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COMMENTARY
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Introduction

The cerebral dynamics of spoken word production is a
lively debated issue. Recently, Munding, Dubarry, and
Alario (2016a) wrote an opinion article on this issue,
which was published together with several commen-
taries by colleague experts, and a response to the com-
mentaries by Munding, Dubarry, and Alario (2016b).
Here, we address a critical issue that has been only
briefly mentioned in some of the commentaries (i.e.
Laganaro, 2016; Piai, 2016), namely the importance of
taking response time (RT) into account when assessing
the cerebral dynamics of word production.

Munding et al. (2016a) performed a meta-analysis of
magnetoencephalography (MEG) studies to evaluate
serial, cascaded, and parallel models of spoken word pro-
duction. In serial models, a particular stage of word plan-
ning begins only if the previous stage has been
completed; in cascaded models, stages are sequential,
but a particular stage may begin before the previous
stage is done; and in parallel models, stages are not
sequential but concurrent. Based on their analysis,
Munding et al. state that “the ensemble of activity is
not indicative of serial processing stages but rather sug-
gestive of concurrent or a strong temporally overlapping
cascade of processes” (p. 449). Moreover, the meta-analy-
sis was used to evaluate stage duration estimates by
Indefrey and Levelt (2004; Indefrey, 2011). According to
Munding et al., articulatory activity occurred

before 400 ms, where Indefrey (2011) proposes an onset
of 600 ms post-stimulus. Likewise, phonological code
retrieval is frequently reported 75 ms before predicted,
and onsets for lemma selection are spread to both
sides of the predicted onset of 200 ms. (p. 455)

In estimating the stage onsets for picture naming,
Indefrey and Levelt (2004) assumed a mean naming
latency of 600 ms, but latencies may, of course, be

different. In particular, mean latencies varied between
about 500 and 1000 ms across studies in the meta-analy-
sis of Munding et al. (2016a). Clearly, if the mean RT is
1000 ms, speakers do not complete all planning stages
within 600 ms and then wait for 400 ms to initiate articu-
lation. Thus, some kind of rescaling is needed for the
stage durations if the mean RT is shorter or longer than
600 ms. Consequently, depending on the RT in a study,
stage onsets may occur earlier or later than estimated
by Indefrey and Levelt. We demonstrate that if RTs, and
consequently stage durations, differ among studies, col-
lapsing time windows of MEG activity across studies
yields overlap of stage activity even under serial models.

Rescaling of stage durations

Assume that word planning stages are serial. The esti-
mates of the stage durations by Indefrey and Levelt
(2004; Indefrey, 2011) held for a mean naming RT of
600 ms. Mean RTs ranged from about 500 to 1000 ms
across studies in the meta-analysis of Munding et al.
(2016a). Thus, rescaling is needed for the stage durations
if the mean RT is shorter or longer than 600 ms, as Laga-
naro (2016) and Piai (2016) pointed out in their commen-
tary to Munding et al. In their response, Munding et al.
(2016b) indicated to be sceptic about rescaling
because “the scaling function is unknown” and “fraction-
ating speech response times into meaningful durations
has proven difficult even based on recordable responses
measured on single trials” (p. 480). However, although it
seems difficult to rescale the empirically observed MEG
responses, rescaling may be applied in deriving predic-
tions from models.

In discussing the issue of rescaling, Indefrey (2011)
argued that there are two straightforward options,
namely proportional or informed rescaling. In
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proportional rescaling (e.g. Schuhmann, Schiller, Goebel,
& Sack, 2009), each duration estimate of Indefrey and
Levelt (2004) is increased or decreased to the extent
that the observed mean RT was longer or shorter than
600 ms. In informed rescaling (cf. Laganaro, Valente, &
Perret, 2012), only some duration estimates are rescaled
based on knowledge about the factors that caused the
mean RT to be longer or shorter than 600 ms. Based on
event-related brain potential evidence, Laganaro et al.
argued that individual differences in naming RT are for
the most part due to differences in lemma retrieval dur-
ation (i.e. lexical selection). These individual differences
concerned the RTs for a single set of pictures (ranging
from 714 ms for fast speakers to 926 ms for slow speakers),
whereas participants as well as materials differed among
the MEG studies in the meta-analysis of Munding et al.
(2016a) with RTs ranging between about 500 and
1000 ms. Thus, it seems unlikely that the difference in
RTs among MEG studies is mostly due to individual
differences in lemma retrieval duration. Still, it would
be important to examine what the predictions of serial
models are when the duration of only a single stage
(i.e. lemma retrieval) is rescaled.

In examining the consequences of rescaling, we
restricted ourselves to the picture naming studies with
RTs in the meta-analysis of Munding et al. (2016a),
while excluding studies with delayed naming and
studies of word reading and phrase production. As
pointed out by Laganaro (2016), the estimates of Inde-
frey (2011) for picture naming cannot straightforwardly
be applied to these other tasks. We ended up with
seven MEG studies of picture naming with mean RTs
ranging from 537 to 998 ms. For each of these studies,
we rescaled the stage durations based on the mean RT
using both proportional and informed procedures. We
assumed a model with strictly discrete stages, following
Indefrey (2011): perception and conceptualisation,
lemma retrieval, phonological code retrieval, syllabifica-
tion, and phonetic encoding and articulation. For a
mean RT of 600 ms, the estimates of the durations of
these stages are 200 ms (perception and conceptualis-
ation), 75 ms (lemma retrieval), 80 ms (phonological
code retrieval), 100 ms (syllabification), and 145 ms (pho-
netic encoding and articulation). The following example
numerically illustrates the proportional and informed
rescaling procedures. For an empirically observed mean
RT of 879 ms and proportional rescaling, the duration
of the perception and conceptualisation stage would
become (879∕600) × 200 ms = 293 ms, the duration of
lemma retrieval would become (879∕600) × 75 ms =
110 ms, and so forth for the other stages. With informed
rescaling, the difference between the observed mean RT
and 600 ms, here 879− 600 = 279 ms, would be added

to the lemma retrieval duration of 75 ms, thus this dur-
ation would become 75 + 279 = 354 ms. Figure 1 displays
the predicted stage activities when the stage durations
are rescaled for each study based on the empirically
observed mean RT.

The figure shows that both under proportional rescal-
ing (panel A) and informed rescaling (panel B), there is
overlap of different stages across the seven studies
even though the succession of stages is strictly serial
within each study. The bottom of the figure shows the
corresponding earliest onset and latest offset (i.e.
range) of the stages across studies, together with the
median offsets. The saturation of the colours indicates
the degree of stage overlap across studies, with higher
saturation denoting greater overlap (cf. Munding et al.,
2016a). Clearly, there is considerable overlap among
different stages. Also, there is a successive progression
of onsets and offsets. This fits well with the observation
of Munding et al. (2016a) that “there is a cascading
sequence of overlapping activity moving through the
brain” (p. 454). Our analysis shows that serial models
are compatible with the MEG data. In the remainder,
we make clear that prominent computationally
implemented models of word production agree with
the outcomes of the meta-analysis.

Relating the MEG findings to computational
models

Although Munding et al. (2016a) evaluated serial, cas-
caded, and parallel models, widely discussed
implemented models of spoken word production in the
literature, such as themodel of Dell (1986), Dell, Schwartz,
Martin, Saffran, andGagnon (1997), Dell, Schwartz, Nozari,
Faseyitan, and Coslett (2013), and WEAVER++ (Levelt,
Roelofs, & Meyer, 1999; Roelofs, 2008, 2014), have both
serial and cascaded aspects. Thesemodelsmake a distinc-
tion between spreading activation in a lexical network
and selection of nodes from the network. Whereas acti-
vation cascades through the network, nodes at different
processing levels are selected sequentially.

For example, Dell (1986) and Dell et al. (1997, 2013)
assume a network of conceptual feature, word, and
phoneme nodes. Word planning starts by boosting the
activation of the relevant conceptual features, activation
cascades from conceptual features via word nodes to
phoneme nodes, and selection of the highest activated
word node occurs after eight time steps. Then, the acti-
vation of the selected word is boosted, and the highest
activated onset, nucleus, and coda phoneme nodes are
selected after eight time steps. Thus, although activation
cascades through the network, word and phoneme
selection processes are serial in that the phoneme
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selection process starts only after a word node has been
selected. The word selection process lasts eight time
steps, followed by the phoneme selection process
lasting another eight time steps. During the word selec-
tion process (i.e. the first eight time steps), phonemes are
activated in the network. However, word and phoneme
selection processes do not overlap in time (i.e. they
occur in the first and second eight time steps). The
WEAVER++ model assumes concept, lemma, morpheme,
phoneme, and syllable program nodes. Activation
spreads from concept to syllable program nodes in a cas-
cading fashion (Roelofs, 2008), but nodes at different
processing levels are selected sequentially, as in the
model of Dell and colleagues. Thus, extant compu-
tational models of word production have both cascaded
and serial aspects, in line with the observation of a “cas-
cading sequence of overlapping activity moving through
the brain” (p. 454) by Munding et al. (2016a).

However, one of the studies in the meta-analysis by
Munding et al. (2016a) reported deviant findings. In the
study of Miozzo, Pulvermüller, and Hauk (2015), concep-
tual and phonological manipulations influenced the MEG

response at peak latencies of 150 and 141 ms, respect-
ively. The mean picture naming RT was 722 ms. It is unli-
kely that speakers completed phonological code
retrieval within 141 ms, and then took the remaining
581 ms to complete syllabification, phonetic encoding,
and articulation (which should take some 150–200 ms,
according to Indefrey, 2011; Indefrey & Levelt, 2004). In
terms of the computational models, perhaps the early
MEG response reflected phonological code activation
rather than phonological code selection. Alternatively,
perhaps the phonological manipulation was confounded
with an uncontrolled but correlated conceptual factor,
such as conceptual familiarity (e.g. Shao, Roelofs, &
Meyer, 2014). Based on their findings, Miozzo et al.
argued for a parallel model (see also Strijkers & Costa,
2016a, 2016b), but see Indefrey (2016) for
counterarguments.

Conclusion

Ameta-analysis of MEG studies by Munding et al. (2016a)
provided evidence for sequential but overlapping stage

Figure 1. Activity of stages underlying picture naming across studies under a serial model. The stage durations are shown for pro-
portional rescaling (A) and informed rescaling (B) based on the mean picture naming latency. For each type of rescaling, the range
of stage durations across studies and the median duration of each stage (vertical line) are shown. The saturation of the colours indicates
the degree of stage overlap across studies, with higher saturation indicating more overlap.
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activity. We showed that if RTs differ among studies, col-
lapsing time windows of MEG activity across studies
yields such overlap of stage activity even under serial
models. Moreover, sequential but overlapping stage
activity is also expected under prominent computation-
ally implemented models of spoken word production,
which assume cascading of activation and serial selec-
tion. We conclude that serial and serial/cascaded
models are compatible with the outcomes of the MEG
meta-analysis.
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