix the states of the per-
turbed nodes according to the experimental interventions and search for a sign con-
sistent node labeling showing the minimum mismatch with the given measurements.
We define the fitting error εfit as the sum of the absolute difference between the mea-
surements mi and the optimal sign pattern s: εfit =

∑
i:mi �=NaN|mi − si|. In the ideal

case, where the associated labeling of the experimental scenario is sign consistent,
the fitting error will be 0.

From Figure 3.1(a)/Table 3.1, we see that scenario 1 is sign consistent: A was
externally increased and D decreased, and with sA = sC = sG = sF = sH = 1 and
sD = sE = −1, we obtain a sign consistent labeling giving us a possible explanation
for the measurements. In contrast, scenario 2 is not consistent with the interaction
graph topology: if D is increased externally (no perturbation in A), then we expect
to see a decrease in F, G, and H, which is not seen in F (unchanged). Thus, the
minimum resulting fitting error for an optimal sign pattern is 1. Generally, an error
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Table 3.1: Example scenarios and optimizations for the example network in Figure 3.1.

Pertur-
bations Measurements

Initial fitting
error (Fig. 1A) MCoS

Remaining fitting error
(Fig. 1B/Fig. 1C)

A D F G H F G H F G H

Sc1 1 −1 1 1 1 0 0 0 0/0 0/0 0/0

Sc2 1 0 −1 −1 1 0 0 {1 → F},
{1 → C},
{1 → A}

0/0 0/0 0/0

Sc3 1 1 1 1 0 2 2 {1 → G},
{−1 → E},
{−1 → D},
{−1 → C}

0/0 1/0 1/0

Rows Sc1, Sc2, Sc3 correspond to scenarios 1 to 3. Columns Perturbations show the externally
imposed states of the nodes A and D, which can be −1 (downregulation), 0 (state of the node
did not change), or 1 (activation level is increased). No value is given if the node was not per-
turbed. Columns Measurements show the measured change of the activation levels of F, G,
and H in the respective scenarios. Columns Initial fitting error show the total mismatch of pre-
dictions and measurements (derived with SCEN_FIT) with respect to the initial topology shown
in Figure 3.1(a)). Column MCoS (minimal correction sets) shows artificial positive (1) or nega-
tive (−1) external inputs to some nodes, which would lead to a perfect fit of the data (resulting
fitting error for the scenario becomes 0). Columns Remaining fitting error show the remaining
mismatches for the optimal subgraph depicted in Figure 3.1(b) and for the two optimal graphs
displayed in Figure 3.1(c). The original network in Figure 3.1(a) has a total fitting error of 5; it is 2
for the optimal subgraph in Figure 3.1(b), and it becomes 0 in the optimal graphs in Figure 3.1(c).
Table adapted from Melas, Samaga et al. (2013).

of 1 or −1 occurs if a change was expected/not expected, but was not seen/was seen
in the experiments. For scenario 3, the predictions are even worse: increase in A (no
perturbation in D, which thus depends on C) should lead to downregulation of G
and H, but an increase is measured for both. Thus, we get an absolute error of 2 for
each of the two predictions. It follows that the fitting error of a sign consistent node
labeling closest to scenario 3 cannot be smaller than 4.

It may happen that several solutions exist, all explaining a given scenario equally
well. For example, assume again that there was another node Z in Figure 3.1(a) that
is activated by F through an edge F → Z. If we now measured G = H = F = −1 and
Z = 1 after positively perturbing A (A = 1), then the best scenario fit would result in
an error value of 2 since F and Z must have the same value. However, there are three
optimal solutions regarding F and Z, namely F = Z = 0, F = Z = 1, and F = Z = −1,
all leading to the same minimum fitting error of 2. For some applications it will
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3.2 Detection and Removal of Inconsistencies Using Sign Consistency

be helpful to know all these optimal solutions; therefore, we will also address their
enumeration.

(2) Minimal Correction Sets (MCoS). Another optimization problem for a single
scenario directly follows if a given scenario is not sign consistent, that is, if no sign
consistent labeling can be found that results in a fitting error of 0. We can then
try to identify a minimal set of nodes whose states need to be corrected to obtain
a consistent scenario. The correction of a node’s state is simulated by adding an
additional external input that is either 1 or −1. We call these sets minimal correction
sets (MCoS), the minimality property demanding that no subset of a MCoS would
lead to a consistent labeling. For example, regarding scenario 3 in Table 3.1, there are
four MCoS suggesting that there was either an external upregulation of G (1 → G),
or a downregulation in one of the nodes E, D, or C, each of unknown cause. Thus,
MCoS show possible places in the network that have a high probability to cause the
observed inconsistencies. With the MCoS problem we identify the enumeration of
MCoS of minimum size for a given scenario. A simple extension not considered
herein is to enumerate all MCoS irrespective of their size.

(3) OPT_SUBGRAPH. The first two problems focus on a single scenario; now we
intend to optimize the network structure in such a way that the total fitting error
over all scenarios is minimized. Initially, we allow only the removal of edges in the
network, that is, we search for an optimal subgraph. In addition, we may also be
interested in an enumeration of all subnetworks minimizing the number of inconsis-
tencies between interaction graph topology and data. As an example, Figure 3.1(b)
shows the unique optimal subgraph of the original interaction graph in Figure 3.1(a)
minimizing the fitting error over all three scenarios in Table 3.1. This solution re-
duces the total fitting error from 5 to 2, and there is no solution that could reduce it
further.

(4) OPT_GRAPH. The removal of certain edges may significantly improve the agree-
ment between measurements and network topology, but some fitting errors can often
only disappear if we have also the opportunity to add new interactions. Therefore,
this fourth optimization problem intends to minimize the fitting error by allowing
edge removals and insertions in parallel. Obviously, the fit cannot be worse than
the one obtained by problem (3). For smaller networks, a full enumeration of all
optimal solutions might be possible. However, as the insertion of new interactions
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increases the solution space dramatically in large networks, we consider a greedy
strategy which determines, in each iteration, the optimal edge whose inclusion—in
combination with the pruning step (3)—decreases the fitting error the most. One
may then add this edge permanently and repeat the algorithm described above until
no further significant improvement can be obtained by inserting a new edge.

Figure 3.1(c) shows a result of this optimization step in our example: the edge
A → G is identified as missing edge which, in combination with a pruning step,
completely eradicates the original fitting errors in all scenarios. Thus, the resulting
network is fully consistent with the entire set of experimental data. In this example,
nine other edges can be identified whose addition, in combination with a pruning
step by OPT_SUBGRAPH, lead to a fitting error of 0. Furthermore, for each added
edge, the OPT_SUBGRAPH problem that is called after adding the edge might re-
turn several optimal solutions. Figure 3.1(c) shows the two existing optimal solutions
(with a fitting error of 0) that are derived after adding edge A → G.

Positive Cycles. Feedback loops often hamper the analysis of causality, and many
network inference techniques therefore exclude cycles from the network or assume
that no cycles exist (e.g., Sachs et al. (2005) and Saez-Rodriguez et al. (2009)). In
contrast to many other approaches, our method can readily deal with negative cy-
cles without any problems. However, positive cycles may become problematic as
they can provide explanations for state changes without any external perturbation.
A simple example for such “self-explaining” state changes is the following network:
A → B → C → B (all edges are positive). Node A would normally serve as an input.
However, assuming that A has not changed, a measured increase of B would be
explainable by the sign-consistent labeling (0, 1, 1), that is, B activates C, which then
activates B again. Although such a shift without external perturbations could indeed
happen in realistic systems (due to fluctuations in bistable systems), we recommend
that the initial interaction graph should not contain a positive feedback—otherwise,
many observations might become sign consistent just through the existence of pos-
itive cycles. This is also the reason why a new candidate edge can only be added
to the network if it does not give rise to a new positive cycle. In many applications,
this requirement is not a real limitation, in particular when describing early events
in signaling networks.
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3.2.2 Formulation as Optimization Problems

The four problems comparing experimental data and a given interaction graph
model structure based on sign consistency, which were introduced above, can be
encoded as integer linear programming (ILP) problems. In this section, we describe
the objective functions and constraints for each problem. The ILP formulations,
where the constraints are translated into linear equalities and inequalities, are given
in Appendix A.

3.2.2.1 Basic Definitions and Formulation of Sign Consistency

As described above, we assume that we are given an interaction graph with node
set V = {v1, . . . , vnV

}, edge set A = {a1, . . . ,anA
}, and sign function σ, which captures

our prior knowledge on the signaling topology. Additionally, we are given a set of
nS experimental scenarios, each consisting of a specific set of perturbed nodes and
a set of measurements. We will denote with IV := {1, . . . ,nV } the index set of the
nodes, with IE := {1, . . . ,nE} the index set of the edges, and with IS := {1, . . . ,nS} the
index set of the experimental scenarios. The experimental scenarios are specified
by two matrices: (i) the nV × nS perturbation matrix p with pj,k ∈ {−1, 0, 1,NaN}

storing the enforced state of node vj in scenario k through external perturbation,
and (ii) the nV × nS measurement matrix m with mj,k ∈ {−1, 0, 1,NaN} storing the
measured change of the steady-state level of node vj in scenario k. Thus, perturba-
tion and measurement values indicate enforced/measured upregulation (1), down-
regulation (−1), or unchanged state (0). Usually, only a small subset of nodes is
perturbed, and only a subset of nodes can be measured; therefore, unperturbed and
non-measured states are marked by NaN.

In the ILP formulation of sign consistency, we will represent the predicted state
of a node vj in experiment k by an integer variable xj,k ∈ {−1, 0, 1}. Again, xj,k = 1
encodes increase and xj,k = −1 decrease of node vj in scenario k, whereas xj,k = 0
indicates that the activation level of vj remained unchanged.

We introduce the binary variables u+
i,k and u−

i,k to represent the potential of edge
ai = (vit , vih), it, ih ∈ IV , to up- or downregulate its head node vih in experiment k.
Furthermore, we let σi denote the sign of edge ai, that is, σi := σ(ai). With that we
can formulate the first constraint for a sign-consistent node labeling.

Constraint 1. Edge ai has the potential to upregulate its head node vih in experi-
ment k (i.e., u+

i,k = 1) if and only if σi · xit,k = 1. In any other case we have u+
i,k = 0.
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Accordingly, edge ai has the potential to downregulate its head node vih in experi-
ment k (i.e., u−

i,k = 1) if and only if σi · xit,k = −1. In any other case u−
i,k = 0.

Next, we introduce the two binary variables x+j,k and x−j,k to represent the potential
for node vj to be increased or decreased depending on the activity of its upstream
edges.

Constraint 2. Node vj has the potential to be increased (i.e., x+j,k = 1) if and only
if an edge ai = (vit , vj), it ∈ IV , exists with u+

i,k = 1. Node vj has the potential to
be decreased (i.e., x−j,k = 1) if and only if an edge ai = (vit , vj), it ∈ IV , exists with
u−
i,k = 1.

The state xj,k of node vj in scenario k is constrained by the values of x+j,k and x−j,k
according to the definition of sign consistency (see Definition 1):

Constraint 3. (i) Node vj may be increased (xj,k = 1) if it has the potential to be
increased (x+j,k = 1). (ii) Node vj may be decreased (xj,k = −1) if it has the potential
to be decreased (x−j,k = 1). (iii) Node vj may stay unchanged (xj,k = 0) if it has the
potential to be both increased and decreased (x−j,k = x+j,k = 1) or neither of the above
(x−j,k = x+j,k = 0).

A node labeling that is sign consistent according to Definition 3.1 must satisfy Con-
straints 1–3. The formulation with inequality constraints is given in Appendix A.2.

3.2.2.2 SCEN_FIT Optimization Problem

The goal of SCEN_FIT is to identify, for a given scenario k, a sign-consistent ver-
tex labeling that is closest to the measurements of this scenario. We first have to
constrain the values of the perturbed nodes in scenario k:

xj,k = pj,k , ∀j with pj,k �= NaN. (3.1)

Realistic perturbations typically affect either input nodes (e.g., ligands) or internal
nodes in the case where a specific inhibitor was added or where a constitutive ac-
tivation or a knock-in/knock-out was introduced. The state of the perturbed nodes
are thus fixed to the enforced value, and Constraint 3 is omitted for these nodes to
preserve the consistency of the formulation.

We now search for a sign-consistent labeling xk = (x1,k, . . . , xnV ,k) that minimizes
the measurement-prediction-mismatch. This can be formulated as optimization
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problem as follows:
minimize

xk

∑
j∈IV

mj,k �=NaN

|mj,k − xj,k|

subject to Constraints 1–3.

(3.2)

Thereby, the summation of mismatches is done over all nodes for which measure-
ments exist.

As discussed in Section 3.2.1, we also consider the enumeration of all optimal
SCEN_FIT solutions for a given scenario. To this end, we solve Problem (3.2) re-
peatedly, and, after each run, we exclude previously found solutions by adding the
following constraints for each previous solution s:

∑
j∈IV

|xj,k − xj,k,s| � 1, (3.3)

where xj,k,s represents the value of xj,k in solution s. To ensure that only solutions
with minimum fitting error are found, we replace, after the first iteration, the objec-
tive function in (3.2) by forcing instead the algorithm to find solutions with the same
minimum fitting error objval as in the first run:

∑
j∈IV

mj,k �=NaN

|mj,k − xj,k| = objval. (3.4)

The resulting problem becomes thus a simple search for a feasible solution and is
repeated until no further solution can be found.

3.2.2.3 MCoS Optimization Problem

Computing a Single Minimal Correction Set. Next, we address the identifica-
tion of a minimal correction set (MCoS) for a sign-inconsistent scenario k, that is,
for a scenario where the fitting error after optimization is greater than zero. An
MCoS indicates possible causes of discrepancies between measured data and as-
sumed interaction graph topology. As described in Section 3.2.1, MCoS correspond
to artificial perturbations of certain nodes, which render the measurements from a
given scenario consistent with the given network.

Let a new set of binary variables B+
j,k and B−

j,k denote these artificial perturbations.
Constraint 3 is then modified in the following way:
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Constraint 4. (i) Node vj may be increased (xj,k = 1) if x+j,k = 1 or if a positive input
is added, that is, B+

j,k = 1. (ii) Node vj may be decreased (xj,k = −1) if x−j,k = 1 or if a
negative input is added, that is, B−

j,k = 1. (iii) Node vj may stay unchanged (xj,k = 0)
if x−j,k = x+j,k = 1, x−j,k = B+

j,k = 1, B−
j,k = x+j,k = 1, or if x−j,k = x+j,k = 0.

Having introduced the correction terms B+
j,k and B−

j,k, we set as an extra constraint
the perfect fit of the data (which is now always feasible):

∑
j∈IV

mj,k �=NaN

|mj,k − xj,k| = 0. (3.5)

As we are interested in MCoS with a minimum number of corrections, we con-
sider the following optimization problem, where B+

k = (B+
1,k, . . . ,B+

nV ,k) and B−
k =

(B−
1,k, . . . ,B−

nV ,k):

minimize
B−
k ,B+

k

∑
j∈IV

(B+
j,k +B−

j,k)

subject to (3.5) and Constraint 1, 2, and 4.
(3.6)

Enumeration of Minimal Correction Sets. In general, several MCoS with mini-
mum size might exist; therefore, we address in this subsection the enumeration of
all minimum MCoS. To this end, we solve the optimization problem (3.6) repeatedly,
and, after each run, we exclude previously found solutions by adding the following
constraints for each previous solution s:

∑
j∈IV

(
|B+

j,k −B+
j,k,s|+ |B−

j,k −B−
j,k,s|

)
� 1, (3.7)

where B+
j,k,s and B−

j,k,s represent the value of B+
j,k and B−

j,k in solution s. To focus
only on MCoS with the minimum number of corrections, we replace, after the first
iteration, the objective function in (3.6) by forcing the algorithm to find a solution
with the same minimum number of corrections objval as in the first run:

∑
j∈IV

(B+
j,k +B−

j,k) = objval. (3.8)

Again, the resulting problem becomes a simple search for a feasible solution and is
repeated until no further solution can be found.
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3.2.2.4 OPT_SUBGRAPH Optimization Problem

As stated in Section 3.2.1, OPT_SUBGRAPH searches for an optimal subgraph of the
original topology, that is, for a set of suitable edge removals minimizing the total
fitting error over all scenarios. First, we describe how we can identify one particular
solution to this problem before turning to the enumeration of optimal subgraphs.

Computing a single optimal subgraph. The removal of edges is implemented
using binary variables yi. The algorithm will set yi = 1 if the edge ai is removed
by the optimization procedure to improve the fit of the data, otherwise yi = 0.
We impose again the Constraints 1–3 for sign consistency. The actual pruning is
implemented by modifying Constraint 1 as follows:

Constraint 5. Edge ai has the potential to upregulate its head node vih in experi-
ment k (i.e., u+

i,k = 1) if and only if σi · xit,k − yi = 1. In any other case we have
u+
i,k = 0. Accordingly, edge ai has the potential to downregulate its head node vih

in experiment k (i.e., u−
i,k = 1) if and only if σi · xit,k + yi = −1. In any other case

u−
i,k = 0.

As for SCEN_FIT, we want to minimize the measurement-prediction-mismatch,
but now minimize over all scenarios.

minimize
x1,...,xns

∑
(j,k)∈IV×IS
mj,k �=NaN

|mj,k − xj,k|

subject to Constraints 2, 3, and 5.

(3.9)

Usually, many optimal solutions may exist yielding the same residual fitting er-
ror. One might then be interested to focus on particular solutions, for example, on
those containing the minimal/maximal number of edges in the remaining subgraph
(Melas, Samaga et al. 2013).

Enumeration of Optimal Subgraphs. To identify all optimal subgraphs minimiz-
ing the inconsistencies between interaction graph topology and measurements for all
scenarios, we solve the optimization problem (3.9) repeatedly, and, after each run,
we exclude previous solutions s by adding the following constraint:

∑
i∈IE

|yi − yi,s| � 1, (3.10)
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where yi,s represents the value of yi in solution s. Moreover, after the first run, we
replace the objective function in (3.9) by enforcing the algorithm to obtain the same,
optimal, goodness of fit objval as in the first run:

∑
(j,k)∈IV×IS
mj,k �=NaN

|mj,k − xj,k| = objval. (3.11)

3.2.2.5 OPT_GRAPH Optimization Problem

As motivated in Section 3.2.1, optimizing the interaction graph topology by edge
removals may eliminate some, but often not all mismatches. One reason could be
that some real effects cannot be transduced in the model due to missing edges. We
therefore propose an algorithm suggesting new interactions, whose addition would
minimize the fitting error. As the possibility to insert new interactions increases
the solution space dramatically in large networks, we consider the following greedy
strategy: for each interaction not contained yet in the interaction graph, we tem-
porarily insert this edge and determine the resulting optimal solution for the fitting
error by applying the OPT_SUBGRAPH algorithm introduced above. The single in-
teraction that reduces the fitting error the most is picked by the greedy algorithm
and permanently inserted in the interaction graph. This process is repeated until no
further edge exists that could improve the goodness of fit to the data significantly
(significance can be quantified by a certain threshold). Importantly, at the beginning
of each iteration, a list of eligible edges is computed consisting only of those edges
that do not form a positive cycle.

3.3 Application to ERBB Signaling

In the following, we describe the application of the above described methods for
analyzing experimental data based on the interaction graph model of ERBB signaling
introduced in Section 2.3.1. We presented the model as well as the data analysis
based on the dependency matrix first in Samaga et al. (2009). The analysis based on
sign consistency was a follow-up study, which we published in Melas, Samaga et al.
(2013).
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3.3.1 The Interaction Graph Model of ERBB Signaling

As already mentioned in Section 2.3.1, we present in this work a large-scale inter-
action graph model of ERBB signaling (Figure 3.2), which was based on the EGFR
pathway map (Oda et al. 2005) and additional information from the literature. From
this interaction graph model, we derived a logical model, which will be studied in
Section 4.4. Our model contains most parts of the stoichiometric EGFR pathway map
(Oda et al. 2005). However, endocytosis, the G1/S transition of the cell cycle, and the
crosstalk with the G protein coupled receptor signaling cascade were not considered
as our focus was on early signaling events induced by external stimuli. In addition
to EGFR homodimers, we considered signaling through all different ERBB dimers,
which is not part of the original stoichiometric model—though a simplified diagram
is given in Oda et al. (2005). Finally, there are some reactions and species (e.g., the
mammalian target of rapamycin (mTOR), p70S6 kinase) that are only included in
our model so as to use the experimental data set (see Section 3.3.2). All in all, the in-
teraction graph model contains 104 species and 266 interactions. A list of all species
and interactions, including explanations on differences between the considered com-
ponents and interactions in the stoichiometric and the interaction graph model, is
given in Appendix C.

Before we come to the data analysis, we present some topological properties of the
interaction graph model. The model has 236 feedback loops, thereof 139 negative.
Strikingly, all positive feedback loops are composed of a negative feed-forward and
a negative feedback, except one that describes the reciprocal activation of GAB1, an
adapter protein, and PIP3, a lipid of the membrane layer (Rodrigues et al. 2000).
All negative feedback loops arise from five mechanisms: (i) the kinases ERK1/2
and p90RSK downregulate their own activation by phosphorylation of SOS1, a gua-
nine nucleotide exchange factor (GEF) for Ras; (ii) the phosphatase SHP1 binds to
the autophosphorylated ERBB1 homodimers and dephosphorylates them; (iii) Ras
positively influences its GTPase activating protein RasGAP via PI3K; (iv) the ubiq-
uitin ligase c-Cbl binds to ERBB1, what induces degradation of the receptor in the
lysosome; (v) Ras potentiates the Rab5A-GEF activity of RIN1, thus increasing the
formation of endocytic vesicles. Thus, removing the two species Ras and ERBB1
homodimer breaks all negative feedback loops.

Remarkably, the small GTPase Ras is included in 98 % of the loops, underlin-
ing its central role in the regulation of this network: Ras is a key regulator of cell
fate (Downward 1998b) and a known oncogene in many human cancers (Bos 1989).
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Figure 3.2: Interaction Graph Model of ERBB Signaling. Gray hexagons represent re-
ceptor monomers, homodiers, and heterodimers, and green hexagons stand for the 13 different
ligands. The remaining species (symbolized with rectangles) are colored according to their func-
tion: red: kinases; blue: phosphatases; yellow: transcription factors; green: adapter molecules:
violet: small G proteins and GAPs/GEFs; black: other. Black arrows indicate positive edges, red
blunt-ended lines negative edges. Dotted lines indicate feedback mechanisms and downreg-
ulating feedforward loops that were removed prior to some analyses (for further explanations
see text). Figure adapted from Samaga et al. (2009).
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However, the high number of feedbacks containing Ras in our model can also reflect
the fact that Ras is one of the best studied proteins, and, therefore, the feedback
mechanisms of Ras are possibly better known than those of other proteins.

The large size of the network gives rise to a high number of possible signaling
paths along which one node may affect another one. For example, there are 6786
paths, thereof 52 % negative, leading from the input EGF to the transcription factor
AP1 in the output layer.

3.3.2 Analysis of High-Throughput Experimental Data

One of the strengths of our model lies in the broad range of pathways it covers and
in the easy simulation of the network wide response to different stimulations and
interventions. It is therefore well-suited to analyze high-throughput data, where
various readouts are measured in response to several stimuli and to perturbations
all over the network. In Section 3.3.2.1, we describe two such data sets, one from pri-
mary human heptaocytes and one from the hepatocarcinoma cell line HepG2. Both
data sets were collected by Leonidas Alexopoulos and coworkers in the group of Pe-
ter Sorger, Harvard Medical School. In Section 3.3.2.2, we discuss the analysis of the
two data sets based on the dependency matrix. For the primary human hepatocytes
data, we also show the analysis based on sign consistency (Section 3.3.2.3).

3.3.2.1 Data Description and Discretization

The first set of measurements we consider is a subset of the phosphoproteomic
data set published in Alexopoulos et al. (2010), which was created using a high-
throughput method of bead-based fluorescent readings (Luminex, Austin, TX). Pri-
mary human hepatocytes and HepG2 cells were treated with/without TGFα in
combination with specific molecular inhibitors, whereof six inhibit the activation
of nodes considered in our model (MEK1/2, p38, PI3K, mTOR_raptor, GSK3, and
JNK). The phosphorylation state of different signaling proteins was then measured
after 0, 30, and 180 minutes. Eleven of the measured proteins are included in the
ERBB model: AKT, CREB, ERK1/2, GSK3, HSP27, JNK, MEK1/2, p38, p70S6K_1,
p90RSK, and STAT3. The data set is shown in Figure 3.3.

For the second data set, HepG2 cells were stimulated with different combinations
of five ligands of the EGF family (EGF, NRG1, AR, EPR, and TGFα) and treated
with the PI3K inhibitor ZSTK-474. Again, the phosphorylation state of the eleven
signaling proteins mentioned above was measured after 0, 30, and 180 minutes in
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Figure 3.3: Data set of TGFα-stimulated primary human hepatocytes and HepG2
cells. In the rows, measurements of eleven proteins of the ERBB pathway are shown at 0,
30, and 180 minutes after potential ligand addition. The phosphorylation state of each protein
has been measured after adding one of seven inhibitors, represented by the columns, in combi-
nation without (left panel) and with (right panel) TGFα stimulation. This data set is a subset of
the phosphoproteomic data set published in Alexopoulos et al. (2010). It was processed using
DataRail software (Saez-Rodriguez et al. 2008). (a) Primary human hepatocytes. (b) HepG2
cells. Figure adapted from Samaga et al. (2009).
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fluorescence units using the same high-throughput method as for the first data set.
The complete data set can be seen in Figure 3.4.

The dynamic range of the measured signals depends on the antibodies used for
detection. In the first data set, for example, the signal for JNK ranges from 100 to
500 units, whereas MEK1/2 ranges up to 25000 units (Figure 3.3). Variations such as
these do not necessarily reflect that JNK is less activated than MEK1/2, but may be
attributed to protein abundance or assay calibration issues. Furthermore, the pro-
posed interaction graph methods require a qualitative view of signal transduction,
that is, the raw data need to be discretized. As already stated above, we consider
three discrete states, which indicate the variation of the activation state of signaling
nodes when changing external inputs or adding inhibitors (−1 for decrease, 0 for
unchanged, and 1 for increase). We evaluated the ratios of all experiments that dif-
fer only by a single perturbation (ligand or inhibitor treatment), and the respective
measurement was considered to be (i) increased, if the fold-increase of the signal
(with versus without perturbation) was above 1.5, (ii) decreased, if the fold-decrease
of the signal (with versus without perturbation) was below 0.66, and (iii) unchanged
otherwise.

3.3.2.2 Analysis with the Dependency Matrix

The above described method that uses the dependency matrix for predicting the net-
work response to perturbation experiments (Section 3.1) can, in general, be applied
to any interaction graph model. However, in highly interlinked networks the number
of ambivalent dependencies in the dependency matrix is usually quite high, what
results in a poor predictive power of the method. To compare the ERBB network
structure with the perturbation experiments from primary hepatocytes and HepG2
cells, we removed eight interactions from the network structure (see Figure 3.2).
These interactions describe feedback mechanisms or downregulating feed-forward
loops. Thus, we concentrate on the main activation routes rather than considering
the fine-tuning and downregulation of the signaling pathway. This is appropriate
for analyzing the 30 minutes time point of the given data sets, which represents
a time point where the largest changes in protein modification after perturbation
could be observed (Alexopoulos et al. 2010). If one also wants to analyze the late
network response (e.g., the 180 minutes time point also included in the data set),
the downregulating mechanisms can, of course, not be neglected. We will show in
Chapter 5 an application, where predictions from the dependency matrix are com-
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Figure 3.4: Data set from HepG2 cells, stimulated with five different EGF-like ligands.
View rotated 90 degrees. In the rows, measurements of eleven proteins of the ERBB pathway
are shown at 0, 30, and 180 minutes after potential ligand addition. The phosphorylation state
of each protein has been measured after stimulation with different combinations of EGF-like
ligands, represented by the paired columns, without (left of each pair of columns) and with
(right of each pair of columns) addition of PI3K inhibitor. The data were processed using DataRail
software (Saez-Rodriguez et al. 2008). Figure adapted from Samaga et al. (2009).
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bined with transient measurements; there, the focus is in particular on the feedback
regulation and side activation routes, showing that the method is not generally re-
stricted to acyclic networks, but that additional assumptions are dependent on the
data available and the question one wants to answer.

The dependency matrix that results for the ERBB network after removing the eight
interactions is shown in Figure 3.5. It contains only a few ambivalent dependencies.
Figures 3.6 and 3.7 show the comparison of the experimental data with the model
predictions derived from this dependency matrix. All in all, the experimental net-
work response to the different treatments agreed reasonably well with the structure
of the model, in particular in primary cells. In HepG2 cells, 9.7 % of the analyzed
dependencies were contradictory to our model, whereas 44.6 % agreed explicitly. In
the remaining 45.7 % of the cases (gray entries in Figure 3.7), the data showed no sig-
nificant change, although the perturbed node can affect the readout in our model.
Many of these gray entries will be discussed below. In primary cells, 13.2 % of the
predictions were false, 73.6 % were fully correct, and for 13.2 % we observed no sig-
nificant changes, although the model contains paths between the perturbed node
and the readout.

Most disagreements between model predictions and experimental results concen-
trated on certain experimental scenarios (rows) and readouts (columns). In the fol-
lowing, we discuss such systematic inconsistencies, and, using our model, we seek
to provide explanations and conclusions:

• A significantly increased state of phosphorylation of STAT3 in response to any
of the ligands could not be found both in HepG2 and primary hepatocytes.
Whether this is due to the fact that the activation of STAT3 is very transient,
as it has been reported, for example, for the human epithelial carcinoma cell
line A431 (Olayioye et al. 1999), or if the activation of this transcription factor
through ERBB receptors plays no role in hepatocytes, still has to be clarified.

• Stimulation of HepG2 cells with amphiregulin (not measured in primary cells)
did not result in activation of the measured proteins (see Figure 3.7, lines 34–
37). This is in agreement with findings of amphiregulin being a much weaker
growth stimulator than EGF in some cell types (Shoyab et al. 1989).

• The systematic errors in the column of p38—for primary as well as HepG2
cells—might indicate missing edges in the model requiring further experimen-
tal studies to verify these findings. We cannot exclude that other, for example,
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Figure 3.5: Dependency matrix of ERBB interaction graph model, main activation
routes. Shown is the dependency matrix of the ERBB interaction graph model given in Fig-
ure 3.2. Only the main activation routes are considered, that is, eight interactions (indicated
in Figure 3.2) were removed prior to computing the dependency matrix. The color of matrix
element Dij means the following: green: species i is a strong activator of species j; red: i is a
strong inhibitor of j; yellow: i is an ambivalent factor for j ; black: i has no influence on j. Figure
adapted from Samaga et al. (2009).
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Figure 3.6: Comparison between experimental data from primary hepatocytes and
ERBB model predictions derived from the dependency matrix. Shown is the compari-
son between the measured and predicted changes (ups and downs) in the activation levels of
network elements in response to ligands and inhibitors in primary human hepatocytes (data
obtained from Alexopoulos et al. (2010)). Each row compares two different scenarios A and B.
A filled circle behind the species name in the row labels indicates that, in both scenario A and
scenario B, this species was added as ligand (green filled circle), or an inhibitor for this species
was added (red filled circle). Species whose input values differ in both scenarios are marked
with an arrow pointing up or down, respectively. For example, the comparison of scenario A

(EGF ligand, TGFα ligand, PI3K inhibitor) and scenario B (TGFα ligand, PI3K inhibitor) is labeled
by TGFα •, PI3K •, EGF ↑, that is, the influence of an increased level of EGF on the readouts
is analyzed under the side constraints that TGFα and a PI3K inhibitor were added as well. The
readouts are shown in the columns. The color indicates whether the model predictions derived
from the dependency matrix (Figure 3.5) and the measurements are consistent or not (see color
legend). Figure reprinted from Samaga et al. (2009).
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Figure 3.7: Comparison between experimental data from HepG2 cells and ERBB
model predictions derived from the dependency matrix. Shown is the comparison be-
tween the measured and predicted changes (ups and downs) in the activation levels of network
elements in response to ligands and inhibitors in HepG2 cells (data sets given in Figures 3.3 and
3.4). The horizontal line separates the first (top) from the second (bottom) data set for HepG2
cells. For further explanations and color legend see Figure 3.6. Figure reprinted from Samaga
et al. (2009).
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stress-induced, pathways not captured in our model may have caused these
observations, also because some of the effects on p38 are also present without
ligand stimulation.

• Stimulating HepG2 cells with both TGFα and EGF did not result in a signif-
icantly higher activation level of the readouts compared to adding only one
of these ligands, as can be seen from the predominantly gray entries in lines
26/27 and 44/45 in Figure 3.7. This finding is in accordance with the fact
that both ligands are very similar and bind to the same receptor dimers (see
Appendix C.2).

• One of the major differences in the behavior of the two cell types was the
activation of HSP27: whereas this heat shock protein was activated in response
to cytokine stimulation in primary cells, no significant increase in the state of
phosphorylation was observed in almost all studied scenarios in the cancer cell
line.

• Another remarkable discrepancy between the experimental data and our model
predictions is the influence of the mTOR inhibitor rapamycin on phosphory-
lation of the autoinhibitory domain of p70S6 kinase (termed p70s6k_1 in the
model), which is not supported by our model (see lines 14/15 in Figures 3.6
and 3.7). Although mTOR mediates the phosphorylation of the catalytic site
T389 (Hou et al. 2007), it has to the best of our knowledge not been implicated
with the phosphorylation of T421 and S424, those sites, whose state of phos-
phorylation were measured in the analyzed data sets. However, an inhibitory
effect of rapamycin on these sites has been reported earlier (Weng et al. 1998),
even if the molecular mechanism that could explain this influence still has to
be uncovered.

• According to our model, PI3K should influence all measured readouts except
STAT3. However, the data showed a clear effect of the PI3K inhibitor only on
the phosphorylation of AKT (see Figure 3.6, lines 12/13, and Figure 3.7, lines
50–61). Therefore, we searched for hypothetical changes in our model struc-
ture that could explain these experimental findings. We observed that node
Rac/CDC42 lies on all paths connecting the ligands with the aforementioned
critical readouts (except GSK3, see below). We may thus hypothesize that—in
contrast to the assumption in our model—PI3K does not influence the small
G-proteins Rac and CDC42 in primary hepatocytes and in HepG2 cells.
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• In the model, the inhibitory phosphorylation of GSK3 can be induced by a
MEK1/2-dependent pathway (via p90RSK) and by a PI3K-dependent pathway
(via AKT). Figures 3.6 and 3.7 (lines 9 and 13) show that the phosphorylation of
GSK3 in response to TGFα is independent of the MEK inhibitor and the PI3K
inhibitor, both in HepG2 and in primary cells. As TGFα stimulation leads to
a strong phosphorylation of GSK3 in both cell types, there must be another
signaling route, not involving MEK and PI3K. One possible candidate is PKC
which has already been reported to inhibit GSK3, however, not in response to
ligands of the EGF family (Grimes and Jope 2001).

• According to the data, both GSK3 and p90RSK are influenced by JNK inhibitor
after TGFα stimulation in primary hepatocytes (see Figure 3.6, line 18). This
seems to support another possible mechanism, where JNK activates p90RSK,
which may then phosphorylate GSK3. However, the JNK inhibitor affected
much more proteins than expected, both in HepG2 and in primary cells. As
these unexpected influences also occurred in absence of ligand stimulation,
this strongly suggested a minor specificity of the JNK inhibitor. This is in
accordance with observed off-target effects of the JNK inhibitor in Alexopoulos
et al. (2010).

• Similar as for GSK3 phosphorylation, data analysis with our model provided
useful insights into the activation mechanism of CREB in response to TGFα:
the proposed effect of the p38-dependent kinase MK2 on CREB could not be
observed both in HepG2 and in primary cells (see Figures 3.6 and 3.7, line 11).
The positive effect of MEK on CREB phosphorylation after TGFα stimulation
could be seen in HepG2 (Figure 3.7, line 9), but not in primary hepatocytes
(Figure 3.6). This indicated that there must be an alternative pathway for CREB
activation in primary hepatocytes.

A summary of the above mentioned results is given in Table 3.2. Changing the
model accordingly, we could increase the number of comparisons that agreed ex-
plicitly from 73.6 % to 83.2 % for primary hepatocytes, and from 44.6 % to 65.7 % for
HepG2 cells. Moreover, the number of entries where we assumed a change in the
data but could not detect a significant increase or decrease was reduced from 13.2 %
to 2.5 % (primary hepatocytes), and from 45.7 % to 22.2 % (HepG2 cells), albeit at the
expense of a minor increase in the number of contradictions (primary hepatocytes:
increase from 13.2 % to 14.2 %; HepG2: increase from 9.7 % to 12.1 %).
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Table 3.2: Proposed ERBB model changes to improve agreement between interaction graph
model structure and experimental data.

Primary human hepatocytes HepG2 Cells

Removed interactions
erbb11 → stat3 x x
pip3 → vav2 x x
pi34p2 → vav2 x x
pip3 → sos1_eps8_e3b1 x x
p90rsk � gsk3 x x
akt � gsk3 x x
mk2 → hsp27 x
mk2 → creb x x
p90rsk → creb x

Added interactions
mtor_rap → p70s6k_1 x x
pkc � gsk3 x x
tgfa → creb x x

3.3.2.3 Analysis Based on Sign Consistency

In the previous section, we checked for data from primary human hepatocytes and
from HepG2 cells whether the measured responses to certain ligands and inhibitors
were consistent with the causal dependencies in the ERBB network topology. Re-
sulting from this analysis, we proposed for both cell types changes in the network
structure to improve the agreement between experimental data and model predic-
tions. These changes were derived solely by inspection. Here, we apply the ILP
approach introduced in Section 3.2 to compare experimental data with the ERBB
network structure. This can be seen as a step forward, as the ILP approach adapts
the model structure to the experimental data in an automatic way and searches
for all possible solutions that resolve discrepancies between model and data. We
restricted ourselves here to analyze the data from primary human hepatocytes (Fig-
ure 3.3(a)). As the JNK inhibitor data from the data set showed off-target effects (see
Section 3.3.2.2 and Alexopoulos et al. (2010)), we decided to exclude this data.

Data and Model Preprocessing. The data analysis using the concept of sign
consistency is based on the assumption that the system moves from one steady state
to another upon imposing the perturbations (Siegel et al. 2006). However, this does
not necessarily mean that we have to wait until the system has reached its new
steady state completely; instead, we can take the measurements if we can assume
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that the sign of the state variations will not change anymore. Thus, it is important to
determine a suitable time point where all relevant state changes induced by the per-
turbation have become visible in the measurements. For example, if measurements
are taken too early, a signal has possibly not yet been propagated to all downstream
nodes resulting in inconsistencies with the predictions made from the interaction
graph. For our data set under study, the 30 minutes time point has been chosen in
such a way that the perturbation-induced changes in the phosphorylation level of
the proteins are well-reflected by the measurements (Alexopoulos et al. 2010). Data
discretization was performed as described in Section 3.3.2.1.

We used the same network as for the analysis in the previous section, that is, we
removed eight interactions from the ERBB interaction graph that represent feedback
mechanisms or downregulating feed-forward loops (indicated in Figure 3.2). In the
following, we show the application of the SCEN_FIT, MCoS, OPT_SUBGRAPH and
OPT_GRAPH algorithms. To be able to make meaningful conclusions, we sought to
find, for each of the problems, all optimal solutions. However, enumerating all so-
lutions for OPT_SUBGRAPH and OPT_GRAPH in the full model structure becomes
quickly intractable as the highly branched network structure (e.g., various feedfor-
ward routes running over different combinations of ERBB dimers and adapter pro-
teins connect TGFα with PI3K) leads to an immense number of different optimal
solutions. Thus, we used a loss-free network compression technique by which com-
pressed solutions were computed from a smaller network. Other advantages of
network compression are that differences between the original and the compressed
network structure may indicate non-identifiabilites in the original network and that
obtained optimal solutions can be represented in a condensed manner, not explicitly
displaying all combinatorial solutions existing due to non-uniqueness. By keep-
ing track of the made compression steps it is, in principle, possible to decompress
solutions found in the compressed network. However, it is often useful to discuss in-
stead the found solutions directly for the compressed network, thereby avoiding the
interpretation of a typically much larger number of decompressed solutions arising
due to non-uniqueness. For example, instead of listing all possible parallel pathway
combinations connecting A with B, one might conclude that “at least one pathway
between A and B must exist”, what can easier be represented in a compressed net-
work. We used four simple compression rules, which are given in Appendix B.
For the SCEN_FIT and MCoS analysis, we only removed non-observable and non-
controllable nodes according to Rule 1 of the model compression (Appendix B); the
resulting graph is shown in Figure 3.8(a). The full compression was applied before
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searching for optimal subgraphs and graphs. As can be seen in Figure 3.8(b), the
model structure could be compressed substantially from 39 nodes and 67 edges to 14
nodes and 18 edges. Strikingly, Rac_CDC42 remained as the only latent node in the
compressed structure. The compressed interaction graph reflects the essential de-
pendencies in the original network structure that can be addressed by the given set
of perturbed/measured nodes. For example, parallel signaling paths leading from a
perturbed node to a measured node without passing any other measured/perturbed
node cannot be distinguished in the analysis performed herein and were therefore
condensed to one single edge in the compressed graph.

Note that in Figure 3.8, compared to the original network (Figure 3.2), the inter-
actions influencing GSK3 are activating. This is due to the fact that the measured
phosphorylation of GSK3 is inhibitory; in order to directly map the measurements,
we decided here to interpret the interactions as “positively influencing the phospho-
rylation” instead of “inhibiting the activity” as in the original network.

Applying SCEN_FIT and Minimal Correction Sets. In Figure 3.9, the discretized
measurements and, for each scenario, the corresponding SCEN_FIT solution are
depicted. Recall that the SCEN_FIT algorithm determines, for a given scenario, a
sign consistent node labeling that is closest to the measurements and can thus best
explain how the ERBB network topology in Figure 3.8(a) induces the measured node
changes for the respective scenario. Deviations between the determined optimal
sign pattern and the measured state changes (as indicated in Figure 3.9) uncover
inconsistencies between network structure and observed behavior. For example,
scenario 1 reflects the influence of the ligand TGFα, that is, TGFα is the perturbed
node and its state is fixed to 1. As depicted in Figure 3.9, the SCEN_FIT solution for
this scenario shows a fitting error of 1: in the optimal sign consistent node labeling,
all measured nodes have sign 1 as they are connected to TGFα by positive paths
only. This is in accordance with the measured state of all nodes except STAT3: the
latter shows no significant change in response to TGFα inducing thus a fitting error.
Scenarios 2–6 reflect the influence of TGFα in presence of different inhibitors. We
assume that an inhibitor completely blocks the signal flow through the inhibited
species; thus, we define these scenarios by fixing the state of TGFα to 1 and of the
inhibited node to 0. The remaining scenarios reflect the influence of the inhibitors in
presence (scenarios 8, 10, 12, 14, and 16) and absence (scenarios 7, 9, 11, 13, and 15)
of TGFα. In each of these scenarios, the perturbed node is the respective inhibitor
and its state is fixed to −1. Importantly, by using the enumeration algorithm for
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Figure 3.8: Interaction graph model of the ERBB signaling network, processed for ILP
approach. (a) The full network as shown in Figure 3.2 after removal of eight interactions (see
text) and of non-observable and non-controllable nodes. All edges are activating edges having
positive signs. (b) The compressed model obtained after applying the compression rules given
in Appendix B to the model shown in (a). Figure reprinted from Melas, Samaga et al. (2013).
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SCEN_FIT we could prove that, for each scenario, the found solution for the optimal
fit is unique, hence, no other optimal solutions need to be considered.

We also assessed the sensitivity of the SCEN_FIT results with respect to the cho-
sen thresholds tup = 1.5 and tdown = 0.66 for data discretization (significant in-
crease: fold-increase > tup, significant decrease: fold-decrease < tdown). Therefore,
we screened 80 different values for tup (from 1.025 to 3.025) and 40 values for tdown

(from 0.1 to 1.0) and plotted the resulting cumulative fitting error of the SCEN_FIT
problems from all 16 scenarios (Figure 3.10). The larger tup and the smaller tdown

became, the more over-responsive the discretized data set was. We observed that
there was a relatively large range (0.2 � tdown � 0.7, 1.5 � tup � 1.9) where the total
fitting error showed its lowest value (between 40 and 50), and which included the
chosen thresholds. Outside that area, the fitting error increased rapidly.

The SCEN_FIT results shown in Figure 3.9 are in high accordance with the results
derived with the dependency matrix (Figure 3.6). Please note that due to the re-
moval of JNK inhibitor data for the SCEN_FIT analysis, there are three scenarios in
Figure 3.6 which are not included in Figure 3.9.

Figure 3.9 shows that there are several inconsistencies between experimental data
and the SCEN_FIT solutions derived from the initial network topology (fitting error
over all scenarios is 43). In order to understand where these inconsistencies are
induced in the network, we address the identification of minimal correction sets
(MCoS). We recall that MCoS are minimal sets of artificially enforced changes of
node states (e.g., from increased to decreased), which make an inconsistent scenario
consistent. Exemplarily, we focus on scenario 11 of Figure 3.9 (where PI3K inhibitor
is added without presence of TGFα), whose SCEN_FIT solution produced a total
error value of 6.

As shown in Table 3.3, five MCoS were identified, each containing three correc-
tions (virtual perturbations) rendering the experimental scenario 11 sign consistent.
Common trend in all MCoS is to remove the downregulating effect of PI3K on sig-
nals downstream of Rac_CDC42 by setting Rac_CDC42 to unchanged (0) or one of
the nodes SOS1_EPS8_E3B1, VAV2, PtdIns(3,4)P2 or PIP3 to increased (1). Introduc-
ing this change, the states of p38, JNK, MEK1/2, HSP27, CREB, and p90RSK were
in accordance with the measurements (i.e., they show now response upon adding
PI3K inhibitor). However, by this modification, the states of ERK1/2 and p70S6K_1
would change their predicted level from “decreased” to “unchanged”, which is not
in agreement with the measured state. This was corrected in all MCoS by setting
ERK1/2 to −1. Again, this correction implied an undesired effect, namely chang-
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Figure 3.9: Discretized measurements of the 16 considered experimental scenarios
and the resulting SCEN_FIT solutions computed from the ERBB interaction graph
model. Each row corresponds to one experimental scenario, each column contains the mea-
sured state changes of the readout species. An arrow behind a species name in the row indi-
cates that the perturbation (increase or decrease according to arrow pointing up or down) of
this species is considered. Species names followed by a red or green filled circle in the rows
indicate that this species was added as ligand (green) or that an inhibitor for this species was
added (red). For example, scenario 2 considers an increase of TGFα in presence of an inhibitor
for MEK1/2. The discretized measurements are mapped to the fill color of the respective fields:
if a node is increased in the respective scenario, the corresponding field is filled green, if it is de-
creased, the field is filled red, and if it shows no significant change, it is filled white. Accordingly,
the color of the added circle shows the sign of the node in the closest sign consistent node la-
beling derived by SCEN_FIT: green circles correspond to sign 1, red circles to sign −1, and white
circles to sign 0. Note that circles only appear if the measurement is not in accordance with
the respective state in the sign consistent labeling. Figure adapted from Melas, Samaga et al.
(2013).
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Figure 3.10: Cumulative fitting error of optimal SCEN_FIT solutions over all 16 sce-
narios in the ERBB network as a function of the two discretization thresholds. The
figure shows the cumulative fitting error of optimal SCEN_FIT solutions over all 16 scenarios in
the ERBB network (Figure 3.8) as a function of the two thresholds for significant increase and
significant decrease. The blue rectangle indicates the combination of thresholds used for all
analyses in this section. Figure reprinted from Melas, Samaga et al. (2013).
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Table 3.3: MCoS for scenario 11 in Figure 3.9.

MCoS 1 MCoS 2 MCoS 3 MCoS 4 MCoS 5

Node id B+
i B−

i Val B+
i B−

i Val B+
i B−

i Val B+
i B−

i Val B+
i B−

i Val

rac_cdc42 1 0
p90rsk 1 0 1 0 1 0 1 0 1 0
erk12 1 −1 1 −1 1 −1 1 −1 1 −1
sos1_eps8_e3b1 1 1
vav2 1 1
pi34p2 1 1
pip3 1 1

Five MCoS were identified for the ERBB network model (Figure 3.8(a)) with respect to scenario 11
in Figure 3.9. Each MCoS would lead to a perfect fit for this scenario, and all five MCoS contain
three nodes to be enforced to a certain value. Nodes p90rsk and erk12 are common in all MCoS.
In addition, one of the nodes rac_cdc42, sos1_eps8_e3b1, vav2, pi34p2 and pip3 is perturbed
in each MCoS. In columns MCoS 1–5, three sub-columns are shown: sub-column Val shows the
corrected state of the node, the entry 1 in sub-column B+

i indicates that a positive input edge
is added to the node in order to alter its state, and the entry 1 in sub-column B−

i indicates that
a negative input edge is added to the node. Table adapted from Melas, Samaga et al. (2013).

ing p90RSK from 0 to −1, which is countered by assigning p90RSK the value 0 in
all MCoS. Clearly, three required corrections indicate that the observed behavior for
this scenario was not well-reflected by the network topology. It would therefore be
useful to consider all scenarios at the same time to detect common points of errors
produced in all or many scenarios.

Applying OPT_SUBGRAPH. We used the OPT_SUBGRAPH algorithm to find—by
appropriate edge removals—optimal subgraphs of the compressed ERBB network
structure (Figure 3.8(b)), each minimizing the fitting error over all experimental sce-
narios.

The computation of all optimal subgraphs of the compressed network resulted in
six solutions having the same minimum fitting error of 26 which has thus reduced
much in comparison to 43 in the original model. Figure 3.11(a) shows a combined
view of the six optimal solutions; the single solutions are shown in Table 3.4. In more
detail, a positive influence of TGFα on STAT3 is not reflected in the measurements
(see Figure 3.9); consequently, the edge TGFα → STAT3 is removed in all optimal
solutions. Another edge that is removed in all solutions is PI3K → Rac_CDC42, as a
number of signals downstream of Rac_CDC42 did not show the expected decreased
response to the PI3K inhibitor in the measurements (this is consistent with the re-
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Figure 3.11: Optimal model structures derived from the compressed ERBB model by
applying OPT_SUBGRAPH and OPT_GRAPH procedures. (a) Combined view of the six op-
timal model structures derived from the compressed ERBB model (Figure 3.8(b)) by applying
the OPT_SUBGRAPH procedure with enumeration. (b) Combined view of the three optimal sub-
graphs resulting when adding tgfa → creb to the initial model structure. Figure adapted from
Melas, Samaga et al. (2013).
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Table 3.4: Optimal subgraphs that fit the discretized data shown in Figure 3.9.

Removed edges Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6

pi3k → rac_cdc42 1 1 1 1 1 1
rac_cdc42 → mek12 1 1
rac_cdc42 → p38
tgfa → rac_cdc42
tgfa → pi3k
tgfa → mek12 1 1
pi3k → akt
p90rsk → creb 1 1 1
p90rsk → gsk3
akt → gsk3
rac_cdc42 → jnk
p38 → hsp27
p38 → creb 1 1 1
mek12 → erk12
jnk → p70s6k_1
erk12 → p70s6k_1 1 1 1 1 1 1
erk12 → p90rsk
tgfa → stat3 1 1 1 1 1 1

The first column shows the complete list of edges included in the compressed network (Fig-
ure 3.8(b)). Columns 2–7 denote whether the respective edge was removed (1) or not (empty
cell) by the optimization procedure. Table adapted from Melas, Samaga et al. (2013).
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sults of the MCoS disussed in the previous paragraph. Finally, by removing the
edge ERK1/2 → p70S6K_1 in all solutions, the missing influence of MEK inhibitor
on p70S6K_1 is accommodated. The edges TGFα → MEK1/2 and Rac_CDC42 →
MEK1/2 are only removed in some of the solutions. This is an example for two
parallel routes that cannot be distinguished: the model structures containing both
routes or either route give rise to the same sign consistent labeling. In contrast, re-
moving either of the edges p90RSK → CREB and p38 → CREB results in different
sign consistent labelings, both showing the same number of discrepancies to the
measurements: the phosphorylation state of CREB is neither affected by MEK in-
hibitor nor by p38 inhibitor. However, removing both edges at the same time would
interrupt all routes from TGFα to CREB what is contradictory to the observed pos-
itive effect of TGFα in scenarios 1–6. Thus, in this case, allowing only the removal
of edges is not sufficient to fully explain the observed measurements. This can be
seen in Figure 3.12, where the two possible optimal sign consistent labelings that
SCEN_FIT would find for the six pruned model structures are shown in comparison
to the discretized measurements: in each solution, there are three different remain-
ing errors in the CREB column. The errors for STAT3 as well as the errors in response
to PI3K inhibitor (scenarios 11 and 12) could be significantly reduced by removing
the respective edges.

Applying OPT_GRAPH. Next, we used the OPT_GRAPH procedure to identify
edges that may be missing from the ERBB network and whose addition would there-
fore improve the goodness of fit to the data. Table 3.5 displays the edges that lead
to the highest improvement as determined by OPT_GRAPH. All these edges have in
common that they give rise to an additional route from TGFα to CREB not running
over p38 or MEK1/2. By adding any of these edges to the model structure before
reapplying the OPT_SUBGRAPH procedure, we could further reduce the fitting er-
ror to 23, compared to 26 if only edge removals were allowed.

As an example, we show the optimized model structures when adding the edge
TGFα → CREB. A combined view of the three optimal solutions that can be found
by OPT_GRAPH after adding this edge is shown in Figure 3.11(b). As it was the
case for the optimization in the original network, the edges TGFα → STAT3, PI3K
→ Rac_CDC42, and ERK1/2 → p70S6K_1 were removed in all solutions, while the
edges TGFα → MEK1/2 and Rac_CDC42 → MEK1/2 are two alternative routes (ei-
ther both are present or at least one of both; this gives the three optimal subgraphs).
With the added edge TGFα→ CREB the model structure contains an activation route
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Figure 3.12: Discretized data and the two SCEN_FIT solutions that result from the
optimal subgraphs given in Figure 3.11(a). The color coding is the same as in Figure 3.9.
All six optimal subgraphs shown in Figure 3.11(a) gave rise to the same SCEN_FIT solution,
except for the CREB column. Here, three subgraphs showed a mismatch in scenarios 3, 9, and
10 (indicated by the left semicircles), while the other three showed a mismatch in scenarios 2,
7, and 8 (indicated by the right semicircles). Figure adapted from Melas, Samaga et al. (2013).

Table 3.5: Suggestions for new single edges as computed by OPT_GRAPH.

tgfa → creb
jnk → creb
p70s6k_1 → creb
rac_cdc42 → creb
tgfa → erk12
jnk → erk12
rac_cdc42 → erk12

Adding any of these edges to the model structure leads to a decrease of the fitting error from
26 to 23. Table adapted from Melas, Samaga et al. (2013).
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from TGFα to CREB that is independent of p38 and p90RSK, and removing both the
p90RSK → CREB and p38 → CREB edge in all solutions was now optimal.

Figure 3.13: Comparison of the fitting errors of the initial model structure (see Fig-
ure 3.8) and of the optimal interaction graph shown in Figure 3.11(b). Green fields
indicate an error that has been present in the original model structure, but could be removed
by optimizing the model structure. Yellow fields refer to errors that could not be resolved, and
red fields indicate errors that have not been present in the original model structure, but were
introduced by the optimization. Figure adapted from Melas, Samaga et al. (2013).

All three solutions induced the same optimal sign consistent node labeling. Fig-
ure 3.13 shows the mismatches of the experimental data in the optimal graph (Fig-
ure 3.11(b)) versus the mismatches in the initial model structure (Figure 3.8). The
measurements for CREB were now in full accordance with the model structure, and
the errors for STAT3 could be significantly reduced. Furthermore, a number of errors
in scenarios 11 and 12 showing the influence of PI3K inhibitor could be eliminated,
although at the same time a few mismatches for some nodes have been introduced.
Finally, the influence of MEK inhibitor on p70S6K_1 was now predicted correctly.
Here, we considered only the addition of a single edge to improve the fit to data.
In principle, one could remove all remaining discrepancies by adding further edges.
However, in particular if the measurements show inconsistencies (e.g., the different
effect of PI3K inhibitor on ERK1/2 with/without TGFα), some errors can only be
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removed by introducing a positive and a negative edge between a pair of nodes.
Furthermore, edges leading only to a minor improvement of the fitting error are un-
likely to represents a real effect. We also emphasize that proposed new edges may
often indicate indirect rather than direct effects, thus representing hidden paths in
the network. In any case, dedicated experiments are required to confirm or prove
the suggested causal links.

To summarize, essential findings of the new network structure optimization via
sign consistency in the ERBB network—which may indicate important specifics of
this signaling pathway in primary human hepatocytes—are:

1. STAT3 is not activated by TGFα.

2. Phosphorylation of the autoinhibitory domain of p70S6K (termed p70S6K_1 in
the model) is independent of ERK1/2.

3. The activation of CREB in response to TGFα is likely to be caused by a p38 and
MEK1/2 independent route.

4. The activation of Rac/CDC42 is independent of PI3K activity.

These results, generated in an automated way, confirm several of the conjectures
formulated in Section 3.3.2.2, which were derived by inspection only. In detail,
findings 1,3, and 4 agree explicitly with the proposed changes in network structure
derived with the dependency matrix (see Table 3.2). Finding 2 shows the advan-
tage of an automated approach: the proposed change in the model structure would
have also improved the agreement between model and data using the dependency
matrix, but was simply overlooked. In contrast, some proposed model changes in
Table 3.2 were not identified with the ILP approach, as, for this application, we only
considered the addition of one edge to the initial model structure. This applies for
the added edges mTOR_Rap → p70S6K_1 and PKC → GSK3, but also for p90RSK →
GSK3 and AKT → GSK3, whose removal only reduces the fitting error if, in return,
PKC → GSK3 (or another way of TGFα-induced GSK3 phosphorylation) is added.
Not only considering single edge additions for OPT_GRAPH might have resulted in
the identification of these changes.

3.4 Discussion

In this chapter, we demonstrated how interaction graphs can be applied to detect
and remove inconsistencies between measurements and signaling network topolo-
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gies. The concept of the dependency matrix (Section 2.4.1.2) can be used in a
straightforward way to predict the effect of perturbations in stimulus–response ex-
periments. As an application example, we studied a large-scale model describing
signaling through the four ERBB receptors. We carefully constructed this model
based on the stoichiometric pathway map of Oda et al. (2005) and intense literature
research. The model can be seen as a “master model”, which assembles the current
qualitative knowledge of the main and also some side routes of ERBB signaling de-
rived from different cell types. The analysis of high-throughput phosphoproteomic
data from primary human hepatocytes and the hepatocarcinoma cell line HepG2 re-
vealed systematic inconsistencies, from which we could derive suggestions for pos-
sible cell-type-specific changes of the network structure. Another example where
we applied data analysis based on the dependency matrix to interrogate interaction
graph network structures is that of Interleukin 1 and 6 signaling in primary human
hepatocytes (Ryll et al. 2011).

If the measurements to be analyzed were taken at a time point where all relevant
state changes induced by the perturbation have become visible, that is, if a steady
state is reached in that sense that the signs of the state variations will not change
anymore, stronger constraints on the possible network behavior can be derived from
the concept of sign consistency. The approach we presented herein uses integer
linear programming (ILP) to encode these constraints and to predict the possible
changes (increase, decrease, no change) of the activation levels of the involved play-
ers for a given experiment. Based on this ILP formulation, we presented four basic
optimization routines that not only enable the detection of inconsistencies between
measurements and predicted behaviors (introduced as SCEN_FIT problem), but also
their removal (problems MCoS, OPT_SUBGRAPH, and OPT_GRAPH). While with
minimal correction sets (MCoS) places in the network are identified that might cause
the observed inconsistencies for a single experimental scenario, OPT_SUBGRAPH
and OPT_GRAPH enable the identification of changes in the network structure to
minimize the mismatch between data and model predictions over all experimental
scenarios. We also provided enumeration algorithms to find multiple or all solutions
that solve the optimization problem equally well. For example, one can determine
all optimal subgraphs that minimize the number of inconsistencies between mea-
surements and predictions. However, the enumeration of optimal solutions may
quickly become prohibitive in larger networks. A possible workaround is to apply
network compression techniques to deal with the combinatorial complexity arising
in large-scale networks. This not only allows the enumeration of solutions, but is
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also a way to indicate non-identifiabilites in the original network and to represent
the obtained solutions in a condensed manner.

Closely related to our sign consistency approach are the methods introduced in
Gebser et al. (2011), Guziolowski et al. (2009), and Siegel et al. (2006). This frame-
work is also based on interaction graphs and uses a similar consistency rule as we
did herein. However, there are a number of key differences. First, we explicitly al-
low a “0” change to mark non-affected node states. Second, the four basic problem
formulations presented herein go beyond the techniques introduced in Gebser et al.
(2011), Guziolowski et al. (2009), and Siegel et al. (2006). In particular, the training
of the topology, that is, the identification of inactive or missing interactions based on
a library of stimulus–response experiments, was not considered in these works. A
third key difference is that we formulated the constraints resulting from the consis-
tency rules as an ILP problem, in contrast to answer set programming (ASP), which
was used in Gebser et al. (2011). A follow-up study of the work presented herein,
which seeks to derive ASP formulations of the training and enumeration problems
formulated herein, has already been initiated in the research group of Steffen Klamt.
Within this study, approaches to enable the analysis of networks containing positive
feedback loops are also under consideration.

As for the dependency analysis, we used the interaction graph model of ERBB
signaling together with a set of experimental high-throughput data from primary
human hepatocytes as an application example. Using the newly presented algo-
rithms, we could systematically uncover all inconsistencies between measurements
and network topology and give possible explanations for them. Basically, these find-
ings were in accordance with our findings derived with the dependency matrix.
Furthermore, novel biological insights for this important signaling pathway could
be revealed by listing interactions that are likely to be inactive in hepatocytes and
by giving suggestions for possibly missing interactions that, if included, would sig-
nificantly improve the goodness of fit. Clearly, these predictions await experimental
validation.

The ERBB study gave a proof of principle for the presented methodologies, show-
ing the flexibility of both approaches and that they can be applied to a wide range of
problems arising when confronting signaling network topologies with experimental
data. A key advantage of these interaction-graph-based methods is that only fairly
accessible biological knowledge is required. A critical point might be the necessary
data discretization. Here, assessing the results with respect to sensitivities of the
chosen discretization parameters is one possible way to account for the uncertainties
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of the parameter choice. Probably the most serious shortcoming of the presented
methods is their poor predictive power in highly interlinked networks. As demon-
strated in the ERBB example, it might be necessary to neglect certain influences that
are assumed to have a minor impact on the question under study. Although such
simplifications are often justified, one should be aware of them when interpreting
the results. After all, we will show in Chapter 5 a study where a hybrid network
inference approach making use of the dependency matrix can very well be applied
to a network containing feedback loops and cross-regulating mechanisms.
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Networks

In logical models, the information that is contained in an interaction graph is ex-
tended by rules defining how the discretized state of a node is governed by the
states of other nodes. This enables to compute the qualitative input–output behavior
of signaling pathways as well as the identification of intervention strategies (see Sec-
tion 2.4.2). Here, we present some further developments of the methods introduced
in Klamt et al. (2006) for the static analysis of logical models. As in the previous
chapter, we exemplify the proposed methods by application to ERBB signaling.

First, in Section 4.1 we present with species equivalence classes a new technique
for the analysis of logical models. Species equivalence classes were introduced in
Samaga et al. (2009), from which Section 4.1 was derived. Section 4.2 deals with
the computation of minimal intervention sets (MISs). The concept of MISs has been
introduced in Klamt et al. (2006). Here, we present techniques for search space
reduction facilitating the enumeration of MISs in networks of realistic size as intro-
duced in Samaga et al. (2010). In Section 4.3, we describe how the predicted binary
network response derived from a logical model can be compared to experimental
stimulus–response data; this section is adapted from Samaga et al. (2009). Finally,
we describe in Section 4.4 the logical model of ERBB signaling derived from the in-
teraction graph model given in Section 3.3.1. Besides analyzing the model with the
methods described in Section 2.4.2, we show how the newly proposed techniques
apply to it. Again, this is a revision of the descriptions given in Samaga et al. (2009).

4.1 Species Equivalence Classes

Here, we present a new analysis technique for logical networks: we search for equiv-
alence classes of network nodes whose activation pattern is completely coupled in
logical steady state: species A and B are elements of the same equivalence class if it
either holds that their values in steady state are always the same (A = 0 ⇔ B = 0,
A = 1 ⇔ B = 1; positive coupling) or always the opposite (A = 0 ⇔ B = 1,
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A = 1 ⇔ B = 0; negative coupling), irrespective of the chosen inputs (e.g., ligands).
In other words, the state of one species in the equivalence class determines the states
of all other species in this class. The relation given above holds for logical steady
states where both A and B are determined and where no intervention was made in
the network except for the inputs.

An efficient algorithm for computing the equivalence classes can be constructed
as follows:

1. Equivalence classes can be computed for a given scenario, so we first define a
specific, possibly empty, set of fixed states, typically from some input nodes.

2. For this given scenario, we test systematically for each species whether the
respective node is strongly coupled with other nodes or not, independently of
external stimuli. For each species A we compute (i) the logical steady states of
all other species that result when fixing the state of A to 1 and (ii) the logical
steady states of all other species that result when fixing the state of A to 0. A
node B whose logical steady state can be determined in both cases and is 1 in
one case and 0 in the other case is known to be in one equivalence class with
species A: B is positively coupled with A if the two resulting logical steady
states of B are 1/0 (it then holds A = 1 ⇒ B = 1, A = 0 ⇒ B = 0 and,
thus, according to contraposition also B = 0 ⇒ A = 0, B = 1 ⇒ A = 1)
and negatively coupled if the two logical steady states are 0/1 (it then holds
A = 1 ⇒ B = 0, A = 1 ⇒ B = 0 and, thus, according to contraposition also
B = 0 ⇒ A = 1, B = 1 ⇒ A = 0). The case that the logical steady state of a
species B is 0/0 or 1/1 (for fixing A = 1/A = 0) indicates that this species B

can never be activated or never be inhibited, respectively, and thus indicates a
semantic problem in the model.

We note that if a species A is coupled with species B, and species B is coupled with
species C, we can subsume all three species into one equivalence class.

Composing the equivalence classes in this way it may also happen that species
that cannot influence each other, that is, no directed path between both exists, are
in one equivalence class due to a common upstream regulator. Consider a network
that only contains the interactions A → B and A → C. Fixing the state of B or C

to 1 or 0 we cannot conclude any equivalence relations as no further states can be
determined. Fixing A to 1 and 0 we find that A is equivalent to B and A is equivalent
to C, thus—according to the rule given above—A, B, and C form one equivalence
class.
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We exemplify the equivalence classes by means of the logical model of the EGF/NRG1
network example given in Figure 2.3. If the states of all input nodes were left open,
the model has two equivalence classes: {SOS, Ras, MEK, ERK} and {PI3K, PIP3,
AKT}. If we fix the states of all receptor monomers to 1, we get the two additional
classes {EGF, ERBB11} and {NRG1, ERBB23}.

Species equivalence classes are very similar to enzyme (or reaction) subsets known
from metabolic networks (Burgard et al. 2004; Pfeiffer et al. 1999), and they help to
uncover functional couplings embedded in the network structure. We anticipate that
the concept of equivalence classes also provides a basis for model reduction (e.g.,
when computing logical steady states), similar as it has been employed in metabolic
networks (see, e.g., Gagneur and Klamt (2004)).

4.2 Computation of Intervention Strategies and Failure Modes

The identification of combinatorial intervention strategies and the elucidation of fail-
ure modes that may cause aberrant behavior of cellular signaling networks are highly
relevant topics in cell biology, medicine, and pharmaceutical industry. As already
stated in Section 2.4.2, the concept of minimal intervention sets (MISs) allows to
tackle those questions within a logical modeling framework. The enumeration of
MISs is computationally expensive: each MIS can be represented by an n-element
vector where each element (node) is either −1 (constitutive inhibition), 0 (no in-
tervention), or 1 (constitutive activation), such that in a network with n nodes, 3n

possible combinations of interventions exist. Therefore, in order to facilitate the
computation of MISs in realistic large-scale problems, algorithmic approaches are
required to cope with the combinatorial complexity of this problem. In this section,
we introduce several techniques that reduce the search space without losing any
solution. We start with definitions giving a rigorous framework of MISs.

4.2.1 Definition of Minimal Intervention Sets and General Algorithm

The idea of intervention sets is to search for combinations of constitutive activa-
tions and deactivations of species in the network that provoke a desired network
response. In other words, we search for a pattern of species values to be fixed (the
intervention set), so that certain species reach a predefined value in the resulting
logical steady state. Please note that in the following, logical steady state denotes
the logical steady state in three-valued logic as introduced in Section 2.4.2. In the
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logical framework, interventions (constitutive activations/deactivations) are treated
as nodes whose values are clamped to 1 or 0, respectively. In the biological con-
text, examples for constitutive activations are mutations that lead to constitutively
activated species or a continuous stimulation with external signals (e.g., by a lig-
and), whereas a constitutive inhibition may correspond to gene knock-outs, specific
blocking of the activity of a certain species, or—approximately—the knock-down of
certain nodes using RNA interference techniques.

Given a logical network with species v1 . . . , vn, the desired network response is
specified by the intervention goal xG = (xG1 , . . . , xGn )T , xGi ∈ {0, 1, ∗}. Those species
vi whose desired value xGi is specified as 0 or 1 are the target species, and by IT =

{i : xGi ∈ {0, 1}} the index set of the target species is given. To distinguish between
nodes that shall be activated and nodes that shall be inhibited, we introduce the
index sets IT+ = {i : xGi = 1} and IT− = {i : xGi = 0}. In the examples given below,
we will sometimes simply write {vi = xGi }i∈IT to declare the intervention goal. Op-
tionally, we may define natural or external side constraints for a set of nodes {vi}i∈IE
by introducing the state vector xC = (xC1 , . . . , xCn)T satisfying xCi ∈ {0, 1} if i ∈ IE, and
xCi = ∗ if i ∈ {1, . . . ,n} \ IE. This enables us to state the conditions under which
the intervention goal should be fulfilled, for example, in the presence/absence of
a ligand. The intervention goal together with the given side constraints forms an
intervention scenario P = (xG, xC). In general, one might also consider interven-
tion problems that are composed of several intervention scenarios and search for
intervention sets that fulfill for each scenario the intervention goal considering the
respective side constraints (Samaga et al. 2010). However, here, we restrict ourselves
to intervention problems with one intervention scenario. An intervention set for the
intervention problem P = (xG, xC) can now be defined as a set of states x#

i ∈ {0, 1},
i ∈ I# ⊆ {1, . . . ,n}, satisfying xSi (x

0) = xGi for all i ∈ IT , where xSi (x
0) denotes the

logical steady state of species vi that results from the fixed values given by the in-
terventions and side constraints, that is, x0

i = x#
i for all i ∈ I#, and x0

i = xCi for all
i ∈ {1, . . . ,n} \ I#. As for the intervention goals, we will sometimes use the simplified
notation {vi = x#

i }i∈I# to specify an intervention set. For practical reasons we are only
interested in (support-)minimal intervention sets (MISs), in which no subset of the
involved interventions fulfills the intervention goal. Furthermore, we concentrate
on the nodes of the network although, in principle, we could also search for inter-
ventions at the hyperedges. However, in cell signaling, the species rather than the
interactions can be externally controlled—in contrast to metabolic networks, where
typically the reactions are subject to interventions (Klamt 2006).
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The basic algorithm for computing MISs, as outlined in Klamt et al. (2006) and
Klamt et al. (2007), checks systematically combinations of interventions (first of
size 1, then of size 2, and so on) whether or not they lead to a fulfillment of the
intervention goal when the network reaches the logical steady state (see also pseu-
docode in Figure 4.1). For minimality, supersets of found MISs need not be further
considered. Clearly, this brute-force approach leads quickly to an explosion of pos-
sible candidates for higher cardinalities. Therefore, strategies are required to make
this computation also feasible in larger networks. One simple yet very useful strat-
egy is to limit the number of allowed interventions per MIS. In fact, one is typically
interested in the small MISs (see e. g. Saez-Rodriguez et al. (2007)). Other strategies
try to reduce the search space without losing any solution, and in the following
section, we shall present several of those techniques.

4.2.2 Methods for Search Space Reduction

The primary goal of search space reduction is to reduce the number of candidates
that have to be tested for the MIS property. Although the computation of the logical
steady state for a given MIS is polynomial1, these tests turn out to be the most time-
consuming parts of the whole algorithm. We use two different strategies for search
space reduction:

1. In a preprocessing step, one seeks to safely discard some of the 2n possible
single interventions, either because they can be shown not to be part of any
MIS (Section 4.2.2.1), or because there are interventions being equivalent with
respect to the intervention goal(s); in the latter case, only one representative
needs to be considered, and in a post-processing step, the MISs with the equiv-
alent interventions can be easily obtained (Section 4.2.2.2).

2. A second technique, applied during the main algorithm, is to discard certain
MIS candidates without explicit testing by employing some simple rules (Sec-
tion 4.2.2.3).

4.2.2.1 Exploiting Dependencies

A suitable technique to discard uninfluential single interventions is to consider only
those interventions that can affect the target species in the desired direction. The

1For logical steady state calculation see Section 2.4.2.3.

83



4 Logical Models of Signal Transduction Networks

required information is captured in the dependency matrix (Klamt et al. 2006) that
can be derived from the interaction graph underlying the logical network (see Sec-
tion 2.4). In Klamt et al. (2006), the possibility of such a search space reduction was
already mentioned, however, just for calculations in interaction graphs, not in logical
models.

From the dependency matrix, we cannot only deduce whether a certain species in-
fluences at least one target node at all (if not, then neither constitutive activation nor
deactivation needs to be considered for this node), but also whether it acts as activa-
tor and/or inhibitor. Recall that a node vi is an activator of vj if only positive paths
lead from vi to vj. If vj is a target to be switched on, a constitutive inhibition of vi can-
not contribute to achieve this goal and, thus, does not need to be considered. Anal-
ogously, if vi is an inhibitor for vj, a constitutive activation of vi cannot contribute to
switch vj on. Note that we do not need to distinguish between weak/strong activa-
tors as usually done in the dependency matrix (see Section 2.4.1.2), as we are here
only interested in the logical steady state, not in states that can be reached during
the transition. Taking those interdependencies into account may drastically decrease
the number of interventions and, thus, of MIS candidates to be checked.

To illustrate this, consider the EGF/NRG1 example model given in Figure 2.3. As-
sume the intervention goal is to activate ERK and inactivate PI3K, that is, {ERK =

1, PI3K = 0}, under the side constraints {ERBB1 = 1, ERBB2 = 1, ERBB3 = 1}. The de-
pendency matrix of this example model is shown in Figure 2.2. As AKT is a neutral
factor both for PI3K and ERK, neither constitutive activation nor inhibition needs to
be considered for this node. GAB1 and PIP3 are activators for PI3K and do not influ-
ence ERK, implying that only constitutive inhibitions of GAB1 and PIP3 are useful.
Inhibition of MEK can be excluded, as MEK is an activator for ERK and an inhibitor
for PI3K. Inhibition of ERBB1, ERBB2, or ERBB3 need not be considered as these
interventions are already fulfilled by the given side constraints. Obviously, constitu-
tive inhibition of ERK and activation of PI3K can never be part of intervention sets
that fulfill the intervention goal. Note that, in this example, we allow interventions
at nodes with fixed values (side constraints) and directly at the target species; some-
times, it is reasonable to exclude these interventions from the outset. Taken together,
the number of possible single interventions reduces in this example from 34 to 24
(six nodes can be set to 0, two nodes set to 1, and eight nodes can be set to 0 or 1),
and the number of possible MIS candidates decreases from 317 to 38 · 28.
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4.2.2.2 Exploiting Fault Equivalence Classes

Another preprocessing step for reducing the number of single interventions exploits
the equivalence of certain interventions with respect to the intervention goal. Two
interventions W and Z are equivalent if W can be replaced by Z in all MISs where W

is a part of yielding a new set of MISs (the same must hold in the other direction).
Hence, it suffices to consider only one representative of each class of equivalent
interventions. Searching for equivalent interventions with respect to a certain in-
tervention goal is highly related to equivalence fault collapsing in logical networks
studied for systems testing in electrical engineering (Abramovici et al. 1990; Mc-
Cluskey and Clegg 1971). In electrical engineering, one considers stuck-at-0 (s-a-0)
faults and stuck-at-1 (s-a-1) faults, which may occur, for example, by physical dam-
ages. These faults directly correspond to the constitutive inhibitions (s-a-0) and ac-
tivations (s-a-1) in our logical framework—though we are interested in constructing
suitable intervention sets whereas in electrical engineering, one is interested in iden-
tifying faults—and we can easily adapt the methods from fault collapsing for our
application. We restrict ourselves to considering structurally equivalent interven-
tions that can be determined by a local analysis of the network. The more general
concept of functional equivalence relations requires a global analysis, and deter-
mining whether two arbitrary faults are functionally equivalent is an NP-complete
problem (Abramovici et al. 1990).

The occurrence of equivalent interventions in logical networks is based on the fact
that the controlling value of an AND gate is 0 and the controlling value of an OR
gate is 1; that is, setting one of the input values of an AND gate to 0 determines
the gate output to 0, whereas setting one of the input values of an OR gate to 1
determines the gate output to 1 (Abramovici et al. 1990). The intervention vj = 1
where vj is the output of an OR gate is therefore equivalent to setting any input
of the OR gate to 1. In analogy, the intervention vj = 0 where vj is the output of
an AND gate is equivalent to setting any input of the AND gate to 0. To state the
conditions under which two interventions in our network are equivalent, recall that
the network is represented as logical interaction hypergraph where each hyperedge
represents an AND gate and different hyperedges pointing into the same node are
OR-connected (see Section 2.4.2.1). Furthermore, the inputs of the AND gates can be
negated using the NOT operator. A hyperedge that has only one tail node represents
a simple activation or inhibition depending on whether the value of the input node
is negated or not. The intervention vj = 1 (s-a-1 fault) is equivalent to vi = 1 (or to
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vi = 0) with respect to the set of target species {vi}i∈IT if the following conditions
hold:

1.1 vi is a direct predecessor of vj,

1.2 vi is connected to vj via a hyperedge that has vi as the only tail node (i.e., via
a simple edge),

1.3 the value of vi is not negated (for equivalence with vi = 1) / negated (for
equivalence with vi = 0),

1.4 the out-degree of vi is 1 (i.e., one hyperedge is pointing out of vi),

1.5 vi is not a target species (i.e., i /∈ IT ),

1.6 the value of vj is not given as external side constraint (i.e., j /∈ IE).

The intervention vj = 0 (s-a-0 fault) is equivalent to vi = 0 (or to vi = 1) with respect
to the set of target species {vi}i∈IT if the following conditions hold:

2.1 vi is a direct predecessor of vj,

2.2 the in-degree of vj is 1 (i.e., one hyperedge is pointing into vj),

2.3 the value of vi is not negated (for equivalence with vi = 0) / negated (for
equivalence with vi = 1),

2.4 the out-degree of vi is 1,

2.5 vi is not a target species (i.e., i /∈ IT ),

2.6 the value of vj is not given as external side constraint (i.e., j /∈ IE).

Conditions 1.1–1.3 and 2.1–2.3 follow directly from the fact that an OR gate is con-
trolled by any input set to 1, whereas an AND gate is controlled by any input set
to 0. Condition 1.4/2.4 is needed to ensure that the upstream node (vi) may not
influence the target nodes via other paths not leading over vj. A special case for s-
a-0 faults in which we can find an equivalence relation between two adjacent nodes
although condition 2.4 is not met arises if all hyperedges pointing out of vi point
into the same node vj (e.g., the logical function xj = xi · xk + xi · xl). The need for
conditions 1.5/2.5 is based on the fact that an intervention at a certain node does
not generally lead to the fulfillment of an intervention goal for a preceding species.
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For example, {PI3K = 1} is an MIS for the intervention goal {PI3K = 1, AKT = 1}
in the EGF/NRG1 example model (Figure 2.3). Ignoring condition 1.5, we find that
PIP3 = 1 is equal to PI3K = 1. However, {PIP3 = 1} is not an MIS for the intervention
goal as it does not lead to PI3K = 1. Conditions 1.6/2.6 are needed if an intervention
at a node whose value is given as side constraint is not excluded.

The rules described above detect the equivalence relations between interventions
on the head and tail nodes of a hyperedge. Apart from that, we can also find equiv-
alence relations between interventions on input nodes of the same gate. Some of
these relations are indirectly detected by applying the rules above since pairwise
equivalent interventions can be combined to equivalence classes. For example, if
conditions 1.1–1.5 hold for the two inputs vi, vk of an OR gate with output vj, the
equivalent interventions vj = 1 ⇔ vi = 1 and vj = 1 ⇔ vk = 1 are merged to the
equivalence class {vi = 1, vj = 1, vk = 1}, reflecting also the equivalence between in-
terventions at vi and vk. Whereas for OR gates, all equivalence relations are detected
in this way, s-a-0 faults at the inputs of an AND gate (hyperedge) can be equivalent
although the equivalence with interventions at the output of the gate does not hold.
This arises if condition 2.2 is not met, and we therefore have to consider the possible
equivalence of interventions at the input nodes for this case separately: let v1, . . . , vk
be the inputs of an AND gate and let si denote whether the value of vi is negated
(si = 1) or not (si = 0). It then holds that the interventions vi = si and vj = sj,
i, j ∈ {1, . . . ,k}, are equivalent if (i) the out-degree of vi and vj is 1 and (ii) neither vi

nor vj is a target species.
In the EGF/NRG1 example model (Figure 2.3), the following classes of equivalent

interventions with respect to the target species EGF and PI3K can be found: {SOS =

1, Ras = 1}, {MEK = 1, ERK = 1}, {ERBB11 = 1, GRB2 = 1}, {PI3K = 1, GAB1 = 1},
{SOS = 0, Ras = 0}, and {MEK = 0, ERK = 0}. As we only consider one representative
of each class of equivalent interventions as a possible element of an MIS, the number
of candidates for single interventions is reduced by six.

We emphasize that fault equivalence classes are specific for a given set of tar-
get species. One may exploit fault equivalence classes in combination with the
dependency analysis: before computing the MISs for one specific intervention sce-
nario, it is advantageous to first exploit the species interdependencies as described
above and then, for the remaining interventions, to determine the fault equiva-
lence classes further reducing the set of possible interventions. As an example,
consider again the intervention goal {ERK = 1, PI3K = 0} with side constraints
{ERBB1 = 1, ERBB2 = 1, ERBB3 = 1}. As described in Section 4.2.2.1, we can ex-
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clude the following interventions by exploiting the interdependencies: {ERBB1 = 1},
{ERBB2 = 1}, {ERBB3 = 1}, {GAB1 = 1}, {PI3K = 1}, {PIP3 = 1}, {AKT = 1},
{AKT = 0}, {MEK = 0}, and {ERK = 0}. Of the six equivalence classes given
above, only {SOS = 1, Ras = 1}, {MEK = 1, ERK = 1}, {ERBB11 = 1, GRB2 = 1},
and {SOS = 0, Ras = 0} contain no interventions that have already been excluded.
The interaction PIP3 → AKT is removed from the interaction graph by exploiting
the species dependencies, as AKT has no effect on any of the target species. Hence,
considering a s-a-0 fault in GAB1, the species PIP3 now fulfills conditions 1.1–1.5
(including condition 1.3, which was not fulfilled in the original network) and we
have the additional equivalence class {PIP3 = 0, GAB1 = 0}. Thus, the number of
single interventions from which MISs are combined in the main algorithm can be
further decreased from 24 to 19 by taking into account the equivalent interventions.
We finally achieve an enormous reduction of the potential search space from 317

(129 140 160) to 36 · 27 (93 312): six species can be set to 0 or 1, six species set to 0, and
one species set to 1.

4.2.2.3 Exploiting Dependencies in Intervention Goals with Multiple Targets

If an intervention goal includes more than one target species, we can further reduce
the search space by not testing those combinations of interventions (MIS candidates)
that do not influence all targets in the appropriate direction. In contrast to the reduc-
tion methods described in Sections 4.2.2.1 and 4.2.2.2, this is not done in preprocess-
ing, but during the iterations: before we compute the resulting logical steady state
for an MIS candidate, we check whether its interventions can influence all the target
species with appropriate sign. Consider the intervention goal with target species
T+ = {v1} and T− = {v2}. In this case, each intervention set must contain at least
one intervention that has a positive influence on v1 and one intervention that has a
negative influence on v2. MIS candidates that do not fulfill this condition will not be
checked in the current iteration, but will be combined with further interventions in
the next iteration.

We can now provide the scaffold of the full MIS algorithm in pseudocode (Fig-
ure 4.1). The calculation of MISs including the extensions described herein was
implemented in CellNetAnalyzer (Klamt et al. 2007). Results from Benchmarks illus-
trating the beneficial effect of search space reduction are shown in Section 4.4.2.3.
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4.2 Computation of Intervention Strategies and Failure Modes

Function MIS ←− ComputeMIS(Model,TargetsPlus,TargetsMinus,MaxSize)

inputs:
Model: a logical model in hypergraph representation
TargetsPlus: all nodes that shall be switched on
TargetsMinus: all nodes that shall be switched off
SideConstraints: given side constraints
MaxSize: maximum cardinality of the minimal intervention sets (MISs) to be computed

output:
MIS: the set of MISs

AllowedInterventions ←− DependencyAnalysis(Model,TargetsPlus,TargetsMinus,SideConstraints);
(AllowedInterventions,Classes) ←− FaultEquClasses(AllowedInterventions,Model,TargetsPlus,TargetsMinus);

MIS ←− {};
MIS_CandidatesNew ←− {{}};

for i from 1 to MaxSize do
MIS_Candidates ←− MIS_CandidatesNew;
MIS_CandidatesNew ←− {};
for each M in MIS_Candidates do

for each K in AllowedInterventions do
M_new = M ∪ K;
if M_new is support-minimal w.r.t. MIS and MIS_CandidatesNew then

if M_new can affect all TargetsPlus and all TargetsMinus in required directions then
GoalsOK ←− true;
LSS ←− ComputeLogicalSteadyState(M_new,Model,SideConstraints);
if LSS does not fulfill the intervention goal then

GoalsOK ←− false;
break;

end
if GoalsOK == true then

append M_new to MIS;
else

append M_new to MIS_CandidatesNew;
end

end
end

end
end

end

MIS ←− ExpandFaultEquClasses (MIS,Classes);

Figure 4.1: Pseudocode for the computation of minimal intervention sets.
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4.3 Analysis of Experimental Data

The logical model can in a similar way be used for the analysis of experimental
stimulus–response data as its underlying interaction graph. Where the interaction-
graph-based analysis reveals whether the measured changes (ups and downs) in-
duced by external perturbations are in accordance with the causal dependencies in
a given network structure, the logical model enables to predict the binary network
response in steady state resulting from a given set of stimuli and to compare this
response with the measured species activities (on and off). Again, we assume we are
given a certain “master model”, here, a logical model in hypergraph form, and a set
of experimental scenarios. Each scenario is characterized by a set of species (inputs)
whose state is fixed to 0 (e.g., a species whose activity is blocked by an inhibitor) or
1 (e.g., an added ligand) and shows the measured response, usually the phosphory-
lation state, of a set of readout species. In order to compare the measurements with
predictions from the logical model, the measured states have to be discretized to 0
or 1, that is, one has to decide for each measured species whether it was activated
(1) or not (0) in response to the stimulation. General rules for data discretization are
hard to define, as data structure and characteristics of the system play an important
role. We describe the data discretization for the ERBB example in Section 4.4.3. To
derive the model predictions, we set for each experimental scenario the states of the
input nodes to the fixed values and compute the resulting logical steady state. As
described in Section 2.4.2, negative feedback loops hamper the computation of the
logical steady state. Thus, data analysis based on the logical steady state is espe-
cially suited to uncover discrepancies between experimental results and our current
qualitative knowledge for the initial response, for example, to analyze which species
can be activated at all in certain experimental scenarios.

Following the data analysis, one would try to reduce the identified discrepancies
by changing the model accordingly. In the application example we will show herein
(Section 4.4.3), we retrieved such model changes manually. However, similar to our
introduced integer linear programming (ILP) approach for interaction graphs (Sec-
tion 3.2), one can also train a given network structure to a set of experimental data
based on logical steady state analysis (Saez-Rodriguez et al. 2009): Based on an inter-
action graph master model built from prior knowledge, a superstructure of logical
models is created that contains all possible logical gates. In a subsequent optimiza-
tion step, model structures whose predicted logical steady states show the smallest
discrepancies to the experimental data are identified. Thereby, the objective function
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balances goodness of fit with model complexity. Finally, new links that improve the
fit to data and are not present in the initial model structure are added. The original
implementation of the method was based on genetic algorithms (Saez-Rodriguez et
al. 2009). In subsequent studies, also ILP (Mitsos et al. 2009) and Answer Set Pro-
gramming (Guziolowski et al. 2013) formulations were derived , which show a much
better performance.

We note that the comparison of the measured ups and downs based on interaction
graphs (performed in Chapter 3) and the comparison of the discretized data with the
predicted logical response are naturally correlated. However, they do not necessarily
lead to exactly the same results. An example: assume you have an input stimulus
(ligand L), which may activate a target species S via two independent pathways, one
of both leading over an intermediate species A, for which we have an inhibitor I. If
we compare the scenario stimulation with L and adding inhibitor I against stimulating
with L via, for example, dependency analysis, we would expect a decrease in the
activation level of S since the inhibited species A is an activator for S. However,
the phosphorylation state of S might show no significant change in the dependency
analysis (i.e., leads to a gray entry as in Figures 3.6 and 3.7) due to the alternative
pathway not affected by the inhibitor. In contrast, if the two pathways from L to S

are OR-connected in the logical model, the latter would still predict S to be active.
Another difference in the data analysis based on interaction graphs versus logical
models is that the former compares species changes obtained from two different
experiments (e.g., experiment with/without inhibitor), whereas the logical model
gives for each experiment one prediction for the state of each species.

4.4 The Logic of ERBB Signaling

In this section, we introduce a logical model of ERBB signaling as an example for
a large-scale logical model of a signal transduction pathway. The interaction graph
underlying this logical model (cf. Section 2.4.2) is the ERBB model presented in
Section 3.3.1. As already stated above, we built the ERBB model based on a stoichio-
metric pathway map (Oda et al. 2005) and additional information from the literature.
In the following, we discuss some technical problems that arise when converting a
stoichiometric model into a logical one and propose some general guidelines how
to deal with them (Section 4.4.1). In Section 4.4.2, we analyze the logical model
by applying the methods introduced in Section 2.4.2 as well as the new extensions
presented in Sections 4.1 and 4.2. Finally, we show in Section 4.4.3 the analysis
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of the experimental data introduced in Section 3.3.2.1 according to the methods in
Section 4.3.

4.4.1 From a Stoichiometric Model to a Logical Model

Translating a stoichiometric model into a logical model is not a trivial task and
requires additional information. Whenever a species is only influenced by one up-
stream molecule, the interpretation as a Boolean function is straightforward: the
downstream species is active (state 1) if and only if the upstream species has a posi-
tive influence and its state is 1, or if and only if the upstream species has a negative
influence and its state is 0 (Figure 4.2(a)). In some other cases it is clear how to code
the dependency in a logical function—for example, the formation of a complex (e.g.,
the heterodimerization of c-Jun and c-Fos to the transcription factor AP1 as shown
in Figure 4.2(b), or binding of a ligand to a receptor), where all involved proteins
have to be present to trigger downstream events and are thus connected with an
AND gate. Furthermore, we use an OR gate whenever a protein can be recruited
and activated through different receptors or adapter proteins (Figure 4.2(c)).

However, in many cases the stoichiometric information is not sufficient to approxi-
mate the activation level of a species as a logical function of the states of its upstream
effectors, and one requires additional—mainly qualitative—information, which can
often be obtained from the literature. The two main cases that can arise are the
following:

• A species is positively influenced by two (or more) upstream molecules, for
example, a protein that can be phosphorylated by different kinases (see Fig-
ure 4.2(d)). Here, the decision whether both kinases are necessary or if one
suffices, that is, whether to use an AND or an OR, cannot be made on the
basis of the information that is contained in a stoichiometric model. However,
the necessary information can often be obtained from related literature (e.g.,
from knock-out studies where one of both effectors has been removed, or if an
inhibitor is available for an upstream species).

• A species is positively influenced by one species, for example, by a kinase, and
negatively influenced by another, for example, by a phosphatase. In this case,
we cannot be sure what happens when both the kinase and the phosphatase are
present; it will depend on the respective strength, described as kinetic param-
eters in a quantitative model, and may differ in different cell types. However,
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Figure 4.2: Examples illustrating the translation of the stoichiometric EGFR model
into a logical description. The examples are taken from the stoichiometric map of Oda et al.
(2005). (a) The activation level of MKK7 is only influenced by one upstream molecule (active
MEKK1). (b) c-Jun and c-Fos form the transcription factor AP1. Accordingly, both species are
combined with an AND gate (denoted by · in the logical equations). (c) GAB1 can bind directly
to EGFR homodimers or via receptor-bound GRB2. For the activation of downstream elements,
the activation mechanism of GAB1 does not make a difference, what results in a logical OR
connection represented by two (independent) activation arrows: GRB2 → GAB1 OR EGFR →
GAB1. (d) In this example, we cannot immediately decide whether both Raf1 and MEKK1 are
necessary for the activation of MKK1, or if the activation of one of these two kinases suffices.
Further information is required, or an ITT gate can be used (in model M1 we used an OR based
on facts published in the literature). Figure reprinted from Samaga et al. (2009).
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the activation of phosphatases often occurs as a temporarily secondary event
upon stimulating a signaling pathway (required for switching off the signal).
Therefore, they may be neglected when considering the early events, that is,
the initial response of the network that follows upon stimulation.

We also have to keep in mind that, in all cases, the logical description is only a dis-
crete approximation of a quantitative reaction. As already stated in Section 2.4.2.1,
we can use incomplete truth tables in those cases where neither an AND nor an
OR is a good approximation (Klamt et al. 2006). This operator, herein after referred
to as ITT gate, returns 1 if and only if all positive arguments are 1 and all nega-
tive arguments are 0, and returns 0 if and only if all positive arguments are 0 and
all negative arguments are 1. In all other cases, no decision can be made and the
response of the molecule remains undefined, that is, the state of the respective out-
put species is ∗. Using ITT gates may limit the determinacy of the model: when
performing stimulus–response simulations, it can happen that some states cannot
be determined uniquely. However, it allows for a safer interpretation of the results.
To illustrate this concept and to discuss uncertainties in our reconstructed logical
model—in the following referred to as model M1—we consider a model variant M2
where the activation mechanisms of 14 proteins are described with ITT gates reflect-
ing the uncertainties in the logical description of M1 (see Appendix C.4). In this
way, model M2 accounts explicitly for the uncertainties in the logical concatenation
of different signals; however, it cannot account for uncertainties that are captured in
the wiring diagram itself.

We set-up models M1 and M2 with ProMoT (Mirschel et al. 2009) and exported
the mathematical description as well as the graphical representation to the analysis
tool CellNetAnalyzer (Klamt et al. 2007). Model M1 is shown in Figure 4.3; it con-
tains 104 nodes and 202 interactions (hyperedges). All species and interactions are
listed in Appendix C.1 and C.2, respectively. Two interactions of the ERBB inter-
action graph model (Figure 3.2) are not part of the logical model, as they do not
change the logical function of their target node, or as the exact mechanism of the
interaction is unknown (see Appendix C.3). The model includes 28 input nodes,
whose regulation is not explicitly considered in the model, but which can be used
to simulate different scenarios. Besides ligands and receptors these include some
phosphatases with unknown activation mechanism. For all input nodes, a default
value is given in Appendix C.2 and indicated in Figure 4.3; this value is used for the
logical analyses unless otherwise specified. The logical models contain two types of
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Figure 4.3: Logical model of the ERBB receptor signaling pathway represented in
ProMoT. Blue circles symbolize AND connections. Inputs with default value 0 (1) are indicated
by red (green) diamonds. Yellow diamonds stand for the outputs of the model. Gray hexagons
represent receptor monomers, homodimers, and heterodimers, and green hexagons stand for
the 13 different ligands. The remaining species (symbolized with rectangles) are colored ac-
cording to their function: red: kinases; blue: phosphatases; yellow: transcription factors; green:
adapter molecules; violet: small G proteins and GAPs/GEFs; black: other. Green ellipses sym-
bolize reservoirs, dummy species are not displayed (see Appendix C.1). The box in the upper
part of the network contains binding of the ligands to the receptor and receptor dimerization,
showing the high combinatorial complexity. Black arrows indicate activations, red blunt-ended
lines stand for inhibitions. Dotted lines represent “late” interactions (with attribute τ = 2) that
are excluded when studying the initial network response. Dashed lines indicate connections
from reservoirs. Figure adapted from Samaga et al. (2009).
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auxiliary species that have no biological correspondence, but are needed for model-
ing purposes: dummy species and reservoirs. Both types of species are explained in
Appendix C.1.

4.4.2 Theoretical Analysis of the Logical ERBB Model

4.4.2.1 Qualitative Input–Output Behavior

Once the network construction has been completed, one may start to perform dis-
crete simulations. We will start by computing the logical steady state that follows
from exposing the network to a certain input stimulus, that is, by propagating the
signals from the input to the output layer. Feedback loops, especially negative feed-
back loops, may hamper this kind of analysis of the input–output behavior (cf. Sec-
tion 2.4.2.3). However, herein we will focus on the initial response of the network
nodes induced by external stimulations or perturbations. Assuming that the system
is in a pseudo-steady state at the beginning, the initial response of a node is gov-
erned by the paths connecting the inputs with this node, whereas feedback loops
are secondary events that can only be activated at a later time point when each node
in the loop has exhibited its initial response. Although path/cycle length is no pre-
cise measure for the velocity of signal transduction, the comparable average length
of input/output paths (19) and feedback loops (17) in the ERBB model supports
the assumption that the initial response of the network nodes is dominated by the
input/output paths, whereas feedback loops may overwrite the initial response of
the network nodes only after a certain time period with significant length—again,
feedback loops can causally not be activated before the initial response occurred. To
decouple the initial response from the activity of the feedback loops, we proceeded
as follows: we assigned to each reaction a time variable τ determining whether the
reaction is active / available during the initial response (i.e., is an early event; τ = 1)
or not (late event; τ = 2). In each negative feedback loop we identified the node Z

that has the shortest distance to the input layer. This node Z can be considered as
the initialization point of the feedback loop, and we then assigned τ = 2 to the “last”
interaction of the feedback loop closing the cycle in node Z (i.e., points into Z). For
example, in a causal chain Input→ A → B → C � D → B, we would consider D → B

as a late event. In this way we interrupt the feedback loop and the logical steady
states computed in the network reflects the initial response of the nodes. Strikingly,
it was sufficient to consider only two interactions as late event to break all feedback
loops in the logical ERBB network (the negative influence of SHP1 on phosphory-
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lation of ERRB1 dimers, and the inhibitory phosphorylation of SOS1 by ERK1/2 or
p90RSK). With this acyclic network, a unique logical steady state in which all states
are either 0 or 1 followed for any set of input values in model M1. The assignment
“late” was not only reasonable for selected interactions in feedback loops, but also
for three interactions involved in negative feed-forward loops downregulating the
signaling after a certain time. The time variables for each reaction can be found in
Appendix C.2. It is important to mention that the logical steady state computed for
a given set of input states does not necessarily reflect the activation pattern in the
cell at one particular point of time. Instead, it reflects for each species the initial re-
sponse to the stimulus. The time range in which this initial response takes place can
differ for each molecule—typically, a species situated in the upper part of the net-
work (e.g., a receptor) responses faster to the stimulus than a species of the output
layer (e.g., a transcription factor).

We determined the network response in model M1 upon stimulation with the
different ligands, focusing on the early events, that is, the interactions with τ = 2
were set to 0. We found that the outputs can be divided into two groups: the
majority of the output elements can be activated by all possible dimers. However,
PKC, STAT1, STAT3, and STAT5 can only be activated through ERBB1 homodimers
(PKC, STAT1, STAT3), or ERBB1 homodimers and ERBB2/ERBB4 dimers (STAT5).
Accordingly, stimulation with neuregulins does not result in activation of the protein
kinase PKC and the transcription factors STAT1 and STAT3, in contrast to stimulation
with the other ligands that activate all output molecules except the pro-apoptotic
effect of BAD, which is repressed. This is due to the fact that the neuregulins,
unlike the other ligands, do not bind to ERBB1 and, thus, cannot activate ERBB1
homodimers.

Strikingly, despite of the 14 ITT gates in model M2, the logical steady state in re-
sponse to ERBB1 homodimers could still be determined in model M2 and did not
differ from M1. This observation reflects a high degree of redundancy in at least
some parts of the network. The state of each of the different kinases phosphorylat-
ing p38 or MKK4 is, for example, only dependent on the activity of Rac/CDC42,
implying that these kinases are always activated together. Thus, the input–output
behavior of the network can be uniquely predicted for all ligands that activate ERBB1
homodimers (i.e., for all ligands except neuregulins). In contrast, model M2 failed
to predict the response for some nodes if other dimers (in absence of the ERBB1
homodimer) are stimulated. This concerns, in particular, most of the output nodes.
Only the states of PKC, STAT1, STAT3, and STAT5 could be determined: as in model
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M1, these proteins can only be activated by ERBB1 homodimers, except STAT5 that
is “on” in response to ERBB2/ERBB4-dimers. The indeterminacy of M2 with respect
to stimulations of dimers others than ERBB1 homodimers can be explained by the
uncertainty (ITT gate) in the activation of Rac/CDC42.

4.4.2.2 Species Equivalence Classes in the ERBB Model

Studying the input–output behavior of model variant M2, we already realized that
certain species in the network show strongly coupled behavior. These species can
be detected in a systematic way by computing the species equivalence classes as
introduced in Section 4.1.

Figure 4.4 and Table 4.1 show the equivalence classes in the ERBB model variants
M1 and M2 for early signal propagation, where the states of all ligands and recep-
tors were left open. The states of the other inputs were fixed to their default value as
given in the model description (Appendix C.2). In model M1, we found six equiv-
alence classes (numbered 1–6 in Table 4.1), the largest comprising 24 species. The
latter includes parts of PI3K signaling and the Rac-induced parts of the MAPK cas-
cades reflecting the strong coupling of these two major pathways. In model M2, this
equivalence class (number 1) splits into three smaller ones (1a, 1b, 1c; see Table 4.1),
because the ITT gates introduce uncertainties that lead to a decoupling of the two
pathways (see Figure 4.4). The other equivalence classes of M2 hardly differ from the
ones in M1, again indicating that alternative pathways contribute rather to a higher
degree of redundancy than to a higher degree of freedom regarding the potential
input–output behavior. The new concept of species equivalence classes thus helps to
identify coupled parts of the pathway and to point to redundant network structures.

4.4.2.3 Computation of Minimal Intervention Sets in the Logical ERBB Model

An application of minimal intervention sets (MISs) is to determine failure modes
in the network that lead to an activation of elements of the output layer with-
out any external stimulation of the cell. For example, we can search for failures
that activate ERK1/2 and AKT, two central players controlling growth, proliferation,
and apoptosis, when no ligand is present. Thus, we defined the intervention goal
{ERK1/2 = 1, AKT = 0} with the default values given in Appendix C.2 as side con-
straints. Considering only the early events and not allowing interventions at the
target species or at any species with fixed value, 15 MISs of size 1 fulfilled the in-
tervention goal: activation of any of the eight ERBB dimers, or of Ras, SOS1, SHC,
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Figure 4.4: Species equivalence classes in the logical ERBB model. Each color repre-
sents one equivalence class. The equivalence classes found in model M1 are mapped on the
border color, while equivalence classes found in model M2 are mapped on the node coloring.
White-colored species are not part of any equivalence class. The states for the ligands and the
four receptor monomers were left open, all other inputs were fixed to their default value, which
is indicated by the red (0) and green (1) diamonds. Late events (dotted lines) were excluded.
Figure adapted from Samaga et al. (2009).
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Table 4.1: Species equivalence classes in the Logical ERBB models M1 and M2.

Species Model M1 Model M2

tsc1_tsc2 1 1a
sos1_eps8_e3b1 1 1a

rheb 1 1a
pip3 1 1a
pi3k 1 1a

mtorrap 1 1a
akt 1 1a

rac_cdc42 1 1b
p38 1 1b
mlk3 1 1b
mkk7 1 1b
mkk6 1 1b
mkk4 1 1b
mkk3 1 1b
mk2 1 1b

mekk4 1 1b
mekk1 1 1b

jnk 1 1b
hsp27 1 1b
cjun 1 1b

pro_apoptotic 1 1c
bad 1 1c
ap1 1 -

p70s6_2 1 -
sos1 2 2
rin1 2 2
ras 2 2

grb2 2 2
raf1 2 -
vav2 3 3
stat3 3 3
stat1 3 3
shp1 3 3
plcg 3 3
pkc 3 3
ip3 3 3

erbb11 3 3
dag 3 3
ccbl 3 3
ca 3 3

rntre 3 -
pak1 4 4
limk1 4 4

actin_reorg 4 4
p90rsk 5 5

nucerk12 5 5
mek12 5 5
erk12 5 5
elk1 5 5
cmyc 5 -
shp2 6 6
gab1 6 6
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PIP3, PI3K, GAB1, or GRB2 suffices to activate ERK1/2 and AKT. Furthermore, six
MISs of size 2 were found (Table 4.2). Strikingly, no MISs of higher cardinality exist
for this problem. In model M2, 94 MISs up to size 3 exist that provoke the above
mentioned response. The set {ERBB11 = 1} is the only MIS containing only one ele-
ment; furthermore, 33 MISs of cardinality 2 (e.g., activating any of the other receptor
dimers and VAV2), and 60 MISs of cardinality 3 were found.

These findings showed that the network has fragile points where a mutated pro-
tein, for example, one that is constitutively active, may support uncontrolled growth
and proliferation. However, besides ERBB signaling, various other pathways are
important for the regulation of growth and apoptosis and a failure in one pathway
might be compensated by another, what makes it important to include these path-
ways step by step into our model. Additionally, when building up the model we
did not focus on one certain cell type, but collected species and interactions that
have been detected in different kinds of cells leading to a kind of “master model”.
A model that describes only one cell type would probably include less interactions
(Saez-Rodriguez et al. 2009), implying that a constitutive signal has not such a global,
that is, network-wide, influence as in the master model.

Table 4.2: Minimal intervention sets of size 2 to activate ERK1/2 and AKT in the ERBB model.

Intervention goal: erk12 = 1, akt = 1

Side constraints: default values according to Appendix C.2

sos1_eps8_e3b1 vav2 raf1 rac_cdc42 mekk1 mek12 pi34p2

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1

Shown are the computed MISs of cardinality 2 to activate erk12 and akt without external stimuli.
For MISs of cardinality 1 see text. An entry 1 means constitutive activation. Only early events
have been considered. Interventions for species with fixed values and the target species erk12
and akt have been excluded.

In the following, we illustrate the power of the introduced reduction techniques for
the computation of MISs (Section 4.2) by the above mentioned intervention problem
in the ERBB network. As a second case study, we analyse another intervention
problem in a logical model of T cell receptor signaling (Saez-Rodriguez et al. 2007).

For the T cell receptor model, we consider the intervention problem as described
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in Saez-Rodriguez et al. (2007), hereafter referred to as the TCR problem: we search
for MISs with a maximum cardinality of three that lead to sustained T cell activa-
tion without external stimuli. The target species (nine to be activated, three to be
inhibited) cover the complete output layer of the model, that is, each non-output
node influences at least one target node, whereas the three main inputs are set to 0
as side constraints. The intervention problem we consider for the ERBB model (the
ERBB problem) is to activate AKT and ERK1/2 without external stimuli, as described
above.

Table 4.3 shows the results of the reduction techniques together with the achieved
reduction in computation time. We first consider the results when applying each
reduction technique separately. All three techniques yield a decrease of the compu-
tation time by at least 49 % up to 99 %. In the ERBB problem, in contrast to the TCR
problem, the target species AKT and ERK/2 are both situated in the intermediate
layer of the ERBB network, and many species or even whole pathways do not af-
fect them. According to these different structures of the intervention problems, the
methods for search space reduction yield varying profit (Table 4.3). For the ERBB
problem, exploiting the interdependencies in the interaction graph underlying the
logical model (which is exactly the one analyzed in Section 3.3) is very beneficial:
the number of possible single interventions can be reduced from 138 to 38 when
only those single interventions are permitted that influence the target species prop-
erly (i.e., help activating AKT or/and ERK1/2). In comparison, in the TCR problem,
dependency analysis reduces the 130 possible single interventions only by 36 down
to 94. In both models, we find a similar number of fault equivalence classes each
containing at least two equivalent interventions (19 in TCR, 20 in ERBB); however,
the fault equivalence classes for ERBB are larger leading to a higher number of single
interventions that can be excluded in the main algorithm. In most cases, the number
of tested MIS candidates (for which the logical steady state was calculated) is higher
for the TCR problem, although more single interventions are possible in ERBB. This
is due to the fact that many MISs of cardinality 1 and 2 exist for the ERBB problem
decreasing the search space considerably since supersets of these MISs need not be
considered in later iterations. In contrast, no MIS with cardinality smaller than 3
exists in the TCR problem.

When combining the three reduction techniques, as already mentioned in Sec-
tion 4.2.2.2, we first exploit the dependencies and then compute the fault equivalence
classes in the reduced model providing the final set of permitted single interventions.
During the main algorithm, the number of MIS candidates that are checked (i.e., for

102



4.4 The Logic of ERBB Signaling

Table 4.3: Benchmark tests showing the power of reduction techniques for the computation of
minimal intervention sets.

Exploiting

Naive
algo-
rithm sDep EqClass mDep

sDep
and

EqClass

Algorithm
exploiting

all

ERBB problem
Computation time [s] 750 4 307 257 2 2
(% of naive algorithm) (100%) (0.5%) (41%) (34%) (0.3%) (0.3%)
Checked candidates 302975 1951 122817 93483 970 960
Possible single interventions 138 38 105 138 32 32
Species that can

be set to 1 and 0 69 11 42 69 10 10
be set to 1 0 15 14 0 11 11
be set to 0 0 1 7 0 1 1

Single interventions excluded
by sDep – 100 – – 100 100
by EqClass (# EqClass) – – 33 (20) – 6 (4) 6 (4)

Candidates excluded
by mDep – – – 209492 – 10

TCR problem
Computation time [s] 655 249 212 336 91 66
(% naive algorithm) (100%) (38%) (32%) (51%) (15%) (10%)
Checked candidates 357890 135626 114577 169189 49061 34991
Possible single interventions 130 94 89 130 67 67
Species that can
be set to 1 and 0 65 31 34 65 17 17
only be set to 1 0 27 15 0 26 26
only be set to 0 0 5 6 0 7 7

Single interventions excluded
by sDep – 36 – – 36 36
by EqClass (# EqClass) – – 41 (19) – 27 (13) 27 (13)

Candidates excluded
by mDep – – – 188701 – 14070

All computations were made on an Intel(R)Core(TM)2 Duo CPU E6850 at 3.00GHz.
sDep, dependency analysis to exclude single interventions; mDep, dependency analysis to ex-
clude minimal intervention set candidates not influencing all targets; EqClass, fault equivalence
class. Table adapted from Samaga et al. (2010).
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4 Logical Models of Signal Transduction Networks

which the logical steady state is computed) is then further reduced by excluding
those candidate MIS whose interventions do not influence all target species properly
(see Section 4.2.2.3). Both problems benefit when incorporating the fault equivalence
classes, for the TCR problem even more than for the ERBB problem, because in the
latter many interventions were already excluded by dependency analysis. Exploiting
the dependencies for multiple targets finally leads to an appreciable improvement
only for the TCR problem—what can be explained by the fact that there are many
target species in this setting.

In conclusion, the examples show that the methods for search space reduction lead
to a considerable decrease of the computation time, whereby the actual benefit and
the contribution of each of the three techniques is dependent on the structure of the
intervention problem and the network structure itself.

4.4.3 Data Analysis

In Section 3.3.2, we confronted the interaction graph model of ERBB signaling with
high-throughput experimental data from primary hepatocytes and HepG2 cells.
Here, we will show the analysis of the same data sets based on the logical ERBB
model as explained in Section 4.3.

As stated above, the comparison of experimental data with the binary network
response of the logical model requires a discretization of the data to 0 (off) and 1
(on). To obtain the discretized values, we used DataRail, a MATLAB toolbox that
facilitates the linkage of experimental data to mathematical models (Saez-Rodriguez
et al. 2008). DataRail provides a variety of methods for data processing, including
algorithms to convert continuous data into binary values and to create convenient
data structures for the analysis in CellNetAnalyzer. The discretization depends on
three thresholds p1, p2, p3. If all thresholds are exceeded, the measured signal is
discretized to 1, otherwise to 0. The first threshold is for the relative significance, that
is, the ratio between the value at time 1—in our case after 30 minutes—and the value
at time 0. The second threshold ensures the absolute significance, that is, the ratio be-
tween the signal and the maximum value for this signal from all measurements. The
third threshold ascertains that the signal is above experimental noise. The choice of
the threshold is quite difficult as no reference data exist that define when a molecule
is “on”, that is, when it is sufficiently activated to induce its downstream events.
Most likely, the required level of activation differs from protein to protein and from
cell to cell. However, since no information on these differences is available and to
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4.4 The Logic of ERBB Signaling

Figure 4.5: Sensitivities of the binarization to the chosen parameters (primary hu-
man hepatocytes). Upper panel: ratio between 30 and 0minutes time point lies above (green)
or below (red) chosen threshold for relative significance (p1 = 1.5). Middle panel: ratio between
signal and maximum value for this signal over all conditions lies above (green) or below (red)
chosen threshold for absolute significance (p2 = 0.15). Lower panel: measured signal lies above
(green) or below (red) the chosen threshold for experimental noise (p3 = 100). For all panels:
the darker a field is colored, the larger the distance to the chosen threshold is, that is, the
binarization is less sensitive on the parameter. Figure adapted from Samaga et al. (2009).
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4 Logical Models of Signal Transduction Networks

avoid unnecessary degrees of freedom, we decided to define the same threshold for
all molecules and both cell types (p1 = 1.5, p2 = 0.15, p3 = 100). Figure 4.5 shows the
sensitivities of the binarization with respect to these three parameters for the data
from primary human hepatocytes. The sensitivities for the HepG2 data are shown
in Appendix D.

We computed for each measured scenario the binary network response of our
model and compared it with the discretized data. All input species whose values
were not specified in the particular scenario were set to their default values (see
Appendix C.2), and late reactions with time variable τ = 2 (see Figure 4.3 and
Appendix C.2) were removed prior to the computation of the logical steady state.

As in the case of the dependency analysis, the measured data agreed reasonably
well with the predictions of the model M1 (HepG2: 77 % correct predictions; primary
cells: 90 % correct predictions; see Figure 4.6).

In Figure 4.7, the comparison of model M2 with the experimental data is shown.
For primary cells, only 7 % of the states could not be determined due to the ITT
gates, for HepG2 21 %. 83 % of the predictions for primary cells and 59 % for HepG2
cells were correct. In all cases where a state could be predicted by M2, it naturally
coincided with the prediction from M1 since the latter is only one special case of
all possible behaviors in model M2. In some cases where we used an ITT gate in
model M2, the logical function could be uniquely determined with the experimental
results confirming some of the deterministic logic gates used in model M1: for ex-
ample, the transcription factor CREB can be activated through the MEK-dependent
kinase p90RSK AND/OR through the p38-dependent MK2. As CREB was still ac-
tivated both with MEK inhibitor and with p38 inhibitor, this pointed to an OR-
connection achieving a match between model predictions and data in this node. In
the same way, we could verify an AND connection for the two negative modula-
tors of GSK3 and an OR for the phosphorylation of the auto-inhibitory domain of
p70S6K.

Again, using ITT gates, we can only reflect uncertainties regarding the logical
combination of different paths and not whether a species influences another at all.
This is why some of the discrepancies between the predictions of model M1 and the
data also appeared for model M2.

The data analysis with the logical model confirmed the following findings from
the interaction graph analysis (Section 3.3.2):

• no activation of STAT3 by the tested ligands, both in HepG2 and in primary
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4.4 The Logic of ERBB Signaling

Figure 4.6: Comparison of the discretized data with predictions from the logical
model. Each row represents one treatment, readouts are shown in the columns. Figure adapted
from Samaga et al. (2009).
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Figure 4.7: Comparison of the discretized data with predictions from model M2. Each
row represents one treatment, readouts are shown in the columns. Figure adapted from Samaga
et al. (2009).
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cells,

• no activation of the measured proteins by amphiregulin in HepG2 cells (Fig-
ure 4.6, lines 37/38),

• no activation of HSP27 in HepG2 cells,

• activation of JNK (HepG2 and primary cells), p38 (HepG2 and primary cells),
and HSP27 (primary cells) in presence of PI3K inhibitor.

In addition, the analysis with the logical model showed that phosphorylation
of JNK in response to NRG1α is—in contrast to the response to any of the other
ligands—sensitive on PI3K inhibitor (Figure 4.6, line 34). This was also reflected
in the analysis with the dependency matrix (although we did not explicitly state
it), where an increase of NRG1α only increased the phosphorylation of JNK in ab-
sence of PI3K inhibitor (Figure 3.7, lines 28–33) and decreasing the level of PI3K,
that is, adding the inhibitor, after NRG1α stimulation also lead to a decreased phos-
phorylation state of JNK (Figure 3.7, lines 52 and 59). Thus, NRG1α must use a
different, PI3K-dependent signaling path for activating JNK than the other ligands,
probably due to the fact that NRG1α only activates ERBB1/ERBB3 dimers, whereas
the other tested ligands also bind to ERBB1 homodimers. Taking these findings to-
gether, we propose the following alternative mechanism: VAV2 is the major GEF for
Rac/CDC42 in hepatocytes and activates Rac/CDC42 in a PI3K-independent way.
NRG1α, which cannot bind to ERBB1 homodimers and, accordingly, is not able to
activate VAV2 (see Appendix C.2), provokes the activation of JNK independently of
the Rac/CDC42-induced MAPK cascade through a different, PI3K-dependent path-
way.

As already stated above, with the logical data analysis, some of the chosen logical
gates could be confirmed or falsified. In contrast, there are also some findings that
only showed up in the analysis with the interaction graph model. This is, for exam-
ple, the case for the result that interactions on p38 are missing in the model or that
the JNK inhibitor showed a minor specificity. Furthermore, additive effects when
adding a second ligand—or a missing additive effect, as it was the case for adding
TGFα and EGF—could only be detected with the interaction graph. The analysis
with the interaction graph model revealed that the proposed mechanism of GSK3
phosphorylation was not in accordance with the data. This could not be detected
with the logical model: in the model, we assumed that GSK3 is phosphorylated by
AKT or p90RSK, independently of each other (see interaction 176 in Appendix C.2).
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The experimental data showed that GSK3 is still phosphorylated when blocking ei-
ther p90RSK (MEK1/2 inhibitor) or AKT (PI3K inhibitor), what was in accordance
with the model predictions. For the interaction graph based analysis, we expected
a decreased signal for both single inhibitor treatments; as this was not observed, we
concluded that GSK3 phosphorylation in response to TGFα must be triggered by
another (unknown) player (see Table 3.2). However, the possibility that inhibiting
one upstream species is compensated by another species cannot be ruled out. This
example shows that the different modeling formalisms enable different views on the
signaling system that should be combined in order to come closer to the truth. In
this particular example, combined inhibitor treatments would be necessary to disen-
tangle the phosphorylation mechanism.

A list of proposed model changes considering both the results from the analysis
with the logical model and the interaction graph is given in Table 4.4. Changing the
logical model accordingly, we could improve the agreement of model predictions
and data in the logical analysis from 90 % to 97 % for the primary cells and from
74 % to 94 % for HepG2 cells.

4.5 Discussion

Logical modeling of biological systems has a long tradition (Kauffman 1969) and
several logical models of gene regulatory and signaling networks showed the value
of this modeling formalism for systems biology (Albert and Othmer 2003; Chris-
tensen et al. 2009; Giacomantonio and Goodhill 2010; Huard et al. 2012; Li et al.
2004; Naldi et al. 2010; Ryll et al. 2011; Schlatter et al. 2009; Zhang et al. 2008).
In addition to methods that enable dynamic simulations of logical networks, static
methods have been developed, which are particularly suited for the analysis of large-
scale networks. In this chapter, we presented some extensions of the static formalism
introduced by Klamt et al. (2006).

With species equivalence classes, we introduced a new technique for the analysis
of logical networks. These classes reveal coupled activation patterns in the logical
model, thus providing valuable insights into the correlated behavior of network
elements. As a possible future development, the concept of species equivalence
classes might provide a basis for model reduction.

Minimal intervention sets (MISs) can be used to gain important insights into sig-
naling networks. They can be used for drug target identification, to design ex-
periments leading to a desired result, or for diagnosis, that is, for generating hy-
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Table 4.4: Proposed ERBB model changes to improve agreement between model structure and
experimental data.

Primary human HepG2 Cells
hepatocytes

Removed interactions

erbb11 · csrc → stat3 x (1),(2) x (1),(2)

erbb11 · pip3 → vav2 x (1),(2) x (1),(2)

erbb11 · pi34p2 → vav2 x (1),(2) x (1),(2)

pip3 → sos1_eps8_e3b1 x (1),(2) x (1),(2)

!p90rsk · !akt → gsk3 x (1) x (1)

mk2 → hsp27 x (1),(2)

mk2 → creb x (1) x (1)

p90rsk → creb x (1)

Added interactions

mtor_rap → p70s6k_1 x (1) x (1)

erbb11 → vav2 x (1),(2) x (1),(2)

!pkc → gsk3 x (1) x (1)

tgfa → creb x (1) x (1)

pi3k → jnk x (2)

AND gates are depicted by a dot (A · B refers to AND(A,B)), NOT operators by an exclamation
mark (!A means NOT(A)). An x in the respective column indicates that the change is proposed
for the model describing the indicated cell type. Entries marked with (1) denote findings derived
with interaction graph analysis, entries marked with (2) findings derived with the logical model.
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potheses that explain experimental data in the context of a given network (Franke
et al. 2008; Saez-Rodriguez et al. 2007). Due to the complex combinatorial problem,
determination of MISs is computationally challenging, what calls for algorithmic
improvements. We introduced three search space reduction techniques, which may
significantly speed up the calculation procedure. As the benchmark demonstrated,
the achievable performance gain and the contributions of the different reduction
techniques depends on the actual intervention problem and network size. The com-
putation times for typical intervention problems show that realistic problems can be
treated in reasonable time. With fault equivalence classes, we adopted a well-known
technique from electrical engineering illustrating relationships between electrical cir-
cuits and cellular networks with information flow. The concept of fault equivalence
classes is not only relevant for computing MISs: these classes also reveal sets of fail-
ures in the network that are indistinguishable with a given set of readouts. The two
other reduction methods are based on the dependency matrix, again showing the
importance of this concept for elucidating network-wide activatory and inhibitory
interdependencies (cf. Section 3.1).

With the advances of experimental techniques, it becomes more and more essential
to provide tools that allow for the analysis and exemplification of the huge amount
of data that arise. Here, we showed how the predicted binary network response
derived from a logical model can be compared to experimental data in an automated
way. This method is well suited to analyze large data sets, in particular stimulus–
response data that stem from combinatorial experiments, that is, where cells were
treated with systematic combinations of different ligands and inhibitors.

The newly developed methods were applied to a large-scale logical model of sig-
naling through the four ERBB receptors. The underlying interaction graph of this
model was studied in Section 3.3. Our ERBB model is based on the stoichiometric
pathway map of Oda et al. (2005), and we proposed a general guideline how to deal
with technical problems that arise when converting a stoichiometric model into a
logical one.

One possibility to deal with uncertainties concerning the correct logical combina-
tion of different influences on a certain node is the usage of gates with incomplete
truth tables (ITT gates). Thus, we replaced the deterministic logical gates for the
activation of 14 species of our model with ITT gates and repeated all logical analy-
ses with this modified model. Surprisingly, the predictive power of the model with
these ITT gates is still high, highlighting the redundant structure of major parts of
the signaling pathway and showing that many properties of the network do not rely
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on the assumptions we made when choosing the logical functions. These redundant
structures also became apparent by computing the species equivalence classes.

The analysis of high-throughput experimental data from primary human hepa-
tocytes and the HepG2 cell line confirmed some of the findings derived with the
interaction-graph-based analyses (Chapter 3). However, some disagreements be-
tween model structure and experimental results only showed up in the analysis
with the interaction graph model, while for other aspects, the logical analysis was
more revealing. This shows that different modeling formalisms can complement
each other, and that it is indispensable to investigate a system under study from
different perspectives in order to get a holistic understanding.
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5 | From Structure to Dynamics: Combined

Interaction Graph and ODE Modeling

Unravels Network Structure of HGF

Signaling

As already demonstrated in the previous chapters, signaling pathways cannot sim-
ply be modeled as linear chains, but involve extensive crosstalk, feedforward, and
feedback loops resulting in complex signaling networks. Network topologies are
often context specific and altered in diseases (Pawson and Warner 2007), and the
knowledge of cell-context-specific feedback and crosstalk mechanisms is, for exam-
ple, important to gain insights into mechanisms that cause undesired effects in tar-
geted therapy. Considering different potential crosstalk, feedforward, and feedback
mechanisms easily results in an enormous number of possible network structures.
Thus, due to the high combinatorial complexity, there is the need for systematic
methods facilitating an unbiased identification of the network wiring.

In the previous chapters, we presented computational methods to infer and an-
alyze signaling networks. These methods are based on qualitative modeling for-
malisms that can deal with large networks, but are limited in their capacity to de-
scribe dynamic properties such as signal duration or amplitude. Dynamic modeling
approaches using coupled ordinary differential equations (ODEs) are well suited
to analyze the impact of crosstalk and feedback regulation and allow quantitative
insights. However, consideration and systematic analysis of several potential mech-
anisms results in a high combinatorial complexity with many degrees of freedom
and is therefore often not feasible with ODEs. Hence, it is desirable to exploit the
advantages of both qualitative and quantitative modeling and to develop strategies
to combine both approaches.

Here, we present a hybrid approach (Figure 5.1) which combines qualitative and
quantitative modeling techniques. The approach is introduced using the example
of HGF-induced activation of MAPK and PI3K signaling in primary mouse hepato-
cytes (see Section 2.3.2). First, we built an interaction graph master model containing
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Figure 5.1: Workflow of model selection strategy. Quantitative time-resolved data is dis-
cretized for the selection of submodels of the interaction graph master model. The interaction
graph master model is based on literature knowledge and consists of the core model and re-
ported interactions between the signaling pathways of interest, the candidate mechanisms. Or-
dinary differential equation (ODE) modeling, based on preselected model structures, utilizes the
entire information of the time-resolved data. Model selection based on parameter estimation
permits the selection of the best model structure. Figure adapted from D’Alessandro, Samaga,
Maiwald et al. (2015).
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previously reported crosstalk, feedback, and feedforward mechanisms (Section 5.1).
Based on experimental data (Section 5.2), we selected minimal substructures of this
master model that can explain the qualitative characteristics of the data (Section 5.3).
In this way, the search space of model candidates was vastly reduced. Subsequently,
we translated the selected minimal model structures into ODE models (Section 5.4)
and identified the model structure representing the experimental system best (Sec-
tion 5.5). The identified model structure was experimentally validated by verifying
the presence of a particular negative crosstalk mechanism in the cellular model sys-
tem under study (Section 5.6.1). To further validate the model structure, we analyzed
how the system responds to different perturbation conditions (Section 5.6.2).

The work presented in this chapter has been published in D’Alessandro, Samaga,
Maiwald et al. (2015) and results from a collaboration with co-workers of the groups
of Ursula Klingmüller (DKFZ Heidelberg) and Jens Timmer (University of Freiburg).
Within this thesis, we focus on the qualitative modeling part of the project. The
author reconstructed the HGF interaction graph master model from literature infor-
mation and proposed and developed the method to select minimal model structures
from the master model as model candidates for subsequent ODE modeling. This
also included discretization of experimental data and the development of rules how
to derive an ODE model reflecting a given interaction graph model structure. The
experiments were conducted by Lorenza D’Alessandro (DKFZ Heidelberg), and Tim
Maiwald (University of Freiburg) was responsible for the ODE modeling part. Thus,
the detailed descriptions of the experimental data and of the ODE modeling are not
included in this work, but can be found in D’Alessandro, Samaga, Maiwald et al.
(2015).

5.1 An Interaction Graph Model of HGF Signaling

As discussed in previous sections, interaction graphs as one example for qualitative
models can be used to make predictions on the possible qualitative behavior of a
signaling network, and these predictions can be compared with experimental data.
Resulting inconsistencies between data and network structure provide then a basis
to identify missing or inactive interactions in the network structure (see Chapter 3).
In order to describe crosstalk mechanisms, interaction graphs take preference over
logical models: While the latter are well suited for studying the input–output be-
havior of large signaling pathways (see Chapter 4), an appropriate description of
crosstalk mechanisms within the logical formalism is often difficult. This is due
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to the fact that, in contrast to the main activation routes of a signaling pathway,
crosstalk mechanisms typically enhance or downgrade certain effects, rather than
being necessary for, for example, activation of a certain protein, or completely block-
ing a species’ activity.

To unravel the crosstalk between the MAPK and PI3K signaling pathways upon
HGF stimulation in hepatocytes, we built an interaction graph model of HGF-induced
activation of these pathways based on literature knowledge (Figure 5.2). We distin-
guish between interactions that form the main activation routes (core model; black
edges in Figure 5.2) and interactions describing feedback, feedforward, and crosstalk
mechanisms (candidate mechanisms; turquoise edges) that have been reported for spe-
cial cell types or under certain experimental conditions and whose presence in hep-
atocytes is uncertain (Appendix E). The full graph including the core model and all
candidate mechanisms is considered as a non-cell-type-specific HGF master model.

5.2 Experimental Data

To analyze which of the candidate mechanisms are active in our cellular system, pri-
mary mouse hepatocytes were treated with HGF in combination with specific Met
inhibitor (PHA 665752), MEK inhibitor (U0126), PI3K inhibitors (LY294002, Wort-
mannin, and PI-103), and PDK1 inhibitor (BX-912), alone or in combination. Ad-
ditionally, siRNA targeting AKT and ERK1/2 was employed. The phosphorylation
of AKT, MEK1/2, ERK1/2, and p90RSK was analyzed by time-resolved quantitative
immunoblotting and by protein array (D’Alessandro, Samaga, Maiwald et al. 2015).
Activation of p90RSK occurs in two-steps, and we denote with RSK_s the form of
p90RSK phosphorylated at a single residue, while RSK_d refers to the double phos-
phorylated, fully active form (Appendix E). The dynamics of SOS1 activation upon
MEK inhibitor treatment were also measured (data shown in D’Alessandro, Samaga,
Maiwald et al. (2015)). We calculated the fold change of protein phosphorylation for
each treatment condition in comparison to the respective control and between treat-
ment conditions (Figure 5.3). For SOS1 activation, the band shift was quantified
as an indicator for its activation status. Treatment with PI3K inhibitor and with
siRNA targeting AKT had to be excluded from our study due to the high variability
observed in our experimental results (D’Alessandro, Samaga, Maiwald et al. 2015).

To relate the data to the interaction graph model (Figure 5.2), we discretized the
measured responses to increase, decrease, and not measured / not conclusive (Figure 5.4):
If a certain effect was consistently observed for the replicates within the same time
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Figure 5.2: Interaction graph master model. The interaction graph master model was built
from literature information. Detailed model documentation can be found in Appendix E. The
core model is given in black, candidate mechanisms are depicted in turquoise. Arrows repre-
sent activating (positive) interactions, blunt-ended lines indicate inhibitory (negative) interac-
tions. The measured species are marked with bold borders. The lightning symbol indicates that
the respective species was experimentally targeted with a chemical inhibitor or siRNA. Figure
adapted from D’Alessandro, Samaga, Maiwald et al. (2015).
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Figure 5.3: Experimental results. For each indicated protein, the fold change of the phos-
phorylation state measured by quantitative immunoblotting of two different experimental con-
ditions is shown on a logarithmic scale at the indicated time points after HGF stimulation. Each
row refers to one experiment; same experimental conditions are grouped with magenta lines.
Figure adapted from D’Alessandro, Samaga, Maiwald et al. (2015).
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points, it was included as an observed effect in the scheme of the discretized data.
Otherwise, the effect was considered not conclusive and not taken into account. The
fourth possible value no change was not observed in our data set. Additionally, we
included the timing of the response in the discretized data, classifying an observed
effect as an early or late response. Early refers to the initial qualitative response of a
node after HGF stimulation. A response was termed late if the qualitative behavior
at any successive time point was different from the initial (early) response. Thus, the
late response characterizes the first effect that is opposite to the early response, or
indicates that the qualitative response is identical for all time points.

Figure 5.4: Discretized experimental data. The discretization is based on Figure 5.3 and
additional SOS1 measurements shown in D’Alessandro, Samaga, Maiwald et al. (2015). A slash
shows that no measurements were taken, or that the response was not conclusive. Figure
adapted from D’Alessandro, Samaga, Maiwald et al. (2015).

5.3 Selection of Minimal Model Structures

Given an interaction graph model, we can predict the possible qualitative response
of the considered proteins for the given experimental conditions using the concept
of the dependency matrix (see Section 3.1). Exploitation of the dependency ma-
trix is well suited for the analysis of transient effects—in contrast to the methods
introduced in Section 3.2, which rely on the concept of sign consistency and re-
quire steady-state shift experiments. A comparison between model predictions and
discretized data tells us whether a given model structure is able to reflect the experi-
mental results. We used the discretized fold change of two experimental conditions,
C1 and C2. Condition C1 represents the control condition, whereas in condition C2,
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one or two additional inhibitors compared to C1 were applied (Figure 5.4). For each
comparison, we checked in the dependency matrix of the model how the additional
inhibitors in C2 act on the measured species leading to qualitative predictions for
the early (initial) and late response. The detailed description how to derive these
qualitative predictions is given in Section 3.1.

The effect of some inhibitors can often not be mimicked by perturbing a certain
node in the network. The applied MEK inhibitor, for example, blocks MEK kinase
activity, thus inhibiting the outgoing edges from MEK, but not the activation state of
MEK. Therefore, we introduce a “dummy node” that is activated by MEK and itself
activates all downstream nodes of MEK (in our particular case only ERK). The effect
of the MEK inhibitor is then reflected by this dummy node.

Figure 5.5 shows the possible qualitative responses predicted from the interaction
graph core model. Comparing model predictions with the discretized data, the
majority of observed behaviors were not represented by the core model. Hence, we
concluded that some of the candidate mechanisms must be active in primary mouse
hepatocytes. To identify minimal substructures of the HGF master model consistent
with the data, we added single candidate mechanisms and combinations thereof to
the core model and tested the resulting model structures for their ability to represent
the observed effects. As the master model was consistent with the experimental
data, it was guaranteed that consistent submodels exist—at least one “submodel”,
the master model itself. In order to select all minimal submodels of the interaction
graph master model that can explain the observed effects from the experimental data
(Figure 5.4) and that contain the core model, we proceeded as follows: starting from
the core model, we added one candidate mechanism at a time (that is, all edges
making up the mechanism, see Appendix E.3) and derived the model predictions
for the resulting interaction graph structure as explained above. If all experimental
observations were in accordance with these predictions, the structure was added to
the list of selected model structures. If not, we combined the respective structure
with other candidate mechanisms whose sole addition to the core model was not
able to explain the data. Again, we checked the ability of each resulting model
structure to explain the data and either considered the structure as selected minimal
model or added further candidate mechanisms. We ensured that only minimal model
structures were selected, that is, no submodel of a selected model can explain the
data. Furthermore, the procedure assures that all minimal model structures that are
able to explain the data are found. The described algorithm was implemented as a
MATLAB script making use of API functions of CellNetAnalyzer (Klamt et al. 2007).
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Figure 5.5: Predictions by interaction graph models. Predictions from the core model
and from the selected minimal model structures (Figure 5.8) are shown. Arrow pointing
up/down: the inhibition can only cause an increased/decreased activation of the measured pro-
tein. Filled circle: the inhibition does not affect the measured protein. Combined up/down arrow
and filled circle: the model does not restrict the response to the inhibition. Figure adapted from
D’Alessandro, Samaga, Maiwald et al. (2015).
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The pseudocodes of the algorithm are given in Figures 5.6 and 5.7.
With the described procedure, we selected all possible model structures, each be-

ing composed of the core model and a building block, which is a subset of the
candidate mechanisms. Thus, among the possible candidate edges that may be rele-
vant for the other cell types and conditions, we selected candidate mechanisms that
are specific for the HGF-induced MAPK and PI3K signaling pathways in primary
mouse hepatocyte. Candidate edges that were not selected by our approach might
play a role in other cell types and for other conditions. In total, we identified 16
minimal model structures that can equally well explain our experimental data (Fig-
ure 5.5). Notably, in some cases, the qualitative response is not restricted by the
model structure: if a path between the inhibited and measured species includes a
negative feedback loop, or if paths of both signs exist between the two nodes, the ac-
tual response depends on the strength of the different mechanism and, thus, cannot
be predicted by a purely qualitative model.

To develop corresponding ODE models with an appropriate number of param-
eters, we compressed all selected minimal model structures by removing parallel
mechanisms with the same sign and by compressing linear chains (cf. compression
techniques given in Appendix B). Each candidate mechanism is represented by a
single edge. Hence, each selected minimal model structure is composed of the com-
pressed core model and a combination of candidate edges, each corresponding to
one candidate mechanism. We define as building block the characteristic combina-
tion of candidate edges of a selected minimal model structure. Figure 5.8 shows the
compressed 16 selected minimal model structures, the compressed core model and
a model containing all building blocks (complete model). In contrast to the master
model, the complete model contains only those candidate mechanisms that are in-
cluded in at least one selected minimal model structure. The following candidate
mechanisms were not selected: (i) the negative effect of GAB1 on Ras via RasGAP,
(ii) the negative effect of ERK on Raf1, (iii) the negative effect of ERK on MEK, and
(iv) the positive effect of PAK on Akt (all candidates mechanisms are described in de-
tail in Appendix E.3). By comparing the 16 minimal model structures, we observed
that all candidate models include (i) the edge from ERK to PI3K, (ii) a negative
feedback from ERK to SOS1, either directly or indirectly via RSK_d, (iii) a positive
route from ERK to MEK through various mechanisms, and (iv) a positive route from
PDK1 to MEK. The latter route is included as a direct edge from PDK1 to MEK in all
models but model 8, whereas model 8 contains a longer path via RSK_d, Ras, and
AKT.

124



5.3 Selection of Minimal Model Structures

Function BuildingBlocks ←− SelectModels(DataEarly,DataLate,Inhibitors,CoreModel,CandEdges)

inputs:
DataEarly: for each measured protein, discretized fold change of different pairwise comparisons of
experiments, early response
DataLate: for each measured protein, discretized fold change of different pairwise comparisons of
experiments, late response
Inhibitors: for each pairwise comparison of experiments, applied inhibitor(s) making up the difference of the
two experiments
CoreModel: Interaction graph core model in CellNetAnalyzer format
CandEdges: candidate edges

output:
BuildingBlocks: building blocks of selected minimal model structures

/* compute dependency matrix of core model */
DepMat ←− CNAcomputeDepMat(CoreModel);

call DepMatCompare(DataEarly,DataLate,Inhibitors,DepMat) returning Mismatch;
if Mismatch = 0 then

print ‘Core model in accordance with data’;
return;

end

BuildingBlocks ←− empty set;

for i from 1 to number of CandEdges do
[Combi_1 , . . . , Combi_K ] ←− all i-combinations of CandEdges;
for j from 1 to K do

if Combi_j is not superset of an element of BuildingBlocks then
/* compute dependency matrix of core model plus edges from Combi_j */
Model ←− CoreModel plus edges from Combi_j;
DepMat ←− CNAcomputeDepMat(Model);

call DepMatCompare(DataEarly,DataLate,Inhibitors,DepMat) returning Mismatch;
if Mismatch = 0 then

append Combi_j to BuildingBlocks;
end

end
end

end

Figure 5.6: Pseudocode for the selection of minimal model structures from the inter-
action graph master model. The described function SelectModels returns the building blocks
of the selected minimal model structures. During the computation, two subroutines are called:
CNAcomputeDepMat, a CellNetAnalyzer API function (Klamt and von Kamp 2011) that computes
the dependency matrix of a given model structure, and DepMatCompare (pseudocode given in
Figure 5.7), which compares the model predictions derived from the dependency matrix with
the discretized experimental data. Figure adapted from D’Alessandro, Samaga, Maiwald et al.
(2015).

125



5 Hybrid Modeling Strategy to Unravel HGF Signaling

Function Mismatch ←− DepMatCompare(DataEarly,DataLate,Inhibitors,DepMat,MeasuredSpecies,Comparisons)

inputs:
DataEarly: for each measured protein, discretized fold change of different pairwise comparisons of experiments,
early response
DataLate: for each measured protein, discretized fold change of different pairwise comparisons of experiments, late
response
Inhibitors: for each pairwise comparison of experiments, applied inhibitor(s) making up the difference of the two
experiments
DepMat: dependency matrix
MeasuredSpecies: measured species
Comparisons: pairwise comparisons of experiments

output:
Mismatch: number of mismatches between model predictions and discretized data

for i from 1 to number of MeasuredSpecies do
for j from 1 to number of Comparisons do

if all Inhibitors of Comparisons( j) are weak/strong activators for MeasuredSpecies(i) then /* this
information is taken from DepMat */

ModelPredictionsEarly(i, j) ←− decrease;
else if all Inhibitors of Comparisons( j) are weak/strong inhibitors for MeasuredSpecies(i) then

ModelPredictionsEarly(i, j) ←− increase;
else if all Inhibitors of Comparisons( j) are neutral factors for MeasuredSpecies(i) then

ModelPredictionsEarly(i, j) ←− no change;
else

ModelPredictionsEarly(i, j) ←− increase, decrease, or no change;
end
if all Inhibitors of Comparisons( j) are strong activators for MeasuredSpecies(i) then

ModelPredictionsLate(i, j) ←− decrease;
else if all Inhibitors of Comparisons( j) are strong inhibitors for MeasuredSpecies(i) then

ModelPredictionsLate(i, j) ←− increase;
else if all Inhibitors of Comparisons( j) are neutral factors for MeasuredSpecies(i) then

ModelPredictionsLate(i, j) ←− no change;
else

ModelPredictionsLate(i, j) ←− increase, decrease, or no change;
end

end
end
Mismatch ←− count mismatches between DataEarly and ModelPredictionsEarly and DataLate and

ModelPredictionsLate;

Figure 5.7: Pseudocode for the comparison of model predictions with discretized
data. This function is called during the computation of minimal model structures from an in-
teraction graph master model (see Figure 5.6). It returns the number of mismatches between
discretized experimental data and predictions derived from the dependency matrix of a partic-
ular interaction graph model structure. Figure adapted from D’Alessandro, Samaga, Maiwald
et al. (2015).
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5.3 Selection of Minimal Model Structures

Figure 5.8: Selected minimal model structures, core and complete model. The com-
pressed 16 selected minimal model structures that can explain the discretized data (Figure 5.5)
are shown. In addition, the complete model structure (that is, the union of models 1–16) and
the compressed core model structure are displayed. Arrows represent activating (positive) in-
teractions; blunt-ended lines indicate inhibitory (negative) interactions. In each model, the core
model is colored black, while the building block (the set of added candidate mechanisms) is
shown in turquoise. Figure adapted from D’Alessandro, Samaga, Maiwald et al. (2015).
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5.4 Translation into Ordinary Differential Equation Models

To test which of the identified structures can quantitatively represent the transient
and sustained effects observed in the experimental data, we built for each of the
16 compressed selected minimal model structures as well as the core and the com-
plete model a corresponding ODE model: the underlying interaction graph of the
ODE model, which represents the sign structure of the Jacobian matrix (see Sec-
tion 2.4.3.2), should reflect the respective minimal model structure. To this end, we
built the ODE models from the interaction graphs in the following way: For the
core model, each edge pA → pB from the interaction graph, where pA denotes the
activated form of a species A, and pB the activated form of a species B, gives rise to
a reaction describing the formation of pB. With mass action kinetics and assuming
pA catalyzes the formation of pB, but is not consumed, we got the reaction B → pB
with kinetic rate law k1 [pA] [B], where k1 denotes a kinetic parameter for this reac-
tion, [pA] the concentration of pA, and [B] the concentration of B. In addition, we
introduced the deactivation (for example, dephosphorylation) reaction pB → B with
kinetic rate law k2 [pB]. An exception from this rule is the treatment of the species
RSK. The interaction graph model describes activation of RSK as a two-step process:
RSK → RSK_s → RSK_d. In this case, we assumed that both activated forms (RSK_s
and RSK_d) are deactivated to RSK. For the Met receptor, an additional formation
and degradation reaction was necessary to reflect the observed receptor dynamics.
PDK1 is considered to be constitutively active (Casamayor et al. 1999; Wick et al.
2002) and was thus included as a constant parameter in the ODE model. To incorpo-
rate the effect of inhibitor treatments into the model, inhibitor parameters for PDK1,
PI3K, Met, and MEK were introduced. These parameters allow for a potential re-
duction of the kinetic parameters within a range of 0 % to 100 %. Furthermore, these
parameters are coupled to binary switches, allowing them to be activated only in
their respective condition.

For each candidate edge, we added one additional reaction to the ODE model.
We distinguished candidate mechanisms that provide an alternative, independent
way of activation of the respective species, and those that influence the core activa-
tion mechanism. An example for the first is the activation of PI3K by Ras, which
is described as PI3K → PI3K_active with rate law ka [Ras_active] [PI3K]. An exam-
ple for the latter is the effect of PAK on Raf1, which is assumed to promote Raf1
activation through Ras, and which is thus included as Raf1 → pRaf1 with rate law
kb [Ras_active] [pPAK] [Raf1] in the ODE model. Translation of inhibiting edges of
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5.4 Translation into ODE Models

the interaction graph follows the same rules. As an example, deactivation of Raf1 by
AKT is described as pRaf1 → Raf1 with rate law kc [pAKT] [pRaf1]. A list of all ODE
reactions is given in Appendix F.

Figure 5.9: Underlying interaction graph of the complete ODE model. (a) Shown is the
interaction graph underlying the complete ODE model, thus representing the sign structure of
the Jacobian matrix. Black arrows indicate positive, red arrows negative influences. (b) Reduced
interaction graph received from the graph in (a) by removing dependent species from conserved
moieties. Figure adapted from D’Alessandro, Samaga, Maiwald et al. (2015).

Figure 5.9(a) shows the interaction graph underlying the complete ODE model. In
addition to the nodes that are contained in the interaction graph given in Figure 5.8,
which represent the activated forms of the proteins, the underlying interaction graph
of the ODE model contains for each protein one node representing its inactive form.
The reaction B → pB with kinetic rate law k1 [pA][B] (which corresponds to the edge
pA → pB in the interaction graph) gives rise to the positive edges pA → pB and B
→ pB, and to the negative edge pA � B in the interaction graph underlying the ODE
model. The latter thus induces an additional indirect negative influence of pA on pB
(pA � B → pB). In general, these indirect effects can become visible in the transient
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dynamics. However, in our ODE model formulation the active and inactive form of
a protein are conserved moieties of the ODE model and thus the interaction graph
of its Jacobian can be reduced to the graph given in Figure 5.9(b). This graph con-
tains the same set of nodes as the interaction graph given in Figure 5.8, except for
an additional node representing the inactive form of the Met receptor: the moieties
of Met and pMet are not conserved as additional uptake and degradation is consid-
ered. Still, the paths downstream of the activated receptor are the same as in the
interaction graph in Figure 5.8. Compared to Figure 5.9(a), all indirect effects except
one could be eliminated: as activation of RSK is modeled as a two-step process, the
interaction graph of the ODE model contains with PDK1 � pRSK_s and pRSK_d �
pRSK_d two negative edges that are not contained in the interaction graph in Fig-
ure 5.8. However, even if these edges were considered, the selected substructures of
the complete interaction graph model would be the minimal structures needed to
explain all qualitative effects from the experimental data.

5.5 Ordinary Differential Equation Model Selection

We estimated the kinetic parameters of each of the 16 ODE models as well as of
the core and complete model to determine the model performance in relation to the
experimental data. While interaction graph modeling was based on discretized data,
we utilized the full quantitative information of the data sets for ODE modeling and
parameter estimation. In addition to the data sets used for the selection of the 16
model structures, we used time-resolved measurements of HGF-induced activation
of the above mentioned proteins and of Met and Ras without inhibitor treatment.
Due to its merely qualitative nature, the data set on SOS1 activation was not used
for ODE modeling. Overall, the ODE models were calibrated on 2200 data points
and 25 experimental conditions including four targeted perturbations.

We applied an adaptation of a likelihood ratio test (LRT) with a threshold of 95 %,
which takes into account the different degrees of freedom for each model structure
(Raue et al. 2013). With this forward selection, we received an LRT-based ranking of
the model structures (Figure 5.10(a)). As expected, the complete model performed
best, whereas the core model performed significantly worse than all selected mini-
mal model structures. The three best performing selected minimal model structures
(model 16, 4, and 10) showed a similar likelihood; hence, a clear distinction of a
best performing model structure was not possible. Furthermore, a significant gap
was observed in the likelihood values between the complete model and the best
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5.5 Ordinary Differential Equation Model Selection

Figure 5.10: ODE model selection. (a) Ranking of the 16 selected minimal model structures
and the core and complete model received with the forward selection approach. (b) Backward
selection: the building blocks of the respective model structure were removed from the com-
plete model. (c) Ranking of model combinations. (d) Ranking of minimal model structures,
model combinations, and random models. All rankings present the negative logarithmic likeli-
hood penalized by parameter difference on the y-axis. Model identifiers are shown on the x-axis.
Figure adapted from D’Alessandro, Samaga, Maiwald et al. (2015).

131



5 Hybrid Modeling Strategy to Unravel HGF Signaling

performing selected minimal model structure, model 16, indicating that none of the
selected minimal models is a valid simplification of the complete model. This result
suggested that models containing combinations of building blocks might perform
better than minimal models.

To reduce the complexity of combining all model structures, we applied a backward
selection: we removed single building blocks from the complete model structure and
obtained a new ranking by parameter estimation (Figure 5.10(b)). Strikingly, forward
and backward selections revealed very different results. As an example, model 16
was the best performing selected minimal model structure in the forward selection,
whereas the removal of the building block of model 16 from the complete model in
the backward selection did not lead to a significant loss in likelihood. The highest
negative impact on the likelihood was observed by removing the building blocks of
any of the model structures 4, 6, 8, or 12, suggesting the importance of their building
blocks.

Based on this result from the backward selection, we generated combinations of
the minimal model structures 4, 6, 8, and 12 and performed parameter estimation
for all eleven possible combinations (Figure 5.10(c)). As expected, the new rank-
ing showed that these model structures filled the gap between the complete model
and the best performing minimal model 16. The combinatorial models 4_8_12 and
4_6_8_12 displayed a similar performance as the complete model, indicating that
they are valid simplifications of the complete model. Between these models, model
4_8_12 performed best as it contains fewer parameters than model 4_6_8_12. The
list of estimated parameter values of model 4_8_12 is given in Appendix F.

Model 4_8_12 contains eight of the thirteen candidate mechanisms included in the
complete model. At first glance, it includes three feedback loops (Figure 5.11(a)):
Within the MAPK pathway, a positive and a negative feedback emerge from the
candidate mechanisms ERK to Raf1 and RSK_d to SOS1, respectively. Within the
PI3K pathway, the edge PI3K to GAB1 closes a positive feedback loop. Furthermore,
model 4_8_12 is characterized by the presence of several crosstalk mechanisms be-
tween PI3K and MAPK. Notably, these mechanisms give rise to two positive and two
negative feedback loops, each containing species from both the PI3K and MAPK
pathways. As shown in Figure 5.11(b)–(f), model 4_8_12 can reproduce the dy-
namic behavior of the measured species under diverse experimental conditions. An
advantage of the reduced model 4_8_12 is that it has a higher predictive power
than the complete model. This is due to parameter non-identifiabilites in the over-
parameterized complete model, which resulted in wrong predictions (D’Alessandro,
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5.5 Ordinary Differential Equation Model Selection

Figure 5.11: ODE model fit. (a) Structure of the best performing model 4_8_12. (b)–(f)
Plots showing representative model trajectories (solid lines) of the phosphorylation kinetic of
the indicated proteins measured by quantitative immunoblotting in primary mouse hepatocytes
pretreated with the indicated inhibitors and stimulated with 40 ng/ml of HGF for the indicated
time (stars). y-axes show the concentration of the respective measured protein in arbitrary
units on a logarithmic scale. The shadowed area surrounding the model trajectory represents
the confidence interval delimited by the dashed line. Treatments are color-coded as indicated
in the figure. Figure adapted from D’Alessandro, Samaga, Maiwald et al. (2015).
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Samaga, Maiwald et al. 2015).

To challenge our approach, we generated 50 model structures consisting of ran-
domly selected combinations of candidate edges. We decided to consider random
models with five candidate edges (the selected minimal model structures contained
either four or five candidate edges). Thus, we randomly selected subsets of size five
from all candidate edges present in the complete model and received in this way the
building blocks for the random models. Building blocks that were identical to or
comprised a building block of the selected minimal model structures were rejected.
We performed parameter estimation and derived a ranking of the 50 random mod-
els as in the forward selection step (Figure 5.10(d)). This showed that the majority
of random models performed worse than our 16 selected models. Random models
that performed well had a similar structure as the best performing selected models
(Table 5.1 and Figure 5.10(d)). As an example, random model structure 5, which
contains three edges that are included both in the building block of model 12 and
of model 16, performed similarly as the selected minimal model structure 16. The
two additional edges are present in model structure 4 and 8, respectively. Therefore,
random model structure 5 is similar to the best performing model structure 4_8_12.

5.6 Experimental Validation and Model Predictions

5.6.1 Experimental Validation of a Negative Crosstalk

To experimentally validate model 4_8_12, we focused on the identified interaction
from AKT to Raf1 and predicted the impact of different degrees of AKT inhibition
on the inhibitory impact of AKT on Raf1. The model predictions indicate that 3,
6, and 100 fold AKT inhibition results in a 77 %, 83 %, and 99 % reduction of the
inhibitory effect of AKT on Raf1 (Figure 5.12(a) and 5.12(b)). The model includes
active Raf1, which cannot be directly compared to Raf1 phosphorylated at a specific
phosphorylation site as phosphorylation on serine 338 contributes to Raf1 activation,
whereas phosphorylation on serine 259, the target of AKT, represents an inactivation
signal (Mabuchi et al. 2002). Therefore, we used the effect of AKT inhibition on ser-
ine 259 phosphorylation of Raf1 as a proxy to experimentally address the inhibitory
impact of AKT on Raf1. Experimentally, we stimulated primary mouse hepatocytes
with HGF in the absence and presence of a specific AKT inhibitor and monitored
the impact on Raf1 phosphorylation on serine 259. We achieved an inhibition of
AKT phosphorylation between 90 % and 100 % (Figure 5.12(c)) and concomitantly
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Table 5.1: Candidate edges of selected models, model combinations, and random models.
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4_8_12 • • • • • • • •
4_6_8_12 • • • • • • • • •
Complete • • • • • • • • • • • • •
4_6_8 • • • • • • • •
6_8_12 • • • • • • • •
12_8 • • • • • • •
4_12 • • • • • •
4_6_12 • • • • • • •
16 • • • • •
rand5 • • • • •
4_6 • • • • • •
4_8 • • • • • •
4 • • • •
6_12 • • • • • •
10 • • • • •
rand39 • • • • •
rand43 • • • • •
12 • • • • •
rand30 • • • • •
6_8 • • • • • • •
rand42 • • • • •
6 • • • • •
14 • • • • •
2 • • • • •
rand3 • • • • •
rand44 • • • • •
rand33 • • • • •
3 • • • •
13 • • • • •
rand46 • • • • •
rand28 • • • • •
rand41 • • • • •
rand23 • • • • •
8 • • • •
rand14 • • • • •
rand50 • • • • •
rand45 • • • • •
rand37 • • • • •
rand8 • • • • •
15 • • • • •
rand49 • • • • •
rand1 • • • • •
rand29 • • • • •
rand40 • • • • •
7 • • • • •
rand12 • • • • •
rand2 • • • • •
9 • • • • •
5 • • • • •
rand34 • • • • •
rand17 • • • • •
rand20 • • • • •
11 • • • • •
rand15 • • • • •
1 • • • • •
rand47 • • • • •
rand32 • • • • •
rand27 • • • • •
rand22 • • • • •
rand18 • • • • •
rand7 • • • • •
rand9 • • • • •
rand24 • • • • •
rand16 • • • • •
rand13 • • • • •
rand21 • • • • •
rand4 • • • • •
rand26 • • • • •
rand6 • • • • •
rand31 • • • • •
rand19 • • • • •
rand38 • • • • •
rand35 • • • • •
rand10 • • • • •
rand11 • • • • •
rand36 • • • • •
rand48 • • • • •
rand25 • • • • •

Edges that are included in the respective model structure are marked with a filled circle. Model
combinations, the complete model, and the 16 selected minimal model structures are high-
lighted in gray. Rows with white background refer to the 50 random model structures (rand1–
50). The models are ordered according to their likelihood value (Figure 5.10).
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Figure 5.12: Negative crosstalk: experimental validation. (a), (b) Prediction of active
AKT and the loss of active Raf1 upon 3, 6, and 100 fold inhibition of active AKT derived with
model 4_8_12. (c), (d) Experimental validation of the effect of AKT inhibition in primary mouse
hepatocytes treated with 40 ng/ml of HGF alone or in combination with AKT inhibitor. Figure
adapted from D’Alessandro, Samaga, Maiwald et al. (2015).

observed a decrease of Raf1 phosphorylation on serine 259 (Figure 5.12(d)). Ad-
ditionally, a moderate increase of MEK phosphorylation was also observed upon
AKT inhibitor treatment (Figure 5.12(d)). The results confirmed the presence of this
interaction in our cellular model system upon HGF stimulation.

5.6.2 Inhibitor Combination: Model Predictions and Experimental Validation

We used the inferred model 4_8_12 to identify strategies to efficiently inhibit AKT
and ERK signaling. First, we determined the effect of reducing the rate of the out-
going reactions of each protein by 50 %. Additionally, we performed simulations
for every possible combination of double inhibition. To evaluate the effect of the
targeted inhibition on PI3K and MAPK pathway activation, we calculated the area
under the curve of AKT and ERK phosphorylation and the sum thereof (Figure 5.13).
Single inhibition of PI3K or PDK1 drastically reduced pAKT and, surprisingly, ex-
erted the opposite effect on pERK. This result indicated that the network structure is
robust against single inhibitor treatment suggesting that the two signaling pathways
compensate each other. The combination of Met and SOS1 inhibitor turned out to
be quite promising, as this inhibitor combination reduced both pAKT and pERK
activation by about 50 % (Figure 5.13).
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Figure 5.13: Model predictions of inhibitor combinations. Heatmaps showing model sim-
ulations of the impact of 50% inhibitor I individually or in combination with 50% inhibitor II. As
readout, the area under the curve of pAKT and pERK upon inhibitor treatment is compared to
the area under the curve of the control condition. The change in the response induced by the
inhibitor treatment is indicated as percentage to the control condition. Figure adapted from
D’Alessandro, Samaga, Maiwald et al. (2015).

To experimentally validate the model predictions on combinatorial treatments, we
first performed single inhibitor treatments targeting PDK1, PI3K, Met, and MEK
prior to HGF stimulation and estimated the inhibition strength parameters for each
individual inhibitor for model 4_8_12 (Figure5.14(a)). Based on the estimated in-
hibitor parameters, we performed predictions of the dynamic behavior of pAKT and
pERK upon combinatorial inhibitor treatments. In detail, we simulated the activa-
tion kinetics of pAKT and pERK upon combining the PI3K and the MEK inhibitor
and upon combining the Met and the PDK1 inhibitor (Figure 5.14(b)). We exper-
imentally validated the model predictions by treating primary mouse hepatocytes
with the indicated inhibitor doses and combinations thereof and analyzed the acti-
vation kinetics of pAKT and pERK (Figure 5.14(c)). The experimental results indi-
cate that the combination of low dose of the PI3K and the MEK inhibitor slightly
increases pAKT and reduces pERK and, therefore, are in good agreement with the
model predictions. Interestingly, the combined application of the Met and the PDK1
inhibitor resulted in a reduction of pAKT, while it had only a moderate effect on
pERK. Additionally, the calculated area under the curve of pAKT and pERK for the
model trajectories and the experimental data are in agreement. In conclusion, model
simulations and experimental verifications suggested that the considered signaling
network is less sensitive to single interventions, but can be efficiently targeted by

137



5 Hybrid Modeling Strategy to Unravel HGF Signaling

Figure 5.14: Inhibitor combinations: experimental validation. (a) Inhibitor strength pa-
rameter estimation. Model 4_8_12 trajectories (solid lines) of the kinetic of pAKT and pERK
measured in primary mouse hepatocytes treated with the indicated inhibitor or DMSO prior to
HGF 40 ng/ml treatment (filled circles). The experimental data represent the average of two or
more replica. (b) Model predictions of pAKT and pERK kinetics. The predictions are based on
the inhibitor strength estimated as in (a). In the right panel, the area under the curve (AUC)
of the model trajectories of pAKT and pERK is given. (c) Experimental validation of pAKT and
pERK kinetics. Primary mouse hepatocytes were treated with the indicated inhibitors or DMSO
and subsequently stimulated with 40 ng/ml HGF for the indicated time points. The experimen-
tal data is a representative dataset of an experiment performed in biological duplicates. On
the right, the quantification of the AUC for pAKT and pERK data is shown. Figure adapted from
D’Alessandro, Samaga, Maiwald et al. (2015).
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combinatorial treatments. Furthermore, the results regarding inhibitor combinations
are an additional validation of the selected model structure.

5.7 Discussion

In this chapter, we presented a network inference approach which benefits from the
strengths of both qualitative and quantitative modeling approaches by combining
interaction graph and ODE modeling. The key advantage of the presented hybrid
approach is that interaction graph modeling enables a preselection of minimal model
structures from a vast search space of potential model candidates, which are then
translated into ODE models for integrating quantitative details. Several other math-
ematical modeling approaches also deal with a family of candidate models aiming
at identifying the correct wiring. These approaches employ, for example, ensemble
modeling (Kuepfer et al. 2007) or Bayesian inference (Xu et al. 2010) and can usu-
ally only deal with a limited number (tens to hundreds) of competing ODE models.
Other modeling approaches using perturbation data to unravel the network struc-
ture rely on modular response analysis (MRA), which requires steady state assump-
tions and modeling based on linear equations. Therefore, these approaches are more
suited to identify feedback and crosstalk mechanisms that determine the medium to
long-term behavior (Kholodenko et al. 2002; Klinger et al. 2013). Furthermore, a
complete set of perturbation experiments that alter the state of each individual mod-
ule is required. In contrast, our proposed modeling strategy enables the elucidation
of mechanisms influencing the immediate system response and to take into account
nonlinear effects such as saturation.

We applied our newly developed hybrid method to HGF signaling in primary
mouse hepatocytes. In order to select the minimal model structures, the data anal-
ysis approach based on the dependency matrix (Section 3.1) was integrated in an
automated routine: Starting from an interaction graph master model of HGF sig-
naling, submodels were derived by iterative addition of candidate mechanisms to
the predefined core model structure. For each resulting model structure, model
predictions derived from the dependency matrix were compared to qualitative char-
acteristics of time-resolved experimental data. Minimal model structures that were
able to explain the data were translated into corresponding ODE models. Impor-
tantly, each ODE model was derived in such a way that its underlying interaction
graph reflected the respective preselected minimal model structure.

Based on a likelihood ratio test, we received a ranking of the ODE model struc-
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tures. Although this “forward selection” did not allow us to identify a single se-
lected minimal model structure as the one explaining the experimental data best,
these structures served as important basis for further analysis. The relevance of the
selected minimal model structures was also confirmed by a random model analysis,
where the majority of random models performed worse than our selected models.
By “backward selection”, we identified minimal model structures containing feed-
back and crosstalk mechanisms relevant for HGF-mediated responses in primary
mouse hepatocytes. In this way, only a reasonable number of combinations of min-
imal model structures had to be tested and we could identify the best performing
combinatorial model. Among other feedback and crosstalk mechanisms, the final
model structure contained a negative interaction from AKT to Raf1, which we con-
firmed experimentally in our cellular model system.

Our modeling strategy delivered as output a dynamic ODE model validated with
respect to both parameters and network structure. The model can serve as an invalu-
able tool to not only elucidate cellular signaling pathways, but also to design cell-
type- or even patient-specific intervention strategies. In our case study, various in-
terconnections between the PI3K and MAPK pathway in the best performing model
structure indicated redundancy within the HGF-stimulated signaling network. Our
model predictions suggested that the effects of intervention in one signaling pathway
can be compensated by the impact of the other pathway. To maximize the response
of inhibition, combinatorial treatments are required as suggested previously (Klinger
et al. 2013; Nelander et al. 2008).

The presented study demonstrates that combining modeling approaches of dif-
ferent complexity is a promising strategy to disentangle the complexity of signaling
pathways. Despite their simplicity, interaction graphs can be successfully applied
to preselect model structures. With increasing complexity of systems under study,
the need for such hybrid approaches will become more and more evident. Future
developments should also consider the automatization (or semi-automatization) of
the different modeling steps to come up with an integrated modeling pipeline.
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Network Structure

In the preceding chapter, we showed how an analysis based on interaction graphs
can be used to narrow down the set of potential model candidates that are able to
reflect an experimentally observed dynamic behavior. This chapter deals with the
identification of mechanisms causing certain dynamic system properties. Interaction
graphs again play a central role as they represent the structure of an ODE system
given by the sign pattern of its Jacobian matrix. Thus, if one wants to know whether
a given ODE network structure may exhibit, for some parameter values, a certain ob-
served dynamic behavior, this can often be answered by inspection of the interaction
graph.

Here, we will study structural conditions that allow certain types of complex dy-
namics in response to a perturbation in steady state. First, we consider perturbation
analysis of general ODE systems (Section 6.1) as it has already been studied by
Maurya et al. (2003) and Oyeleye and Kramer (1988). We revisit their work and also
show how the previous results can be generalized. Second, we consider perturba-
tion analysis of chemical reaction networks and come up with new conditions that
take into account the special structure of these networks (Section 6.2). As a main
result, we shall see that multistationarity and some dynamic behavior in response to
perturbation from steady state are caused by the same mechanisms (Theorem 6.78
and Corollary 6.82). Previous graph-theoretic results for multistationarity in chem-
ical reaction networks were based on bipartite Species–Reaction (SR) graphs. Here,
we derive conditions based on interaction graphs and show how these relate to the
SR graph results. For certain classes of dynamic chemical reaction networks, the
presented conditions are stronger than previous ones (see Example 6.89).

Dietrich Flockerzi and Carsten Conradi both supported the work presented in this
chapter with many fruitful discussions.
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6 Qualitative Dynamics from Network Structure

6.1 Perturbation Analysis for General ODE Systems

Perturbation analysis examines the possible changes of system variables in steady-
state-shift experiments: given a system at steady state, one modifies system parame-
ters and observes the resulting change of the variables once the system reaches a new
steady state (see Section 2.4.3.2). In Chapter 3, we presented a framework for interro-
gation and training of interaction graph models based on data from steady-state-shift
experiments. Here, we are concerned with the identification of mechanisms in ODE
models causing certain dynamic phenomena in response to perturbations in steady
state. In particular, we consider the identification of variables that may exhibit an
inverse or compensatory response to perturbations. For these variables, propagating
the perturbation effect along paths in the interaction graph is not possible (Oyeleye
and Kramer 1988). First, we will introduce the problem of perturbation analysis as
stated in Oyeleye and Kramer (1988). By using homotopy methods, we derive gen-
eralized necessary conditions for inverse and compensatory response, which are not
restricted to the linearized system. Finally, we discuss interaction graph topologies
of systems allowing inverse or compensatory responses.

6.1.1 General Framework

We consider a system consisting of a set S = {S1 . . . ,Sn} of interacting species. The
state of the system is given by x = (x1, . . . , xn), where xi(t) denotes the nonnegative
concentration of species Si at time t. For each species Si, we define a function
fi : D → R, D ⊃ Q, Q = Rn

�0, describing the rate of production and consumption
of the species. It is assumed that the set Q is positively invariant, and that each
function fi is sufficiently smooth on D. The set D is an open neighbourhood of Q.

The system is controlled by an external, constant input, whose strength is given by
the function u : R�0 → R�0. The m-dimensional, nonzero column vector b indicates
which of the species are directly affected by the input variable and whether this
direct influence of the input on species Si is positive (bi = 1) or negative (bi = −1):

bi =

⎧⎨
⎩
±1, if i ∈ Ib ⊆ {1, . . . ,n},

0, if i ∈ {1 . . . ,n} \ Ib.
(6.1)

Thus, the set Ib is the index set of those species that are directly affected by the
external input. In most applications, the cardinality of Ib is 1; however, we consider
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6.1 Perturbation Analysis for General ODE Systems

here the more general case where more than one species can be affected by the
external input at the same time, but all with the same strength.

The dynamics of the system is described by a set of ordinary differential equations
(ODEs):

ẋ = H(x,u) = f(x) + bu, x ∈ D, (6.2)

with H(x,u) =
(
H1(x,u), . . . ,Hn(x,u)

)T and f(x) =
(
f1(x), . . . , fn(x)

)T .
We assume that the system is at steady state for t = 0, and, with u(0) = u0, let

x∗(u0) denote this steady state. Given the system at steady state, we change the
strength of the external input to another (constant) value:

u(t) = u1 ∀t > 0, u1 ∈ R�0, u1 �= u0. (6.3)

As a consequence, the state vector also deviates from the given steady state value.
For the sake of convenience, we choose u0 = 0 and u1 = 1.

Thus, in the following, we consider the system

ẋ = f(x) + b, x(0) = x∗(0), (6.4)

where the initial value x∗(0) is the steady state of the unperturbed system ẋ = f(x).
We will analyze the possible qualitative response of the system, where we focus on
initial and ultimate repsonse as defined below.

Remark 6.1. Previous results for perturbation analysis were derived from linearized
systems (Oyeleye and Kramer 1988), what makes them valid only for small perturba-
tions. Existing global results were restricted to systems whose structure excludes the
existence of multiple steady states (Radulescu et al. 2006; Siegel et al. 2006). In order
to derive global results also for systems that have the capacity for multiple steady
states, we assume that the perturbation induces a continuous steady-state shift. This
will be specified in Section 6.1.4 (Assumption 6.22).

Definition 6.2. Given system (6.4), the initial response sIm of a state variable xm is its
first nonzero response:

Let t1 := sup
t

{xm(t) = x∗m(0) on [0, t]}. If t1 < ∞ and if there is an ε > 0 with

xm(t1 + ε) �= x∗m(0), the initial response sIm of xm is given by

sIm = sgn(xm(t1 + ε) − x∗m(0)).

143



6 Qualitative Dynamics from Network Structure

Definition 6.3. Given system (6.4) and assuming the system reaches a new steady
state x∗(1), this new steady state is qualified as the system’s ultimate response. We
specify two types of ultimate response:

• A variable xm is said to display inverse response to perturbations in the in-
put variable if its ultimate response is inverse to its initial response, that is,
sgn(x∗m(1) − x∗m(0)) = −sIm.

• A variable xm is said to display compensatory response to perturbations in the
input variable if it returns to the unperturbed state, that is, x∗m(1) = x∗m(0).

Figure 6.1 illustrates the definitions.

Figure 6.1: Scheme illustrating initial, inverse, and compensatory response. The
different-colored trajectories exemplify possible dynamical behaviors of a variable xm after
changing the strength of an external input.

Assumption 6.4. The steady state x∗(0) of system (6.2) is exponentially stable.

Our aim is to come up with criteria that exclude a certain system behavior, and
which can be derived solely from the system’s structure. For system (6.2), we con-
sider this structure to be given by the sign pattern of the n× (n+ 1) Jacobian matrix
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6.1 Perturbation Analysis for General ODE Systems

H ′ of system (6.2), which is given by

H ′ =

(
∂H

∂x1
, . . . ,

∂H

∂xn
,
∂H

∂u

)
. (6.5)

This sign pattern is determined by the partial derivatives ∂fi(x)/∂xj and the sign
pattern of b. We make the following assumption to guarantee that the sign pat-
tern of the Jacobian is constant, in the sense that all entries are either nonpositive,
nonnegative, or zero.

Assumption 6.5. For all i = 1, . . . ,n, the rate function fi(x) is monotone in each
argument, that is, ∂fi

∂xj
(x) is either nonpositive, nonnegative, or identically zero for all

x ∈ D.

The requested monotonicity (Assumption 6.5) is a common property of many
functions describing regulatory functions and chemical kinetics so that a wide range
of biological networks can be considered within the framework.

Under Assumption 6.5, we can associate with the Jacobian J := ∂H
∂x the qualitative

matrix Jq = (Jqij), which is defined as follows.

Definition 6.6. The qualitative matrix Jq = (Jqij) of the Jacobian J := ∂H
∂x is given by

J
q
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kij, if ∂fi
∂xj

(x) � 0 for all x ∈ D, and ∂fi
∂xj

(x) �≡ 0,

0, if ∂fi
∂xj

(x) ≡ 0 for all x ∈ D,

−kij, if ∂fi
∂xj

(x) � 0 for all x ∈ D, and ∂fi
∂xj

(x) �≡ 0,

where kij ∈ R>0 for all i, j.

Remark 6.7. We denote Jq as the qualitative matrix of J, although it is in fact a family
of matrices Jq(k), as we are not interested in the particular values of the kij. Never-
theless, we will see that choosing kij = 1 for all i, j would not allow to come up with
some of our major results, as it will be of importance whether two entries kij and
ki ′j ′ are equal or different.

In the following, we assume that Assumptions 6.4 and 6.5 hold unless otherwise
stated.
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6 Qualitative Dynamics from Network Structure

6.1.2 Determinants and Graphs

In the following, we will see that we can draw conclusions on the behavior of sys-
tem (6.2) from the signs of certain subdeterminants of its Jacobian. Therefore, we
introduce in this section some basic definitions and theorems related to determi-
nants. The classic definition of a determinant is given in terms of permutations and
their signs.

Definition 6.8 (Leibniz formula for determinants). Let Per(I) denote the set of all
permutations of I = {1, . . . ,n}, and sgn(σ) the sign of the permutation σ ∈ Per(I),
which is 1 for even and −1 for odd permutations σ. The determinant det(A) of the
n×n matrix A = (Aij) is defined by

det(A) =
∑

σ∈Per(I)

sgn(σ) ·A1σ(1) · . . . ·Anσ(n).

The calculation of a determinant can be reduced to the calculation of determinants
of lower order. Before we state the well-known recursive formula for evaluating de-
terminants dating back to Laplace, we introduce minors as subdeterminants. Given
an n× n matrix A = (Aij) and sets I ⊆ {1, . . . ,n} and K ⊆ {1, . . . ,n}, we let AI,K

denote the submatrix of A with entries Aij with i ∈ I, j ∈ K.

Definition 6.9. Let A be an n × n matrix and let I and K be subsets of {1, . . . ,n}
of cardinality p. The determinant of the matrix AI,K is called a minor of order p of
the matrix A. If I = K, this determinant is called principal minor of order p, and
(−1)p det(AI,I) a signed principal minor.

Theorem 6.10 (Laplace’s formula for determinants). Let A = (Aik) be an n×n matrix,
n � 2, and let I = {1, . . . ,n} \ {i}, K = {1, . . . ,n} \ {k}. Then, for each i ∈ {1, . . . ,n}, the
determinant of A is given by

det(A) =

n∑
k=1

(−1)i+k Aik det(AI,K)

(expansion along row i), and, for each k ∈ {1, . . . ,n}, by

det(A) =

n∑
i=1

(−1)i+k Aik det(AI,K)

(expansion along column k).

146



6.1 Perturbation Analysis for General ODE Systems

As we want to derive conditions that are only dependent on the sign pattern of
the Jacobian, we state here some central definitions for qualitative matrix analysis
(Bassett et al. 1968; Brualdi and Shader 1995).

Definition 6.11. A square matrix A is said to have a signed determinant if the deter-
minants of all matrices that have the same sign pattern as A are of the same sign.

Definition 6.12. A square matrix A is said to be sign-nonsingular (SNS) if A has
signed determinant and det(A) �= 0.

Definition 6.13. A matrix A is said to be strongly sign determined (SSD) if each square
submatrix of A is either SNS or singular.

It is very well known that the determinant of a matrix can be interpreted in terms
of graphs. Therefore, we associate with the n × n matrix A = (Aij) a weighted
directed graph G(A), in this context also known as flow graph or Coates (di)graph
in the literature (Brualdi and Cvetković 2009; Coates 1959). This graph contains n

nodes v1, . . . , vn, and, for each i, j ∈ {1, . . . ,n}, we draw an edge from vj to vi with
edge weight Aij. Edges with zero weight are not drawn. Note that G(A) may contain
selfcycles, corresponding to the diagonal entries of A. Matrix A can be seen as the
transposed (weighted) adjacency matrix of the graph G(A).

As in previous chapters, we define the interaction graph associated with a matrix
A = (Aij) as the signed directed graph containing a positive (negative) edge from vj

to vi whenever Aij > 0 (Aij < 0). Thus, the interaction graph contains the same set
of nodes and edges as the Coates graph, but, instead of Aij being the weight of the
edge from node j to node i, only the sign of Aij is assigned to the edge. We let G(A)

denote both the Coates graph and the interaction graph of a matrix A; it should be
clear from the context which graph we are referring to.

Definition 6.14. Consider the interaction graph associated with the qualitative ma-
trix Jq of system (6.2). This graph contains the nodes S1, . . . ,Sn, which represent the
species of the system. Furthermore, we introduce a node U representing the external
input and draw, for all i ∈ Ib, an edge from U to Si with sign sgn(bi). The so-derived
graph is an interaction graph which represents the matrix that is derived from Jq by
appending vector b and will be denoted with G(Jq,b) accordingly.

With the following definition, we state some terminology from graph theory.

Definition 6.15. Let G be a weighted directed graph with vertex set V and edge set E.
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6 Qualitative Dynamics from Network Structure

• A walk in G is a sequence v1 e1 v2 e2 . . . vk ek vk+1 of vertices vi ∈ V and edges
ei ∈ E with ei = (vi, vi+1). In a closed walk, v1 = vk+1.

• The weight of a walk is given as product of the weights of the edges it contains.

• The length of a walk is given as the number of edges it contains. Repeated
edges are counted as many times as they appear.

• A path is a walk with pairwise distinct vertices, and a closed walk with pairwise
distinct vertices except for the first and last vertex is called cycle.

• A subgraph of G is a graph whose set V ′ of vertices is a subset of V , and whose
set E ′ of edges e ′i is a subset of E, with e ′i = (v ′i, v

′
j), v ′i, v

′
j ∈ V ′. If G ′ is a

subgraph of G, the graph G is called supergraph of G’.

• A linear subgraph of G is a subgraph with vertex set V , which contains exactly
one edge into each vertex and exactly one edge out of each vertex.

The following theorem relates the determinant of a matrix to its associated Coates
graph (Coates 1959; Harary 1962).

Theorem 6.16. Let A denote an n× n matrix and G(A) the associated Coates graph. The
determinant of A is then given by

det(A) = (−1)n
∑

L∈L(A)

(−1)c(L)ω(L),

where L(A) denotes the set of all linear subgraphs of G(A), c(L) the number of cycles con-
tained in L, and ω(L) the product of the weights of the cycles of L.

Another way to represent the determinant of a matrix based on the associated
Coates graph is the following formula, where the determinant is given in terms of
cycles in the graph all running over the same node (Maybee and Quirk 1969). Given
a set I, we let #I denote the cardinality of I.

Theorem 6.17. Let A denote an n× n matrix and G(A) the associated Coates graph with
nodes indexed by I = {1, . . . ,n}. Then, for all i ∈ I, the determinant of A is given by

det(A) =
∑

C∈Ci(A)

(−1)#IC−1ω(C)det(A
IC,IC),
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6.1 Perturbation Analysis for General ODE Systems

where Ci(A) denotes the set of all cycles in G(A) containing node Si, IC ⊆ I the index set of
all nodes of C, ω(C) the weight of C, and IC = I \ IC, and where det(A

IC,IC) = 1 if IC is
the empty set.

6.1.3 A Graph-Theoretic Criterion for Initial Response

A variable’s ultimate response is defined as its qualitative change in a new steady
state in comparison to its initial response (see Definition 6.3). Here, we restate a
graph-theoretic condition for the initial response to disturbances in input variables as
introduced in Oyeleye (1990) and Maurya et al. (2003). These authors just considered
the linearized system and, thus, only partially proved their statements. We provide
a complete proof without linearizing the system in Appendix G.

Theorem 6.18. Consider system (6.4) and let Jq0 denote the sign structure of the Jacobian at
the initial value x∗(0), i.e., J0 = fx(x

∗(0)). If in G(Jq0 ,b) all shortest paths from U to Sm are
of the same sign, the initial response of a variable xm to a change in the input strength u is
given by this sign.

Remark 6.19. For the initial response, we have to consider the qualitative Jacobian at
the steady state of the unperturbed system. In general, the Jacobian Jq as defined
in Definition 6.6 may contain a non-zero entry where J

q
0 is zero. Hence, the shortest

path from a species to another might differ in the graphs G(Jq) and G(Jq0 ). However,
the graph-theoretic criteria we derive in this work (Theorem 6.18 as well as criteria
for ultimate system response that will be derived in the following) rely on the as-
sumption that all paths between a pair of nodes are of the same sign. In that case,
conclusions on the initial response can be drawn from G(Jq).

6.1.4 Determinant Criteria for Ultimate System Response

In this section, we state conditions to exclude an inverse or compensatory response
based on the network structure. Similar conditions are given in Oyeleye (1990) and
Maurya et al. (2003); however, again these authors dealt with the linearized system.
Here, we show how such criteria can be derived for the nonlinear system by using
homotopies (Garcia and Zangwill 1979).

Definition 6.20. Let En denote the n-dimensional Euclidean space. Any continuous
function H : D× [0, 1] → En, D ⊂ En, is termed a homotopy, and the system H(x,u) =
0 with x ∈ D, u ∈ [0, 1], is termed a homotopy system of equations. The variable u is
called the homotopy variable.
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For our problem of perturbation analysis, we can interpret the right-hand side of
system (6.4) as homotopy: Define the two functions

g0(x) = f(x), (6.6)

g1(x) = f(x) + b. (6.7)

Then, the homotopy H(x,u) with homotopy variable u describes the deformation
from the unperturbed function g0 to the perturbed function g1.

The set H0, which we define as

H0 = {(x,u) ∈ D× [0, 1] | H(x,u) = 0}, (6.8)

describes all steady states of system (6.4) with u ∈ [0, 1].
We make the following regulatory assumption:

Assumption 6.21. The Jacobian H ′ of system (6.4) has full rank n at all (x,u) ∈ H0.

Both (x∗(0), 0) and (x∗(1), 1) are elements of the set H0. Under Assumption 6.21,
the set H0 consists of a finite number of disjoint continuously differentiable paths
(Garcia and Zangwill 1979, Theorem 2.1); thus, any (x,u) ∈ H0 lies on a unique
path.

Let us come back to our aim to find necessary conditions for an inverse or com-
pensatory system response after perturbation. We make the following additional
assumption:

Assumption 6.22. Given system (6.4) at steady state x∗(0) and switching u from 0
to 1, the system reaches a new steady state x∗(1) that belongs to the path in H0 with
starting point (x∗(0), 0) and end point (x∗(1), 1).

Remark 6.23. Assumptions 6.21 and 6.22 appear simple but are quite restrictive and
might be hard to verify for larger systems. However, without these assumptions it
is exceedingly difficult to draw general conclusions from the Jacobian matrix, what
makes them inevitable at this point.

Definition 6.24. Given an n×m matrix J, we denote with Ji|−b the matrix that is
derived from J by replacing column i with the negative of the n-dimensional column
vector b.

In the following, let J denote the matrix ∂H
∂x , and b = ∂H

∂u . We parameterize the
paths in H0 by a variable p, that is, we let all variables xi, i = 1, . . . ,n, and u be
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functions of p. We denote with pf the first p for which u = 1, that is,

pf := inf {p : u(p) = 1}. (6.9)

With kT (x,u) :=
(
det(J1|−b(x,u)), . . . , det(Jn|−b(x,u)), det(J(x))

)
, the parameteriza-

tion x(p), u(p) will be provided by the ODE system

dxi
dp

= (−1)n
det(Ji|−b(x,u))

1 +
∥∥k(x,u)

∥∥2 , i = 1, . . . ,n,

du

dp
= (−1)n

det(J(x))

1 +
∥∥k(x,u)

∥∥2 ,
(6.10)

where ‖·‖2 denotes the squared Euclidean distance.
Building on previous results (Garcia and Zangwill 1979, Theorem 3.1), the follow-

ing lemma shows that the system’s ultimate response is determined by the ODE
system (6.10).

Lemma 6.25. Assume we are given system (6.4) at steady state x∗(0) and increase u from 0
to 1. Under Assumptions 6.21 and 6.22, the path from (x∗(0), 0) to (x∗(1), 1) is determined
by the solution of system (6.10) for p < pf with initial condition (x(0),u(0)) = (x∗(0), 0).

Proof. Differentiating H
(
x(p),u(p)

)
= 0, we get

H ′(x,u)

(
dx
dp(x,u)
du
dp (x,u)

)
= 0. (6.11)

Thus,
(
dx
dp , dudp

)T must lie in the kernel of H ′(x,u).
Introducing adj(J) as the adjoint of J = ∂H

∂x , the kernel of H ′(x,u) is spanned by
the vector function (

(−1)n+1 adj(J(x))b
(−1)n det(J(x))

)
. (6.12)

Observing that the vector function (6.12) equals k(x,u) given by

k(x,u) :=
(
det(J1|−b(x,u)), . . . , det(Jn|−b(x,u)), det(J(x))

)T , (6.13)

and as Assumption 6.21 guarantees that k(x,u) does not equal the zero vector for
any (x,u) ∈ H0, the vector k(x,u) represents a basis for the kernel of H ′(x,u).

The normalization of the right-hand side in (6.10) ensures that the solutions exist
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for all p.
Finally, it follows from the assumed exponential stability of x∗(0) (Assumption 6.4)

that (−1)n det(J(x∗(0))) > 0, so that the solution of system (6.10) for p < pf and with
initial value (x∗(0), 0) describes the path from (x∗(0), 0) to (x∗(1), 1).

Lemma 6.25 implies the following results about inverse response:

Corollary 6.26. Consider system (6.4) with initial value x∗(0). Under Assuptions 6.21 and
6.22, a necessary condition for an inverse response of variable xm in steady state x∗(1) is
that there must be a p < pf with x(p), u(p) satisfying

sgn
(
(−1)n det

(
Jm|−b(x(p),u(p))

))
= −sIm ,

where sIm denotes the sign of the initial response of variable xm.

Proposition 6.27. Under Assumptions 6.21 and 6.22, an inverse response of variable xm

can be excluded for all systems of the form (6.4) with qualitative Jacobian Jq if the matrix
J
q
m|−b

is SNS and if sgn((−1)n det(Jq
m|−b

)) = sIm.

Proof. If Jq
m|−b

is SNS, all nonzero terms in its determinant expansion are of the same
sign (Brualdi and Shader 1995). According to the definition of Jq, for all x,u, the
entries of J(x,u) are either of the same sign as the respective entry in Jq, or J(x,u) has
a zero entry where Jq is nonzero. Thus, if Jq

m|−b
is SNS and if sgn((−1)n det(Jq

m|−b
)) =

sIm, all nonzero terms in the determinant expansion of (−1)nJm|−b(x,u) have sign
sIm, and the necessary condition for inverse response stated in Corollary 6.26 is not
satisfied.

For compensatory response, we can conclude the following:

Proposition 6.28. For all systems of the form (6.2) with qualitative Jacobian Jq, assuming
Assumptions 6.21 and 6.22 are satisfied, a compensatory response of variable xm

• is excluded if the matrix J
q
m|−b

is SNS,

• is guaranteed if each summand in the determinant expansion of Jq
m|−b

is zero.

In the following, we will further examine the structural network properties caus-
ing an inverse or compensatory response. The determinant of matrix J

q
m|−b

can be
written as

det(Jq
m|−b

) =
∑
i∈Ib

bi det(Jq
m|−ei

), (6.14)
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where J
q
m|−ei

denotes the matrix derived from Jq by replacing column m with the
negative ith unit vector ei.

Each cycle containing node Sm in G(Jq
m|−ei

) is made up of a path from Si to Sm and
the edge from Sm to Si with edge weight −1. Hence, according to Theorem 6.17, the
determinant of Jq

m|−ei
can be written as summation over all paths from Si to Sm with

weight −ω(P):

det(Jq
m|−ei

) =
∑

P∈Pi→m

(−1)#IP−1(−1)ω(P)det(Jq
IP ,IP

). (6.15)

With (6.14), we have

(−1)n det(Jq
m|−b

) =
∑
i∈Ib

∑
P∈Pi→m

biω(P)(−1)n−#IP det(Jq
IP ,IP

). (6.16)

From (6.16) we see that the sign of each summand in the determinant expansion of
J
q
m|−b

is determined by the sign biω(P) of a path from U to Sm in G(Jq,b) and by the
sign of the determinant of the complementary matrix to that path, which is derived
from Jq by removing all rows and columns corresponding to species nodes on the
path. Thus, if all paths from U to Sm are of the same sign, it is sufficient to analyze
the determinant of smaller subsystems in order to check if an inverse response can
be excluded.

Assumption 6.29. In the interaction graph G(Jq,b) associated with system (6.2), all
paths from U to Sm are of the same sign.

Proposition 6.30. Consider system (6.4) with initial value x∗(0), and let Assumptions 6.21
and 6.22 hold. For a path P in G(Jq), let IP ⊆ {1, . . . ,n} denote the set of indices of all species
nodes on this path, and let IP = {1, . . . ,n} \ IP. If xm fulfills Assumption 6.29, an inverse
response of xm in steady state x∗(1) is excluded if all paths P from U to Sm in G(Jq,b) satisfy

J
q

IP ,IP
has a signed determinant and (−1)n−#IP det(Jq

IP ,IP
) � 0.

6.1.5 Some Graph-Theoretic Implications

In this section, we want to discuss some implications of the conditions for inverse
and compensatory response on the interaction graph topology. First of all, this
reveals network motifs causing an inverse or compensatory response. In addition,
it allows for conclusions about the ultimate system response by interaction graph
inspection.
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6 Qualitative Dynamics from Network Structure

Negative cycle or paths of both signs necessary for inverse and compen-

satory response. This first property of interaction graphs associated with systems
showing an inverse or compensatory response is not derived from the conditions
presented above, but results from the fact that inverse and compensatory response
are both nonmonotonic dynamical behaviors. A prerequisite for a system variable
xm to be nonmonotonic with respect to changes in the initial value of variable xi

is that in G(Jq), there are walks from Si to Sm of opposite signs (Kunze and Siegel
1994). Thus, an inverse or compensatory response of xm to a perturbation in xi is
only possible if G(Jq) contains paths of both signs from xi to xm, or if a node lying
on a path from xi to xm is part of a negative cycle.

Positive cycle or paths of both signs necessary for inverse response. Propo-
sition 6.27 implies that an inverse response of xm is only enabled if at least one
of the terms in the determinant expansion of J

q
m|−b

has sign −sIm. If all paths
from U to Sm are of the same sign (Assumption 6.29), Proposition 6.30 gives that,
for an inverse response, there must be at least one path from U to Sm satisfying
(−1)n−#IP det(Jq

IP ,IP
) < 0. Written in terms of linear subgraphs (Theorem 6.16), we

have ∑
L∈L(J

IP ,IP
)

(−1)c(L)ω(L) < 0. (6.17)

Thus, under Assumption 6.29, one of the linear subgraphs L of the complementary
graph G(Jq

IP ,IP
) to a path from U to Sm must contain (i) an even number of cycles with

weight ω(L) < 0, or (ii) an odd number of cycles with weight ω(L) > 0. This implies
that necessary for inverse response of xm are either paths of both signs between U

and Sm (i.e., Assumption 6.29 is not fulfilled), or the complementary graph to at
least one of the paths from U to Sm in G(Jq,b) must contain a positive cycle.

Positive cycle, paths of both signs, or integrator necessary for compensatory

response. Compensatory response of variable xm can be excluded for all systems
with qualitative Jacobian Jq if the matrix J

q
m|−b

is SNS (Proposition 6.28). Thus, in
order to enable a compensatory response, the determinant expansion of Jq

m|−b
must

(i) contain terms of both signs, or (ii) be identically zero. For (i), we get the same
necessary condition as for inverse response: the complementary graph to at least
one of the paths from U to Sm in G(Jq,b) must contain a positive cycle, or there must
be paths of both signs between U and Sm. If none of the two is satisfied, a zero
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6.2 Perturbation Analysis for Chemical Reaction Networks

selfcycle, also known as integrator, is needed for (ii), as otherwise the term referring
to the linear subgraph including all selfcycles appears in the determinant expansion.

Example 6.31. As an example for employing perturbation analysis in a regulatory
network we consider a dynamical ODE model of T cell receptor signaling (Wittmann
et al. 2009). The model was derived from a logical model of T cell activation1 (Saez-
Rodriguez et al. 2007), which was transformed into an ODE model by multivariate
polynomial interpolation (Wittmann et al. (2009); see also Section 2.4.3.1). Charac-
teristic of this transformation is that the underlying interaction graph of the original
logical model and of the derived ODE model are identical (Wittmann et al. 2009).
The interaction graph of the T cell model contains 40 nodes. It has several positive
and negative feedback and feedforward loops (Saez-Rodriguez et al. 2007) and, thus,
the potential to exhibit inverse or compensatory response. We analyzed for each pair
(Si,Sm) of nodes the possible initial and ultimate response of Sm after perturbing Si

according to the graph-theoretic specifications in Section 6.1.3 and in this section.
The initial response is determined for all node pairs, that is, for all pairs (Si,Sm),
the sign of the shortest path from Si to Sm is unique. For 1230 of the 1600 node
pairs we found that either no path from Si to Sm exists, or that all paths from Si to
Sm have the same sign, and none of the nodes along these paths is contained in a
negative cycle (this type of analysis is facilitated by the notion of the dependency
matrix; see Section 2.4.1.2). For the latter, we can thus exclude a compensatory or
inverse response as in those cases, the path and feedback structure implies that Sm
behaves monotone with respect to changes in Si. For 235 pairs we found positive
and negative paths from Si to Sm implying that inverse or compensatory response
cannot be excluded. Finally, from the 135 cases where only sign-consistent paths
from Si to Sm exist and negative circuits are involved, we found that for just one
node pair (TCRphos on itself) inverse and compensatory response is possible; for
the other 134 cases inverse and compensatory response can be excluded. Thus, for
this type of models, the perturbation analysis is rather conclusive.

6.2 Perturbation Analysis for Chemical Reaction Networks

A large class of biological systems can be described as chemical reaction networks
(CRNs) that consist of a set of species and a set of reactions between the species.

1We considered this logical T cell model as Benchmark for the computation of minimal intervention
sets in Section 4.4.2.3.
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6 Qualitative Dynamics from Network Structure

Frequently, the sum of certain species concentrations in a CRN remains constant in
the system; as a consequence, the Jacobian of the system does not have full rank, and
the criteria for ultimate system response as described in the previous section cannot
be applied. For CRNs without conservation relations, the conditions are applicable,
but in general of poor predictive power for this class of systems as Assumption 6.29
is usually not fulfilled. In the following, we show how analogous conditions can be
derived that take into account the special structure of CRNs and are thus suited for
perturbation analysis of these networks. Furthermore, we show the close connection
of the derived results to conditions for multistationarity in CRNs (Section 6.2.5).

6.2.1 Dynamic Chemical Reaction Networks

Consider the example reaction

2S1 + S2 → S3, (6.18)

where production of one molecule of species S3 out of two molecules of S1 and one
molecule of S2 is described. Following the standard nomenclature for CRNs (see,
e.g., Feinberg (1987)), the objects 2S1 + S2 and S3 are termed the reactant complex and
product complex, respectively, and are represented by the vectors y = (2, 1, 0)T and
y ′ = (0, 0, 1)T . Reaction (6.18) can then be written as y → y ′.

Definition 6.32. A chemical reaction network N consists of three finite sets:

1. a set S = {S1, . . . ,Sn} of species,

2. a set C ⊂ Rn
�0 of complexes,

3. a set R = {r1, . . . , rq} ⊂ C× C of reactions satisfying the following:

• (y,y) /∈ R for all y ∈ C,

• if y ∈ C, there exists y ′ ∈ C such that either (y,y ′) ∈ R or (y ′,y) ∈ R.

Remark 6.33. According to Definition 6.32, we consider a reversible reaction as one
single reaction, that is, the information whether a reaction is reversible or irreversible
is not contained in the CRN description. We shall see that this information is im-
plicitly given by the associated rate law. However, sometimes it is advantageous to
consider a reversible reaction as two single irreversible reactions in a CRN. If we do
so in the following, we will denote the respective CRN with N = (S,C,Rir), where
Rir is the set of irreversible reactions.
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6.2 Perturbation Analysis for Chemical Reaction Networks

A CRN might contain synthesis reactions (inflows) and degradation reactions (out-
flows), which are reactions of the form 0 → Si and Si → 0. A network that contains
for each species Si ∈ S a degradation reaction that is only influenced by the species
itself is called fully open (Shinar and Feinberg 2013).

It is often convenient to describe a CRN by its stoichiometric matrix:

Definition 6.34. Given a CRN with n species and q reactions (yi,y ′
i), i = 1, . . . ,q, the

stoichiometric matrix N is defined as the n× q matrix (y ′
1 − y1,y ′

2 − y2, . . . ,y ′
q − yq).

As in the previous sections, we want to study how the concentrations of the species
in the CRN change over time. Hence, we let xi(t) again denote the nonnegative
concentration of species Si at time t. The rate function that describes the rate of
production and consumption of each species is now composed of the reaction rates
(kinetics) of all reactions influencing this species.

Definition 6.35. Consider a CRN N = (S,C,R) with stoichiometric matrix N.

1. A kinetics for N is an assignment for each reaction ri ∈ R of a differentiable rate
function vi : D → R�0, where D ⊆ Rn

�0 is an open rectangular domain.

2. The species formation rate function for N with kinetics v = (v1, . . . , vq) is given by

f(x) = Nv(x). (6.19)

The dynamics of a CRN N with kinetics v and stoichiometric matrix N is described
by a set of ODEs:

ẋ = f(x) = Nv(x). (6.20)

The Jacobian J = ∂f
∂x of system (6.20) is given by the product J = NV , where V de-

notes the q×n matrix given by Vij =
∂vi
∂xj

. We will refer to a CRN with stoichiometric
matrix N and kinetics v as dynamic chemical reaction network D = (N, v).

Again, we seek to identify criteria by which certain dynamic behaviors can be ex-
cluded solely from the system’s structure given by the sign pattern of the Jacobian.
Instead of demanding a monotone rate function as above (Assumption 6.5), we as-
sume in the following that the kinetics v is monotone, that is, for all i = 1, . . . ,q
and all j = 1, . . . ,n, the partial derivative ∂vi

∂xj
(x) is either nonpositive, nonnegative,

or identically zero for all x ∈ D. Thus, we can associate with the matrix V the
qualitative matrix Vq = (Vq

ij) given by
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V
q
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αij, if ∂vi
∂xj

(x) � 0 for all x ∈ D, and ∂vi
∂xj

(x) �≡ 0,

0, if ∂vi
∂xj

(x) ≡ 0 for all x ∈ D,

−αij, if ∂vi
∂xj

(x) � 0 for all x ∈ D, and ∂vi
∂xj

(x) �≡ 0,

(6.21)

where αij ∈ R>0 for all i, j. The qualitative Jacobian Jq is then given by

Jq = NVq. (6.22)

Remark 6.36. Again, we denote Vq as the qualitative matrix of V , and consequently
Jq as the qualitative Jacobian, although both are in fact a family of matrices (see
Remark 6.7).

Definition 6.37. Given system (6.20) with qualitative matrix Vq, we denote with vq

the set of all possible kinetics v.

Remark 6.38. In contrast to entries of the qualitative matrix considered in the pre-
vious section (see Definition 6.6), here, an entry of the qualitative matrix Jq is not
necessarily of defined sign, but a sum of summands of fixed sign, for example,
J
q
mj = αij −αlj, with αij,αlj ∈ R>0. See Example 6.40.

If we make further assumptions on the kinetics of a dynamic CRN, it is possible
to derive conclusions about the qualitative matrix Vq from the stoichiometric matrix
N. Two classes of dynamic CRNs enabling such conclusions are the classes of weakly
monotonic systems (Shinar and Feinberg 2012) and of nonautocatalytic systems (Banaji
et al. 2007).

Definition 6.39 (Shinar and Feinberg 2012). A kinetics v for a CRN is weakly mono-
tonic if, for each pair of species concentrations x1 and x2, the following implica-
tions hold for each reaction ri = (y,y ′) ∈ Rir such that suppy ⊆ supp x1 and
suppy ⊆ supp x2:

1. vi(x
2) > vi(x

1) ⇒ there is a species Sj with j ∈ suppy and x2
j > x1

j .

2. vi(x
2) = vi(x

1) ⇒ x2
j = x1

j for all j ∈ suppy or there are species Sj,Sk with
j,k ∈ suppy, x2

j > x1
j , and x2

k < x1
k.

The CRN N = (S,C,Rir) with kinetics v is said to be weakly monotonic if its kinetics
v is weakly monotonic.
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6.2 Perturbation Analysis for Chemical Reaction Networks

In less formal terms, the reaction rate of a particular reaction with weakly mono-
tonic kinetics can only increase if the concentration of at least one species of its
reactant complex increases. This implies V

q
ij > 0 if and only if species Sj is a reactant

species in reaction ri ∈ Rir, else V
q
ij = 0.

Example 6.40. Consider the reversible bimolecular reaction S1 + S2 ↔ S3, where S1

and S2 are consumed to produce S3, and where for each species a separate degrada-
tion reaction is considered. The stoichiometric matrix is then given as

N =

⎛⎜⎝−1 −1 0 0
−1 0 −1 0
1 0 0 −1

⎞⎟⎠ . (6.23)

Assuming weakly monotonic kinetics (e.g., mass action kinetics), the matrix Vq is
given as

Vq =

⎛⎜⎜⎜⎜⎝
α11 α12 α13

α21 0 0
0 α32 0
0 0 α43

⎞⎟⎟⎟⎟⎠ , αij ∈ R>0, (6.24)

and the qualitative Jacobian Jq = NVq for this example is

Jq =

⎛⎜⎝−α11 −α21 −α12 −α13

−α11 −α12 −α32 −α13

α11 α12 α13 −α43

⎞⎟⎠ . (6.25)

The class of nonautocatalytic kinetics is wider than that of weakly monotonic
kinetics: there, an increase in the concentration of a reactant species, while keeping
all other concentrations fixed, cannot cause the reaction rate to decrease, while an
increase in the concentration of a product species—again assuming that all other
concentrations do not change—cannot result in an increased rate (Banaji et al. 2007).
This is formalized as follows:

Definition 6.41 (Banaji et al. 2007). A dynamic CRN D = (N, v) is called nonauto-
catalytic (NAC) if the stoichiometric matrix N and the matrix Vq have opposite sign
structure in the following sense:

1. NijV
q
ji � 0 for all i and j, and

2. For all i and j with Nij = 0: Vq
ji = 0.
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A further restriction of CRNs that is usually imposed in connection with NAC
networks (Banaji et al. 2007) is the following:

Assumption 6.42. Each species in the CRN occurs only on one side of a reaction.

We end this introduction by giving some characteristics and some further nomen-
clature of dynamic CRNs that will be of importance later on. The species formation
rate function f(·) takes values in the stoichiometric subspace im(N). A trajectory x(t)

passing through the vector x0 ∈ Rn
�0 lies invariably in the set

(
x0 + im(N)

) ∩ Rn
�0,

and this invariant linear space is called a stoichiometric compatibility class. Two vectors
c, c ′ ∈ Rn

�0 are called stoichiometrically compatible if they lie in the same stoichiometric
compatibility class, that is, if c ′ − c ∈ im(N). In general, the stoichiometric matrix
N does not have full row rank, so that the stoichiometric subspace is a proper sub-
space of Rn

�0. For s denoting the rank of N, system (6.20) has d = n− s linearly
independent conservation laws, each of which is given by a nonzero column vector
w fulfilling wTN = 0. Hence, each conservation law is a vector that lies in the left
kernel of N, and a set of linearly independent conservation laws is given by a basis
of the left kernel of N.

6.2.2 Determinant Criteria for Ultimate Response of Chemical Reaction

Networks

The graph-theoretic condition for the initial response (Theorem 6.18) can also be
applied to CRNs. For the ultimate response, we state in this section adapted condi-
tions.

Given a system with conservation laws, the determinant criteria for ultimate sys-
tem response stated in Section 6.1.4 cannot be applied as the singularity of the Ja-
cobian J conflicts with the stability assumption of the steady state (Assumption 6.4)
and, in general, also with the regulatory assumption (Assumption 6.21).

A common approach when analyzing CRNs is to restrict oneself to study the
dynamics of the system within stoichiometric compatibility classes (Craciun and
Feinberg 2010). We consider the system

ẋ = f(x) + bu = Nv(x) + bu, (6.26)

with kinetics v and n×m stoichiometric matrix N of rank s. The vector b and the
input u are defined as in Section 6.1.1. Again, we assume that the right-hand side
of (6.26) is sufficiently smooth and are interested in the qualitative change of certain
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6.2 Perturbation Analysis for Chemical Reaction Networks

state variables in a new steady state x∗(1) compared to their values in an initial
steady state x∗(0).

As the Jacobian J = ∂f
∂x has d = n− s eigenvalues that are identically zero for all

values of x, Assumption 6.4 on the stability of the steady state x∗(0) is substituted
by the following assumption.

Assumption 6.43. The Jacobian J(x∗(0)) has s nonzero eigenvalues, each having neg-
ative real part.

In the following, we want to analyze steady states x∗(1) that lie in the set x∗(0) +
im(N), that is, in the same stoichiometric compatibility class as the steady state x∗(0)
we start from. To this end, we let W denote a matrix whose columns w1, . . . ,wd with
wi = (wi

1, . . . ,wi
n)

T form a basis of the left kernel of N. Without loss of generality,
we order the rows of N in such a way that WT = (Ed,−ZT ), where Ed denotes the
identity matrix of size d. Let N1 denote the first d rows of N, and let N2 denote the
remaining s rows. As WTN = 0, we have N1 = ZTN2, and we can write system (6.26)
as

ẋ =

(
ZTN2

N2

)
v(x) + bu. (6.27)

In order to restrict ourselves to considering the dynamics within stoichiometric
compatibility classes, we have to assure that these classes are not affected by the
external input.

Assumption 6.44. The vector b (cf. (6.1)) satisfies b ∈ im(N), that is, WTb = 0.

Remark 6.45. If only one species is directly influenced by the external input, Assump-
tion 6.44 is only satisfied if this species is not part of a conservation relation.

Solutions x(·) of system (6.27) that lie in the set x∗(0) + im(N) satisfy

WTx(t) = WTx∗(0) ∀t. (6.28)

Hence, the steady states of system (6.27) that lie in the set x∗(0)+ im(N) are, under
Assumption 6.44, the zeros of

f̃(x) + bu =

(
WTx−WTx∗(0)

N2 v(x)

)
+ bu. (6.29)
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Remark 6.46. The function f̃ is similar to the associated extended rate function em-
ployed in Wiuf and Feliu (2013). There, the right-hand side reads, in our notation,
(WTx,N2 v(x))

T . In particular, the Jacobian J̃ of f̃ and the Jacobian of the associated
extended rate function are equal.

To study the relation between the unperturbed steady state x∗(0) and the steady
state x∗(1) reached after setting the external input u from 0 to 1 within stoichiometric
compatibility classes, we consider the deformation from the unperturbed function
g̃ 0(x) = f̃(x) to the perturbed function g̃ 1(x) = f̃(x)+bu described by the homotopy
H̃(x,u) = f̃(x) + bu. The set H̃0 describes all steady states of system (6.29) with
u ∈ [0, 1]:

H̃0 = {(x,u) ∈ D̃× [0, 1] | H̃(x,u) = 0}, (6.30)

where D̃ denotes the set D ∩ {im(N) + x∗(0)}. Assumption 6.21 is translated as fol-
lows:

Assumption 6.47. The Jacobian H̃ ′ of system (6.29) has full rank n at all (x,u) ∈ H̃0.

With J̃i|−b denoting the matrix that is derived from the Jacobian J̃ of the function
f̃ given in (6.29) by replacing column i with the negative of vector b, this gives the
following formulation of Lemma 6.25 for CRNs.

Lemma 6.48. Assume we are given system (6.29) and increase u from 0 to 1. Let k̃T (y,u) :=(
det(̃J1|−b(x,u)), . . . , det(̃Jn|−b(x,u)), det(̃J(x))

)
. Under Assumptions 6.22, 6.43, and 6.47,

the path from (x∗(0), 0) to (x∗(1), 1) is determined by the solution of

dxi
dp

= (−1)s
det(̃Ji|−b(x,u))

1 +
∥∥k̃(x,u)

∥∥2 , i = 1, . . . ,n,

du

dp
= (−1)s

det(̃J(x,u))

1 +
∥∥k̃(x,u)

∥∥2

(6.31)

for p < pf with initial condition (x(0),u(0)) = (x∗(0), 0).

As a main result of this work, we can now state conditions for inverse and com-
pensatory response in CRNs, in analogy to Propositions 6.27 and 6.28. With J̃q we
denote the matrix that is derived from Jq in an analogous way as J̃ is derived from
J, that is by replacing certain rows by basis vectors of the left kernel of the stoichio-
metric matrix.
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Theorem 6.49. Under Assumptions 6.22, 6.43, 6.44, and 6.47, an inverse response of vari-
able xm can be excluded for all systems of the form (6.26) with qualitative Jacobian Jq if the
matrix J̃

q
m|−b

is SNS and if sgn((−1)s det(̃Jq
m|−b

)) = sIm, where sIm denotes the sign of the
initial response of variable xm.

Theorem 6.50. For all systems of the form (6.26) with qualitative Jacobian Jq, assuming
Assumptions 6.22, 6.43, 6.44, and 6.47 are satisfied, a compensatory response of variable xm

• is excluded if the matrix J̃
q
m|−b

is SNS,

• is guaranteed if each summand in the determinant expansion of J̃q
m|−b

is zero.

Example 6.51. The following example, taken from Conradi et al. (2005), describes
dual phosphorylation and dephosphorylation of a protein A as it occurs, for ex-
ample, in MAPK signaling. The two activating phosphorylations are mediated by
the kinase E1, while the phosphatase E2 dephosphorylates and thus deactivates pro-
tein A (see Figure 6.2).

Figure 6.2: Scheme of dual phosphorylation and dephosphorylation mechanism. En-
zyme E1 (a kinase) phosphorylates protein A, enzyme E2 (a phosphatase) both dephosphory-
lates the mono-(Ap) and diphosphorylated (App) protein. Figure adapted from Conradi et al.
(2005).

In Conradi et al. (2005), the authors studied the impact of different phosphoryla-
tion and dephosphorylation mechanisms on the possible dynamic behavior of the
system. One possibility is that phosphorylation and dephosphorylation follow a
distributive mechanism: After binding to A and phosphorylation of the first site, E1

releases the monophosphorylated protein Ap. The second phosphorylation requires
again binding of E1, before the dual phosphorylated protein App is released. Analo-
gously, the phosphatase E2 releases the monophosphorylated intermediate Ap before
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the final dephosphorylation step occurs after a second binding. This is described by
the following network:

A+ E1 ↔ AE1 (r1)

AE1 → AP + E1 (r2)

Ap + E1 ↔ ApE1 (r3)

ApE1 → App + E1 (r4)

App + E2 ↔ AppE2 (r5)

AppE2 → Ap + E2 (r6)

Ap + E2 ↔ ApE2 (r7)

ApE2 → A+ E2 (r8)

(6.32)

We choose S1 for A, S2 for E1, S3 for AE1, S4 for Ap, S5 for ApE1, S6 for App, S7 for
E2, S8 for AppE2, and S9 for ApE2.

A basis of the left kernel of the stoichiometric matrix is given by the vectors

w1 = (1, 0, 1, 1, 1, 1, 0, 1, 1)T

w2 = (0, 1, 1, 0, 1, 0, 0, 0, 0)T

w3 = (0, 0, 0, 0, 0, 0, 1, 1, 1)T .

(6.33)

This shows that all variables are part of a conservation law; consequently, no sin-
gle perturbation is possible without affecting the stoichiometric compatibility class
(cf. Assumption 6.44 and Remark 6.45).

By introducing an outflow in species E1,

E1 → ∅ (r9),

that is, by adding the column −e2 to N, the vectors w1 and w3 form a basis of the
left kernel of N, and we can consider a perturbation in E1.
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Assuming weakly monotonic kinetics, the matrix Vq is then given by

Vq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 α12 −α13 0 0 0 0 0 0
0 0 α23 0 0 0 0 0 0
0 α32 0 α34 −α35 0 0 0 0
0 0 0 0 α45 0 0 0 0
0 0 0 0 0 α56 α57 −α58 0
0 0 0 0 0 0 0 α68 0
0 0 0 α74 0 0 α77 0 −α79

0 0 0 0 0 0 0 0 α89

0 α92 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the qualitative Jacobian Jq = NVq is

Jq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α11 −α12 α13 0 0 0 0 0 α89

−α11 −α12 −α32 −α92 α13 +α23 −α34 α35 +α45 0 0 0 0
α11 α12 −α13 −α23 0 0 0 0 0 0

0 −α32 α23 −α34 −α74 α35 0 −α77 α68 α79

0 α32 0 α34 −α35 −α45 0 0 0 0
0 0 0 0 α45 −α56 −α57 α58 0
0 0 0 −α74 0 −α56 −α57 −α77 α58 +α68 α79 +α89

0 0 0 0 0 α56 α57 −α58 −α68 0
0 0 0 α74 0 0 α77 0 −α79 −α89

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where αij > 0 for all i, j.

The initial response to a perturbation in E1 can be uniquely determined for all
species according to Theorem 6.18. Table 6.1 shows the signs of the initial response
for all species assuming E1 is positively perturbed.

In order to analyze the possible ultimate response, we computed for all i = 1, . . . , 9
the determinant of J̃

q
i|−e2

and checked the signs of the terms in the determinant
expansion (see Table 6.1). For seven out of the nine species, at least one positive
and one negative term is contained in the determinant expansion of J̃q

i|−e2
, so that an

inverse or compensatory response cannot be excluded. The determinant expansion
of J̃q5|−e2

, which characterizes the ultimate response of ApE1, only contains negative

terms; thus, as the rank s of N is 7, all terms of (−1)s det(̃Jq5|−e2
) are positive. The

initial response of ApE1 is also positive, so that both an inverse and a compensatory
response can be excluded. An inverse and compensatory response for AppE2 can be
excluded in the same way.
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Table 6.1: Example 6.51, analysis of initial and ultimate response to positive perturbation in E1

i 1 2 3 4 5 6 7 8 9

Species name A E1 AE1 Ap ApE1 App E2 AppE2 ApE2

Initial
response

− + + − + + + + −

Terms in det
expansion

+/− +/− +/− +/− + +/− +/− + +/−

IR excluded no no no no yes no no yes no

CR excluded no no no no yes no no yes no

Row 3: For each species the sign of the initial response to a positive perturbation in E1 is given.
Row 4: Signs of terms in the expansion of (−1)s det(̃Jq

i|−e2
). The entry +/− indicates that the

determinant expansion contains at least one positive and one negative term. Rows 5 and 6:
both inverse response (IR) and compensatory response (CR) to a perturbation in E1 can only be
excluded for the species ApE1 and AppE2.

6.2.3 Graphical Representation of Dynamic Chemical Reaction Networks

The determinant criteria for ultimate response derived in the previous section en-
able to decide from the system structure whether the system may show an inverse
or compensatory response. However, they do not provide the information what
structural properties cause these responses. Here, conditions that are based on a
graphical representation of the network structure can be beneficial.

In Section 6.1, the system under study was represented by an interaction graph.
For analyzing the ultimate response of a CRN, this representation is often disad-
vantageous, as a number of paths and cycles in the interaction graph of a dynamic
CRN are not relevant for the steady state behavior and can thus be neglected when
analyzing the ultimate response. This can be seen in the following example.

Example 6.52. Consider again the system from Example 6.40 taken with weakly
monotonic kinetics. Recall that the qualitative Jacobian Jq for this example reads

Jq =

⎛⎜⎝−α11 −α21 −α12 α13

−α11 −α12 −α32 α13

α11 α12 −α13 −α43

⎞⎟⎠ , (6.34)

where αij ∈ R>0.
In the associated interaction graph (Figure 6.3(b)), there is not only the positive

edge S1 → S3 (violet edge in Figure 6.3(b)), but also the negative path S1 � S2 → S3
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(a) (b) (c)

u

S1

S2

S3

u S1

S2

S3 S3

S1

S2

u

Figure 6.3: Chemical reaction network with bimolecular reaction. (a) Species S1 and
S2 are consumed in the reversible bimolecular reaction to produce S3, and each species can be
degraded. We consider an external input directly affecting species S1. (b) Interaction graph
of the example system in (a). Both a positive (violet) and negative (turquoise) path between
S1 and S3 are included in the graph. (c) Interaction graph associated with J

q
3|−e1

received from

the Jacobian Jq of the system in (a). For subfigures (b) and (c): arrows represent positive,
blunt-ended lines negative edges.

(turquoise edges in Figure 6.3(b)), as the more S1 is present, the more S2 is con-
sumed. In order to analyze the ultimate response of S3 in response to a pertubation
in S1, we have to compute the determinant of J

q
3|−e1

(cf. Theorems 6.49 and 6.50).
Figure 6.3(c) shows the associated interaction graph of Jq3|−e1

, also showing the pos-
itive and negative path between S1 and S3. Expanding the determinant of Jq3|−e1

, we
have

det(Jq3|−e1
) = α11α12 −α11α12 −α11α32. (6.35)

The first two summands in (6.35) cancel each other out. Hence, the terms associ-
ated with the negative path (indicated in turquoise) have no impact on the ultimate
response. Nevertheless, this path may influence the transient system behavior.

In the following, we present graphical representations of dynamic CRNs that take
into account the special structure of these networks and, as a consequence, enable to
identify those paths and cycles that have not to be considered when studying steady
state properties.

6.2.3.1 Labeled Interaction Graphs and R-Subgraphs

Interaction graphs are a convenient representation of dynamic CRNs if we extend
the original definition given in Section 6.1.2 by incorporating the information about
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which reaction causes a certain influence between two species:

Definition 6.53. We associate with the dynamic CRN D = (N, v) the labeled inter-
action graph G(N,V) containing nodes S1, . . . ,Sn, each representing one of the n

species, and containing a directed edge e with edge weight ω(e) = NikV
q
kj and edge

label lbl(e) = k from Sj to Si whenever NikV
q
kj �= 0.

We shall see that subgraphs of G(N,V) where all outgoing edges from a node
carry the same edge label and where each label is used only once are of particular
importance for our investigations:

Definition 6.54. Consider a labeled interaction graph G(N,V) and let I = {i1, . . . , im}

denote a subset of the n species indices and K = {k1, . . . ,km} a subset of the q

reaction indices, m � n, m � q. We call the graph G(NI,K,Vτ
K,I) an R-subgraph of order

m (R-subgraph for reduced subgraph, see Remark 6.55) of G(N,V), if the matrix Vτ
K,I

is derived from the matrix V
q
K,I by keeping in each row and column exactly one entry

not equal 0 and by setting all other entries to 0.

Remark 6.55. Each R-subgraph of order m of G(N,V) can be interpreted as a maxi-
mally reduced subgraph of G(N,V) containing m nodes and m edges. With τ(K) =

(τ1(K), . . . , τm(K)) denoting a permutation of the reaction indices K, the matrix Vτ
K,I =

(Vτ
ki,ij

) is defined as

Vτ
ki,ij =

⎧⎨
⎩
V
q
ki,ij

if ki = τj(K) ,

0 else.

Labeled Interaction Graphs of Weakly Monotonic CRNs. For weakly monotonic
CRNs (Definition 6.39), we can, under Assumption 6.42, derive the labeled interac-
tion graph from the stoichiometric matrix and the information whether a reaction is
reversible or not. For each reaction rk ∈ R, we draw a directed edge e = (Sj,Si) with
edge weight ω(e) = Nikαkj, αkj ∈ R>0, and edge label lbl(e) = k whenever Njk < 0
and Nik �= 0. If rk is reversible, we draw in addition a directed edge e = (Sj,Si) with
edge weight ω(e) = −Nikαkj, αkj ∈ R>0, and edge label lbl(e) = k whenever Njk > 0
and Nik �= 0. Thus, reaction rk = (yk,y ′

k) gives rise to

• a negative edge (Si,Sj) between each pair of reactant species Si,Sj ∈ yk,

• a negative selfcycle (Si,Si) for each reactant species Si ∈ yk,
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• a positive edge (Si,Sj) from each reactant species Si ∈ yk to each product
species Sj ∈ y ′

k.

If rk is reversible, the labeled interaction graph contains, in addition, the following
edges with edge label k:

• a negative edge (Si,Sj) between each pair of product species Si,Sj ∈ y ′
k,

• a negative selfcycle (Si,Si) for each product species Si ∈ y ′
k,

• a positive edge (Si,Sj) from each product species Si ∈ y ′
k to each reactant

species Sj ∈ yk.

Labeled Interaction Graphs of NAC CRNs. Under Assumption 6.42, we can de-
rive from the stoichiometric matrix a labeled interaction graph that is a supergraph
of all CRNs taken with NAC kinetics (Definition 6.41). For each reaction rk ∈ R,
we draw a directed edge e = (Sj,Si) with edge weight ω(e) = − sgn(Njk)Nikαkj,
αkj ∈ R>0, and edge label lbl(e) = k whenever Njk �= 0 and Nik �= 0. Thus, reaction
rk = (yk,y ′

k) gives rise to

• a negative edge (Si,Sj) between each pair of reactant species Si,Sj ∈ yk and
between each pair of product species Si,Sj ∈ y ′

k,

• a negative selfcycle for each reactant species Si ∈ yk and each product species
Si ∈ y ′

k,

• a positive edge (Si,Sj) from each reactant species Si ∈ yk to each product
species Sj ∈ y ′

k, and

• a positive edge (Si,Sj) from each product species Si ∈ y ′
k to each reactant

species Sj ∈ yk.

Example 6.56. Consider the CRN of irreversible reactions

b S1 → S2 + S3 (r1)

S2 → S1 (r2)

S3 → S1 (r3),

(6.36)
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b ∈ N, with stoichiometric matrix

N =

⎛⎜⎝−b 1 1
1 −1 0
1 0 −1

⎞⎟⎠ .

The supergraph of all CRNs of this form taken with NAC kinetics is given in Fig-
ure 6.4(b). All possible R-subgraphs of order 3 are shown in Figure 6.4(c)–(e). As-
suming weakly monotonic kinetics, the associated labeled interaction graph is the
one given in Figure 6.4(c), what is at the same time the only R-subgraph of order 3.

6.2.3.2 Species–Reaction Graphs and Directed Species–Reaction Graphs

Craciun and Feinberg introduced bipartite Species–Reaction graphs (SR graphs) as
representations of dynamic CRNs (Craciun and Feinberg 2006b). Banaji and Craciun
slightly modified the original definition and associated SR graphs with matrices
(Banaji and Craciun 2010). Given any n× q matrix M, the SR graph G(M) contains
two sets of vertices, the S-vertices {S1, . . . ,Sn}, and the R-vertices {R1, . . . ,Rq}. For
each entry Mij �= 0 of M, we draw an undirected edge e between Si and Rj with
edge sign sgn(e) = sgn(Mij) and edge weight ω(e) = |Mij|.

Given a CRN with NAC kinetics and assuming that each species occurs only on
one side of a reaction (Assumption 6.42), the SR graph G(N) associated with the
stoichiometric matrix N has been shown to be a valuable representation of the dy-
namic CRN, based on which necessary graph-theoretic criteria for multistationarity
can be derived (Banaji and Craciun 2010). Inflows and outflows of single reactants
are usually not included in the SR graph.

If one considers the smaller class of weakly monotonic CRNs, some undirected
edges in the SR graph G(N) are replaced by fixed-direction edges (Knight et al.
2015):

• An edge between R-vertex Ri and S-vertex Sj is directed from Ri to Sj if and
only if (i) reaction ri is irreversible, and (ii) species Sj is a product of reaction ri.

• An edge between R-vertex Ri and S-vertex Sj is directed from Sj to Ri if and
only if (i) reaction ri is irreversible, and (ii) species Sj is the only reactant of
reaction ri.

Banaji and Craciun introduced the more general directed SR graphs (DSR graphs)
as representations of pairs of matrix sets (Banaji and Craciun 2009). For a dynamic
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Figure 6.4: Labeled interaction graph and R-subgraphs of order 3 for the example
system (6.36). (a) Stoichiometric network of the example system (6.36). Assuming NAC kinet-
ics, any associated labeled interaction graph is a subgraph of the graph given in (b). Subfigures
(c)–(e) show the R-subgraphs of order 3 of (b). For weakly monotonic kinetics, G(N,V) is the
graph given in (c), what is at the same time the only R-subgraph of order 3 of this graph.
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CRN D = (N, v), the first matrix set consists of a single matrix, the stoichiometric
matrix N. The second matrix set is V = {V(x) | x ∈ D}. With our monotonicity
assumption on the kinetics, we consider this second set to be represented by the
qualitative matrix Vq.

The DSR graph G(N,V) associated with the dynamic CRN D = (N, v) with arbi-
trary kinetics contains two sets of vertices, the species vertices (S-vertices) {S1, . . . ,Sn},
and the reaction vertices (R-vertices) {R1, . . . ,Rq}. For each entry Nij �= 0 of N, we
draw a directed edge e from Rj to Si with edge sign sgn(e) = sgn(Nij) and edge
weight ω(e) = |Nij|. For each entry v

q
ji �= 0 of the qualitative matrix Vq associated

with V , we draw a directed edge from Si to Rj with edge sign −v
q
ji and edge weight

∞. If G(N,V) contains two edges of opposite direction but with the same sign be-
tween two vertices Si and Rj, these edges are replaced by a single undirected edge
with sign sgn(Nij) and weight |Nij|.

Remark 6.57. In contrast to SR graphs, which can only represent networks with NAC
kinetics, the DSR graph can also represent influences of species that appear on both
sides of a reaction. An example are enzymes, which are not consumed, but influence
the reaction. The influence of an enzyme Si in reaction Rj is represented by an edge
Si → Rj with edge weight ∞.

Remark 6.58. The DSR graph G(N,V) is an amalgamation of directed versions of two
SR graphs (Banaji and Craciun 2009): The first SR graph represents the stoichiomet-
ric matrix N, and we direct all edges from R- to S-vertices. The second SR graph
represents the transposed, negative qualitative matrix associated with V , −(Vq)T ,
and we direct all edges from S- to R-vertices.

Remark 6.59. Given a stoichiometric matrix N and the information whether a re-
spective reaction is reversible or not, the DSR graph for all systems with weakly
monotonic kinetics is equal and is in fact the SR graph G(N) as introduced above.
The SR graph introduced for CRNs with NAC kinetics is a supergraph of all possible
DSR graphs for systems with stoichiometric matrix N and arbitrary NAC kinetics.
An undirected edge in the supergraph thereby corresponds to two opposing directed
edges.

Definition 6.60. Given an SR or DSR graph, we make the following definitions
(cf. Banaji and Craciun (2009), Shinar and Feinberg (2013)):

1. The parity of a walk W with even number of edges k is defined as

par(W) = (−1)k/2 sgn(W),
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where sgn(W) is the product of all edge signs of W.

2. Given a cycle C containing edges e1, e2, . . . , e2r such that ei and e(i mod 2r)+1 are
adjacent for each i = 1, . . . , 2r, the stoichiometry of C is defined as

stoich(C) =

∣∣∣∣∣
r∏

i=1

ω(e2i−1) −

r∏
i=1

ω(e2i)

∣∣∣∣∣.
If any edge in C has weight ∞, we set stoich(C) = ∞.

3. A cycle C is an e-cycle if par(C) = 1, an o-cycle if par(C) = −1, and an s-cycle if
stoich(C) = 0.

4. A cycle is oriented if an orientation can be assigned to each undirected edge
such that all edges point in the same direction (clockwise/counterclockwise).

5. Given an oriented cycle S1 → R1 → S2 → . . .Rk → S1, let fR→S denote the
edge weight of an edge directed from an R- to an S-vertex, and let eS→R denote
the edge weight of an edge directed from an S- to an R-vertex. The cycle is
stoichiometrically expansive if

• fR1→S2fR2→S3 · · · fRk→S1

eS1→R1eS2→R2 · · · eSk→Rk

> 1, or if

• any edge in the cycle has weight ∞.

6. A critical subgraph of an SR or DSR graph is a union of oriented e-cycles taken
from the graph, where each edge that occurs in more than one cycle has the
same orientation in all these cycles.

7. Two oriented cycles have an S-to-R intersection if each component of their in-
tersection is an S-to-R path, that is, a path starting at a species and ending
at a reaction node. They have R-to-S intersection if each component of their
intersection is an R-to-S path.

Example 6.61. Figure 6.5 shows the SR graphs for the CRN (6.36) taken with NAC
kinetics (Figure 6.5(a)) and with weakly monotonic kinetics (Figure 6.5(b)). The SR
graph in subfigure (a) contains two e-cycles, labelled I and II, and one o-cycle (the
large outer cycle). All cycles can be oriented either clockwise or counterclockwise.
Cycles I and II have an S-to-R intersection if cycle I is oriented counterclockwise
and cycle II clockwise. For a = 1, none of the cycles is stoichiometrically expansive,
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whatever orientation we choose. For b > 1, cycle I is stoichiometrically expansive if
it is oriented clockwise, and cycle II is stoichiometrically expansive if it is oriented
counterclockwise.

Figure 6.5: SR graphs for the CRN example (6.36). (a) SR graph G(N) for the example
system (6.36). This graph represents the dynamic CRN with NAC kinetics. (b) SR graph for
the CRN (6.36) taken with weakly monotonic kinetics. This graph is derived from (a) by replac-
ing some of the undirected edges by fixed-direction edges (indicated by arrowheads). For all
subfigures: edges without specified edge weight have edge weight 1.

Assuming weakly monotonic kinetics, the associated SR graph (Figure 6.5(b)) only
contains the two e-cycles I and II with fixed orientation.

Choosing any weakly monotonic kinetics, the associated DSR graph would be the
SR graph given in Figure 6.5(b). For any NAC kinetics, the DSR graph would be a
subgraph of the SR graph given in Figure 6.5(a) (see Remark 6.59).

Example 6.62. Consider a CRN given by

N =

⎛⎜⎜⎜⎜⎝
−1 0 0
−1 0 0
1 −1 −1
0 1 0

⎞⎟⎟⎟⎟⎠ , Vq =

⎛⎜⎝α11 α12 −α13 0
0 0 α23 0
0 0 α33 α34

⎞⎟⎠ . (6.37)

Assuming mass-action kinetics, the set of reactions is given as follows:

S1 + S2 ↔ S3

S3 → S4

S3 + S4 → S4

(6.38)

Note that Assumption 6.42 is not met, as species S4 induces reaction 3 without
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being consumed. The associated DSR graph is given in Figure 6.6. The edge weight
∞ of the edge from S4 to R3 indicates that S4 influences reaction R3, but is not
affected by the reaction. As a consequence, the o-cycle involving species S3 and S4

is stoichiometrically expansive.

Figure 6.6: DSR graph for the CRN example (6.37).

6.2.3.3 Interrelation between Labeled Interaction Graphs and Directed

Species–Reaction Graphs

Labeled interaction graphs and DSR graphs are both representations of CRNs. Here,
we will discuss the interrelation between the two formalisms, in particular focusing
on the DSR representation of a given R-subgraph.

Consider an R-subgraph with vertices S1, . . . ,Sk and edge labels τ1, . . . , τk, where
the edge from Si to Sj has weight NjτiV

q
τii

and edge label τi. The corresponding DSR
graph contains the S-vertices S1, . . . ,Sk and the R-vertices Rτ1 , . . . ,Rτk . If i �= j, an
edge from Si to Sj in the R-subgraph corresponds to the path Si → Rτi → Sj in the
DSR graph. This path has odd parity if it corresponds to a negative edge, and even
parity if it corresponds to a positive edge in the R-subgraph. The edge between Rτi

and Sj is always directed from Rτi to Sj and has weight |Njτi |. In contrast, the edge
between Si and Rτi can also be undirected, and its edge weight is depending on the
selfcycle of Si. A negative selfcycle on Si always corresponds to an undirected edge
between Si and Rτi with weight |Niτi |. A positive selfcycle on Si corresponds to a
directed edge from Si to Rτi with weight ∞. In addition, the DSR graph contains in
this case an edge directed from Rτi to Si of opposite sign; thus, a positive selfcycle in
the R-subgraph always corresponds to an e-cycle with weight ∞ in the DSR graph.
Finally, if Si has a zero selfcycle, the DSR graph only contains an edge directed from

175



6 Qualitative Dynamics from Network Structure

Si to Rτi with weight ∞ between the two nodes. Zero selfcycles correspond to species
that are not consumed in a reaction, yet influencing the reaction kinetics, that is, act
as enzymes (see also Remark 6.57. Importantly, the reaction node Rτi has the species
node Si as only predecessor, and Si has Rτi as only successor. Thus, branching points
in the DSR graph associated with an R-subgraph are either different edges pointing
into an S-node, or different edges pointing out of an R-node.

6.2.4 Necessary Motifs for Inverse Response

In this section, we will identify network motifs causing a certain ultimate response
in a CRN. We will restrict ourselves herein to criteria for inverse response.

It can be shown that det(̃J) is the sum of all principal minors of J of order s

(Wiuf and Feliu 2013, Proposition 5.3). The following lemma shows analogously
that det(̃Jq

i|−ej
) is the sum of all principal minors of Jq

i|−ej
of order s. Thus, we do not

have to consider graphical representations of J̃q, but can derive conclusions on the
sign structure of det(̃Jq

i|−ej
) and thus on non-exclusion of an inverse response based

on the labeled interaction graph associated with Jq, that is, based on G(N,V).

Lemma 6.63. Under Assumption 6.44, we have

det(̃Jq
i|−ej

) =
∑

I⊆{1,...,n}
#I=s

det
(
(Jq

i|−ej
)I,I

)

for all i ∈ {1, . . . ,n} and all j ∈ Ib.

Proof. Apart from one additional aspect, the lemma is proven in the same way as
Proposition 5.3 of Wiuf and Feliu (2013). For the sake of completeness, we state the
complete proof in Appendix G.

In Section 6.1.4, we saw that each term in the determinant expansion of Jq
m|−ei

is
the product of the weight of a path from Si to Sm in the interaction graph G(Jq) and
of the signed principal minor corresponding to the complementary system to that
path (see Equations (6.15) and (6.16)). The same is true for CRNs, but only paths
in R-subgraphs of order s of the labeled interaction graph G(N,V) contribute to the
determinant, as the following lemma shows.

Lemma 6.64. Let I ⊆ {1, . . . ,n} denote a subset of s species indices, K ⊆ {1, . . . ,q} a subset
of s− 1 reaction indices, and τ a permutation of K. For a path P in G(NI,K,Vτ

K,I), let IP ⊆ I
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denote the set of indices of all species on the path, KP ⊆ K the set of all edge labels on the
path, and let IP = I \ IP, KP = K \ KP. With Pi→m(NI,KV

τ
K,I) denoting the set of all paths

from Si to Sm in G(NI,KV
τ
K,I), we have that

det
(
(Jq

m|−ei
)I,I

)
= (−1)s

∑
K⊆{1,...,q}
#K=s−1

∑
τ∈Per(K)

∑
P∈Pi→m(NI,KV

τ
K,I)

ω(P)
∑

L∈L(N
IP ,KPV

τ

KP ,IP
)

(−1)c(L)ω(L).

Proof. We introduce the n× (q+ 1) matrix N̂ i that is derived from N by setting all
entries in row i to 0 and by appending the negative ith unit vector as column q+ 1.
Analogously, the (q+ 1)× n matrix V̂ m is derived from Vq by setting all entries in
column m to 0 and by appending the transposed mth unit vector as row q+ 1. We
then have

det
(
(Jq

m|−ei
)I,I

)
= det(N̂ i

I,{1,...,q+1}V̂
m
{1,...,q+1},I), for all i ∈ Ib, (6.39)

and, using the Binet-Cauchy formula, that

det
(
(Jq

m|−ei
)I,I

)
=

∑
K⊆{1,...,q}
#K=s−1

det(N̂ i
I,K∪{q+1})det(V̂ m

K∪{q+1},I), for all i ∈ Ib. (6.40)

Writing det(V̂ m
K∪{q+1},I) in terms of permutations τ ′ ∈ Per(K ∪ {q + 1}) (see Defini-

tion 6.8) and letting V̂ mτ ′ = (V̂ mτ ′
ij ) be given by

V̂ mτ ′
ij =

⎧⎨
⎩
V̂ m
ij if i = τ ′

j ,

0 else,

we have that

det
(
(Jq

m|−ei
)I,I

)
=

∑
K⊆{1,...,q}
#K=s−1

∑
τ ′∈Per(K∪{q+1})

det(N̂ i
I,K∪{q+1}V̂

mτ ′
K∪{q+1},I). (6.41)

For det
(
(Jq

m|−ei
)I,I

) �= 0, it must hold that m ∈ I and i ∈ I. The interaction graph

G(N̂ i
I,K∪{q+1}V̂

mτ ′
K∪{q+1},I) is derived from G(NI,KV

τ
K,I), τ ∈ Per(K), by removing all ingo-

ing edges in node Si and all outgoing edges of node Sm, and by adding an edge Sm

to Si with weight −1 and label q+ 1. Thus, each path from Si to Sm gives rise to a
cycle in G(N̂ i

I,K∪{q+1}V̂
mτ ′
K∪{q+1},I), and this cycle is the only cycle containing node Si or
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Sm. Hence, according to Theorem 6.16, we get

det
(
(Jq

m|−ei
)I,I

)
= (−1)s

∑
K⊆{1,...,q}
#K=s−1

∑
τ∈Per(K)

∑
P∈Pi→m(NI,KV

τ
K,I)

ω(P)
∑

L∈L(N
IP ,KPV

τ

KP ,IP
)

(−1)c(L)ω(L) ,

From Lemma 6.64 we see that all paths whose corresponding term appears in
the determinant expansion of (Jq

m|−ei
)I,I have pairwise distinct edge labels. With

det
(
(Jq

m|−b
)I,I

)
= bi

∑
i∈Ib det

(
(Jq

m|−ei
)I,I

)
, the following assumption guarantees that

all paths in the determinant expansion of (Jq
m|−b

)I,I are of the same sign.

Assumption 6.65. Consider the system given in (6.26) and its labeled interaction
graph G(N,V). Let Pi→j denote the set of all paths in G(N,V) from Si to Sj with less
than s nodes and pairwise distinct edges labels, and let sgn(P) denote the sign of P,
P ∈ Pi→j. Then, for Sj, the sign sgn(bi) sgn(P) is equal for all i ∈ Ib and all P ∈ Pi→j.

Lemma 6.66. Consider the system given in (6.26) and its labeled interaction graph G(N,V).
A shortest path from a node Sj to another node Si in G(N,V) has pairwise distinct edge labels.

Proof. Assume a path between two nodes Sj and Si in G(N,V) contains two edges
with the same label k, Si1 → Si2 and Si3 → Si4 . We have that

Ni2 k Vk i1 �= 0, and Ni4 k Vk i3 �= 0.

This implies
Ni4 k Vk i1 �= 0,

and, hence, that G(N,V) contains an edge from Si1 to Si4 . Thus, the considered path
cannot be the shortest path between Sj and Si.

We can now state a condition to exclude inverse response in CRNs in analogy to
Proposition 6.30.

Proposition 6.67. Consider the system given in (6.26) at steady state x∗(0) and a change
of the external input u from 0 to 1. Let I ⊆ {1, . . . ,n} denote a subset of s species indices,
K ⊆ {1, . . . ,q} a subset of s− 1 reaction indices, and τ a permutation of K. For a path P in
the R-subgraph G(NI,K,Vτ

K,I), let IP ⊆ I denote the set of indices of all species indices on the
path, KP ⊆ K the set of all edge labels on the path, and let IP = I \ IP, KP = K \KP. Under
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Assumptions 6.44, 6.47, and 6.22, and if Sm fulfills Assumption 6.65, an inverse response
of xm within stoichiometric compatibility classes is excluded if

N
IP ,KPV

τ
KP ,IP

has a signed determinant and (−1)s−#IP det(N
IP ,KPV

τ
KP ,IP

) � 0

holds for all τ, I, K, and for all paths P from Si to Sm with i ∈ Ib.

Proof. If Sm fulfills Assumption 6.65, we have that sgn
(
bi ω(P)

)
is equal for all i ∈ Ib

and all P ∈ Pi→m(NI,KV
τ
K,I). Furthermore, it follows from Lemma 6.66 and Theo-

rem 6.18 that sgn
(
bi ω(P

)
) = sIm. With

∑
L∈L(N

IP ,KPV
τ

KP ,IP
)

(−1)c(L)ω(L) = (−1)s−#IP det(N
IP ,KPV

τ
KP ,IP

) (6.42)

and Theorem 6.49, this completes the proof.

The previous results tell us that—as it is the case for general ODE systems—
necessary for an inverse response in a CRN are paths of different sign, where, in
contrast to the general case, each edge must arise from a different reaction, or a
negative determinant of a subsystem that is complementary to one of the paths.
In Section 6.1.5, we saw that a positive cycle is necessary for the negative sign of
the determinant of the complementary system. In the following, we will discuss
structural prerequisites for negative signed principal minors in CRNs.

Lemma 6.68. Let A denote an n× n matrix and G(A) the associated Coates graph, and
let (−1)n det(A) < 0. Then, the graph G(A) either contains a positive selfcycle, or there is
an index set I ⊆ {1, . . . ,n}, #I � 2, such that, using the notation from Theorem 6.17, the
following inequality holds for all i ∈ I:

∑
C∈Ci(AI,I)
ω(C)>0

(−1)#ICω(C)det(A
IC,IC) > −

∑
C∈Ci(AI,I)
ω(C)<0

(−1)#ICω(C)det(A
IC,IC) . (6.43)

We will refer to (6.43) as inequality of dominant positive cycles in the following.

Proof. According to Theorem 6.17, (−1)n det(A) < 0 is equivalent to

∑
C∈Ci(A)

(−1)n−#IC−1ω(C)det(A{1,...,n}\IC,{1,...,n}\IC) < 0, i = 1, . . . ,n. (6.44)
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For n = 1, (−1)n det(A) < 0 can only hold if A11 > 0, that is, there is a positive
selfcycle. For n = 2, there must either be a positive self-cycle, or, assuming all
selfcycles are nonpositive, the inequalities A12A21 > 0 and A12A21 > A11A22 must
hold.

For n > 2, we consider two cases:

1. One of the signed principal minors in (6.44) is negative, that is, the inequali-
ties (6.44) must hold for a submatrix AI,I of A with I ⊂ {1, . . . ,n}, #I � 2.

2. All signed principal minors in (6.44) are nonnegative, that is,

(−1)n−#IC det(A
IC,IC) � 0. (6.45)

In this case, the sign of a summand in (6.44) depends on the sign of the re-
spective cycle: if ω(C) > 0, the corresponding summand is negative, and if
ω(C) < 0, the corresponding summand is positive.

Hence, there must be an index set I ⊆ {1, . . . ,n}, #I � 2, fulfilling the inequality of
dominant positive cycles (6.43).

From Proposition 6.67 and Lemma 6.68, we see that a necessary condition for
inverse response within stoichiometric compatibility classes is the existence of a
positive selfcycle or of an R-subgraph G(NI,K,Vτ

K,I) of order 2 � k � n fulfilling,
with A = NI,KV

τ
K,I, the inequality of dominant positive cycles (6.43). Recall that the

matrix Vτ
K,I contains in each row and column exactly one non-zero entry (see Defini-

tion 6.54). Therefore, by reordering the reaction indices accordingly, we can choose
τi = i, and each element of the matrix A is then given as Aij = NijVjj with Vjj �= 0.

Lemma 6.69. Consider an n×n matrix A = (Aij), where Aij = NijVjj for all i, j ∈ I, I =
{1, . . . ,n}, and whose signed principal minors of order k with k � n− 1 are nonnegative. If
(−1)n det(A) < 0, one of the following holds:

1. The graph G(A) contains a positive selfcycle,

2. The graph G(A) contains a positive cycle C and there is a node index i ∈ IC with
Nii = 0,

3. The graph G(A) contains a positive cycle C satisfying, with IC = {c1, . . . , cr} and
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nodes Sci and Sc(i mod r)+1 being adjacent for each i ∈ {1, . . . , r},∣∣∣∣∣
r∏

i=1

Nc(i mod r)+1,ci

∣∣∣∣∣ >
∣∣∣∣∣

r∏
i=1

Ncici

∣∣∣∣∣.
4. The graph G(A) contains two positive cycles that share at least one node.

Proof. According to Lemma 6.68, the graph G(A) either contains a positive selfcycle,
or the following inequality holds for all i ∈ {1, . . . ,n}:

∑
C∈Ci(A)
ω(C)>0

(−1)#ICω(C)det(A
IC,IC) > −

∑
C∈Ci(A)
ω(C)<0

(−1)#ICω(C)det(A
IC,IC) (6.46)

Assume all positive cycles in G(A) are disjoint and let Ci denote the positive cycle
running over node Si. Furthermore, let ICi

= {c1, . . . , cri} denote the set of node
indices of Ci and let nodes Scj and Sc(j mod ri)+1 be adjacent for all j ∈ {1, . . . , ri}. For
each i ∈ {1, . . . ,n}, the left-hand side of (6.46) then contains only the summand

(−1)n−ri

ri∏
j=1

Nc(j mod ri)+1,cjVcj,cj det(A
ICi ,ICi

), (6.47)

where ICi = I \ ICi . The principal minor det(A
ICi ,ICi

) must be nonzero in order to
fulfill (6.46). In the following, let Njj �= 0 for all j ∈ ICi . The right-hand side of
(6.46) then contains the summand −(−1)n−1NiiVii det(AI\{i},I\{i}). We now show that
det(AI\{i},I\{i}) is nonzero. We choose a node Sk with k ∈ ICi

, that is, one of the nodes
forming the positive cycle over Si and write det(AI\{i},I\{i}) in terms of cycles running
over Sk. As G(A) contains only disjoint positive cycles, all terms in the determinant
expansion of AI\{i},I\{i} correspond to negative cycles running over node Sk; conse-
quently, all nonzero terms are of the same sign. Thus, det(AI\{i},I\{i}) can only be
zero if all terms are zero. As Nkk �= 0, the term NkkVkk det(AI\{i,k},I\{i,k}) correspond-
ing to the negative selfcycle on node Sk can only be zero if det(AI\{i,k},I\{i,k}) is zero.
Again, we can write this determinant in terms of cycles running over another node
Sl, l ∈ ICi . Finally, we see that the right-hand side of (6.46) contains the nonzero
term (−1)n

∏ri
j=1 NcjcjVcjcj det(A

ICi ,ICi
). As (−1)n−ri det(A

ICi ,ICi
) > 0, this implies

that condition 3 of the lemma must be satisfied.

From Proposition 6.67 and Lemma 6.68 and 6.69, we can now derive the following
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proposition about inverse response.

Proposition 6.70. Consider the system given in (6.26) at steady state x∗(0) and a change
of the external input u from 0 to 1. Under Assumptions 6.44, 6.47, and 6.22, and if Sm ful-
fills Assumption 6.65, an inverse response of xm within stoichiometric compatibility classes
cannot be excluded if any of the labeled interaction graphs associated with complementary
systems of the paths from U to Sm contains an R-subgraph with the following properties:

• all nodes of the R-subgraph are involved in at least one positive cycle, and

• the R-Subgraph satisfies one of the four conditions given in Lemma 6.69.

Proof. From Proposition 6.67 and Lemma 6.68, we see that a necessary condition for
inverse response of a species xm is the existence of an R-subgraph G(A) in one of
the complementary graphs of the paths from U to Sm, which fulfills the inequality
of dominant positive cycles 6.43. As this inequality must hold for all nodes of the
graph, each node must be involved in at least one positive cycle, what proves the
first property of the Proposition. The second property follows directly from Propo-
sition 6.67 and Lemma 6.69 by recalling that, if G(A) is an R-subgraph, the matrix
elements Aij can always be written as NijVjj.

Referring to the remarks in Section 6.2.3.3, we can state Proposition 6.70 also in
terms of DSR graphs. Assumption 6.65 is translated as follows:

Assumption 6.71 (Formulation of Assumption 6.65 for DSR graphs). Consider the
system given in (6.26) and its DSR graph G(N,V). Let Pi→j denote the set of all
paths in G(N,V) from Si to Sj with less than 2(s− 1) edges, and let par(P) denote
the parity of P, P ∈ Pi→j. Then, for Sj, the sign sgn(bi)par(P) is equal for all i ∈ Ib

and all P ∈ Pi→j.

Proposition 6.72. Consider the system given in (6.26) at steady state x∗(0) and a switch of
the external input u from 0 to 1. Under Assumptions 6.44, 6.47, and 6.22, and if Sm fulfills
Assumption 6.71, an inverse response of xm within stoichiometric compatibility classes is
excluded if none of the DSR graphs associated with the complementary system to any path
from Si, i ∈ Ib, to Sm contains a critical subgraph satisfying

each S-node has exactly one outgoing edge, and each R-node has exactly one incoming
edge, and

(i) there is a stoichiometrically expansive e-cycle, or
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(ii) two e-cycles have S-to-R intersection.

Proof. The required R-subgraph stated in Proposition 6.70 corresponds (as each R-
subgraph) to a DSR graph where each S-node has exactly one outgoing edge, and
each R-node has exactly one ingoing edge (see Section 6.2.3.3). As each node of the
R-subgraph must be involved in at least one positive cycle, each species node in the
DSR graph must be part of an e-cycle. We choose the reaction indices again in such
a way that τi = i. Recall that in DSR graphs corresponding to R-subgraphs, an edge
between Ri and Sj is always directed from Ri to Sj. As Sj is the only predecessor
of Rj, and Rj the only successor of Sj, the edges in any e-cycle which contains two
or more S-nodes are always directed from Sj to Rj. E-cycles with one S-node only
occur if Sj in the interaction graph is part of a positive selfcycle; in this case we have
a stoichiometrical expansive e-cycle Sj

∞−→ Rj → Sj. All e-cycles are thus consistently
oriented, and the R-subgraph corresponds to a critical subgraph. The R-subgraph
must fulfill one of the conditions given in Lemma 6.69. The structures needed in
Conditions 1, 2, and 3 each correspond to a stoichiometric expansive e-cycle in the
DSR graph. As branching points of a DSR graph associated with an R-subgraph are
either different edges pointing into an S-node, or different edges pointing out of an
R-node, two e-cycles that share at least one node in the R-subgraph correspond to
two e-cycles with S-to-R intersection in the DSR graph.

Remark 6.73. The necessary graphical condition for inverse response stated in Propo-
sition 6.72 is very similar to necessary DSR graph conditions for multistationarity
stated in Banaji and Craciun (2009). We will discuss this in more detail in Sec-
tion 6.2.5.

Example 6.74. Consider again the CRN (6.36). Assuming weakly monotonic kinetics,
the qualitative Jacobian Jq = NVq is given by

Jq =

⎛⎜⎝−bV11 V22 V33

V11 −V22 0
V11 0 −V33

⎞⎟⎠ , (6.48)

and det(Jq) = (2 − a)V11V22V33. In this example, the sign of the determinant of
the Jacobian depends on the value of b. For b < 2, the signed principal minor
(−1)3 det(Jq) is negative, for b > 2, it is positive, and for b = 2, it is zero. Thus,
for a negative signed principal minor, an amplification of S1 is required. However,
the necessary condition stated in Lemma 6.69 is fulfilled and inverse response can
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thus not be excluded, irrespective of the value of b: the labeled interaction graph
(Figure 6.4(b)) contains two positive cycles sharing the node S1 (analogously, the SR
graph given in Figure 6.5(b) contains two even cycles with S-to-R intersection). In
the following, we derive another necessary condition, which is more conclusive for
this example.

Lemma 6.75. Consider an n×n matrix A = (Aij), where Aij = NijVjj for all i, j ∈ I, I =
{1, . . . ,n}, and where det(N) �= 0. Let I∗ ⊆ I denote the set of indices such that, for all j ∈ I∗,
the edge from Sj to Si is contained in a positive cycle in G(A). If A fulfills the inequality of
dominant positive cycles (6.43), we have for all i ∈ I that the inequality

∑
j∈I∗

Nijλj >
∣∣∣ ∑
j∈I\I∗

Nijλj

∣∣∣ (6.49)

is satisfied for the solution λ = (λ1, . . . , λn)T of Nλ = ei.
In particular, we have ∑

j∈I
Nijλj = 1. (6.50)

We will refer to (6.49) as amplifier inequality in the following.

Proof. We inverse each positive cycle in G(A) containing node Si to a negative cycle
by inversing the sign of the ingoing edge in Si: we define N∗ = (N∗

ij) by

N∗
ij =

⎧⎨
⎩
−Nij, if j ∈ I∗,

Nij, if j ∈ I \ I∗,
(6.51)

and A∗ = (a∗
ij), where a∗

ij = N∗
ijVjj. Given the inequality of dominant positive

cycles (6.43), sgn(det(A)) = − sgn(det(A∗)), and, as det(A) = det(N)
∑

j∈I Vjj, we
have sgn(det(N)) = − sgn(det(N∗)).

Expanding det(N) along row i, i ∈ I, we receive

det(N) =
∑
j∈I

(−1)i+jNij det(NI\{i},I\{j}), (6.52)

and, with λj := (−1)i+j det(NI\{i},I\{j})

det(N) , we have

1 =
∑
j∈I

Nijλj > 0. (6.53)
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Note that according to Cramer’s rule, λ = (λ1, . . . , λn) is the unique solution of
Nλ = ei.

As sgn(det(N)) = − sgn(det(N∗)), we have that

∑
j∈I∗

−Nijλj +
∑
j∈I\I∗

Nijλj < 0. (6.54)

An inequality of the form −a+ b < 0 < a+ b implies a > 0 and |a| > |b|.

In the following, we want to relate Lemma 6.75 to elementary modes, a central
concept in the field of stoichiometric and metabolic network analysis (Schuster et al.
1999).

Definition 6.76. Given an n×m stoichiometric matrix N, the vector μ = (μ1, . . . ,μm)T ,
μ �= 0, is an elementary mode if it satisfies

(i) Nμ = 0,

(ii) the vector μ is thermodynamically feasible, that is, μi � 0 if the ith column of
N refers to an irreversible reaction, and

(iii) the vector μ is support-minimal, that is, there is no vector μ ′ �= 0 with Iμ ′ ⊂ Iμ

fulfilling Nμ ′ = 0, where Iμ = {i : μi �= 0} and Iμ ′ = {i : μ ′
i �= 0}.

The solution of Nλ = ei can therefore be regarded as an elementary mode of the
matrix (N,−ei), where all reactions contained in N are assumed to be reversible, and
the outflow of Si is assumed to be irreversible. As the amplifier inequality (6.49) must
be fulfilled for each i ∈ I, the conditions in Lemma 6.75 show that a necessary motif
for a negative signed principal minor is a substructure enabling the production of
each of its species in steady state, without external input (if for some i the solution λ

of Nλ = ei does not satisfy the amplifier inequality (6.49), the corresponding species
Si is not produced, but consumed.) This suggests the following definition.

Definition 6.77. We say that a CRN contains an amplifying motif of order k if its associ-
ated labeled interaction graph G(N,V) contains an R-subgraph G(NI,KV

τ
K,I) of order

k, 2 � k � n, satisfying, with A = NI,KV
τ
K,I, the conditions (6.49) and (6.50) given in

Lemma 6.75.

Theorem 6.78. Consider the system given in (6.26) at steady state x∗(0) and a change
of the external input u from 0 to 1. Furthermore, consider the subgraphs of the labeled
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interaction graph G(N,V), which are complementary to a path from Si to Sm, where Si

denotes a perturbed node, that is, i ∈ Ib. Under Assumptions 6.44, 6.47, and 6.22, and if
Sm fulfills Assumption 6.65, an inverse response of xm within stoichiometric compatibility
classes is excluded if none of those complementary subgraphs to the paths from Si to Sm

contains an amplifying motif or a positive selfcycle.

Proof. From Proposition 6.67 and Lemma 6.68, we saw that under the given assump-
tions, a necessary condition for inverse response within stoichiometric compatibility
classes is the existence of a positive selfcycle, or of an R-subgraph G(NI,K,Vτ

K,I) of
order 2 � k � n fulfilling, with A = NI,KV

τ
K,I, the inequality of dominant positive

cycles (6.43). Furthermore, the R-subgraph or the positive selfcycle must be located
in a subgraph that is complementary to one of the paths from a perturbed node to
Sm (see Proposition 6.67). If none of the complementary subgraphs to the paths from
Si to Sm contains an amplifying motif or a positive selfcycle, we can conclude from
Lemma 6.75 that the inequality of dominant positive cycles (6.43) is not satisfied by
the corresponding R-subgraphs.

In order to identify the amplifying motifs in a given CRN, one can compute all
possible R-subgraphs and check for each R-subgraph if a λ with the required prop-
erties exists for all nodes. As the computation of all R-subgraphs is computationally
demanding, it is beneficial to include information about the structure of an ampli-
fying motif in order to decrease the number of subgraphs to be analyzed. We do
not want to examine this in more detail here. A related work is from Joshi and Shiu
(2012), who also analyzed subnetworks to determine whether all terms in the deter-
minant expansion of the Jacobian are of the same sign. They presented an algorithm
which reduces a CRN according to certain criteria, thus reducing the number of sub-
networks to be analyzed. Similar techniques could be applied here. We will discuss
relations to this work in more detail in Section 6.2.5. Given an R-subgraph, the λ can
be computed using algorithms for the computation of elementary modes.

6.2.5 Relation to Multistationarity

In this section, we will present some previous results on multistationarity of CRNs
and show the close connection to our results on inverse response.

Definition 6.79. (Wiuf and Feliu 2013) A dynamic CRN with n× q stoichiometric
matrix N has the capacity for multiple positive steady states over vq if there exist distinct
stoichiometrically compatible vectors c, c ′ ∈ Rn

>0 such that Nv(c) = Nv(c ′) = 0 for
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all kinetics v ∈ vq. A steady state x∗ ∈ Rn
>0 is degenerate if ker(NV(x∗))∩ im(N) �= 0,

otherwise the steady state is nondegenerate.

A large class of methods that enable to decide on a system’s capacity for multiple
steady states is based on injectivity, as only non-injective systems can have multiple
steady states. An example is the work of Wiuf and Feliu (2013), who derived criteria
for the preclusion of multiple steady states for general kinetics.

Definition 6.80. (Wiuf and Feliu 2013) A dynamic CRN with kinetics v ∈ vq and
n×m stoichiometric matrix N is injective over vq if for any pair of distinct stoichio-
metrically compatible vectors c, c ′ ∈ Rn

>0 we have Nv(c) �= Nv(c ′) for all v ∈ vq.

Proposition 6.81. (Feliu and Wiuf 2013) Consider a dynamic CRN with kinetics v ∈ vq

and n× q stoichiometric matrix N of rank s. The system is injective over vq if and only if
the matrix J̃q is SNS. If det(̃Jq) is identically zero, all steady states are degenerate.

Proposition 6.81 implies the following criterion for the preclusion of multiple
steady states.

Corollary 6.82. Consider a CRN with kinetics v ∈ vq and n× q stoichiometric matrix N

of rank s. Let I ⊆ {1, . . . ,n} denote a subset of s species indices, K ⊆ {1, . . . ,q} a subset of
s reaction indices, and τ a permutation of K. If NI,KV

τ
K,I has nonnegative signed principal

minors for all I, K, and τ, the system does not have the capacity for multiple nondegenerate
steady states over vq .

Proof. This follows as
det(̃Jq) =

∑
I⊆{1,...,n}

#I=s

det(JqI,I)

and as
det(JqI,I) =

∑
K⊆{1,...,q}
#K=#I=s

∑
τ∈PerK

det(NI,KV
τ
K,I).

Corollary 6.82 immediately shows the connection to our results about inverse re-
sponse: just as an amplifying motif is necessary for an inverse response that is
not caused by oppositely signed feedforward paths or a positive selfcycle, it is also
necessary for multiple nondegenerate steady states if all selfcycles are non-positive.
While for inverse response, the amplification must be found in a subsystem com-
plementary to any path from the disturbed to the observed node, the amplifying
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motif inducing multistationarity can be located in any R-subgraph of order k, where
2 � k � rank(N).

Proposition 6.83. Consider a CRN with kinetics v ∈ vq and n×q stoichiometric matrix N

of rank s. If all selfcycles in G(N,V) are nonpositive, and if G(N,V) does not contain an
amplifying motif of order k with 2 � k � s, the system does not have the capacity for
multiple nondegenerate steady states over vq .

From Corollary 6.82, we can also derive the two following propositions for multi-
stationarity, which relate to Propositions 6.70 and 6.72 for inverse response.

Proposition 6.84. Consider a CRN with kinetics v ∈ vq and n×q stoichiometric matrix N

of rank s. If there is no R-subgraph of G(N,V) of order k with 2 � k � s for which we have

• all nodes of the R-subgraph are involved in a positive cycle, and

• any of the four conditions given in Lemma 6.69 is satisfied,

the system does not have the capacity for multiple nondegenerate steady states over vq.

Proposition 6.85. Consider a CRN with kinetics v ∈ vq and n×q stoichiometric matrix N

of rank s. If the DSR graph G(N,V) does not contain a critical subgraph satisfying

each S-node has exactly one outgoing edge, and each R-node has exactly one incoming
edge, and

(i) there is a stoichiometrically expansive e-cycle, or

(ii) two e-cycles have S-to-R intersection,

the system does not have the capacity for multiple nondegenerate steady states over vq.

Banaji and Craciun (2009) stated the following DSR graph result about multista-
tionarity:

Proposition 6.86. A dynamic CRN does not have the capacity for multiple positive nonde-
generate steady states if all e-cycles in the DSR graph are s-cycles and if no two e-cycles have
S-to-R or R-to-S intersection.

For NAC kinetics, Propositions 6.85 and 6.86 are equivalent, as the DSR graph of
an NAC system only contains undirected edges. However, for weakly monotonic
kinetics Proposition 6.85 is sharper.
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Example 6.87. Consider the CRN of irreversible reactions

S1 → S2 (r1)

S1 → S3 (r2)

S2 + S3 → S1 (r3),

(6.55)

with inflows and outflows in each species. With r4 denoting the outflow in S1, r5

denoting the outflow in S2, and r6 denoting the outflow in S3, and assuming weakly
monotonic kinetics, the qualitative Jacobian is given by

Jq =

⎛⎜⎝−α11 −α12 −α14 α23 α33

α11 −α23 −α25 0
α12 0 −α33 −α36

⎞⎟⎠ , (6.56)

with αij ∈ R+, and the determinant expansion of Jq is

det(Jq) = −α33α11α25 −α33α14α23 −α33α14α25 −α36α11α25

−α36α12α23 −α36α12α25 −α36α14α23 −α36α14α25

Hence, multistationarity can be excluded for all weakly monotonic kinetics. Accord-
ing to Proposition 6.86, multistationarity cannot be excluded, while Proposition 6.85
tells us that multiple steady states for the system taken with weakly monotonic ki-
netics are not possible.

Remark 6.88. Proposition 6.85 is consistent with SR graph results derived by Knight
et al. (2015). These results were derived in the context of concordance (Shinar and
Feinberg 2012). The connections between SR graphs and concordance were worked
out by introducing a sign-causality graph, from which a central inequality contain-
ing stoichiometric coefficients and signed coefficients for each reaction was derived
(Shinar and Feinberg 2013). This inequality shows similarities with our results pre-
sented in Lemma 6.75. A central difference, however, is that concordance results are
derived considering the overall network, whereas the identification of an amplifying
motif requires the analysis of subnetworks. A closer investigation how our results
relate to the theory of concordance is subject for future research.

Example 6.89. Consider again the CRN discussed in Example 6.56, but with inflows
and outflows on every node (fully open network). First, we assume NAC kinetics for
all reactions. Both Proposition 6.85 and Proposition 6.86 tell us that multistationarity
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6 Qualitative Dynamics from Network Structure

cannot be excluded, independently of the choice of b. Indeed, the system taken with
NAC kinetics has the capacity for multiple positive steady states for all choices of b,
the determinant expansion has summands of opposite sign for all choices of b (not
shown explicitly here).

For b = 1, the R-subgraph with I = {1, 2, 3}, K = {1, 2, 3}, and τ = (1, 2, 3) (see
Figure 6.7(a)) is an amplifying motif: with λi denoting the solution of NI,Kλ

i = ei,
the inequalities given in Lemma 6.75 are satisfied by λ1 = (1, 1, 1)T , λ2 = (1, 0, 1)T ,
λ3 = (1, 1, 0). The corresponding DSR graph (see Figure 6.5(b)) has two e-cycles
with S-to-R intersection. For b = 2, the amplifying motif is the R-subgraph with
I = {1, 2}, K = {1, 2}, τ = (2, 1), and λ1 = (−1,−1)T , λ2 = (−1,−2)T (see Figure 6.7(b)).
The corresponding DSR graph has the stoichiometrically expansive e-cycle S1

3→
R1 → S2 → R2 → S1 (see Figure 6.5(b)). For b = 3, the amplifying motif is again
the R-subgraph with I = {1, 2}, K = {1, 2}, τ = (2, 1) (see Figure 6.7(c)), now with
λ1 = (−0.5,−0.5)T , λ2 = (−0.5,−1.5)T .

Figure 6.7: R-subgraphs corresponding to amplifying motifs for the CRN example
(6.36) taken with NAC kinetics.

The situation changes if we assume weakly monotonic kinetics. Again, both
Proposition 6.85 and Proposition 6.86 tell us that multistationarity cannot be ex-
cluded, independently of the choice of b. However, for weakly monotonic kinetics,
the system only has the capacity for multiple positive steady states if b < 2, what
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can be seen from the determinant expansion:

Jq =

⎛⎜⎝−bV11 − V14 V22 V33

V11 −V22 − V25 0
V11 0 −V33 − V36

⎞⎟⎠
det(Jq) = (2 − b)V11V22V33 + (1 − b)V11V22V36 + (1 − b)V11V25V33 − bV11V25V36

− V14V22V33 − V14V22V36 − V14V25V33 − V14V25V36

Also based on Proposition 6.83 multiple steady states for b � 2 can be excluded, as
in this case no amplifying motifs exists:

The system has three possible R-subgraphs, one of order 3 (I = K = {1, 2, 3}), and
two of order 2 (I = K = {1, 2}, and I = K = {1, 3}; see Figure 6.8). For the first
R-subgraph (Figure 6.8(a)), the equation of Nλ1 = (1, 0, 0)T has no solution for b = 2,
and has the solution λ1 = (1/(2 − b), 1/(2 − b), 1/(2 − b))T for b �= 2. Given the
notation from Lemma 6.75, the index set of all nodes preceding S1 in a positive cycle
is I∗ = {2, 3}, and the amplifier inequality (6.49) reads

1
2 − b

+
1

2 − b
>

∣∣∣ −b

2 − b

∣∣∣.
The inequality is only satisfied for 0 < b < 2. Thus, for b � 2, the given R-subgraph
is not an amplifying motif.

For the second R-subgraph (Figure 6.8(b)), the solution of Nλ1 = (1, 0)T is λ1 =

(1/(1 − b), 1/(1 − b)) for b �= 1. The amplifier inequality (6.49) reads, with I∗ = {2},

1
1 − b

>
∣∣∣ −b

1 − b

∣∣∣.
which is not satisfied for b > 1, and thus particularly not for b � 2.

Analogously, it can be shown that the R-subgraph given in (Figure 6.8(c)) is no
amplifying motif for b � 2.

6.3 Discussion

In this chapter, we provided conditions to predict possible responses to parameter
or species concentration changes in steady state when only the network structure
is given. In previous work dealing with this subject, general ODE systems were
considered whose structure was supposed to be given by the sign structure of the
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6 Qualitative Dynamics from Network Structure

Figure 6.8: R-subgraphs for the CRN example (6.36) taken with weakly monotonic
kinetics.

Jacobian matrix, and determinant conditions as well as interaction graph results
have been obtained (Maurya et al. 2003; Oyeleye and Kramer 1988). While these
were local results derived using linearizations, we used homotopy paths to come up
with global conclusions and thus generalized results.

A central issue of the presented work was to transfer the results of perturbation
analysis to the class of chemical reaction networks (CRNs). CRNs are characterized
by the fact that their Jacobian is a product of the stoichiometric matrix N and the
matrix V containing the partial derivatives of the reaction rates. Assuming weakly
monotonic or non-autocatalytic (NAC) reaction rates, the qualitative Jacobian matrix
of a CRN is given solely by its stoichiometric matrix. Furthermore, CRNs usually
contain conservation relations. Given these characteristics, the results for perturba-
tion analysis derived for general ODE systems are of very poor predictive power for
CRNs. Thus, we adapted the previous methods, thereby taking into account the spe-
cial structure of CRNs. As a main result, we came up with a determinant criterion
to exclude an inverse response in CRNs (Theorem 6.49).

In addition, we identified network motifs that can cause an inverse response. To
this end, we introduced labeled interaction graphs as suited graphical representa-
tions of CRNs. Besides from oppositely signed feedforward paths or positive selfcy-
cles, an inverse response can arise from a positive cycle or a combination of cycles
fulfilling certain additional structural constraints. In particular, we could show that
an amplifying motif, which is a substructure enabling the production of each of
its species in steady state, is needed for an inverse response that is not caused by
different path signs or positive selfcycles (Theorem 6.78).
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6.3 Discussion

A common graphical representation of CRNs are species reaction (SR) graphs and
directed species reaction (DSR) graphs. The consideration of labeled interaction
graphs enabled us to show how interaction graph results and SR/DSR graph results
relate to each other.

A subject that has been widely studied in the context of CRNs is multistationarity
(e.g., Banaji and Craciun 2010; Craciun and Feinberg 2005; Shinar and Feinberg
2012; Wiuf and Feliu 2013). Strikingly, we could show that the same network motifs
are necessary both for multistationarity and for inverse response. Our presented
graphical criteria are stronger than the ones derived by Banaji and Craciun (2009)
if the DSR graph contains directed edges. By showing that an amplifying motif is
necessary for multistationarity, we were able to exclude multistationarity in systems
where purely graph theoretic criteria are not conclusive.

In future research, the relation between our results concerning the amplifying mo-
tif and the theory of concordant CRNs (Shinar and Feinberg 2012, 2013) has to be
further examined. The concordance property of a network is necessary and sufficient
for injectivity with regard to certain kinetics. Whether or not a network is concor-
dant can be checked in a convenient way using the Chemical Reaction Network
Toolbox [4]. An additional benefit of the amplifying motif, however, is that it is quite
intuitive and that it can in some cases be directly checked by network inspection.
Nonetheless, efficient computational methods to identify amplifying motifs are still
to be developed.
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7 | Conclusions

In this thesis, we presented new methods for qualitative modeling and structural
analysis of signaling networks and for data-driven network interrogation. With ap-
plications to two central signaling pathways for liver regeneration, we showed how
these methods can contribute to unravel structure and functioning of cellular signal-
ing systems.

The high complexity of signaling networks demands for scalable computational
methods. Furthermore, enhancements of experimental techniques, which enable
the collection of large amounts of experimental data, require automated data-driven
approaches. Methods that are based on mechanistic modeling using ordinary differ-
ential equations are at present not suited for modeling large-scale systems.

In this thesis, we presented, on the one hand, purely qualitative modeling ap-
proaches. We developed methods which enable an automated data-driven network
interrogation based on interaction graphs (Chapter 3). Using integer linear pro-
gramming, the methods were already applicable to systems of considerable size.
Enhanced power of the approach could be achieved by recent extensions of our
presented work based on answer set programming (Thiele et al. 2015). Within the
framework of static logical models as presented in Klamt et al. (2006), we derived
algorithmic improvements for the computation of minimal intervention sets, thus
raising the scalability of this approach (Chapter 4). Furthermore, we showed in that
chapter how logical models can be applied to compare the qualitative input–output
behavior of a given signaling network structure to experimental high-throughput
data in a systematic way. Beyond the methods presented in this thesis, an auto-
mated approach for training signaling network structures to experimental data based
on predictions of the input–output behavior in logical models has been developed
(Saez-Rodriguez et al. 2007).

Besides purely qualitative modeling approaches, we showed the potential of com-
bining qualitative and quantitative mathematical modeling. In Chapter 5, we pre-
sented a hybrid modeling approach: Based on interaction graphs, minimal model
structures were selected from a vast search space of potential model candidates. In
a subsequent step, these models were translated into ODE models for integrating
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quantitative details. In Chapter 6, we developed algebraic and graph-theoretic cri-
teria that enable to exclude certain dynamic behavior of variables in an ODE model
independently of concrete parameter values. These methods can also be used to
preselect model structures and, thus, to narrow down the number of ODE models
to be discriminated by parameter estimations.

With this work, we showed the potential of qualitative modeling for the analysis
of signaling networks. In particular, we demonstrated how different modeling ap-
proaches complement each other, and how results obtained by qualitative modeling
methods can serve as a base for more detailed quantitative modeling. Combined
modeling approaches are, in our view, indispensable in the future in order to get a
holistic understanding of and to accommodate ever increasing networks and mech-
anistic details in cellular biology. One possibility is to provide formalisms which
enable to derive models of different complexity from a common base (e.g., Kolczyk
et al. 2012). Additionally, there are tools providing modeling pipelines by featuring
different modeling formalisms with increasing complexity within one framework
(e.g., Terfve et al. 2012). Future developments of the work presented in this thesis
should also consider automated combinations of the shown modeling techniques to
come up with integrated modeling pipelines.
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A | Integer Linear Programming Formulations

for Interaction Graph Training

A.1 Implementation.

The four optimization problems presented in Section 3.2 were implemented by Stef-
fen Klamt and Ioannis Melas in the new software SigNetTrainer. The toolbox is
available in two versions. The first is written in C and uses routines from the ILP
solver GUROBI [5], whereas the second version is implemented in MATLAB and
uses the IBM ILOG CPLEX Optimizer (for which free academic versions can be ob-
tained [7]) as ILP solver. Thus, SigNetTrainer benefits from state-of-the-art-solvers
for ILP problems, which use a number of methodologies to deal with large-scale
problems. For a more general introduction to ILP algorithms we refer to Bertsimas
and Tsitsiklis (1997). Source code and manual of both versions of SigNetTrainer are
available for download [3].

A.2 ILP Formulation of Sign Consistency

In Section 3.2.2.1, we stated Constraints 1, 2, and 3, which must be satisfied by a
sign-consistent labeling. Constraint 1 is equivalent to

u+
i,k = max(0, σi · xit,k)

u−
i,k = max(0, −σi · xit,k).

(A.1)
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A Integer Linear Programming Formulations for Interaction Graph Training

As the max operator is not linear (required for an ILP), we introduce the binary
variables d1i,k, . . . ,d4i,k to linearize (A.1) in the following way:

u+
i,k � 0

u+
i,k � σi · xit,k

u+
i,k + 2d1i,k � 2

u+
i,k − σi · xit,k + 2d2i,k � 2

d1i,k + d2i,k = 1

u−
i,k � 0

u−
i,k � −σi · xit,k

u−
i,k + 2d3i,k � 2

u−
i,k + σi · xit,k + 2d4i,k � 2

d3i,k + d4i,k = 1.

(A.2)

Let I→vj denote the index set of all edges with head vj, that is I→vj = {i ∈ IE : ai =

(vit , vj)}. Constraint 2 can be written in terms of linear inequalities as follows:

x+j,k � u+
i,k ∀i ∈ I→vj ,

x−j,k � u−
i,k ∀i ∈ I→vj ,

x+j,k �
∑

i∈I→vj

u+
i,k

x−j,k �
∑

i∈I→vj

u−
i,k.

(A.3)

Constraint 3 is equivalent to the following inequalities:

xj,k � x+j,k

xj,k � −x−j,k

xj,k � 2 x+j,k − x−j,k

xj,k � −2 x−j,k + x+j,k.

(A.4)
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A.3 ILP Formulation of SCEN_FIT

A.3 ILP Formulation of SCEN_FIT

Computing a single SCEN_FIT solution. Eq. (3.2) in Section 3.2.2.2 describes the
optimization problem to find a sign-consistent labeling xk = (x1,k, . . . , xnv,k) that
minimizes the measurement-prediction-mismatch. We introduce absj,k = |mj,k −

xj,k|, absj,k ∈ {0, 1, 2}, to reformulate the absolute value in the objective function
of Eq. (3.2). Given an experimental scenario k, a SCEN_FIT solution solves the
optimization problem

minimize
xk

∑
j∈IV

mj,k �=NaN

absj,k

subject to absj,k � mj,k − xj,k ∀j ∈ IV with mj,k �= NaN,

absj,k � xj,k −mj,k ∀j ∈ IV with mj,k �= NaN,

xj,k = pj,k ∀j ∈ IV with pj,k �= NaN,

Inequalities (A.4) ∀j ∈ IV with pj,k = NaN,

Inequalities (A.3) ∀j ∈ IV with pj,k = NaN,

Inequalities (A.2).

(A.5)

Enumeration of SCEN_FIT solutions. To enumerate SCEN_FIT solutions, prob-
lem (A.5) is solved repeatedly. After the first iteration, the objective function is
replaced by ∑

j∈IV
mj,k �=NaN

absj,k = objval, (A.6)

where objval is the minimum value of the objective function found in the first run
of the algorithm. In addition, for each previous solution s, the following constraints
are added to (A.5) in order to exclude this solution (reformulation of the nonlinear
Eq. (3.3)): ∑

j∈IV
dxj,k,s � 1

−xj,k + dxj,k,s − 4dx2j,k,s � xj,k,s

xj,k + dxj,k,s − 4dx1j,k,s � −xj,k,s

dx1j,k,s + dx2j,k,s = 1,

(A.7)

The variables dxj,k,s (integer), dx1j,k,s (binary), and dx2j,k,s (binary) are auxiliary
variables.
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A.4 ILP Formulation of MCoS

Computing a single MCoS. To compute an MCoS for a sign-inconsistent scenario
k, we introduce the binary variables B+

j,k and B−
j,k representing artificial perturbations.

Inequalities (A.4) are modified as follows (cf. Constraint 4, Section 3.2.2.3):

xj,k � x+j,k +B+
j,k

xj,k � −x−j,k −B−
j,k

xj,k � 2 x+j,k − x−j,k + 2B+
j,k

xj,k � −2 x−j,k + x+j,k − 2B−
j,k.

(A.8)

An MCoS for a given experimental scenario k solves the optimization problem

minimize
B−
k ,B+

k

∑
j∈IV

(B+
j,k +B−

j,k)

subject to
∑
j∈IV

mj,k �=NaN

absj,k = 0,

absj,k � mj,k − xj,k ∀j ∈ IV with mj,k �= NaN,

absj,k � xj,k −mj,k ∀j ∈ IV with mj,k �= NaN,

xj,k = pj,k ∀j ∈ IV with pj,k �= NaN,

Inequalities (A.8) ∀j ∈ IV with pj,k = NaN,

Inequalities (A.3) ∀j ∈ IV with pj,k = NaN,

Inequalities (A.2).

(A.9)

Enumeration of MCoSs. To enumerate MCoSs, problem (A.9) is solved repeatedly.
After the first iteration, the objective function is replaced by

∑
j∈IV

(B+
j,k +B−

j,k) = objval, (A.10)

where objval is the minimum value of the objective function found in the first run
of the algorithm. In addition, for each previous solution s, the following constraints
are added to (A.9) in order to exclude this solution (reformulation of the nonlinear
Eq. (3.7)):
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∑
j∈IV

B+
j,k,s=0

B+
j,k +

∑
j∈IV

B−
j,k,s=0

B−
j,k −

∑
j∈IV

B+
j,k,s=1

(B+
j,k − 1) −

∑
j∈IV

B−
j,k,s=1

(B−
j,k − 1) � 1. (A.11)

A.5 ILP Formulation of OPT_SUBGRAPH

Computing a single optimal subgraph. The removal of edges is implemented
using binary values yi and modifying inequalities (A.2) as follows:

u+
i,k � 0

u+
i,k � σi · xit,k − yi

u+
i,k + 3d1i,k � 3

u+
i,k + yi − σi · xit,k + 3d2i,k � 3

d1i,k + d2i,k = 1

u−
i,k � 0

u−
i,k � −σi · xit,k − yi

u−
i,k + 3d3i,k � 3

u−
i,k + yi + σi · xit,k + 3d4i,k � 3

d3i,k + d4i,k = 1.

(A.12)

An optimal subgraph of the given interaction graph solves the optimization prob-
lem

minimize
x1...,xnS

∑
(j,k)∈IV×IS
mj,k �=NaN

absj,k

subject to absj,k � mj,k − xj,k ∀(j,k) ∈ IV × IS with mj,k �= NaN,

absj,k � xj,k −mj,k ∀(j,k) ∈ IV × IS with mj,k �= NaN,

xj,k = pj,k ∀(j,k) ∈ IV × IS with pj,k �= NaN,

Inequalities (A.4) ∀(j,k) ∈ IV × IS with pj,k = NaN,

Inequalities (A.3) ∀(j,k) ∈ IV × IS with pj,k = NaN,

Inequalities (A.12).

(A.13)
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Enumeration of optimal subgraphs. To enumerate optimal subgraphs, prob-
lem (A.13) is solved repeatedly. After the first iteration, the objective function is
replaced by ∑

(j,k)∈IV×IS
mj,k �=NaN

absj,k = objval, (A.14)

where objval is the minimum value of the objective function found in the first run
of the algorithm. In addition, for each previous solution s, the following constraints
are added to (A.13) in order to exclude this solution (reformulation of the nonlinear
Eq. (3.10)):

∑
i∈IE
yi,s=0

yi −
∑
i∈IE
yi,s=1

(yi − 1) � 1. (A.15)
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B | Model Compression for Interaction Graphs

Rule 1 (removal of non-controllable and non-observable nodes, cf. Saez-Rodriguez
et al. (2009)): Non-controllable nodes (which cannot be affected by any of the per-
turbed nodes in any scenario) and non-observable nodes (which do not influence any
measured (readout) node in any scenario) define non-identifiable parts of the net-
work. Therefore, these nodes as well as all edges they are connected to can be
removed. Non-observable and non-controllable nodes can easily be identified by
shortest path algorithms.

Rule 2 (removal of parallel edges): If there are two parallel edges of the same sign,
we may safely remove one of them (Figure B.1(a)).

Rule 3 (absorbing a node with a single input edge): If a latent node (neither mea-
sured nor perturbed in any of the experimental scenarios) has only one single in-
coming edge, then we can remove this node together with the incoming edge and
reconnect all the outgoing edges of this node to its only predecessor node (under
consideration of edge signs; Figure B.1(b).

Rule 4 (absorbing a node with a single output edge): If a latent node has only one
single outgoing edge, then we can remove this node together with the outgoing edge
and reconnect all its incoming edges to its only successor node (under consideration
of edge signs; Figure B.1(c).

Rule 1 is performed once at the beginning, whereas Rules 2–4 are iteratively used
until no further rule can be applied (note that new parallel edges may arise after
applying Rules 3 or 4).
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B Model Compression for Interaction Graphs

Figure B.1: Basic network compression rules for interaction graphs. (a) Parallel edges
(Rule 2). (b) Nodes with single input (Rule 3). (c) Nodes with single output (Rule 4). Figure
adapted from Melas, Samaga et al. (2013).
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C | Documentation of ERBB Models

C.1 List of Species

The following list shows the species of the logical ERBB model (M1). It contains two
types of auxiliary species that have no biological correspondents, dummy species and
reservoirs.

Dummy species are necessary if one wants to assign different time variables to
interactions forming one hyperarc. A typical example is A · !B → C, describing
that both the presence of A and absence of B are necessary to activate C. In order to
reflect a time delay of the inhibitory activity of B, we introduce the species B_dummy
and describe the original interaction with two interactions B → B_dummy (time 2)
and A · !B_dummy (time 1).

A reservoir is introduced whenever a molecule causes different downstream events
depending on how it is activated. Here, we have to use more than one compound to
describe the molecule in the model. However, as all these compounds represent the
same biological species, we associate them with a reservoir, pointing out that they
share the same pool. Inactivation of the reservoir will then affect the activation of all
correspondents of this species.

Dummy species and reservoirs are only needed for the logical modeling formal-
ism. However, as we derived the interaction graph model from the logical model,
the interaction graph contains the same set of species. Removing dummy nodes and
reservoirs from the interaction graph and compressing the respective interactions
would lead to the same results for the interaction graph analysis.

Model variant M2 of the logical model contains the same set of species as model
M1, except for some dummy species (see Appendix C.4).
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C Documentation of ERBB Models

No. Model Name Full Name Comment

1 actin_reorg actin reorganization symbolizes actin reorganizing effects
initiated by LIMK1

2 akt RAC-alpha
serine/threonine-protein
kinase

also known as protein kinase B (PKB)

3 aktd dummy species

4 ap1 Activator protein 1 heterodimer composed of c-Jun and c-Fos

5 pro_apoptotic symbolizes the pro-apoptotic effect of
BAD

6 ar Amphiregulin ligand that binds specifically ERBB1

7 bad Bcl2-associated agonist of
cell death

phosphorylated (the unphosphorylated
form promotes apoptosis)

8 bir Biregulin synthetic Neuregulin/EGF chimera

9 btc Betacellulin ligand with dual specificity, binds ERBB1
and ERBB4

10 ca Calcium cytosolic Ca2+-ions

11 ccbl E3 ubiquitin-protein ligase
CBL

12 cfos Proto-oncogene c-Fos

13 cjun Proto-oncogene c-Jun

14 cmyc Myc proto-oncogene protein

15 creb Cyclic AMP-responsive
element-binding protein

16 csrc Neuronal proto-oncogene
tyrosine-protein kinase Src

17 dag Diacylglycerol

18 egf Epidermal growth factor ligand that binds specifically ERBB1

19 elk1 ETS domain-containing
protein Elk-1

20 endocyt_degrad symbolizes endocytosis/degradation of
the receptors

Continued on next page
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No. Model Name Full Name Comment

21 epr Epiregulin ligand with dual specificity, binds
specifically ERBB1 and ERBB4

22 eps8r Epidermal growth factor
receptor kinase substrate 8

reservoir of EPS8

23 erbb1 Epidermal growth factor
receptor

also known as EGFR

24 erbb11 homodimer composed of two ERBB1
receptors

25 erbb12 heterodimer composed of ERBB1 and
ERBB2

26 erbb13 heterodimer composed of ERBB1 and
ERBB3

27 erbb14 heterodimer composed of ERBB1 and
ERBB4

28 erbb2 Receptor tyrosine-protein
kinase erbB-2

no ligand, preferred heterodimerization
partner of the other ERBBs; also known
as Proto-oncogene Neu

29 erbb23 heterodimer composed of ERBB2 and
ERBB3

30 erbb24 heterodimer composed of ERBB2 and
ERBB4

31 erbb3 Receptor tyrosine-protein
kinase erbB-3

kinase-defective

32 erbb34 heterodimer composed of ERBB3 and
ERBB4

33 erbb4 Receptor tyrosine-protein
kinase erbB-4

34 erbb44 homodimer composed of two ERBB4
receptors

35 erk12 Extracellular
signal-regulated kinase 1
(ERK1) or 2 (ERK2)

since both ERK1 and ERK2 catalyze the
same reactions, we do not distinguish
between them; also known as MAPK1/3

36 gab1 GRB2-associated-binding
protein 1

Continued on next page
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No. Model Name Full Name Comment

37 grb2 Growth factor
receptor-bound protein 2

38 gsk3 Glycogen synthase kinase-3
beta

39 hbegf Heparin-binding EGF-like
growth factor

ligand with dual specificity, bind ERBB1
and ERBB4

40 hsp27 Heat shock protein beta-1

41 ip3 Inositol 1,4,5-trisphosphate

42 jnk c-Jun N-terminal kinase 1 also known as MAPK8

43 limk1 LIM domain kinase 1

44 mek12 MAPK/ERK kinase 1 or 2 since both MEK1 and MEK2 catalyze the
same reactions, we do not distinguish
between them; also known as
MAPKK1/MAPKK2

45 mekk1 MAPK/ERK kinase kinase 1 also known as MAPKKK1

46 mekk4 MAPK/ERK kinase kinase 4 also known as MAPKKK4

47 mk2 MAP kinase-activated
protein kinase 2

48 mkk3 Dual specificity
mitogen-activated protein
kinase kinase 3

also known as MAPKK3

49 mkk4 Dual specificity
mitogen-activated protein
kinase kinase 4

also known as MAPKK4

50 mkk6 Dual specificity
mitogen-activated protein
kinase kinase 6

also known as MAPKK6

51 mkk7 Dual specificity
mitogen-activated protein
kinase kinase 7

also known as MAPKK7

52 mkp Dual specificity protein
phosphatase

53 mlk3 Mixed lineage kinase 3

Continued on next page
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No. Model Name Full Name Comment

54 mtorr Mammalian target of
rapamycin

reservoir of mTOR

55 mtor_rap mTOR-raptor complex

56 mtor_ric mTOR-rictor complex

57 nck Cytoplasmic protein NCK

58 nrg1a Neuregulin-1 alpha ligand with dual specificity, binds ERBB3
and ERBB4

59 nrg1b Neuregulin-1 beta ligand with dual specificity, binds ERBB3
and ERBB4

60 nrg2a Neuregulin-2 alpha ligand with dual specificity, binds ERBB3
and ERBB4

61 nrg2b Neuregulin-2 beta ligand with dual specificity, binds ERBB3
and ERBB4

62 nrg3 Neuregulin-3 ligand that binds specifically ERBB4

63 nrg4 Neuregulin-4 ligand that binds specifically ERBB4

64 nucerk12 phosphorylated dimer of ERK1 or ERK2,
located in the nucleus

65 p38 Mitogen-activated protein
kinase 14

66 p70s6k_1
70 kDa ribosomal protein S6
kinase 1

p70S6K phosphorylated at autoinhibitory
sites

67 p70s6k_2 p70S6K phosphorylated at the catalytic
sites T389 and S229

68 p90rsk 90 kDa ribosomal protein S6
kinase

also known as S6K-alpha, p90S6K

69 p90rskerk12d dummy species

70 pak1 p21-activated kinase 1

71 pdk1 3-phosphoinositide-
dependent protein
kinase 1

72 pi34p2 Phosphatidylinositol
(3,4)-bisphosphate
(PtdIns(3,4)P2)

Continued on next page
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No. Model Name Full Name Comment

73 pi3k Phosphatidylinositol-4,5-
bisphosphate
3-kinase

74 pi3kr reservoir of PI3K

75 pip3 Phosphatidylinositol
(3,4,5)-trisphosphate

76 pkc Protein kinase C

77 plcg 1-phosphatidylinositol
4,5-bisphosphate
phosphodiesterase gamma

78 pp2a Serine/threonine-protein
phosphatase 2A

79 pp2b Serine/threonine-protein
phosphatase 2B

also known as Calcineurin

80 pten Phosphatase and tensin
homolog

81 ptend dummy species

82 rab5a Ras-related protein Rab-5A

83 rac_cdc42 Ras-related C3 botulinum
toxin substrate 1/ Cell
division control protein 42
homolog

Rac1 or CDC42

84 raf1 RAF proto-oncogene
serine/threonine-protein
kinase

also known as cRaf

85 ras GTPase Ras

86 rasgap Ras GTPase-activating
protein 1

87 rheb GTP-binding protein Rheb

88 rin1 Ras and Rab interactor 1

89 rntre Related to the N-terminus of
tre

90 shc SHC-transforming protein 1

Continued on next page
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No. Model Name Full Name Comment

91 ship2 SH2 domain-containing
inositol 5’-phosphatase 2

92 ship2d dummy species

93 shp1 Tyrosine-protein
phosphatase non-receptor
type 6

also known as PTP-1C

94 shp1d dummy species

95 shp2 Tyrosine-protein
phosphatase non-receptor
type 11

also known as PTP-1D

96 sos1 Son of sevenless homolog 1

97 sos1r reservoir of SOS1

98 sos1_eps8_e3b1 complex of SOS1, EPS8, and E3B1/ABI1
(Abl interactor 1)

99 stat1 Signal transducer and
activator of transcription 1

100 stat3 Signal transducer and
activator of transcription 3

101 stat5 Signal transducer and
activator of transcription 5

102 tgfa Transforming growth factor
alpha

ligand that binds specifically ERBB1

103 tsc1_tsc2 Tuberous sclerosis 1/2
protein

complex of TSC1 (also known as
Hamartin) and TSC2 (also known as
Tuberin)

104 vav2 Guanine nucleotide
exchange factor VAV2

C.2 List of Interactions of the Logical ERBB Model (M1)

In the following, we list the interactions included in the logical ERBB Model (M1).
The interactions of the interaction graph model can be derived from these interac-
tions by splitting the hyperarcs and subsequent removal of parallel edges, as de-
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scribed in Section 2.4.2.1.

Notation

→ A species A is an input to the model
A → species A is an output of the model
A → B species A activates species B
A · B → C species A AND B activate C (and both A and B are necessary for activation)
A · !B → C species C is activated when A AND NOT B are present

Inputs

No. Interaction Value Documentation

1 → erbb1 1

The four members of the ErbB receptor family.
2 → erbb2 1
3 → erbb3 1
4 → erbb4 1

5 → ar 0

Ligands of the EGF ligand family.

6 → bir 0
7 → btc 0
8 → egf 0
9 → epr 0

10 → hbegf 0
11 → nrg1a 0
12 → nrg1b 0
13 → nrg2a 0
14 → nrg2b 0
15 → nrg3 0
16 → nrg4 0
17 → tgfa 0

18 → csrc 1 It is not clear how c-Src is activated. Whereas in Sato et al. (2002),
activation of c-Src by SHC (in response to EGF) is reported that
leads to phosphorylation of STAT, in Olayioye et al. (1999), the
activation of STAT after EGF stimulation was more rapid than
activation of c-Src in response to EGF.

19 → pten 0 PTEN and SHIP2 both downregulate PIP3 synthesis. As we could
not find any information on PTEN and SHIP2 regulation, we
included them as inputs in the model.

20 → ship2 0

21 → pdk1 1 PDK1 appears to be constitutively active (Newton 2003).

Continued on next page
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No. Interaction Value Documentation

22 → pp2a 0
Regulation of these phosphatases is not considered in the model.23 → pp2b 0

24 → mkp 0

25 → sos1r 1 We consider two different pools of SOS1: activated through GRB2,
leading to Ras-GEF activity (interaction 112), and in a complex
with EPS8 and E3B1 (interaction 118), leading to Rac-GEF activity.

26 → eps8r 1 EPS8 can form a complex with SOS1/E3B1 (interaction 118) or
RN-tre (interaction 183).

27 → pi3kr 1 This reservoir represents the inactive form of PI3K that participates
in the activation of SOS1_EPS8_E3B1 (see interaction 118).

28 → mtorr 1 mTOR can complex with rictor (see interaction 134) or raptor (see
interaction 139). Therefore, a reservoir of mTOR is included in the
model.

Activation of ErbB dimers
The four ERBB receptors form different homo- and heterodimers. Binding of a lig-
and leads to autophosphorylation of tyrosine residues that provide docking sites for
proteins with SH2 or PTB domains. As ERBB2 does not bind to ligands of the EGF
family (Citri and Yarden 2006), ERBB2 can only be activated in heterodimers. How-
ever, ERBB2 is the preferred heterodimerization partner of the other ERBBs; thus, the
other heterodimers 13, 14, and 34 are only formed in absence of ERBB2. An exception
are AR and HB-EGF activated dimers: AR activates ERBB3, but not ERBB2 (Beerli
and Hynes 1996), so we assume that AR activates ERBB13 dimers also in presence of
ERBB2. ERBB3 is kinase-defective, thus ERBB3-homodimers are inactive (Citri and
Yarden 2006; Olayioye et al. 2000). According to Landau and Ben-Tal (2008), only one
of the receptors in a dimer is phosphorylated. In ERB1/ERBB2 dimers, only ERBB2
becomes phosphorylated (Landau and Ben-Tal 2008). As ERBB3 is kinase-defective,
ERBB3 is the phosphorylated partner in ERBB3 heterodimers (Landau and Ben-Tal
2008). We could not find any information on the phosphorylation of ERBB1/ERBB4
and ERBB2/ERBB4 dimers. Therefore, we assumed that proteins that can only bind
to ERBB1 are activated through ERBB1 homodimers; proteins that can bind to ERBB2
are activated through ERBB1/ERBB2 dimers; proteins that can bind to ERBB3 are ac-
tivated through all possible ERBB3 dimers (13, 23, 34), and proteins that can bind to
ERBB4 are activated through ERBB4 homodimers.
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No. Interaction Time Documentation

29 erbb11 → shp1 1 SHP1 binds to ERBB1 at phosphorylated Y1173
(Keilhack et al. 1998).

30 shp1 → shp1d 2 SHP1 dephosphorylates the ERBB1 dimers (negative
feedback; see, e.g., interaction 31). We assume that
this dephosphorylation is a late event and, thus,
included a dummy species.

31 ar · !shp1d · erbb1 → erbb11 1 AR binds ERBB1 homodimers and ERBB13.
However, the affinity of AR towards ERBB1 is
significantly lower than the affinity of EGF (Beerli
and Hynes 1996). Interaction 32 is not included in
Oda et al. (2005).

32 ar · !shp1d · erbb1 · erbb3 →
erbb13

1

33 bir · !shp1d · erbb1 →
erbb11

1 BIR activates the following ERBB dimers: 11, 12, 23,
24, 44 (Jones et al. 1999). Since in Jones et al. (1999)
the dimers 13, 14, and 34 are not analyzed, and this
is the only source about binding affinities for BIR we
found, we cannot rule out the possibility that 13, 14,
and 34 are also activated. As BIR is an artificial
ligand, one could think about not considering it in
the model.

34 bir · !shp1d · erbb1 · erbb2
→ erbb12

1

35 bir · erbb2 · erbb3 → erbb23 1
36 bir · erbb2 · erbb4 → erbb24 1
37 bir · erbb4 → erbb44 1

38 btc · !shp1d · erbb1 →
erbb11

1 BTC activates the following ERBB dimers: 11, 12, 24,
44 (Jones et al. 1999). Additionally, it activates 13
(Alroy and Yarden 1997) (not part of Oda et al.
(2005)). In Alroy and Yarden (1997), activation of 14
was detected, whereas this is not reported in
Graus-Porta et al. (1997). Therefore, we decided not
to include activation of 14. In Wang et al. (1998) and
Graus-Porta et al. (1997), activation of 23 is reported,
what is contradictory to Jones et al. (1999) and not
mentioned in Alroy and Yarden (1997). However, it
is in accordance with the findings of Beerli and
Hynes (1996), which state that BTC activates ERBB3
when all ERBB receptors are present; thus, we
included it in the model.

39 btc · !shp1d · erbb1 · erbb2
→ erbb12

1

40 btc · !shp1d · erbb1 · !erbb2 ·
erbb3 → erbb13

1

41 btc · erbb2 · erbb3 → erbb23 1
42 btc · erbb2 · erbb4 → erbb24 1
43 btc · erbb4 → erbb44 1

Continued on next page
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No. Interaction Time Documentation

44 egf · !shp1d · erbb1 →
erbb11

1 EGF activates the following ERBB dimers: 11, 12, 24
(Jones et al. 1999). In absence of ERBB2, also 13 and
14 can be activated (Graus-Porta et al. 1997; Olayioye
et al. 1998). Activation of 13 and 14 is not included
in Oda et al. (2005). Furthermore, in Wang et al.
(1998) and Graus-Porta et al. (1997), activation of 23
is mentioned. We decided not to consider this in the
model for two reasons: First, in Jones et al. (1999), 23
dimers were studied, but no measurable binding of
EGF was detected. Second, in Shelly et al. (1998) it is
stated that this activation occurs only at very high
ligand concentrations.

45 egf · !shp1d · erbb1 · erbb2
→ erbb12

1

46 egf · !shp1d · erbb1 · !erbb2 ·
erbb3 → erbb13

1

47 egf · !shp1d · erbb1 · !erbb2 ·
erbb4 → erbb14

1

48 egf · erbb2 · erbb4 → erbb24 1

49 epr · !shp1d · erbb1 →
erbb11

1 EPR activates the following ERBB dimers: 11, 12, 23,
24 (Jones et al. 1999). Additionally, activation of 13,
14 (high), and 34, 44 (low) is mentioned in Shelly
et al. (1998) (none of these part of the map of Oda
et al. (2005)). We included activation of 13 and 14 in
the model, because these heterodimers are not part
of the analysis in Jones et al. (1999) and, thus, the
results in Jones et al. (1999) and Shelly et al. (1998)
are not contradictory. Activation of 44 was not
considered, because this is contradictory to Jones
et al. (1999) and, furthermore, was mentioned as low
in Shelly et al. (1998). The interaction with 34 was
also not included in the model as it was mentioned
as low.

50 epr · !shp1d · erbb1 · erbb2
→ erbb12

1

51 epr · !shp1d · erbb1 · erbb3 ·
!erbb2 → erbb13

1

52 epr · !shp1d · erbb1 · erbb4 ·
!erbb2 → erbb14

1

53 epr · erbb2 · erbb3 → erbb23 1
54 epr · erbb2 · erbb4 → erbb24 1

55 hbegf · !shp1d · erbb1 →
erbb11

1 HB-EGF activates the following ERBB dimers: 11, 12,
24 (Jones et al. 1999). In Beerli and Hynes (1996),
activation of ERBB3 in response to HB-EGF is
stated—in presence of ERBB2. One possibility is that
HB-EGF activates ERBB13 dimers even in presence
of ERBB2. Alternatively, HB-EGF might activate
ERBB23 dimers, in contradiction to the findings in
Jones et al. (1999).

56 hbegf · !shp1d · erbb1 ·
erbb2 → erbb12

1

57 hbegf · erbb2 · erbb4 →
erbb24

1

Continued on next page
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No. Interaction Time Documentation

58 nrg1a · !shp1d · erbb1 ·
erbb3 · !erbb2 → erbb13

1

NRG1α activates the following ERBB dimers: 23, 24,
44. Furthermore (not mentioned in Oda et al. (2005)),
it activates 13 (Alroy and Yarden 1997; Graus-Porta
et al. 1997; Olayioye et al. 1998), 14 (Alroy and
Yarden 1997; Graus-Porta et al. 1997; Olayioye et al.
1998; Pinkas-Kramarski et al. 1998) and 34 (Alroy
and Yarden 1997; Pinkas-Kramarski et al. 1998).

59 nrg1a · !shp1d · erbb1 ·
erbb4 · !erbb2 → erbb14

1

60 nrg1a · erbb2 · erbb3 →
erbb23

1

61 nrg1a · erbb2 · erbb4 →
erbb24

1

62 nrg1a · erbb3 · erbb4 · !erbb2
→ erbb34

1

63 nrg1a · erbb4 → erbb44 1

64 nrg1b · !shp1d · erbb1 ·
erbb3 · !erbb2 → erbb13

1

NRG1β activates the following ERBB dimers: 23, 24,
44 (Jones et al. 1999). In accordance with
Pinkas-Kramarski et al. (1998) and Alroy and Yarden
(1997), also 13, 14, and 34 can be activated (not
depicted in Oda et al. (2005)).

65 nrg1b · !shp1d · erbb1 ·
erbb4 · !erbb2 → erbb14

1

66 nrg1b · erbb2 · erbb3 →
erbb23

1

67 nrg1b · erbb2 · erbb4 →
erbb24

1

68 nrg1b · erbb3 · erbb4 · !erbb2
→ erbb34

1

69 nrg1b · erbb4 → erbb44 1

70 nrg2a · !shp1d · erbb1 ·
erbb3 · !erbb2 → erbb13

1
NRG2α activates the ERBB dimer 24 (Jones et al.
1999). Additionally, 13, 14 and 34 are activated
(Pinkas-Kramarski et al. 1998) (not included in Oda
et al. (2005)). In Pinkas-Kramarski et al. (1998),
activation of 11, 12, 23, and 44 is also reported. We
decided not to include this in the model, since these
interactions are in contradiction to Jones et al. (1999).

71 nrg2a · !shp1d · erbb1 ·
erbb4 · !erbb2 → erbb14

1

72 nrg2a · erbb2 · erbb4 →
erbb24

1

73 nrg2a · erbb3 · erbb4 · !erbb2
→ erbb34

1

74 nrg2b · !shp1d · erbb1 ·
erbb4 · !erbb2 → erbb14

1

In accordance with Jones et al. (1999), NRG2β
activates the following ERBB dimers: 23, 24, 44.
Furthermore, activation of 14 and 34 is reported in
Pinkas-Kramarski et al. (1998) (not depicted in Oda
et al. (2005)).

75 nrg2b · erbb2 · erbb3 →
erbb23

1

76 nrg2b · erbb2 · erbb4 →
erbb24

1

77 nrg2b · erbb3 · erbb4 · !erbb2
→ erbb34

1

78 nrg2b · erbb4 → erbb44 1

Continued on next page
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No. Interaction Time Documentation

79 nrg3 · erbb2 · erbb4 →
erbb24

1 NRG3 activates the following ERBB dimers: 24, 44
(Jones et al. 1999). However, in Jones et al. (1999) 13,
14, and 34 are not analyzed. Therefore, and since we
were not able to find another reference dealing with
binding specificities of NRG3, we cannot be sure that
there is no interaction between NRG3 and these
dimers.

80 nrg3 · erbb4 → erbb44 1

81 nrg4 · !shp1d · erbb1 · erbb4
· !erbb2 → erbb14

1 NRG4 activates the following ERBB dimers: 14, 24,
44 (Harari et al. 1999). In Oda et al. (2005) also
activation of 34 is depicted. However, we could not
find a source where this is described; thus, we
decided not to include it in the model.

82 nrg4 · erbb2 · erbb4 →
erbb24

1

83 nrg4 · erbb4 → erbb44 1

84 tgfa · !shp1d · erbb1 →
erbb11

1

TGFα activates the following ERBB dimers: 11, 12,
24 (Jones et al. 1999). In Alroy and Yarden (1997),
activation of 13 and 14 (not part of the map of Oda
et al. (2005)) is mentioned.

85 tgfa · !shp1d · erbb1 · erbb2
→ erbb12

1

86 tgfa · !shp1d · erbb1 · !erbb2
· erbb3 → erbb13

1

87 tgfa · !shp1d · erbb1 · !erbb2
· erbb4 → erbb14

1

88 tgfa · erbb2 · erbb4 →
erbb24

1

Activation of adapter proteins

No. Interaction Time Documentation

89 erbb11 → shc 1

SHC binds to all types of ERBB receptors. On ERBB1, the
binding sites are pY1148 (via PTB domain) and pY1173 (via
PTB and SH2 domain) (Olayioye et al. 2000).

90 erbb12 → shc 1
91 erbb13 → shc 1
92 erbb14 → shc 1
93 erbb23 → shc 1
94 erbb24 → shc 1
95 erbb34 → shc 1
96 erbb44 → shc 1

Continued on next page
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No. Interaction Time Documentation

97 shc → grb2 1

GRB2 can bind to ERBB dimers via SHC (Okabayashi et al.
1994), or directly via its SH2 domain. As there are binding sites
for GRB2 on all ERBB receptors (Schulze et al. 2005), we
assumed that GRB2 directly interacts with all possible ERBB
dimers.

98 erbb11 → grb2 1
99 erbb12 → grb2 1

100 erbb13 → grb2 1
101 erbb14 → grb2 1
102 erbb23 → grb2 1
103 erbb24 → grb2 1
104 erbb34 → grb2 1
105 erbb44 → grb2 1

106 erbb11 → gab1 1 GAB1 can bind directly to ERBB1 receptors or via GRB2 and is
phosphorylated on Y-residues by the receptor kinase
(Rodrigues et al. 2000).

107 grb2 → gab1 1

108 erbb11 → nck 1
NCK binds to EGFR (Li et al. 2001). In Schulze et al. (2005), a
NCK binding site on ERBB4 is reported.

109 erbb14 → nck 1
110 erbb44 → nck 1

Activation of the G-proteins Ras and Rac

No. Interaction Time Documentation

111 p90rsk · erk12 →
p90rskerk12d

2 Interaction that was introduced for modeling the
time delay p90RSK and ERK1/2 phosphorylate and
thus inhibit SOS1 with (see intearction 102).

112 sos1r · grb2 · !p90rskerk12d
→ sos1

1 SOS1 is bound to GRB2. Binding of GRB2 to EGFR,
either directly or indirectly through SHC, leads to
activation of SOS1 (Buday and Downward 1993).
Serine/threonine phosphorylation of SOS1 by
p90RSK or ERK1/2 causes dissociation of
GRB2-SOS1 from SHC or from the phosphorylated
receptor (Douville and Downward 1997).

113 gab1 → shp2 1 Phosphorylated GAB1 recruits and activates SHP2
(Montagner et al. 2005).

114 gab1 · !shp2 → rasgap 1 RasGAP can bind tyrosine phosphorylation sites on
GAB1, GAB1-bound SHP2 dephosphorylates these
sites (Montagner et al. 2005) . Note that this reaction
is not part of the map of Oda et al. (2005).

Continued on next page
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No. Interaction Time Documentation

115 sos1 · !rasgap → ras 1 Interaction with SOS1 increases the rate of
GDP/GTP exchange of Ras (Li et al. 1993). The
GTPase activating protein RasGAP leads to
hydrolysis of Ras-bound GTP to GDP (Cox and Der
2003).

116 erbb11 · pip3 → vav2 1 The SH2 domain of VAV2 binds to pY992 or pY1148
on ERBB1. The receptor phosphorylates VAV2 on
Y142, Y159, and Y172. Both PIP3 and PtdIns(3,4)P2

mediate the nucleotide exchange activity of VAV2
towards Rac and CDC42 (Tamás et al. 2003). In Oda
et al. (2005), PI3K instead of PIP3/PtdIns(3,4)P2 is
depicted to influence the Rac-GEF activity of VAV2.

117 erbb11 · pi34p2→ vav2 1

118 sos1r · eps8r · pi3kr · pip3
→ sos1_eps8_e3b1

1 SOS1, EPS8, and E3B1/ABI1 form a complex, which
is necessary for the Rac-GEF activity of SOS1.
Furthermore, binding of the p85 subunit of PI3K to
the complex is required for a basal Rac-GEF activity,
which is increased by PIP3 (Innocenti et al. 2003).
Note that this reaction differs from the description in
the map of Oda et al. (2005): There, only
Ras-activated PI3K influences the GEF-activaty,
whereas we assume the inactivated form to mediate
this effect. Additionally, the influence of PIP3 is not
considered in the map of Oda et al. (2005).

119 vav2 → rac_cdc42 1 Both VAV2 and SOS1 (the latter complexed
with EPS8 and E3B1) act as GEF for Rac and
CDC42 (Innocenti et al. 2003; Tamás et al.
2003). As we did not find any indication in
the literature for VAV2 and SOS1 activating
Rac/CDC42 cooperatively, we assume that
both proteins can catalyze the GDP/GTP
exchange independently of each other.

120 sos1_eps8_e3b1 → rac_cdc42 1
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Activation of STATs

No. Interaction Time Documentation

121 erbb11 · csrc → stat1 1 STAT1, 3, and 5 can be activated through ERBB1
homodimers, whereas ERBB1 heterodimers do not seem to
contribute to STAT activation. Neuregulins, which cannot
activate ERBB1 dimers, induce activation of STAT5
through ERBB24. After ligand binding, c-Src is recruited
to the activated receptor and phosphorylates receptor
bound STATs on the consensus C-terminal Y-residue
(Olayioye et al. 1999).

122 erbb11 · csrc → stat3 1
123 erbb11 · csrc → stat5 1
124 erbb24 · csrc → stat5 1

PI3K signaling

No. Interaction Time Documentation

125 erbb13 · pi3kr → pi3k 1 In Oda et al. (2005), activation of PI3K through all
ERBB3 and ERBB4 dimers is considered. Indeed,
there are binding sites for the p85 subunit of PI3K
on both ERBB3 and ERBB4. However, there are six
sites on ERBB3 and only one site on ERBB4,
suggesting that ERBB3 is the main activator of PI3K
(Olayioye et al. 2000). Furthermore, there are
naturally occurring ERBB4 isoforms that do not
contain the binding site for PI3K (Elenius et al.
1999). Thus, we decided to include PI3K interaction
only with ERBB3 dimers.

126 erbb34 · pi3kr → pi3k 1
127 erbb23 · pi3kr → pi3k 1

128 ras · pi3kr → pi3k 1 GTP-bound Ras activates PI3K (Downward 1998b).

129 pi3kr · gab1 → pi3k 1 Phosphorylated GAB1 recruits and activates PI3K
(Montagner et al. 2005). GAB1-bound SHP2
dephosphorylates the PI3K binding site of GAB1.
However, we decided not to include the negative
influence of SHP2 on PI3K in the model, because it
seems as if SHP2 indeed downregulates PI3K, but
does not completely inhibit PI3K activation through
GAB1 (Montagner et al. 2005; Zhang et al. 2002).

130 pten → ptend 2 We assume that downregulation of PI3K signaling is
time delayed. Therefore, we introduced dummy
species, which are activated at time 2.

131 ship2 → ship2d 2

Continued on next page
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No. Interaction Time Documentation

132 ship2d · !ptend · pi3k →
pi34p2

1 PI3K phosphorylates PtdIns(4,5)P2 at the D3
position and thus generates PtdIns(3,4,5)P3 (PIP3)
(Vanhaesebroeck et al. 1997). Since PtdIns(4,5)P2 is
one of the major phosphorylated forms of PtdIns
(Tolias and Cantley 1999), we assumed that it is
always present in the cell and did not consider its
regulation. PTEN dephosphorylates PIP3 at the D3
position, SHIP2 catalyzes the dephosphorylation at
D5 (Scheid and Woodgett 2003).

133 !ship2d · !ptend · pi3k →
pip3

1 .

134 mtorr → mtor_ric 1 As the molecular mechanisms of the regulation of
the mTOR-rictor complex is unknown (Sarbassov
et al. 2005b), we assumed that it is only activated by
its reservoir (comparable to an external input of the
model).

135 !pp2a · pip3 · pdk1 ·
mtor_ric → akt

1 PIP3 or PtdIns(3,4)P2 recruit AKT and PDK1 to the
plasma membrane. At the membrane, the HM
region of AKT is phosphorylated at S473, probably
by the mTOR-rictor complex (Sarbassov et al. 2005a).
The phosphorylated HM region of AKT stabilizes
PDK1 so that PDK1 can phosphorylate T308 of AKT
(Scheid and Woodgett 2003). PP2A
dephosphorylates AKT (Andjelkovic et al. 1996).

136 !pp2a · pi34p2 · pdk1 ·
mtor_ric → akt

1

137 !akt → tsc1_tsc2 1 AKT phosphorylates TSC2 and thus inhibits the
Rheb-GAP activity of the TSC1/TSC2 complex.
GTP-bound Rheb activates the mTOR-raptor
complex (Hay and Sonenberg 2004).

138 !tsc1_tsc2 → rheb 1
139 rheb · mtorr → mtor_rap 1

140 erk12 → p70s6k_1 1 Phosphorylation of several S/T residues (S404, S411,
S418, S424, T421) in the C-terminal autoinhibitory
domain of p70S6K leads to a conformational change
that enables the phosphorylation of the catalytic
sites T389 and S229 (Berven and Crouch 2000). Both
JNK and ERK1/2 are able to phosphorylate the
autoinhibitory sites (Mukhopadhyay et al. 1992).
However, the mechanism of activation of these sites
is not well understood and additional kinases are
probably involved in this step (Berven and Crouch
2000). We refer to p70S6K phosphorylated at the
autoinhibitory sites as p70s6k_1.

141 jnk → p70s6k_1 1

Continued on next page
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No. Interaction Time Documentation

142 pdk1 · p70s6k_1 · mtorrap
→ p70s6k_2

1 mTOR phosphorylates p70S6K on T389 (Hou et al.
2007), and T229 is phosphorylated by PDK1 (Berven
and Crouch 2000; Downward 1998a).

143 !pak1 · !akt → bad 1 PAK1 phosphorylates BAD on S112 and S136,
independently of PI3K (Schürmann et al. 2000). AKT
phosphorylates BAD on S136. In some cell types
(e.g., cerebellar granule cells), this suffices for
inhibiting apoptosis. However, in other cell types
(e.g., Il-3 dependent hematopoietic cells), BAD must
be phosphorylated on S136 and S112 (Datta et al.
1997).

144 bad → pro_apoptotic 1 Phosphorylation of BAD avoids its proapoptotic
function (Schürmann et al. 2000).

Activation of PKC

No. Interaction Time Documentation

145 erbb11 → plcg 1 PLCγ is phosphorylated by ERBB1 at Y1254, Y783,
Y771, and Y472 (Kim et al. 1990).

146 plcg → dag 1 PLCγ hydrolyzes PtdIns(4,5)P2 to generate DAG and
IP3 (Kim et al. 2000). We did not consider PLCβ (as
depicted in Oda et al. (2005)), since this is part of the
G-coupled receptor signaling.

147 plcg → ip3 1

148 ip3 → ca 1 Binding of IP3 to its receptor at the endoplasmatic
reticulum leads to Ca2+ release into the cytosol
(Alberts et al. 2004; Kim et al. 2000).

149 pdk1 · dag · ca → pkc 1 PKC is phosphorylated at its activation loop by
PDK1. This leads to autophosphorylation and the
release of PKC into the cytoplasma. A
pseudosubstrate is bound to the substrate-binding
cavity, which is released after binding to the second
messengers Ca2+ and DAG (Newton 2003). Note
that the influence of calcium ions on this reaction is
not part of the map of Oda et al. (2005).
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MAPK cascades

No. Interaction Time Documentation

150 akt → aktd 2 Interaction that is only included for modeling the
time delay AKT deactivates Raf1 with.

151 ras · csrc · !aktd → raf1 1 Ras recruits Raf1 to the plasma membrane, where it
is phosphorylated at various sites. c-Src
phosphorylates Raf1 on Y341, PAK1 phosphorylates
S338, whereas it seems as if phosphorylation of
either S338 or Y341 is sufficient for Raf1 activation.
However, both kinases lead to different activation
levels of Raf1 (the highest to be achieved in
combination) that might stimulate different
biological outcomes (King et al. 2001).

152 ras · pak1 · !aktd → raf1 1

153 rac_cdc42 → mlk3 1 MLK3 binds GTP-bound CDC42/Rac and is thus
activated (Vacratsis et al. 2002).

154 rac_cdc42 → mekk4 1 MEKK4 contains a CDC42/Rac interactive binding
motif and is activated after binding to CDC42/Rac.
This binding is independent of the nucleotide bound
to CDC42/Rac, thus MEKK4 can be activated by the
GDP-and GTP-bound protein (Schlesinger et al.
1998). Perhaps a different activation for CDC42/Rac
is necessary for binding MEKK4. We only included
binding to the GTP-bound state in the model.

155 rac_cdc42 → mekk1 1 MEKK1 binds CDC43/Rac and is thus activated
(Schlesinger et al. 1998).

156 mekk1 → mek12 1 MEKK1 and Raf1 both phosphorylate MEK1 and
MEK2 (Chen et al. 2001; Schlesinger et al. 1998).157 raf1 → mek12 1

158 mek12 → erk12 1 MEK1 and MEK2 phosphorylate ERK1/2 (Robinson
and Cobb 1997).

159 mekk1 → mkk7 1 MEKK1 phosphorylates and thus activates MKK7
(Lu et al. 1997).

160 mekk4 → mkk4 1
MKK4 is phosphorylated by MLK3, MEKK1 (Tibbles
et al. 1996), and MEKK4 (Gerwins et al. 1997).

161 mlk3 → mkk4 1
162 mekk1 → mkk4 1

163 mkk7 · mkk4 → jnk 1 MKK4 and MKK7 cooperate to activate JNK. MKK4
phosphorylates Y185, MKK7 phosphorylates T183
(Kishimoto et al. 2003).

Continued on next page
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No. Interaction Time Documentation

164 mlk3 → mkk3 1 MLK3 phosphorylates and thus activates MKK3 and
MKK6 (Tibbles et al. 1996).165 mlk3 → mkk6 1

166 mkk3 → p38 1 MKK3, MKK4, and MKK6 phosphorylate p38 on
threonine and tyrosine residues (Raingeaud et al.
1996).

167 mkk4 → p38 1
168 mkk6 → p38 1

Activation downstream of MAPK (mainly activation of transcription factors)

No. Interaction Time Documentation

169 !mkp · erk12 → nucerk12 1 MKP dephosphorylates ERK1/2 and thus inhibits
phosphorylation of transription factors like Elk1 in
the nucleus (Sun et al. 1993).

170 !pp2b · nucerk12 → elk1 1 ERK1/2 phosphorylates Elk1 at S383 and S389
(Cavigelli et al. 1995). PP2B dephosphorylates Elk1
(Tian and Karin 1999). In Tian and Karin (1999),
activation of Elk1 through other MAPKs is also
mentioned. However, for phosphorylating
transcription factors translocation to the nucleus is
necessary, which is stimulated in the case of JNK by
UV-irradiation (Cavigelli et al. 1995).

171 p38 → mk2 1 MK2 binds to and is phosphorylated by p38 (Gaestel
2006).

172 mk2 → hsp27 1 MK2 phosphorylates HSP27 on S15, S78, and S82
(Stokoe et al. 1992).

173 pdk1 · erk12 → p90rsk 1 ERK1/2 and PDK1 activate p90RSK by
phosphorylation. ERK1/2 activates the C-terminal
domain, PDK1 the N-terminal domain (Ser227),
whereas the first ist necessary for the latter (Frödin
et al. 2000).

174 p90rsk → creb 1 p90RSK phosphorylates CREB on S133 and thus
activates it (De Cesare et al. 1998).

175 mk2 → creb 1 MK2 phosphorylates and thus activates CREB at
S133 (Tan et al. 1996).

Continued on next page
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No. Interaction Time Documentation

176 !p90rsk · !akt → gsk3 1 p90RSK phosphorylates GSK3 on S9 and thus
deactivates it in response to EGF. AKT also
phosphorylates S9—however, we are not sure
whether this occurs only in response to insulin.
Other kinases, like p70S6K and PKC, are also known
to deactivate GSK3; however, not in all cell types and
not in response to EGF, so their influence has to be
further studied before including it in the model
(Grimes and Jope 2001).

177 nucerk12 · !gsk3 → cmyc 1 ERK1/2 phosphorylates c-Myc at S62 and thus
stabilizes it. The phosphorylation of S62 is necessary
for the phosphorylation of T58 by GSK3 beta, which
leads to ubiquitin dependent degradation of c-Myc
(Sears et al. 2000). GSK3 beta is not included in Oda
et al. (2005).

178 jnk → cjun 1 JNK phosphorylates c-Jun. Unphosphorylated c-Jun
is ubiquitinated and degraded. Phosphorylation by
JNK also increases the transriptional activity of c-Jun
(Karin et al. 1997). Regulation of transcription of
c-Jun was not considered here; this could be
included in a model regarding multi-level activation.

179 !pp2a · jnk → cfos 1 JNK phosphorylates c-Fos and thus prevents it from
degradation (Coronella-Wood et al. 2004). Note that
this reaction is independent of ERK (Coronella-Wood
et al. 2004). ERK1/2 and p90RSK have been shown
to coordinately phosphorylate c-Fos (Murphy et al.
2002). The influence of p90RSK is not depicted in
Oda et al. (2005). PP2A dephosphorylates c-Fos,
whereas PP2B does not (Coronella-Wood et al. 2004),
in contradiction to the depiction in Oda et al. (2005).
Regulation of transcription of c-Fos was not
considered here; this could be included in a model
regarding multi-level activation.

180 !pp2a · p90rsk · erk12 → cfos 1

181 cjun · cfos → ap1 1 c-Jun and c-Fos heterodimerize and form the
transcription factor AP1 (Karin et al. 1997).
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Endocytosis

No. Interaction Time Documentation

182 erbb11 → ccbl 1 c-Cbl binds ERBB1 at pY1045, leading to
degradation of the receptor in the lysosome (Citri
and Yarden 2006).

183 erbb11 · eps8r → rntre 1 RN-tre binds to the adapter protein EPS8 and is
phosphorylated in response to EGF stimulation
(Lanzetti et al. 2000).

184 ras → rin1 1 Rab5-GEF activity of RIN1 is potentiated by
activated Ras (Tall et al. 2001).

185 !rntre · rin1 → rab5a 1 RIN1 mediates GDP/GTP exchange for Rab5A, thus
activating it (Tall et al. 2001). The GTPase activating
protein RN-tre acts on Rab5A and inhibits
internalization of EGFR (Lanzetti et al. 2000).

186 rab5a · ccbl →
endocyt_degrad

1 c-Cbl and Rab5A are both involved in the endocytic
trafficking of ERBB receptors. c-Cbl is necessary for
degradation of the receptors, while Rab5A controls
the formation and fusion of endocytic vesicles (Citri
and Yarden 2006).

Actin reorganization

No. Interaction Time Documentation

187 rac_cdc42 · grb2 → pak1 1 PAK1 is recruited to the plasma membrane via GRB2
(Puto et al. 2003) or NCK (Li et al. 2001), where it is
activated through GTP-bound Rac/CDC42 (Edwards
et al. 1999). Note that the influence of NCK is not
included in Oda et al. (2005).

188 rac_cdc42 · nck → pak1 1

189 pak1 → limk1 1 PAK1 (activated through Rac/CDC42)
phosphorylates LIMK1 at T508 (Edwards et al. 1999).

190 limk1 → actin_reorg 1 LIMK1 phosphorylates cofilin, thereby leading to
accumulation of actin filaments and aggregates
(Edwards et al. 1999)
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Outputs

No. Interaction

191 pkc →
192 p70s6k_2 →
193 hsp27 →
194 elk1 →
195 creb →
196 cmyc →
197 pro_apoptotic →
198 ap1 →
199 actin_reorg →
200 stat1 →
201 stat3 →
202 stat5 →

C.3 Interactions that are only included in ERBB interaction

graph model

In addition to the interactions given in Appendix C.2, the interaction graph model
contains the following interactions.

Interaction Documentation

pip3 → gab1 PIP3 recruits GAB1 molecules to the EGFR and thus enhances the
activity of GAB1 (Rodrigues et al, 2000). As we do not consider
multilevel activation, we decided to exclude this positive feedback
loop from the logical model.

!endocyt_degrad → erbb11 ERBB1 homodimers activated through EGF are endocytosed and
subsequently degraded—in contrast to TGFα-bound receptors
(Lenferink et al. 1998) and the other ERBB dimers. As the detailed
endocytosis mechanism is not part of the model, we did not distin-
guish between EGF-bound and TGFα-bound receptors. Internalized
receptors are still capable of activating signaling pathways (Citri and
Yarden 2006), so we decided to exclude this reaction in the logical
model.
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C.4 Description of Model M2

Additional dummy species in model M2

In addition to the species given in C.1, the following dummy species are intro-
duced to enable the description with logical operators with incomplete truth ta-
bles (ITT gates): pak1_csrc_dummy, jnk_erk_p90rsk_dummy, p90rsk_erk12_dummy,
dag_ca_dummy.

Incomplete truth tables in model M2

All gates from model M1 (C.2) that point into nodes given in the first column (Nodes)
are replaced by the interactions given in the second column. ITT gates are denoted
with ∗, AND gates with ·.

Node Interactions

endocyt_degrad ccbl ∗ rab5a → endocyt_degrad

rntre erbb11 ∗ eps8r → rntre

rac_cdc42 sos1_eps8_e3b1 ∗ vav2 → rac_cdc42

raf1
pak1 ∗ csrc → pak1_csrc_dummy
!aktd · pak1_csrc_dummy · ras → raf1

p70s6k_1 jnk ∗ erk → p70s6k_1

creb p90rsk ∗ mk2 → creb

cfos
jnk ∗ erk ∗ p90rsk → jnk_erk_p90rsk_dummy
jnk_erk_p90rsk_dummy · !pp2a → cfos

sos1
p90rsk ∗ erk12 → p90rsk_erk12_dummy
!p90rskerk12d · grb2 · sos1r → sos1

mkk4 mekk1 ∗ mekk4 ∗ mlk3 → mkk4

p38 mkk4 ∗ mkk3 ∗ mkk6 → p38

gsk3 !akt ∗ !p90rsk → gsk3

bad !akt ∗ !pak1 → bad

pkc
dag ∗ ca → dag_ca_dummy
dag_ca_dummy · pdk1 → pkc

mek12 raf1 ∗ mekk1 → mek12
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D | Sensitivities of Binarization of HepG2 Data

to Chosen Parameters

Figure D.1: Sensitivity to Parameter for Relative Significance. Ratio between 30 and 0
minutes time point lies above (green) or below (red) chosen threshold for relative significance
(p1 = 1.5). The darker a field is colored, the larger the distance to the chosen threshold is, that
is, the binarization is less sensitive to the parameter.
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D Sensitivities of Binarization of HepG2 Data to Chosen Parameters

Figure D.2: Sensitivity to Parameter for Absolute Significance. Ratio between signal
and maximum value for this signal over all conditions lies above (green) or below (red) chosen
threshold for absolute significance (p2 = 0.15). The darker a field is colored, the larger the
distance to the chosen threshold is, that is, the binarization is less sensitive to the parameter.
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Figure D.3: Sensitivity to Parameter for Experimental Noise. Measured signal lies
above (green) or below (red) the chosen threshold for experimental noise (p3 = 100). The darker
a field is colored, the larger the distance to the chosen threshold is, that is, the binarization is
less sensitive to the parameter.

All three figures adapted from Samaga et al. (2009).
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E | Documentation of the HGF Interaction

Graph Master Model

E.1 List of Species

Here, we describe the species of the HGF interaction graph model presented in
Chapter 5. The species are considered in their active form.

No. Model Name Full Name Comment

1 akt RAC-alpha
serine/threonine-protein
kinase

also known as protein kinase B (PKB)

2 braf Serine/threonine-protein
kinase B-raf

3 crk_crkl Adapter molecule crk/
Crk-like protein

represents Crk or CRKL

4 csrc Neuronal proto-oncogene
tyrosine-protein kinase Src

5 c3g Rap guanine nucleotide
exchange factor 1

6 dock180 Dedicator of cytokinesis also known as DOCK1

7 erk Extracellular
signal-regulated kinase 1
(ERK1) or 2 (ERK2)

since both ERK1 and ERK2 catalyze the
same reactions, we do not distinguish
between them; also known as MAPK1/3

8 gab1 GRB2-associated-binding
protein 1

9 grb2 Growth factor
receptor-bound protein 2

10 hgf Hepatocyte growth factor also known as Scatter factor

11 mek
MAPK/ERK kinase 1 or 2

MEK1/2 phosphorylated at S217/S221
12 mek_s298 MEK1/2 phosphorylated at S298
13 mek_t292 MEK1/2 phosphorylated at T292

Continued on next page
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No. Model Name Full Name Comment

14 Met Hepatocyte growth factor
receptor

15 pak p21-activated kinase

16 pdk1 3-phosphoinositide-
dependent protein
kinase 1

17 pip3 Phosphatidylinositol
(3,4,5)-trisphosphate

18 pi3k Phosphatidylinositol-4,5-
bisphosphate
3-kinase

19 rac Ras-related C3 botulinum
toxin substrate 1

20 raf1 RAF proto-oncogene
serine/threonine-protein
kinase

also known as cRaf

21 rap1 Ras-related protein Rap-1

22 ras GTPase Ras

23 rasgap Ras GTPase-activating
protein 1

24 rkip Raf-1 kinase inhibitor
protein

25 rsk_s

90 kDa ribosomal protein S6
kinase

p90RSK phosphorylated on a single
serine residue

26 rsk_d p90RSK phosphorylated on two serine
residues, considered as active p90RSK

27 shc SHC-transforming protein 1

28 shp2 Tyrosine-protein
phosphatase non-receptor
type 11

also known as PTP-1D

29 sos1 Son of sevenless homolog 1

30 sos1_eps8_e3b1 Complex of SOS1, Eps8 (EGF receptor
kinase substrate 8), and E3B1/ABI1 (Abl
interactor 1)
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E.2 List of Interactions of the HGF Core Model

In the following table, we describe the list of reactions of the HGF interaction graph
(core model) presented in Chapter 5. Table adapted from D’Alessandro, Samaga,
Maiwald et al. (2015).

Activation of Met and adapter proteins

No. Interaction Documentation

1 hgf → met Binding of HGF to Met induces autophosphorylation of the receptor at
tyrosines 1334 and 1335. Subsequently, Met phosphorylation occurs at
tyrosines 1349 and 1356 (Furge et al. 2000).

2 met → shc The PTB of SHC associates with the Met receptor via Y1349 and Y1356
(Furge et al. 2000).

3 met → grb2 GRB2 is recruited to Met directly (Y1356) and indireclty via SHC
(Furge et al. 2000).4 shc → grb2

5 met → csrc The SH2 domain of c-Src can bind both Y1349 and Y1356 of the Met
receptor (Ponzetto et al. 1994).

6 met → gab1 GAB1 binds Met both directly (Y1349) and indirectly via GRB2 binding
at Y1356 (Furge et al. 2000).7 grb2 → gab1

8 csrc → gab1 c-Src binds to and phosphorylates GAB1 in response to HGF. Inhibiting
c-Src partially inhibited HGF-induced GAB1 phosphorylation by 40 to
60% (Chan et al. 2003). Additional phosphorylation through Met is
required for GAB1 activation. One hypothesis is that c-Src and Met
predominantly phosphorylate GAB1 at different tyrosine residues
(Chan et al. 2003).

9 gab1 → crk_crkl Crk/CRKL binds to GAB1 after HGF stimulation (Garcia-Guzman
et al. 1999; Sakkab et al. 2000).

Activation of G-proteins Ras and Rac

No. Interaction Documentation

10 grb2 → sos1 SOS1 is bound to GRB2. Recruitment of the GRB2-SOS1 complex to
the activated Met receptor (Y1349/Y1356) (Ponzetto et al. 1994) leads
to activation of SOS1.

11 sos1 → ras Interaction of Ras with SOS1 increases the rate of GDP/GTP exchange
of Ras (Li et al. 1993).

Continued on next page
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No. Interaction Documentation

12 crk_crkl → dock180 Coexpression of Crk with DOCK180 results in activation of the JNK
pathway, indicating that DOCK180 connects Crk to the Rac/JNK
pathway. However, the possibility that Crk acts through SOS1 cannot
be ruled out (Dolfi et al. 1998).

13 dock180 → rac DOCK180 is a Rac-specific GEF (Rossman et al. 2005).

Activation of the PI3K pathway

No. Interaction Documentation

14 met → pi3k PI3K can bind to Met both directly (Ponzetto et al. 1993) and indirectly via
Gab1 (Furge et al. 2000).15 gab1 → pi3k

16 pi3k → pip3 PI3K phosphorylates PtdIns(4,5)P2 at the D3 position and thus generates
PIP3 (Vanhaesebroeck et al. 1997). Since PtdIns(4,5)P2 is one of the major
phosphorylated forms of PtdIns (Tolias and Cantley 1999), we assume that it
is always present in the cell and do not consider its regulation.

17 pip3 → akt PIP3 recruits AKT and PDK1 to the plasma membrane. Subsequently, AKT
is phosphorylated on S473 and T308 (Scheid and Woodgett 2003).18 pdk1 → akt

Activation of the MAPK pathway

No. Interaction Documentation

19 ras → raf1 Ras recruits Raf1 to the plasma membrane, where it is phosphorylated at
various sites (King et al. 2001).

20 raf1 → mek MEK1/2 can be activated by Raf1 (Chen et al. 2001).

21 mek → erk MEK1 and MEK2 phosphorylate ERK1/2 (Robinson and Cobb 1997).

22 erk → rsk_s
ERK1/2 and PDK1 phosphorylate p90RSK. ERK1/2 activates the
C-terminal domain, PDK1 the N-terminal domain, whereas the first is
necessary for the latter (Frödin et al. 2000).

23 pdk1 → rsk_d
24 rsk_s → rsk_d

25 grb2 → pak PAK is recruited to the plasma membrane via GRB2 (Puto et al. 2003),
where it is activated through GTP-bound Rac (Edwards et al. 1999).26 rac → pak
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E.3 List of Candidate Mechanisms

The following table describes the list of reactions defined as candidate mechanisms
in the HGF interaction graph master model presented in Chapter 5. Each num-
ber corresponds to a candidate mechanism. The letters indicate the interactions for
the candidate mechanisms composed by more than one interaction (edge). Edges
marked with an asterisk are included in more than one candidate mechanism. Table
adapted from D’Alessandro, Samaga, Maiwald et al. (2015).

No. Interaction Documentation

1a gab1 → rasgap RasGAP binds phosphorylated GAB1 (Montagner et al. 2005).

1b* rasgap � ras The GTPase activating protein RasGAP induces the hydrolysis
of Ras-bound GTP to GDP (Cox and Der 2003).

2a gab1 → shp2 SHP2 binds to phosphorylated GAB1 in response to HGF
stimulation (Rosário and Birchmeier 2003).

2b shp2 � rasgap SHP2 dephosphorylates the RasGAP binding site on GAB1
(Dance et al. 2008).

2c* rasgap � ras The GTPase activating protein RasGAP induces the hydrolysis
of Ras-bound GTP to GDP (Cox and Der 2003).

3a crk_crkl → c3g Crk and CRKL affect the Rap1 activator C3G.
C3G-dependent Rap1 activation and CRKL recruitment
to GAB1 have been shown in response to HGF (Sakkab
et al. 2000).

3b c3g → rap1

3c rap1 → braf Rap1 activates BRaf in different cell types and for different
stimuli (Stork 2003). In human melanoma cell lines,
Rap1-dependent activation of ERK in response to HGF was
shown (Gao et al. 2006).

3d braf → mek MEK1/2 can be activated by Raf1 or BRaf (Chen et al. 2001).

4 erk � sos1 Serine/threonine phosphorylation of SOS1 by ERK1/2
and/or p90RSK causes dissociation of GRB2-SOS1
(Douville and Downward 1997).

5 rsk_d � sos1

6a erk � rkip ERK-mediated phosphorylation of RKIP triggers RKIP
dissociation from Raf1 and thus counteracts the inhibitory
function of RKIP (Shin et al. 2009).

6b rkip � raf1 RKIP association with Raf1 disrupts the interaction between
MEK and Raf1, which is required for MEK phosphorylation
(Yeung et al. 1999).

Continued on next page
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No. Interaction Documentation

7 erk � raf1 ERK phosphorylates Raf1 at five inhibitory serine sites
(Dougherty et al. 2005).

8 pdk1 → mek PDK1 phosphorylates MEK1 on S222 and MEK2 on S226 (Sato
et al. 2004).

9a pip3 → sos1_eps8_e3b1 SOS1, EPS8, and E3B1/ABI1 form a complex which is
necessary for the Rac-GEF activity of SOS1. The basal
Rac-GEF activity is increased by PIP3 (Innocenti et al.
2002, 2003).

9b sos1_eps8_e3b1 → rac

10 pak → raf1 PAK phosphorylates Raf1 on S338 (King et al. 2001).

11a pak → mek_s298 PAK1 phosphorylates MEK1, increasing the abilitiy of
Raf1 to activate MEK1 (Eblen et al. 2004).11b* mek_s298 → mek

12a erk → mek_t292 ERK phosphorylates MEK1 on T292, preventing further
phosphorylation of MEK1 by PAK on S298 (Eblen et al.
2004).

12b mek_t292 � mek_s298
12c* mek_s298 → mek

13 pak → akt PAK promotes AKT recruitment to the plasma membrane and
functions as a scaffold to facilitate complex formation between
PDK1 and AKT (Higuchi et al. 2008).

14 erk → pi3k ERK phosphorylates GAB1 in response to HGF and potentiates
GAB1-PI3K association and subsequent PI3K activation (Yu
et al. 2001).

15 ras → pi3k GTP-bound Ras activates PI3K (Downward 1998b).

16 pip3 → gab1 Plasma membrane localization of GAB1 requires PIP3 (Maroun
et al. 1999; Rosário and Birchmeier 2003).

17 akt � raf1 AKT negatively regulates Raf1 by phosphorylation of S259
(Mabuchi et al. 2002; Zimmermann and Moelling 1999).
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F.1 Reactions in the ODE Models

Here, we describe the list of reactions of the HGF ODE models discussed in Chap-
ter 5. Section F.1.1 describes the reactions of the core model. Section F.1.2 describes
the reactions of the candidate mechanisms. In the second column of the respective
tables, each reaction is shown in a schematic representation; in the third column,
the respective kinetic rate law is shown. Parameters Met_inh, PDK_inh and MEK_inh
represent binary values dependent on the respective experimental condition. Tables
adapted from D’Alessandro, Samaga, Maiwald et al. (2015).

F.1.1 Reactions in the Core Model

No. Reactions Kinetic rate law

1 Met receptor → Phosphorylated Met
receptor

Met_activation * Met * HGF / (1 +
Met_act_inh*Met_inh)

2 Phosphorylated Met receptor → Met
receptor

pMet_dephosphorylation * pMet

3 ø→ Met receptor Met_prod_deg_ss

4 Met receptor → ø Met * Met_prod_deg_ss

5 Phosphorylated Met receptor → ø pMet_degradation * pMet

6 Gab1 + Phosphorylated Met receptor
→ Gab1_Met receptor complex

Gab1_pMet_binding * Gab1 * pMet

7 Gab1_Met receptor complex → Gab1
+ Phosphorylated Met receptor

Gab1_pMet_diss * Gab1_pMet

8 Rac → Active Rac Rac_activation * Rac * Gab1_pMet

9 Active Rac → Rac Rac_deactivation * Rac_active

10 PAK → Phosphorylated PAK PAK_phosphorylation * PAK1 * Rac_active

11 Phosphorylated Pak → Pak PAK_dephosphorylation * pPAK1

Continued on next page
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No. Reactions Kinetic rate law

12 PI3K → Active PI3K PI3K_activation_by_Gab1 * PI3K *
Gab1_pMet

13 Active PI3K → PI3K PI3K_inactivation * PI3K_active

14 Akt → Phosphorylated Akt Akt_activation_supported_by_PDK1 * Akt *
PI3K_active / (1 + PDK_act_inh*PDK_inh)

15 Phosphorylated Akt → Akt pAkt_deactivation * pAkt

16 SOS → SOS_Met receptor complex SOS_recruitment_by_pMet * SOS * pMet

17 SOS_Met receptor complex → SOS mSOS_release_from_membrane *
mSOS_pMet

18 Ras → Active Ras Ras_activation_by_mSOS * Ras *
mSOS_pMet

19 Active Ras → Ras Ras_deactivation * Ras_active

20 Raf → Phosphorylated Raf Raf_activation * Raf * Ras_active

21 Phosphorylated Raf → Raf Raf_inactivation * pRaf

22 MEK → Phosphorylated MEK MEK_phosphorylation_by_pRaf * MEK *
pRaf

23 Phosphorylated MEK → MEK MEK_dephosphorylation * pMEK

24 ERK → Phosphorylated ERK ERK_phosphorylation_by_pMEK * ERK *
pMEK / (1 + MEK_act_inh*MEK_inh)

25 Phosphorylated ERK → ERK ERK_dephosphorylation * pERK

26 RSK → Single phosphorylated RSK RSK_phosphorylation_by_pERK * pERK *
RSK

27 Single phosphorylated RSK → Double
phosphorylated RSK

RSK_phosphorylation_by_PDK1 *
single_pRSK / (1 + PDK_act_inh * PDK_inh)

28 Single phosphorylated RSK → RSK RSK_dephosphorylation_single *
single_pRSK

29 Double phosphorylated RSK → RSK RSK_dephosphorylation_double *
double_pRSK
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F.1.2 Candidate mechanisms

No. Reactions Kinetic rate law

30 Gab1 + Phosphorylated Met receptor
→ Gab1_Met receptor complex

Gab1_pMet_binding_by_PI3K_active * Gab1
* pMet * PI3K_active

31 Rac → Active Rac Rac_activation_by_PI3K_active * Rac *
PI3K_active * Gab1_pMet

32 SOS_Met receptor complex → SOS mSOS_release_by_pERK * mSOS_pMet *
pERK

33 SOS_Met receptor complex → SOS mSOS_release_by_pRSK * mSOS_pMet *
double_pRSK

34 Ras → Active Ras Ras_activation_by_Gab1 * Ras * Gab1_pMet
* mSOS_pMet

35 Raf → Phosphorylated Raf Raf_activation_by_PAK * Raf * pPAK1 *
Ras_active

36 Raf → Phosphorylated Raf Raf_activation_by_pERK * Raf * pERK *
Ras_active

37 Phosphorylated Raf → Raf pRaf_dephosphorylation_by_Akt * pRaf *
pAkt

38 MEK → Phosphorylated MEK MEK_phosphorylation_by_PDK1 * MEK *
pRaf / (1 + PDK_act_inh * PDK_inh)

39 MEK → Phosphorylated MEK MEK_phosphorylation_by_Gab1 * MEK *
Gab1_pMet

40 MEK → Phosphorylated MEK MEK_phosphorylation_by_pPAK * MEK *
pPAK1 * pRaf

41 PI3K → Active PI3K PI3K_activation_by_Ras_active * PI3K *
Ras_active

42 PI3K → Active PI3K PI3K_activation_by_pERK * PI3K * pERK *
Gab1_pMet
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F.2 Parameter Names and Values of the Final Model Structure

Here, we describe the list of parameter names and values of the final ODE model
structure presented in Chapter 5, model 4_8_12. The model was calibrated on 2200
data points and 25 experimental conditions. The second column shows the log10
value of each kinetic parameter involved in the model reactions shown in Sec-
tions F.1.1 and F.1.2. The x indicates that the parameter is not present in model
4_8_12. Table adapted from D’Alessandro, Samaga, Maiwald et al. (2015).

Parameter Name

Estimated
Parameter Value

(log10)

Akt_activation_supported_by_PDK1 −0.27659584

ERK_dephosphorylation −0.384157706

ERK_down 1.194738824

ERK_phosphorylation_by_pMEK 2.982496902

Gab1_pMet_binding −4.601296578

Gab1_pMet_binding_by_PI3K_active −0.409307235

Gab1_pMet_diss −1.488874084

MEK_dephosphorylation 2.79250161

MEK_phosphorylation_by_PDK1 2.999999786

MEK_phosphorylation_by_pRaf −1.999156196

MEK_act_inh 1.666481986

Met_act_inh 2.54026603

Met_activation −1.934829524

Met_prod_deg_ss −2.89724024

PAK_dephosphorylation −4.944639884

PAK_phosphorylation 1.778987643

PI3K_activation_by_Gab1 −4.945663945

PI3K_activation_by_Ras_active 1.887411595

PI3K_activation_by_pERK 0.445509919

PI3K_inactivation 0.159466716

PDK_act_inh 0.196825209

RSK_dephosphorylation_double 0.787276371

Continued on next page
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Parameter Name

Estimated
Parameter Value

(log10)

RSK_dephosphorylation_single −0.7166527

RSK_phosphorylation_by_PDK1 −0.568280334

RSK_phosphorylation_by_pERK −0.559320897

Rac_activation −4.963891394

Rac_deactivation −4.999447793

Raf_activation −0.834642816

Raf_activation_by_PAK 0.512776283

Raf_activation_by_pERK 0.223987013

Raf_inactivation 0.687062866

Ras_activation_by_mSOS 2.552300571

Ras_deactivation −1.159750752

SOS_recruitment_by_pMet −3.42126982

mSOS_release_by_pRSK 3

mSOS_release_from_membrane −4.999999297

pAkt_deactivation 0.348215544

pMet_degradation −0.86658565

pMet_dephosphorylation −0.302018341

pRaf_dephosphorylation_by_Akt 3

MEK_phosphorylation_by_Gab1 x

MEK_phosphorylation_by_pPAK x

Rac_activation_by_PI3K_active x

Ras_activation_by_Gab1 x

mSOS_release_by_pERK x
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G | Proofs from Chapter 6

Proof of Theorem 6.18. In the following, we show that the graph-theoretic crite-
rion for initial response (Theorem 6.18) is valid for the non-linearized system, and
not only for its linearization as shown in Oyeleye and Kramer (1988). The proof is
due to D. Flockerzi and given here only for the sake of completeness.

Consider the smooth system

ẋ = f(x) + b, x(0) = ξ with f(ξ) = 0.

We consider the deviation y(t) := x(t) − ξ, where y(0) = 0. Of course, the deviation
y(t) is also dependent on b. With J0 we denote the Jacobian at state ξ, that is,
J0 = fx(ξ).

According to the mean value theorem, we have

y(αt) = y(ραt)
∣∣∣ρ=1

ρ=0

=

∫1

0
ẏ(ραt)αtdρ

=

∫1

0

[
b+ f(ξ+ y(ραt))

]
αtdρ

= bαt+

∫1

0
f(ξ+ y(ραt))αtdρ

(G.1)

Furthermore, we have

f(ξ+ y(ραt)) = f(ξ+ σy(ραt))
∣∣∣σ=1

σ=0

=

∫1

0
fx(ξ+ σy(ραt))y(ραt)dσ

(G.2)

(G.1) and (G.2) together give

y(αt) = bαt+

∫1

0

[∫1

0
fx(ξ+ σy(ραt))dσ

]
y(ραt)αtdρ (G.3)
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With A(y(ραt)) :=
∫1

0 fx(ξ+ σy(ραt))dσ, and with α = 1, ρ = s1, we have

y(t)

t
= b+

∫1

0
A(y(s1t))y(s1(t))ds1.

According to (G.3), and with α = s1, ρ = s2, this gives

y(t)

t
= b+

∫1

0
A(y(s1t))

(
bs1t+

∫1

0
A(y(s2s1t))y(s2s1t)s1tds2)

)
ds1

= b+ t

∫1

0
A(y(s1t))s1ds1b+ t

∫1

0
A(y(s1t))s1

∫1

0
A(y(s2s1t))y(s2s1t)ds2ds.

The term
∫1

0 A(y(s1t))s1ds1 is of the form M1(t) =
1
2J0 +O(|t|), where J0 is indepen-

dent of b, but the term O(|t|) depends on b. Replacing again y(s2s1t) according to
(G.3), we have

y(t)

t
= b+ tM1(t)b+ t2

(∫1

0
A(y(s1t))s1

∫1

0
A(y(s2s1t))s2s1ds2ds1b+ . . .

)
.

The term
∫1

0 A(y(s1t))s1
∫1

0 A(y(s2s1t))s2s1ds2ds1 is of the form M2(t) =
1
3!J

2
0 +O(|t|).

This can be interpreted as follows: Let Jq0 denote the sign structure of J0. If (Jq0b)i is
positive/negative, then the initial response of xi is positive/negative. If (Jq0b)i = 0,
then we move on to the next term (t2M2(t)b)i = (t2 1

3!J
2
0 + O(|t|3))i and proceed

analogously.

The (i, j)-th element of (Jq0 )
l is

(Jq0 )
l
ij =

n∑
k1=1

n∑
k2=1

· · ·
n∑

kl−1=1

(Jq0 )ik1(J
q
0 )k1k2 . . . (Jq0 )kl−1j (G.4)

and thus represents the sum of all directed paths of length l from node Sj to node Si

in the interaction graph G(Jq0 ). Accordingly, the i-th element of (Jq0 )
lb represents the

sum of all directed paths of length l+ 1 from the external input u to Si in G(Jq0 ,b).

Proof of Lemma 6.63. The sum of all principal minors of Jq
i|−ej

of order s is (−1)d

times the coefficient of λd in the characteristic polynomial of Jq
i|−ej

given as det(Jq −
λEn), where En denotes the identity matrix of size n. We introduce the matrix P as
follows:
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P =

(
WT

(En){d+1,...,n},{1,...,n}

)
. (G.5)

As WT = (Ed,−ZT ), the matrix P is an upper triangular matrix; thus, det(P) = 1 and

det(Jq
i|−ej

− λEn) = det(P J
q
i|−ej

− λP). (G.6)

For all x ∈ D, the rows (w1)T , . . . , (wd)T are orthogonal to the columns of J(x); this
implies that the rows (w1)T , . . . , (wd)T are also orthogonal to the columns of Jq. By
Assumption 6.44, wi

j = 0 for all j ∈ Ib, i ∈ {1, . . . ,d}. Thus, the top d rows of matrix
P J

q
i|−ej

are zero for all j ∈ Ib. The bottom s rows are equal to the bottom s rows of
J
q
i|−ej

. It follows that

det(P J
q
i|−ej

− λP) = (−1)dλd det

(
WT

(Jq
i|−ej

){d+1,...,n},{1,...,d} (Jq
i|−ej

){d+1,...,n},{d+1,...,n} − λEs

)

= (−1)dλd det

⎛⎜⎜⎝
WT

(Jq
i|−ej

)d+1,{1,...,n}

(Jq
i|−ej

){d+2,...,n},{1,...,d+1} (Jq
i|−ej

){d+2,...,n},{d+2,...,n} − λEs−1

⎞⎟⎟⎠

+ det

⎛⎜⎜⎝
WT

−λ(ed+1)
T

(Jq
i|−ej

){d+2,...,n},{1,...,d+1} (Jq
i|−ej

){d+2,...,n},{d+2,...,n} − λEs−1

⎞⎟⎟⎠
= (−1)dλd

(
det(̃Jq

i|−ej
)

− λ

n∑
k=d+1

det

(
WT

(Jq
i|−ej

){d+1,...,n},{1,...,d} (Jq
i|−ej

){d+1,...,n},{d+1,...,n} − λEs

)
{1,...,n}\{k},{1,...,n}\{k}

)

Thus, the coefficient of (−1)dλd of the characteristic polynomial of Jq
i|−ej

is given as

the determinant of J̃q
i|−ej

.
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