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Nuclear factonB (NF&«B) transcription factors represent a conserved lfaofi proteins that
regulate not only immune cells, but also heartscedilial cells and neurons, playing a
fundamental role in various cellular processes. s dysregulation in certain cancer types as
well as in chronic inflammation and autoimmune dgss, it has recently been appreciated as an
important therapeutic targethe aim of this study was to investigate the bigdpocket of
NFEZkB (p50/p65) heterodimer complex in association WNtH2«kB inhibitor IkBa to identify
potent ligands via fragment-based e-pharmacophmeesing. The ZINC Clean Fragments (~2
million) and the Schrodinger’'s medically relevanidé fragments library (~670) were used to
create the e-pharmacophore models at the potdiriding site of the target which was validated
by site mapping. Glide/HTVS docking was conductelibfved by re-docking of the top 20%
fragments by Glide/SP and Glide/XP protocols. Tde85000 Glide XP-docked fragments were
used to generate the e-pharmacophore hypothesefHva small molecule library (~260000
drug-like molecules) and additional 85 known N inhibitors were screened against the
derived e-pharmacophore models. The top-1000 heghed molecules, which were well aligned
to the e-pharmacophore models, from the Otava smalécule library, were then docked into
the binding pocket. Finally, the selected 88 hitlenales and the 85 known inhibitors were
analyzed by the MetaCore/MetaDrug™ platform, whiges developed binary QSAR models
for therapeutic activity prediction as well as phacokinetic and toxicity profile predictions of
screening molecules. Ligand selection criteria tedhe refinement of 3 potent hit molecules
using molecular dynamics (MD) simulations to bettsfestigate their structural and dynamical
profiles. The selected hit molecules had a lowdibxiand a significant therapeutic potential for
heart failure, antiviral activity, asthma and degsien, all conditions in which NB plays a
critical role. These hit ligands were also strualiyrstable at the NFxB/IxBa complex as per
the MD simulations and MM/GBSA analysis. Two of ghdligands (Otava IDst426436and
6248112 were energetically more favorable and therefoeehypothesized to be more potent.
Identifying new potent NBE«xB/IkBa inhibitors may thus present a novel therapy for
inflammation-mediated conditions as well as cané&aeilitating more efficient research, and
leading the way to future drug development efforts.
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Introduction

The transcription factor nuclear factor kappa B fINB) has now been appreciated as a master
regulator of the body’'s innate and adaptive immusystem& It represents a family of
transcription factors that has played a fundamemtal in the defense and protectionhmimo
sapiensagainst injury and infections throughout evolutiofirst discovered in B cells, NikB
has proved to be an important family of conservaddcription factors that plays a critical role
for the functioning of not only immune cells, bls@heart cells, glial cells and neurdidt has

an essential role in various cellular processedudmtg signaling, autophagy, cellular
senescence, tissue regeneration and repair anaacethetabolisth Triggering the NE«B
classical/canonical signaling pathway can be ad/aby certain stimuli such as
proinflammatory cytokines, tumor necrosis factoNf) and pathogen-associated molecular
patterns (PAMPS) such as lipopolysaccharides inmgragative bactertd® A second
alternative, the non-canonical pathway, which at&és p52-RELB dimers of NB is
triggered by different stimufli These signals lead to the phosphorylationkBhi targeting it for
degradation by the ubiquitin-proteasome pattifiayonsequently, the p50-p65 subunits of
NFBkB, which are mainly found in the cytoplasm bound«#B proteins in its latent state, are
free to translocate to the nucleus and bind DNArtbance the expression of over 500 gkhés
The complexity of NExB and its variable functions in different cell tyis perhaps mediated
by the crosstalk with other signaling pathways,nalmng proteins and other transcription
factorg.

There is now clear evidence about the pivotal odl®&FZ«B in linking chronic inflammation
and persistent infections to the increased ristaoicer upregulation and developnfénNFzkB

is dysregulated not only in certain canéétsbut also in chronic inflammation, autoimmune
diseases as well as neurodegenerative and heeaasdis >3 While the differential and multi-
faceted role of NE«xB in the heart is complex and currently under itigasion, it has been
found that prolonged N#B activation is associated with heart failure bpmoting chronic
inflammation, endoplasmic reticulum stress respsnapoptosis and adverse remodeling post-
myocardial infarctiol***as well as the development of inflammatory cardiopathy®. NFzIikB

is released cyclically in the heart and thus, @l important for cardiac pathophysioldty



Various research studies have, on the other hdmulyesl that corticosteroids, mediate their
strong anti-inflammatory effect via NllB inhibition, potentially by increasing<Ba and thus
inhibiting NFZkB translocation to the nucleus, however this i$ stit clearly understood*’*®
NFEZkB is majorly activated in asthma in response tdlland TNFe; exacerbation of asthma
attacks may be related to induced activation oBIRE- via the stimulation of TLRs by bacterial
or viral infectiond®. A variety of antioxidants such as vitamin E datés can also inhibit
NFEkB activatiort’. Getting insight into the complexity of MIikB signaling pathways thus
requires an integration of many biochemical, mdi@cand computational studies conducted so
far since its discovery about 30 years ago.

Finding potent inhibitors that could act more selety in the NFRIkB pathway may present a
novel therapeutic strategy for cancer as well &eroinflammatory conditions and lead the way
to future drug design efforts and experimental is&idThe complexity of NikB signaling in
inflammation and cancer has been comprehensivelgwed by Hoesel and SchmidNFZkB
inhibitors represent a new therapeutic alternativé may also play a significant role in treating
corticosteroid-resistant asthma and C3PMWhile a large number of N&B inhibitors are
known®, compounds specifically designed as dB-inhibitors are not in clinical use yet, but
will be addressed as treatments for certain canasgsrodegenerative and inflammatory
diseases. NkB activation can be inhibited by classical chemmtpeutic IKKB-selective
inhibitors’’. Also, certain natural compounds like plant-detiseibstances have been evaluated
as inhibitors of the NikB pathway?

Few molecules that target BkB have been tested so far; among these, DHMEQ,osvikn
potent NFIkB inhibitor, was shown to reduce eosinophil-mediatérway inflammation and
remodeling in experimental mice models of asthirla addition to asthma and COPD, Bi&B

has also been found to play a critical role in dspive behavior mediated by acute and chronic
stress and ILfL and IL-6 signaling’?® highlighting the importance of NikB signaling in
neuronal survival, development, growth and degeimeracircadian sleep rhythms and mood-
related behavidf?®?’ Administration of an NBExB inhibitor blocked the inhibition of
neurogenesis in the hippocampus which is respansibt the pro-depressive behaviors,
particularly anhedonfd. Recently, it is shown that inhibition of KKB was effective at

restoring the sensitivity of drug-resistant prostaincer to current anti-androgen thefpy



NFEZkB dysregulation has also been associated with wsuadher conditions such as AIDS, viral
infections, inflammatory bowel disease and artfiti

Targeting the NReB pathway by computational approaches has so fam beostly addressed by
mathematical, dynamic pathway modeling using omirdifferential equations (ODESs) of the
signaling pathwa3, but the structural biology has not been fully leipd yet. Computational
studies have proven to play an integral role ikitig theoretical biophysics to the fields of
experimental cell biology, clinical pharmacologydamedicine. Molecular docking has been
appreciated as a powerful tool in structure-baseq discovery. In addition, pharmacophore
modeling has become an essential part of lead \tksgoan area that is evolving rapidly and
used extensively by academic and industry reseer¢héThis method provides a way to
elucidate chemical features that are common anengak for the biological activity of high
affinity ligands®*3** A fragment-based energy-optimized pharmacopherph@rmacophore)
approach was developed which combines both the wtatipnal efficiency of virtual
pharmacophore library screening as well as theracgwf structure-based molecular docRihg

In comparison to ligand-based methods, fragmengdaharmacophore models are built based
on chemical fragments opposed to ligafidsThis is particularly advantageous as prior
information on known active ligands at the targanplex is not necessary, thereby providing an
unbiased way to explore challenging target proteiiasthorough sampling of the chemical
spacé”. The fragments are docked onto the protein compleck common chemical features
which maximize the interactions that satisfy botisifions and directions are discovete®nce
these pharmacophore models are generated, theyoeansed for database screening, hit
identification, and as a framework for future ddigcovery efforts.

Literature provide only few details on the specifiechanism of action and interaction sites of
known inhibitors in the NBxB pathway. While there are now more than 785 kndifilkB
inhibitors, these inhibitors target different stapsthe pathway including kB kinases (IKK),
IxBa, the cytoplasmic retention of the B&B/IxBo complex, the nuclear translocation and DNA
binding"®. Therefore, a fragment-based pharmacophore moeleérgtion is an appropriate
approach for investigating and analyzing small male binding to the NFxB/IxBa. complex.
Thus, herein we present an silico study to investigate the NkB/IxBo p50/p65 (RelA)
heterodimer complex to discover potent ligands sitbng binding affinities via fragment-based

virtual e-pharmacophore screening, molecular darkiend molecular dynamics (MD)



simulations followed by therapeutic activity, phatokinetic and toxicity predictions using a
binary QSAR platform (MetaCore/MetaDrug).

Methods

Protein Preparation

There is no full-length NExB/IxkBa (p50/p65) complex structure from protein crystgitlphy.
Available structures of the protein-protein compé®e missing the N-terminal signal receiving
domain (SRD) which is essential in the non-candrécdivation pathway by IKK. The SRD
displays an additional 1.5 ankyrin repeat unitsoltadditionally stabilize the complex. The full
length protein-protein complex model was taken froun previous study and prepared using
the protein preparation module of Maestro molecmadeling tool’ to add hydrogen atoms, fix
side chains and loops and to generate disulfidel$drirhe protonation states of amino acids at
pH 7.4 were generated using PROPKA to mimic phgsiisal condition®*° The OPLS3
forcefield was finally used for the structural opization of the proteit.

Fragment and Ligand Preparation

The ZINC Clean Fragments library (=2 million fragm® and the Schrodinger medically
relevant Glide Fragment Library (~667) were dowdk fromzinc.docking.org/subsets/clean-
fragments and www.schrodinger.com/glide#block-2974espectively. The Otava Drug-Like
Green Collection (~176000 small molecules) was doaded from
http://www.otavachemicals.com/. These downloadbdaties were prepared using the LigPrep
module of the Maestro molecular modeling packagé tie OPLS3 forcefiefd*? (after ligand
preparation, total number of molecules reached 260600 due to different combinations of
enantiomers and tautomers of molecules). Epik weasl to apply the protonation states to the
fragments and ligands at pH #4* Sampling of large rings was enhanced using Maoa°.
Site Mapping

SiteMap module of Maestro was used to delineateptiéein binding sites of the complex
targef®*’. A grid was placed over the whole target protejrSiteMap. Vertices were allocated
inside concavities, but not in the protein itselid were called as site points. Furthermore, all th

points present in the neighborhood were clustevazharacterize a binding site. Hydrophilic and



hydrophobic surfaces were mapped out by electiostatl van der Waals probes present at site
points. The regions of hydrogen bonds and metalation were also accommodated. Druggable
sites were identified according to the SiteScoree TSiteScore is an empirical function
containing weighted sum of hydrogen bonding, enok®xposure, contact, and
hydrophilic/hydrophobic terms. According to the krledgebase metrics in SiteMap, a SiteScore
of > 1.0 is associated with a site which is coesed as druggable; a score between 0.8 and 1.0
indicates that the region is difficult for bindingnd a score below 0.8 denotes a site which is
considered as non-druggalleOn the basis of Sitescores (>1.0), top-bindintessivere selected
for screening of compounds. The potential protending sites were identified using SiteMap
via a more restrictive definition of hydrophobiciind standard grfd At least 15 site points per
reported site were used as criteria for the dedimiof the binding sites.

Molecular Docking

Algorithms used in the docking studies includeddé&HTVS, Glide/SP and Glide/XP in
Maestro with flexible ligand samplifig®2 A receptor grid box was generated and certaimami
acids were allowed to rotate their side chainsdw fexibility to the used target: Ser51, Thr78,
Serl80, Ser240, Ser276, Thr219, Thr247, Tyr2512%rTyr254, Thr257, Thr273, Ser283,
Ser288, Tyr289, Thr291 and Glu292.

Both the ZINC Clean Fragments (~2 million) and ®ehrodinger’'s Glide Fragments (~670)
libraries were used to create the e-pharmacophadéels at the potential site found from
SiteMap. Glide’s high-throughput virtual screenildTVS) docking module was conducted
followed by re-docking of the top 20% scoring fragms using Glide’s standard precision
(Glide/SP) then extra precision (Glide/XP). Inpatt@al charges were used; scaling factor of van
der Waals radii was set as default as 0.80 withrtigh charge cutoff of 0.15. Glide/XP docking
used flexible ligand sampling; nitrogen inversi@ml ring conformations were sampled. Post-
docking minimization was performed. Non-planar aonfations were penalized. The Glide/XP
docking was also conducted with expanded sampliiig modified settings as described by
Loving et af*>. Accordingly, the number of poses per ligand far initial phase of docking was
set to 50000. The scoring window for keeping thiaihposes was set as 500, and the best 1000
poses per ligand were kept for energy minimizatiohe energy minimization protocol used a
distance-dependent dielectric constaraf 2 and 100 maximum minimization steps. OPLS3

force field was used for these calculatitns



Fragment Library-Based e-Pharmacophore Model Generon

The use of modified Glide XP-docking allowed ughoroughly sample all of the fragments in
the binding sites while keeping the top-1000 pdseseach fragment. The hypotheses were
then generated using PHASE based on the e-pharma®pmodel generation protocol
performed by the post-processing docking scriptctviwas previously described by Salam and
Dixon***® Essentially, in this approach, energies derivethfGlide/XP scores are mapped onto
all atoms that define each pharmacophore chemézalifé®. Accordingly, the pharmacophore
sites are ranked and the best-scoring, most faleotes are thus identified. The top-85000
Glide XP-docked fragments were used to generate etpharmacophore hypotheses. The
hypothesis generation also applies rules to preweetlapping features — any two features are
set at least 2 A apart, while 4 A is set as theirmim distance if two features are of the same
type. For fragment-based pharmacophore model gemeraix chemical features were analyzed
in the hypothetical binding pocket: hydrogen bauteptor (A), hydrogen bond donor (D),
hydrophobic (H), negative ionizable (N), positiwmizable (P), and aromatic ring (R) features.
The hydrogen bond acceptors and donors were assigased on vectors or pure projected
points, leading to different vector-based and mtejé points-based hypothe¥esin the
projected points approach, hydrogen bonds can bdenkgy dissimilar active molecules
regardless of their direction and point of origingviding a more flexible approath
E-Pharmacophore-based Virtual Screening

The Otava Drug-Like Green collection includes a@@6000 compounds which fits Lipinski's
rule of 5 (i.e., logP from -1 to 5, molecular weighom 160 to 500 Da, number of H-bond
donors from 0 to 5, number of H-bond acceptors fébtm 10, and number of N@roups from 0

to 2). Compounds with reactive groups, biologicallgstable compounds, and compounds
containing any atom different than O, N, C, H, Bi, F, or S are removed. These 176000
compounds were enriched to around ~260000 afteandigpreparation (due to different
combinations of enantiomers and tautomers of médgsguThus, ~260000 small molecules from
the Otava library and 85 known RKB inhibitors were screened at each of the derived e
pharmacophore models. The known@B inhibitors from previous studies were includedaas
positive control group. The NeB inhibitors database compiled by Boston Univer&iyailable
from http://www.bu.edu/NBExB/physiological-mediators/inhibitorsivas used for this purpose.

The chemical structures were downloaded from PubChed other open-source chemistry



online resources. All known inhibitors and molesuilgere prepared using Maestro's LigPrep
module, and energy-minimized using the previoustlgadibed algorithnfé. Only ligands that
matched at least 4 chemical features in each ex@tmphore model were considered for the
next stage in analysis. The top-1000 screened mieledased on fitness score from Otava were
later docked onto the binding site using Glide/SR &Glide/XP protocols for further
investigation.

MetaCore/ MetaDrug Analysis

The structure of the top 88 screened molecules thae-pharmacophore screening from Otava,
based on fithess and docking scores, and 85 knommbiiors were submitted to
MetaCore/MetaDrug for analysis of therapeutic astigroperties, metabolites, pharmacokinetic
properties and toxicity effects. MetaCore/MetaDprgvides a comprehensive tool to analyze
compounds and their biochemical and pharmacologielviors in the field of drug design and
development. MetaCore/MetaDrug can predict both filst-pass (pre-systemic elimination
which describes the metabolism of drugs beforesdiches the systemic circulation) and the
second pass metabolites. In addition, phase 1 hagep2 metabolites are predicted by using a
database which contains more than 10000 xenohliedictions, and more than 2500 combined
substrates and enzyme inhibitors. There are alsy 89 rules used to predict whether the
metabolites are reactive or not. MetaDrug use9thperty ofTanimoto Prioritization(TP) to
find the similarity between analyzed compounds @mtpound sets in the quantitative structure-
activity relationships (QSAR) models based on el@méound in the structure. These models
were prepared with a diverse set of compounds baseddxperimental evidence of their
activity/function on a certain protein of interestnd then tested with validation sets. The
accuracy of each model depends on the number opaonds used to create it and can be
estimated by the correlation coefficient’Rand root mean squared error (RMSE), where a
higher R and low RMSEindicate higher model accuracy. The QSAR model W highest
specificity, sensitivity, accuracy and the Matthe@rrelation Coefficient (MCC) was selected
in MetaDrug for each particular activity or toxicitested. The prediction of a therapeutic
activity or toxic effect is calculated based on tGeemTree ability to correlate structural
descriptors to that property using the recursivéitpazning algorithm. The ChemTree parameters
that gave the best results were as follows: patbthke— 5, max segments — 3, p-value threshold

Bonnferoni — 0.99, p-value multiway split — 0.99amumber of random trees — 50. The training



set used in MetaCore/MetaDrug includes molecules fplossess the property (positives) and
chemicals that do not have such property (negatisresapproximately equal numbers. The
marketed drugs were used if their number was greass 100 in the disease QSAR models;
drug candidates in clinical trials and preclinicampounds withn vivo activity have been added
to the training set. The drugs that have been atedto cause a particular toxic effect were used

for the prediction of toxic effects.

Molecular Dynamics (MD) simulations

The criteria to select screened ligands to advamoethe MD simulations phase was not only
based on docking scores but also on fithess scphesmacophore features, low toxicity (i.e.,
selecting the compounds that show no toxicity ity @h the 26 different toxicity models,
however we also further investigated molecules ki@ate high therapeutic activity (>0.75) and
showing low toxicity (values not greater than 0.80)L to 3 models). Three candidate ligands
were thus filtered from the Otava Drug-Like Greepll€ction (Compound IDs6248112,
7132624,and 1426436. Classical MD simulations were used to study #teictural and
dynamical behavior of the NtkB/IxBa complex bound to the known and three selected hit
ligands. This exploration of the conformational &ebr of the screened ligands with the
complex is the key to understanding their biololgichemical and physical behaviors and
structural stability at the binding cavity. MD sitations were performed using the Desmond
program with the OPLS2005 force field and RESPAegnator*>> Explicit water molecules
(SPC) and 0.15 M NaCl ion concentration were usegdréepare the system and neutralize the
complex. The total number of atoms was between 82#2#1 103209 atoms at the simulation
boxes. The NPT ensemble at 310 K with Nose-Hoosmeperature coupliriyand at constant
pressure of 1.01 bar via Martyna-Tobias—Klein puesscoupling” were used. Other settings
were used as default. Trajectory analysis waseazhiout for 100 ns with 2 fs time steps from
each of the MD simulations. Triplicate MD simulat®owere performed for the most potent
ligands1426436and6248112

The Molecular Mechanics/Generalized Born Surface Aga (MM/GBSA) Continuum
Solvation Calculations
The MM/GBSA approach has been proven to be a fieaajiproach to predict the free binding

energy of biological systems, thus allowing a pd&i-evaluation of the protein-protein and
protein-ligand interactiori& This method was implemented to study our strectith DHMEQ



and with each of the novel hit molecules. The esgrgcalculations were performed using
Schrodinger’'s Prime module. The complete detaild applicable thermodynamic equations
were described by Milleet al®® For this purpose, 51 trajectory frames were carsid from the
last 50 ns of the MD simulations. The OPLS2005 dietd and VSGB 2.0 solvation mode|
were applied. Triplicate MM/GBSA analysis were coagd for the most potent ligands
1426436and6248112 The study’s full methodology is summarized in S&cie 1.

Results and Discussion

Protein Structure Analysis

The NRIxB/IxBoa complex investigated in this study is a heterodic@mplex made up of the
p50 and p65 subunits mostly found in the cytopldBigure 1). Its N-terminal domain (NTD)
and C-terminal domain (CTD) are part of the consdrRRel homology region (RHR) necessary
for dimerization, nuclear translocation and DNA drB binding'. While NTD is important for
specific interactions with DNA bases and non-speaitteractions with the phosphate backbone,
CTD is important for dimerization and also contabiA non-specifically. All IkB proteins
have ankyrin repeats (ARs) which are key for irteng with NF2«B proteins. ARs 4, 5 and 6
interact with the RHR-CTD of NikB, while AR-6 and the C-terminal PEST residuesrate
with the p65 RHR-NTE

Bound kBa to NFZkB has a half-life of more than 24 hours, suggesthgy extremely high
binding energy, compared to less than 10 minutesttfe free unboundkBo®®. Free kBa
degradation requires no phosphorylation or ubigatton as is required for the bouncBb.
Upon binding of NEkB, the previously highly dynamic ARs 5 and 6 formaganized folded
structure, while the middle ARs such as AR-3 gafra well-folded state to a disordered state,
implying compensation for the energy required fading®®®. Analysis of various IkB mutant
proteins shows that the process ofZdB inhibition requires the C-terminal PEST sequesaice
the weakly folded ARs 5 and.6

Structural and experimental studies have shownthieae are two key regions at opposite ends
of the interface between NMIikB and kBoa which are important for their binding interaction
energy”. The two regions that majorly contribute to thehibinding affinity of kBa and
NFBZkB include the nuclear localization signal (NLS) sence (residues 305-321 in BB
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p65) which contacts the first ankyrin repeat @Bd, as well as thexBo PEST sequence
(residues 276-287) which contacts the DNA-bindiigedization domain of NExB (p65f%°*
Hence, the NExB/IxBa large interface of more than 4008 dontains two hot spots at opposite
ends which are particularly significant for theiiglm binding affinity, suggesting a squeeze
mechanism of binding that may add further to tlabitity of the ARS% Mutation of residues in
these regions, but not the contacting residuesesitiagly, leads to a significant decrease of
more than 500-fold and 5000-fold in the binding rgyefor the NLS and PEST sequences,
respectivel”. This indicates that the PEST sequence (residi@s287) is more important for
identifying the high affinity ligands. The PEST seqgce is a negatively charged acidic sequence
found at the carboxyl end ofBo and is rich in Pro, Glu, Ser and Thr residdesThe PEST
sequence is also known to be a site for post-atinshl phosphorylation by casein kinase Il.
However, it was found that phosphorylation of tHeSF sequence is not critical for the binding
affinity, but only slightly increase the associaticate between N#B and kBa by perhaps
enhancing the folding mechanism of bindthgCasein kinase Il is known to phosphorylate
residues Ser283, Ser288, Thr291, Ser293, and Sér299

The interaction between NikB and kBa is limited here to the binding site containing the
terminal PEST sequence (Figure 1). SiteMap from taewhich has been effectively used to
find target sites that have potential biologicai\aty was used for confirmation. SiteMap has a
correct identification of known binding sites in mathan 96% of the cases, while more than
98% were chosen based on tight bindffg A SiteScore of more than 1 suggests a site of
promising biological activiti?. When combined with literature findings from expeental work
discussed above, this suggested a highly promatgntial binding site. While two sites were
found to have a score of over 1, Site-2 with aesadrl.099 also contained most of the amino
acid residues found in the PEST sequence (Figur@l2p, although site-1 (SiteScore: 1.006)
had a larger volume than site-2, the structurénefldinding site was more diffuse opposed to a
more pocket shape in site-2. Thus, site-2 is masohsidered for further investigations.
Fragment-based e-Pharmacophore Modeling Studies

Two fragment libraries were used to create the aphcophore models at site-2 of
NFZkB/IxBa complex which was given by SiteMap. The e-pharmphooe hypothesis models
were created using the top 85000 Glide/XP dockednfients. The hypothesis models were
generated via both thesctor-basednd theprojected points donamethodologies (Figures 3 and
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4). Both the ZINC Clean Lead library (around 2 moitl) and the Schrodinger’s medical fragment
library (667) were used. Glide/HTVS was conductgaibcking the top 20% fragments in Glide
SP then XP modes. Excluded volumes which are shasvhlue spheres, in Figures 3, 4 and
Figure S1 in the supplementary information, areé pathe derived binding site models. These
excluded volumes help to reduce false positivespisventing overlapping and clashing of
fragments with the protein complex, as well as mlate inactive molecules that cannot match
the features of the hypothe¥isNevertheless, a loose excluded volume surfai@ltivs small
overlaps in order to account for more flexibilitycabetter induced fit of the molecules with the
binding sit&>.

MetaCore/ MetaDrug Analysis

The hunt for selective N#B inhibitors is expensive and spans various fiedfisesearch
highlighting the relevance of this protein as adpeutic target. However, these inhibitors face
various challenges such as specificity and potetuidcities as they may interfere with other
pathways and cellular processes regulated b{dBE For this reason, we have decided to
evaluate chemical properties, possible metabolgetential therapeutic values and toxicities of
selected potent ligands. This allowed us to gétosough understanding and prediction of their
biological activity when compared to hundreds diestdrugs using MetaCore from Clarivate
Analytics. With a cutoff value for therapeutic adly of 0.5, the selected hit molecules showed a
significant therapeutic potential for heart failur@ral infections, asthma and depression,
conditions in which NBExB plays a strong role (Figure 5). These ligand® akowed the
potential to be effective (predicted value (PV) 54). for allergy, cancer, migraine, pain,
depression, schizophrenia, psoriasis, thrombogertension and Parkinson’s and Alzheimer’s
diseases, all conditions which were not shownHerdontrol inhibitor, DHMEQ (Figure 5). This
molecule has been shown to be effectively usedstima®, the PV from MetaCore was 0.64.
Our selected ligands had a higher prediction f@irtipotential use for asthmargining set
N=366, test set N=63, sensitivity= 0.92, specifisd.86, accuracy=0.89, MCC=0.78with
ligand 7132624being the best with a therapeutic activity PV d84) followed by molecules
1426436(PV of 0.77) and248112(PV of 0.72). When using a high cutoff value of@. our
selected ligands were shown to be better in astltepression, heart failure, hypertension,
migraine, obesity and viral diseases. Lig&248112had the highest therapeutic value of 0.88
for heart failure tfaining set N=204, test set N=33, sensitivity= 8.7specificity=0.87,

12



accuracy=0.82, MCC=0.64 Ligand 7132624 was best for asthma (PV of 0.84). Ligand
1426436was best equally for depressidmaining set N=335, test set N=62, sensitivity= 8.9
specificity=0.82, accuracy=0.87, MCC=0.yand antiviral activity(training set N=206, test set
N=35, sensitivity= 0.92, specificity=0.95, accuraty94, MCC=0.88)with a predicted value of
0.83, and also showed potential against obesitly &iPV of 0.9§ training set N=472, test set
N=75, sensitivity= 0.89, specificity=0.97, accura€y93, MCC=0.87).

Two of the ligands@248112and 7132624 were shown to result in metabolites that contain
reactive groups (Figure 6). Only ligadd26436had reactive metabolites, which suggest that it
may participate in side interactions other than ititended target, possibly contributing to its
activity. In comparison with these molecules, tlosipive control molecule DHMEQ also gave
reactive metabolites. All ligands including the pigs control met Lipinski's rule of 5 so they
are all likely to be orally bioavailable (Figure. &jowever, it should be noted that the control
molecule had significantly higher toxicities, bathterms of types and values when compared to
other molecules in the QSAR models, including kidnecrosis, liver necrosis, kidney weight
gain, nephron injury, liver cholestasis, carcinaggy in male rats, neurotoxicity and
carcinogenicity in male mice, with values rangingnf 0.51 to 0.78 in decreasing order (Figure
6). The selected potent ligands, on the other hhaad,significantly lower toxicity effects and
lower predicted toxicity values. These toxicitiegres not higher than 0.56 when excluding
AMES (Model description: N=1780, 0.69, RMSE=0.29 Ligand 6248112had predicted
cardiotoxicity (PV of 0.51) and genotoxicity (PV 6f55) and an AMES (PV of 0.57). Ligand
7132624had only a relatively low predicted kidney necsasixicity effect (PV of 0.53) and had
an AMES score of 0.61. Liganti426436 on the other hand, was shown to be related to
carcinogenicity in male mice models (PV of 0.56) anale rat models (PV of 0.53) and liver
cholestasis (PV of 0.52). In comparison with thieged hit ligands, the control molecule had a
predicted higher toxicity in kidney necrosis (PV @f78), liver cholestasis (PV of 0.56) and
carcinogenicity in male rat models (PV of 0.56).dianally, different types of toxicities which
were not common among the selected hits, but whiete observed in the control molecule
included liver necrosis (PV of 0.78), kidney weigjgin (PV of 0.73), nephron injury (PV of
0.63) and neurotoxicity (PV of 0.51) as shown igUfe 6.

First and second pass major metabolites by twheftlected hit ligands and control molecule

were also re-docked using Glide/SP and analyzedWataDrug (Figure 6). The metabolites
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were shown to have docking scores that ranged lketwB.0 to -7.9 kcal/mol for ligand
7132624 -4.7 to -8.1 kcal/mol for ligand426436and -5.4 to -7.2 to kcal/mol for ligand
6248112 All of these ligands and their metabolites haugner docking score compared to the
control molecule, suggesting their greater biolabiectivity at the NB«xB/IxBa complex
(Figure S2, supplementary material). Docking scerese highest for the liganth26436(-8.68
kcal/ mol) followed by6248112(-6.41 kcal/ mol) and@132624(-6.10 kcal/ mol). The docking
score of the positive control molecule was -4.2@lkaol (Figure S2). The pharmacokinetic
properties and chemical structures of the thredidginds as well as the reference (positive
control) molecule were shown in Figure 7.

Conformational Analysis and Binding Energy Calculatons

The root mean squared deviation (RMSD) is primarggd to investigate the structural stability
of the biological system throughout the MD simwdas. An essential part of our research efforts
is to use RMSD terms to elucidate structural antadyical properties, allowing us to explore the
structural stability of binding pocket residues wsll as used ligands throughout the MD
simulations. The RMSD values otxGtoms away from the initial positions are usedéscribe
the flexibility of all possible protein conformerlong the MD simulations. The “fit on
protein/profit” and “fit on ligand/ligfit” modes spectively represent the ligand’s translational
and rotational motion in the binding pocket. Thaddigands1426436 6248112and 7132624
fluctuated with mean € RMSD values of 4.39, 4.21 and 5.26 A, respecti&hgure 8). Of
these ligands, it is important to note that thé2NB/IxBa. protein complex was more structurally
stable with ligandL426436for the majority of the simulation time and espdlgifor the last 45
ns. Although the reference molecule had a mean RM8R@.47 A, there were significant
fluctuations evident from an increase of RMSDs frbi4 to 5.88 A over the 100 ns run time.
Figure 8 may also suggest that liga@dd3262 slightly destabilizes the protein complex
throughout the simulation. Therefore, based on #malysis, it can be suggested that ligands
6248112and1426436are more energetically favorable at the bindingket.

In theprofit mode, the mean values of RMSDs for ligahd26436 6248112and7132624were
found to be 5.75, 7.43 and 8.85 A as shown in E¢B8 in the supplementary information,
respectively. It is evident that ligan8248112and 1426436have stable conformations in the
last 60 ns of the MD simulations. It can also beateded that molecul&426436had the highest
conformational stability compared to the otherliggnds and the reference molecule. Although
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the reference molecule has average RMSD of 4.68h%&s quite sharp changes in RMSD values
(8 to 16 A) especially between 20 to 40 ns simafatime and it has larger RMSD values in the
last 10 ns. Moreover, molecul426436had the least fluctuations and maintained a stable
conformation over the last 60 ns. Liga6#48112seemed more stable in the last 60 ns of the
simulation, although here, the RMSDs continuedhtydase prior to reaching a stable position.
Ligand 7132624 had the highest fluctuations in RMSD values, iatigg its lower stability,
which is in line with the previously discussed tesuln theligfit mode shown in Figure S4
supplementary information, all studied ligands h&MSD values less than 2 A, which may
represent that rotational motions of the molecaleslimited at the binding pocket, implying that
their internal conformation was not changed dracadyi throughout the simulation. Hit ligands
6248112 and 7132624 appeared significantly stable with minimal fludioas (respective
average RMSD values were 0.50 and 0.68 A) wheromparison to ligand426436(average
RMSD, 1.75 A) and the reference molecule (averadSB, 0.57 A).

Ligand 1426436 made significant interactions with Leu277, Glu2&2lu284, Asp290 and
Thr291 that were present for 93%, 130%, 96%, 97% 3% of the MD simulation time
respectively via hydrogen bonds as well as via whatilges (Figure 9). The fact that Glu284
maintained interactions for over 100% is due tofde that it made multiple hydrogen bonds
one for 98% and the other for 32% of the simulatiame as seen in Figure 9. Another feature
about this ligand is that it made ionic interaconith Glu284. The torsion of the ligand’s
rotatable bonds in close proximity to Glu282 anduZ84 maintained a prominent angled
conformation, giving insight about the changes ligand underwent at the binding pocket
(Figure S9). The interactions with the residuesligted by the docking protocols were mostly
maintained in the MD simulations (Figure 9 and Feg®5, supplementary information); these
were Glu282, Glu284 and Thr291. Other residues phaved to be significant (>10% of the
interaction fraction) for the ligand-protein intetimn were Lys79 and Arg158, present outside of
the PEST sequence, indicating the potential rad¢ ttiese residues may play in the mechanism
of this ligand. Hydrophobic interactions were madth Met279 throughout the 100 ns run time.
For ligand7132624 significant contacts were maintained with Glu282about 45% of the 100
ns MD simulations via hydrogen bonding. Interactianith the PEST sequence was primarily
made via hydrogen bonding, hydrophobic contactsveat@r bridges (Figure 9). The ligand also

maintained a prominent angled conformation, eviden the torsion of the ligand’s rotatable
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bonds in close proximity to Glu282, giving insigtiiout the changes this ligand underwent at the
binding pocket (Figure S9). Other residues whidh hiit ligand7132624made contact with for
10% to 19% of the run time were in decreasing adgon fractions: GIn255, Ser252, Arg245
and Asn244. In addition, unlike the other liganigand 7132624had intramolecular hydrogen
bonds which may contribute to its binding affinifhe docking results predicted the role of
Asn276, Glu284, GIn255, Asp290 and Lys79, all ofickhplayed a role in the protein-ligand
interaction in the MD simulation (Figure 9 and HiguS5, supplementary information).
Significant interactions (> 20% of interaction tiriey this ligand with Lys221, Asn244, Val246,
Ser252, GIn255 and Glu282 were evident throughwaisimulations.

Ligand 6248112madeinteractions with the PEST sequence that were pilynaade via water
bridges, hydrogen bonding, hydrophobic contactwelsas ionic bonding with Asn276 (Figure
9). Additionally, the ligand made significant cocttawith Arg158 and GIn255 for over 10% and
35% of the simulation time, respectively. The tonsof the ligand’s rotatable bonds in close
proximity to these residues maintained a promirsrgled conformation, giving insight about
the changes the ligand underwent at the bindingkgio¢Figure S6). The docking results
predicted the role of Leu277, GIn278, Thr291 anch25b (Figure S5, supplementary
information). Significant interactions (> 10% irdetion fraction), however, were noted for
Arg158, Asn276 and Met279 evident throughout tineutation.

DHMEQ, on the other hand, made interactions onty Weu277 for 42% of the simulation time
(Figure 9). Significant interactions (> 20% intdran fraction) were noted for Lys79, Gly250,
GIn255, Asn276, Leu277 and Met279 evident throughloe simulation. However, the highest
interaction fraction was made for 60% of the rungicompared to hit ligant426436in which
the interaction fraction with Glu282 was 130%.

The selected hit molecules were stable throughbet MID simulations and have shown
persistent interactions with the PEST sequencerdatingly, residues Lys79, Asp290, and
Thr291 were important for binding at the identifieoshding site when analyzing both docking
and MD simulation studies. This indicates the pbdaole of these residues for the binding
interactions between NFB and kBa.

Analysis of the MD simulations in different paraewst was shown in Figures S7-S9 in the
supplementary information. Figure S7 shows RMSDigian over time for the side chains over
a 100 ns MD simulation with the NkB/IkBa (p50/p65) complex. Highest side chain RMSD
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values were obtained in the case of presence ahdig132624 which may represent the
perturbation of side chain residues at the bingliagket for the construction/re-construction of
binding interactions with the ligand. Ligand426436and 6248112showed similar side chain
RMSD values with apo-form for the last 10 ns MD slations. Figure S8 shows root mean
square fluctuations (RMSF) evolution over time tloe G, atoms and side chains over a 100 ns
MD simulation with the NF«xB/IxBa (p50/p65) complex. Reference ligand DHMEQ and hit
ligand 7132624showed slightly higher fluctuations at the bindparket and significant higher
fluctuations compared to others especially forrémgion of residue numbers 550 to 65@gure
S9 represents solvent accessible surface area (SIASK of the three ligands over 100 ns MD
simulations with the NExB/IxBa (p50/p65) complex. Reference ligand DHMEQ andigand
7132624showed higher SASA values compared to other ligand

RMSD and RMSF graphs which belong only binding mhckere also investigated. (Figures
S10 and S11) Residues in binding region shows smidlictuations compared to whole protein.
Apo-form in the binding pocket has slightly largeMSD values compared to other ligand-
bound systems may indicates the structural stasiliof binding pocket residues with the
presence of ligand.

The post-MD simulations MM/GBSA calculation wererfpemed to determine the Gibbs free
energy changes of a reference inhibitor and thie Igyands from our screening protocols. Figure
10 shows that ligan@248112had the lowest averagés of —50.54+ 4.30 kcal/mol over the last
50 ns MD simulations, suggesting a more stablentiggonformation and a higher affinity at the
binding site. Similarly, ligand426436had an averagadG of —49.54+ 2.63 kcal/mol over the
last half of the MD simulations. Ligantil32624 on the other hand, had a lower average
(-36.92 * 4.89 kcal/mol), indicating its lower sttural stability and affinity compared to the
other ligands. The reference ligand DHMEQ had arayeAG value of —16.70+ 6.60 kcal/mol
which shows that the selected three hit ligandseweore energetically favorable. This adds
another level of evidence to indicate the highabidity of our lead ligands at the MkB/IxBa

complex.

Conclusions
Inhibition of the NF1kB pathway is a highly promising strategy for thexagic use since it

presents the link between inflammation and caniteis a target for cancer, inflammation,
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autoimmune diseases and even viral infections.odvong list of known inhibitors is available in
the literature, and the number of experiments gaeging, however, there is no clear consensus
as to the mechanism or detailed biochemical intenag with the NF/xB/IxBa complex. In this
study, the complex of NFkB and its inhibitor tBa were targeted and analyzed in detail. To
conduct an in-deptlin-situ analysis of this complex, it was essential toizdila full-length
protein-protein complex structure and known bindiggnds to generate energetic-optimized e-
pharmacophore models. This method creates an diteng@p emphasizing the potential
interactions of the complex by utilizing fragmerts molecules. By eliminating the need of
active ligands of the NF«B complex, fragment-based e-pharmacophore modalrggon was
the most reasonable approach to conduct our stfidgtigely. In addition, this method also
provided us with detailed information about our péew at the biochemical level including the
identification of potentially important amino acidsidues, chemical bonds and features which
may prove to be important for future drug desigong$ and further wet lab investigations.

In this study, the main conceptual innovation is thtegrated approach to drug discovery that
combines molecular docking, MD simulations and QSA8&dels under a single umbrella. Each
method has its own strengths and weaknesses, aga wged alone, is not likely to yield very
useful results. However, when these methods aréic@ah with positive feedback loops, they
enhance each other so that one is much more likeybtain successful drug leads. In more
detail, the conceptual and methodological innovetim this study are: (i) As it is stated, 2 hits
were identified and validated using molecular modglapproaches against NiB/IkBa
complex. Thus, this information can be used by wiedl chemists for the designing of new NF-
kB inhibitor analogues with enhanced activity anleottailored properties. (ii) MD simulations
were performed for the identified hit molecules nfrosmall-molecules library for better
understanding of their dynamical and structuraffif@® throughout MD simulations. Thus, the
most important structural and dynamical propertieboth ligands and binding pocket residues
were discussed. (iii) The study does not providal/ diit molecules against N&B/IkBa
complex, but also pharmacokinetic and toxicity pesf of all identified hit molecules were
analyzed using MetaCore/MetaDrug platforMetacore/MetaDrug is an integrated software
package having manually curated biological infororatabout small molecules. 25 different
common disease QSAR models as well as 26 diffeoamntity-QSAR models were used for the

estimation of therapeutic activity and toxicity ples of the studied molecules, which we believe
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this is the largest amount of therapeutic actiatyd toxicity models that are used in the
literature.

This study highlights the master role of BB not only in cancer, but also in the pathogenesis
of inflammatory-mediated diseases including cardiopathy, asthma, COPD and
neurodegenerative diseases.MB inhibitors that act more selectively at the irigsted
binding pocket of NBEkB/IxBa complex may thus present a promising therapyHherdiscussed
inflammatory conditions and lead the way to futdreg design efforts and experimental studies.
Future efforts for studying the complex requires iategration of all the biochemical and
computational studies in order to get an insigta the complexity of the NFB pathways and
molecular interactions. We developed e-pharmacephwoodels for the NF«B/IkBoa complex
based on 85000 fragments. The derived e-pharmaoephodels were used in lead compound
discovery and screening efforts. The Otava chemidddrary containing around 260000
compounds was screened against the constructe@rexpbophore models. The constructed
models are a valuable computational tool that raailifate more efficient research efforts in the
search for potent N#«B inhibitors. The ligands with new scaffolds wementified with
promising high therapeutic values for inflammatagnditions along with low toxicity effects
when compared to known inhibitors from the literaturhese compounds can now move to the

next stage of drug design to be tested preclinyicall
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s|dentification of the *Docking of ZINC

Pl ! Clean Fragments *Receptor cavity
b'lﬂg'rg%u?geafr:gm Library (~2 million) e-pharmacophore
e g iy and Schrodinger’s generation using Glide
9 Glide Fragment XP scores

SiteMap® Library (~670)

_ *Pharmacophore
docking and finess Docking of the top OTAVACEmCalS
scores 9 compound collection
(~260,000)
*Therapeutic & toxicity *Selection of lead *MD simulations &
profile analyses ligands MM/GBSA calculations

Scheme 1.Fragment-based e-pharmacophore virtual librargestng flowchart followed by
molecular modeling, ADMET and therapeutic analyleeshe discovery of potent ligands of the
NFa«kB/IkBo complex.
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Figures

Figure 1. A ribbon representation of the RkB/IkBa complex and the binding site (Site-2)
which was used for molecular docking and e-pharmlacce model hypotheses generation.dkB
(barrel-like shaped protein on left) is in contagth the NFIxB complex formed by the p50
(blue) and RelA/p65 (yellow) subunits. The bindsitg is composed majorly of ligand acceptor
(red) and ligand donor (blue) maps as well as fgdrdphobic maps (yellow). This binding site
was computationally generated by SiteMap and sue@dny literature findings.
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SiteScore Size  Volume Residues

Sitemap 1.099 128  286.062 | Chain A: 245,158,246,79,29,182,81,83,221,244;

site 2 Chain B: 249,271,251; Chain C:
250,275,251,276,277,278,279,255,280,281,282.28
4,290,247,291,248,292,249%*

Sitemap 1.006 316 1024.541 Chain A:

site 1 200,294,201,295,296,297,204,205,207,208,209,25
3,254,255,256,210,211,237,212,213,238,260,261,
289,291,300,292,301,293;
Chain B: 267,348,252,253,264,254,255;
Chain C:
80,41,42.46,180,182,183,184,141,143,145,189,14
9,213,108,215,216,192,218,193,150,153,110,154,
111,260,112,116,117,69,223,226,227,228,71,120,
75,76,77,79

Sitemap 0.843 53 138.572  Chain A:
site 5 223,224,225,49,239,28,181,50,51,241,52,275,222;
Chain C: 258,259,280,260,261

Sitemap 0.823 50 86.779 | Chain C:
site 4 179,202,207,208,219,209,172,185,186.176,187,22
0,177,188,178,211

Sitemap  0.808 60 = 156.065 Chain A:
site 3 276,277,53,54,30,56,31,32,33,35,38,117,118,188,
189.42.,43.44.45,190
Figure 2. The top five potential binding sites derived bye$lap and their properties. The
coloring code of the site maps in the table cowadp to the protein illustration abov@hain A
refers to p65/ RelA; Chain B refers to p50; Chaireters to IkB.. *The bolded residues in site 2
indicate residues in the PEST sequence.
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Features

7 features
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Ligand hits Known NFREB inhibitors
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hypothesis model

12 . we
168 . . . ‘l.’ [
- l.. -
o R

=TT
docking score

Fitness
ng

&
1 et
¢ "

3 3
docking score

L : = =
10 s 3 4 2 g 2 4 docking score docking score

[ R S 2 1 docking score

docking score

Figure 3. Fragment-based e-pharmacophore model hypotheseedi¢or the NEIkB (p50/p65)/IkBr complex. Graphs show the
fitness and Glide/ XP docking scores of moleculest thave successfully met the minimum requireméntnatching at least 4
featured ligand sites for the known BB inhibitors (right) and compounds from the OTAVAshicals library collection (left). The
hypothesis models were generated viavibetor-basednethodology. A/pink = H-bond acceptor; D/blue= blad donor; R/orange=
aromatic ring; N/red= negative ionizable group.dtircles in the background indicate receptor-b&setded volumes.
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Ligand hits Known NFREB inhibitors
e-Pharmacophore Glide SP Glide XP Glide SP Glide XP
Features hypothesis model

7 features
ADDDNRR

6 features
ADDDNR

5 features
ADDNR

Figure 4. Fragment-based e-pharmacophore model hypotheseedi¢or the NEIkB (p50/p65)/IkBr complex. Graphs show the
fithess and Glide/ XP docking scores of moleculest thave successfully met the minimum requireméntatching at least 4
featured ligand sites for the known BB inhibitors (right) and compounds from the OTAV/Aehicals library collection (left). The
hypothesis models were generated viaghgected pointslonor methodology. A/pink = H-bond acceptor; D/blue= blald donor;

R/orange= aromatic ring; N/red= negative ionizajpieup. Blue circles in the background indicate ppgebased excluded volume.
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Ligand hits Control

6248112 7132624 1426436 DHMEQ
Allergy 0.5 0.53
Alzheimer 0.53 0.57 0.51
Angina
Arthritis 0.58 0.56 0.67 0.58
Asthma 0.72 084 077 0.64
Bacterial
Cancer 0.55 0.59
Depression 0.79 0.74 083
Diabetes 0.67 0.53
HIV 0.67 0.54 0.65 0.6
Heart failure [ 0.88 0.66 0.57 0.54
Hyperlipidemia 0.56 0.57
Hypertension 0.63 0.76 0.53
Inflammation
Migraine 0.72 0.71 0.58
Mycosis 0.56
Obesity | 0.65 - 0% 09
Osteoporosis
Pain 0.57
Parkinson 0.52 0.62
Psoriasis 0.53 0.58
Schizophrenia 0.5
Skin diseases 0.64 0.69
Thrombosis 0.59

viral 084077 088

Figure 5. The therapeutic activity and docking scores oadids selected from the virtual

screening compared to a known inhibitor from litera. The ligands were submitted to
MetaDrug/ MetaCore™. In general, values greaten th&0 indicate that the molecules are
active as per the scores from the QSAR models. Gunhyerical values indicating activity scores
over 0.50 were presented in the table for clanity simplicity. The coloring scheme increases in
intensity with greater therapeutic values.
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Ligand hits Control
6248112 7132624 1426436 DHMEQ
AMES 0.57 0.61
Anemia
carcinogenicity
carcinogenicity mouse fema

carcinogenicity mouse mal 0.56 0.51
carcinogenicity rat femal
carcinogenicity rat mal 0.53 0.56

cardiotoxicity 0.51
Cytotoxicity model, -log GI5C
(M)
Epididymis toxicity
Genotoxicity 0.55
Hepatotoxicity
Kidney Necrosis 0.53 -
Kidney Weight Gain
Liver Cholestasis 0.52 0.56
Liver Lipid Accumulation
Liver Necrosis _
Liver Weight Gain
MRTD* 0.66
Nasal pathology
Nephron Injury 0.63
Nephrotoxicity
Neurotoxicity 0.51
Pulmonary toxicity
SkinSens, EC:
Testicular toxicity

Reactive** OK OK R R
Ruleof5*** OK OK OK OK

* Maximum Recommended Therapeutic Dose, log mgikgelay, range is from -5 to 3. Cutoff is 0.5. Chesscwith high log MRTDs can be classified as mildly
toxic compounds, chemicals with low log MRTDs aghty toxic compounds.

** Metabolites contain reactive groups

** Ruleof5 (likely to be orally bioavailable)

Figure 6. The predicted toxicity effects of ligands selectenn the virtual screening compared
to a known NFExB inhibitor from literature. The ligands were sulttedl to MetaDrug/
MetaCore™. In general, values greater than 0.5¢atel that the molecules are toxic as per the
scores from the QSAR models. Only numerical valodgating toxicity scores over 0.50 were
presented in the table for clarity and simpliciBray boxes indicate no toxicity or toxicity lower
than 0.50 which is nonsignificant. The coloring estie increases in intensity with greater
toxicity values.
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Chemical
formula

BBB, log
ratio

Prot-bind,
logt

Prot-bind,
%

G-logP

WSaol, log
mg/L

1426436

N (o]
HNT N

-0.24
(44.72)

-0.2¢
(44.72)

38.0:
(50.70)

2.2¢

1.34

Ligand hits
6248112
C14H12N4O5

-0.37
(36.33)

-0.17
(36.33)

43.0¢
(36.33)

0.7t

1.92

7132624
Ci16H13N50,S

-0.2z2
(35.87)

-0.0¢
(35.87)

40.5¢
(35.87)

1.7¢

3.2¢

Reference
DHMEQ
ClSH llN 05

-0.61
(40.11)

-0.37
(40.11)

56.2(
(46.13)

2.71

2.0¢

Figure 7. The 2D chemical structure and chemical propenietree potential NExB Ikba
inhibitors. The ligands were selected after theharmacophore virtual screening and predicted
ADMET/ therapeutic analyse$wo-digit numbers in brackets indicate the propefftifanimoto

Prioritization (TP), a score for similarity betwett)e analyzed compounds and compound sets in

the quantitative structure-activity relationshi@sSAR) models.
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Figure 8. RMSD evolution over time of the C-alpha atoms o&ef00 ns MD simulation with
the NFI«kB-lkba (p50/p65) complex. The three ligands from the @tébrary were selected
after e-pharmacophore virtual screening and poskidg MetaCore analysis. DHMEQ is used

as a control NE«B inhibitor. Average values were plotted for thegmt ligandsl426436and
6248112from triplicate MD simulations.
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Figure 9. The protein-ligand interaction profiles of theatigered three ligands and the control moleculéénkinding pocket of the
NFZ«B/IkBo. complex throughout the 100 ns MD simulations. Theee ligands from the Otava library were selecédr e-
pharmacophore virtual screening and post-dockintaMere/ MetaDrug analysis. The interaction fractimicates the percentage of
time the contact is made throughout the simulatiortime. The profiles are displayed for a) ligal¥l6436b) ligand6248112c)
ligand 7132624 and d) DHMEQ, the control molecule.
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Figure 10. MM/GBSA free energy analysis for the hit ligandgl&nown control at the binding
pocket of NFIkB/ Ikba throughout the last half of the MD simulations.efage values were
plotted for the potent ligands426436and 6248112from triplicate MD simulations. Average
values in kcal/mol were: ligand 624811250.54+ 4.30; ligand426436 —49.54+ 2.63; ligand
7132624 -36.92 + 4.89; and control ligand: —16.70+ 6.60.
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Highlights

e e-pharmacophore models were developed for the NFZIkB/IkBa complex based on
85000 fragments.

e The Otava chemicals library was screened against the constructed e-pharmacophore
models.

* Three ligands were identified with promising high therapeutic values.



