日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

The spatial structure of cone-opponent receptive fields in macaque retina.

MPS-Authors
/persons/resource/persons36469

Lee,  B. B.
Emeritus Group of Membrane Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Lee, B. B., Cooper, B., & Cao, D. (2018). The spatial structure of cone-opponent receptive fields in macaque retina. Vision Research, 151, 141-151. doi:10.1016/j.visres.2017.05.013.


引用: https://hdl.handle.net/21.11116/0000-0002-7BB1-C
要旨
The receptive field structure of long (L) to middle (M) wavelength (L/M) cone-opponent ganglion cells of the parafoveal macaque retina was investigated using drifting gratings. Gratings were luminance, chromatic or selective for the L- or M-cones. Based on these spatial tuning curves, receptive field profiles for the individual cones were derived. Receptive field profiles were coarse compared to single cones, and often could not be described by a simple Gaussian, having shallower flanks. There was a continuum of spatial properties, which blurred any systematic distinction between Type I and Type II receptive fields. Opponent center-surround organization within a single cone was rare. Usually, responses to all four grating types could be described based on the cone receptive field profiles. An exception was a few cells that showed irregularities of amplitude and phase at high spatial frequencies for one or other of the cone isolating conditions. The data are related to standard models of M/L opponent receptive fields and implications for central processing are considered.