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Abstract Different climate drivers influence precipitation in different ways. Here we use radiative kernels
to understand the influence of rapid adjustment processes on precipitation in climate models. Rapid
adjustments are generally triggered by the initial heating or cooling of the atmosphere from an external
climate driver. For precipitation changes, rapid adjustments due to changes in temperature, water vapor, and
clouds are most important. In this study we have investigated five climate drivers (CO2, CH4, solar irradiance,
black carbon, and sulfate aerosols). The fast precipitation responses to a doubling of CO2 and a 10-fold
increase in black carbon are found to be similar, despite very different instantaneous changes in the radiative
cooling, individual rapid adjustments, and sensible heating. The model diversity in rapid adjustments is
smaller for the experiment involving an increase in the solar irradiance compared to the other climate driver
perturbations, and this is also seen in the precipitation changes.

Plain Language Summary Future projections of precipitation changes are uncertain, both on
regional and global scales. Understanding the climate models’ diversity of precipitation change and how
these models respond to various climate drivers, such as greenhouse gases and aerosols, is a key topic in
climate research. Using sophisticated techniques, we quantify the processes altering precipitation changes
on a short time scale and show that changes in the vertical profile of temperature, water vapor, and
clouds contribute very differently to precipitation changes for various climate drivers. Our results show that
model diversity in precipitation changes varies strongly between the climate drivers.

1. Introduction

Global and regional projections of precipitation changes are uncertain (Flato et al., 2013; Knutti & Sedlacek,
2013). Although some of the regional and seasonal precipitation changes are robust between global climate
models (GCMs) and resemble observed patterns (IPCC, 2013), many areas lie in the transition zone between
drier and wetter regions and have highly uncertain GCM projections. The precipitation changes from a single
climate driver, such as CO2, are not well constrained (Richardson, Forster et al., 2016). This is exacerbated for
historical and future predictions when several climate drivers contribute to precipitation changes. Internal
variability of the climate system further complicates the picture when comparing observed and
simulated changes.

On a global scale, the precipitation change is tightly coupled to the energy budget (Allen & Ingram, 2002;
Fläschner et al., 2016; Myhre et al., 2017; O’Gorman et al., 2012; Pendergrass & Hartmann, 2014). Since various
climate drivers influence the total radiative cooling differently (Andrews et al., 2010; Ming et al., 2010), under-
standing these differences better can also help to understand projections of regional precipitation changes.
In this respect it is valuable if the intermodel variability is smaller or larger for any of the climate drivers.
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Precipitation changes can be divided into a fast response and a slow response (Andrews et al., 2010), where
the latter is purely driven by climate feedback processes through changes in the surface temperature.
Richardson et al. (2018) show that the slow precipitation change is very similar for different climate drivers,
but for the fast response, there are large differences. Andrews et al. (2010) showed that the fast precipitation
change scales with atmospheric absorption, while the slow changes scale with top of the atmosphere (TOA)
forcing. This has been supported in a multimodel study (Samset et al., 2016). The fast precipitation change
can further be divided into two effects: those caused by the climate drivers’ instantaneous change in radiative
cooling (Myhre et al., 2017) and those caused by rapid adjustments (RAs) in water vapor, temperature, and
clouds, which occur as a response to the fast tropospheric radiative cooling (Boucher et al., 2013;
Sherwood et al., 2015). Additionally, sensible heat influences precipitation changes on fast and slow time
scales (Myhre et al., 2018).

In this study, we separate the instantaneous and RA contribution to fast precipitation changes to further
contribute to the understanding how different climate drivers influence the global precipitation changes.

2. Methods
2.1. Climate Model Simulations

We use GCM simulations from 11 modeling groups within the Precipitation Driver Response Model
Intercomparison Project (PDRMIP) initiative (Myhre et al., 2017). In addition to the 10 models described in
Myhre et al. (2017), simulations from the ECHAM-HAM model are included for one of the PDRMIP perturba-
tions (see Figure S1 in the supporting information for details). The ECHAM-HAM model has many similarities
with the MPI-ESM model, described by Myhre et al. (2017, Table 3), except that ECHAM-HAM includes the
microphysical aerosol model HAM (Zhang et al., 2012) and a different two-moment cloud microphysics
scheme (Lohmann et al., 2007). In PDRMIP, simulations of at least 15 years using fixed sea-surface tempera-
tures (fsst) and 100 years using a fully coupled ocean are included. Following Forster et al. (2016) and
Richardson, Samset et al. (2016), fast changes in precipitation and radiative cooling are diagnosed using
the average of years 6–15 of the fsst experiments. The fsst experiments include a small land surface warming.
Slow changes are diagnosed by subtracting the fast change from the total change calculated from the last
50 years of the fully coupled simulations. Results from the five core PDRMIP perturbation simulations are used
in this study; a doubling of CO2 concentrations (denoted CO2x2), a tripling of CH4 concentrations (CH4x3), a
2% increase in solar insolation (Solar), a 10-fold increase in black carbon (BC) concentrations or emissions
(BCx10), and a fivefold increase in SO4 concentrations or emissions (Sulx5).

2.2. Calculating Rapid Adjustments Using Radiative Kernels

The radiative kernel technique (Soden et al., 2008) is applied to the atmospheric energy budget (Fläschner
et al., 2016; Previdi, 2010) to quantify individual RAs and their collective contribution to atmospheric radiative
cooling. In this approach, an RA in surface temperature, air temperature, surface albedo, or water vapor is the
product of the direct radiative response to an incremental change in the respective variable and the total cli-
mate response of that variable. The former term is the radiative kernel, derived from a single offline radiative
transfer model, while the latter is estimated from the response of a given PDRMIP model. For a robust evalua-
tion of each RA, we use five sets of radiative kernels generated from HadGEM2 (Smith et al., 2018), GFDL
(Soden et al., 2008), NCAR-CESM (Pendergrass et al., 2018), ECHAM6 (Block & Mauritsen, 2013), and new radia-
tive kernels (Text S1 in the supporting information) from the Oslo radiative transfer model (Myhre et al., 2011).
Cloud adjustments are estimated from the change in cloud radiative forcing corrected for the cloud masking
of noncloud adjustments and instantaneous radiative perturbation (Soden et al., 2004, 2008), herein referred
to as the kernel cloud-masking method. Using the Oslo radiative transfer model, cloud and water vapor
adjustments are estimated from an alternative method akin to the partial radiative perturbation approach
(Colman & McAvaney, 1997), described in Text S1.

Radiative cooling (dQ) is defined as the difference between top of the atmosphere and surface flux changes,
where the global radiative cooling constrains precipitation changes (dP) and changes in sensible heat (dSH)
through the following equation: LdP = dQ � dSH, where L is the latent heat of vaporization. All results are
given for global and annual mean conditions. From the fsst PDRMIP model output, dP, dQ, and dSH are
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calculated as 10-year means (6–15 years). Here we separate the initial (instantaneous) and RA contributions to
dQ, calculating RA using radiative kernels and the initial perturbation as the residual between dQ and RA.

3. Results
3.1. Individual Rapid Adjustment Contributions

Figure 1 shows various RA terms and the total RA for each of the PDRMIP models for five PDRMIP perturba-
tions, where positive values indicate radiative cooling (causing a positive change in precipitation). The main
diversity in RA among the PDRMIP models is from temperature, water vapor, and clouds. As there are sub-
stantial differences in stratospheric temperature changes between the PDRMIP perturbations (Stjern et al.,
2017), we look separately at tropospheric and stratospheric temperature changes in Figure 1. The tropopause
is defined as 100 hPa at the equator, increasing linearly with latitude to 300 hPa at the poles. In the cases
where results from several radiative kernels are available, a mean is provided. Figure S1 shows all the results
from individual PDRMIP models and individual radiative kernels.

The total RA reduces the radiative cooling for CO2x2 and increases it for Solar and BCx10. For CH4x3 and Sulx5
the signals are weaker. The difference in total RA between CO2x2 and BCx10 originates from very different
responses in clouds and stratospheric temperature.

An increase in surface temperature leads to more longwave (LW) absorption in the atmosphere and thus
reduced radiative cooling. On the other hand, an increase in temperature in the atmosphere causes more
radiation to be emitted to space and toward the surface, therefore increasing radiative cooling. Shortwave
(SW) absorption due to water vapor enhances the atmospheric absorption (causing reduced radiative cool-
ing), whereas the LW may either increase or decrease the radiative cooling depending on the altitude of
the water vapor changes (Previdi, 2010). Surface albedo changes have little impact on the radiative cooling.
In CO2x2, a reduction in low level clouds and an increase in high clouds reduce radiative cooling. This is in
contrast to BCx10, where an increase in low level clouds and a reduction in middle and high level clouds
enhance radiative cooling. See Stjern et al. (2017) for changes in the vertical profiles of clouds in the
PDRMIP simulations.

For CO2x2 the tropospheric and stratospheric temperature rapid adjustments are opposite in sign. LW radia-
tive cooling is driven by a warming troposphere and offset by a cooling stratosphere, a well-known

Figure 1. Rapid adjustment terms (surface temperature, tropospheric temperature, stratospheric temperature, water
vapor, albedo, and clouds) and the total rapid adjustment for the various Precipitation Driver Response Model
Intercomparison Project (PDRMIP) models given for five core PDRMIP perturbations. Positive flux changes show radiative
cooling (causing an increase in precipitation). The bars show the 25–75% ranges and whiskers showing maximum to
minimum ranges of the PDRMIP models. The medians are shown with solid lines and the means with dotted lines.
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fingerprint of CO2 forcing. For Sulx5 the stratosphere warms slightly, in contrast to the cooling troposphere,
whereas for CH4x3, the sign of the stratospheric adjustment depends on whether or not SW absorption of
methane is included in the model’s radiation scheme (Smith et al., 2018).

The model diversity is large in the BCx10 perturbation, at least partly due to different burdens, vertical pro-
files, and optical properties of BC (Stjern et al., 2017). Despite this large spread in the total RA for BCx10,
the individual RA terms are mostly consistent among the PDRMIP models in terms of sign. Interestingly,
the spread in RA caused by clouds is smaller in magnitude than the spread in RA from temperature changes
for BCx10. For this experiment the maximum to minimum range for the PDRMIP models is a factor 2 smaller
for clouds compared to tropospheric temperatures. Model diversity in total RA is also significant for CO2x2,
but this spread is not dominated by any of the individual RA terms specifically. Notably, the model diversity
for the Solar perturbation is much smaller than for any of the other PDRMIP perturbations—both for the total
RA and the individual RA terms.

3.2. Rapid Adjustment Contributions to Fast Precipitation Changes

Figure 2 shows the PDRMIP model-mean contribution of the instantaneous radiative perturbation, RA, and
sensible heat to fast precipitation changes. The fast precipitation changes are caused by very different factors
in the PDRMIP simulations, as exemplified by CO2x2 and BCx10, which have almost the same fast precipita-
tion change but for very different reasons. The changes in precipitation amounts to a model-mean flux
change of about�2.5 and�2.0 Wm�2 or around�25 mm/yr. To a large degree RA and reduction in sensible
heat (Myhre et al., 2018) offset the strong instantaneous atmospheric absorption for BCx10, whereas for
CO2x2 the fast precipitation change is caused by almost equal contributions from instantaneous atmospheric
absorption and RA. The RA offsets the instantaneous atmospheric absorption changes for CH4x3 and Solar,
causing weak fast precipitation changes. All terms are weak for Sulx5 causing a very small fast
precipitation change.

In Figure 2, the instantaneous contribution was calculated as a residual between the dQ calculated from
model output of radiative fluxes and the total RA, estimated from radiative kernels. To investigate the uncer-
tainty in this assumption we have used simulations where the instantaneous radiative cooling is known.
Figure 3 shows the LW radiative cooling from the fsst simulations where the LW instantaneous radiative cool-
ing is zero (or extremely small). For all Solar cases the LW instantaneous radiative cooling is zero, for BCx10 it
is zero or very small, and for some of the Sulx5 cases it is zero (for those models neglecting aerosol-cloud
interactions). In these cases, the residual between dQ and RA should be very small or zero.

Figure 2. Contribution to fast precipitation change (dP) from instantaneous perturbation (Inst), rapid adjustment (RA), and
sensible heat (-dSH). Model mean for the PDRMIP models is shown. Inst is taken as the residual betweenmodel simulations
of dQ and RA. The whiskers show one standard deviation among the PDRMIP models.
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For all of the Solar and BCx10 cases the calculated RA from the kernel methods has the same sign as the
model simulations of dQ. The residuals are, with a few exceptions, small. In general the residuals are less than
20% of LW dQ or less than 0.2 Wm�2. The largest residual is for the CanESMmodel for the BCx10 case. This is a
model with a small BC absorption included in the LW spectrum, but we assume this absorption to be suffi-
ciently weak (Bäumer et al., 2007) to justify inclusion in the figure. A PDRMIP model-mean of the residual is
11%, 4%, and 19% of the dQ for Solar, BCx10, and SO4x5, respectively. Using the same approach, SW dQ,
RA, and the residual are shown for CH4x3 in Figure S2 for those models with no SW absorption by CH4.
The SW dQ is weak for CH4x3 and much smaller in magnitude than the LW dQ for Solar and BCx10.
Calculated residuals for CH4x3 for the SW are also small in magnitude and are dominated by meteorological
variability, with the exception of HadGEM2, which shows slight nonlinear behavior (Smith et al., 2018).

3.3. Rapid Adjustment Contributions to Total Precipitation Changes

In a decomposition of total precipitation change into fast and slow changes, Andrews et al. (2010) showed
that TOA effective radiative forcing (ERF) is a strong predictor of the slow precipitation response (their
Figure 2b). This holds because surface temperature change is both a response to TOA ERF and a driver of slow

Figure 3. The longwave (LW) fast radiative cooling (dQ), where the LW instantaneous radiative cooling is zero (or extremely
small). For all solar cases the LW instantaneous radiative cooling is zero, for BCx10 the LW instantaneous radiative cooling is
zero or very small, and for some of the Sulx5 cases the LW instantaneous radiative cooling is zero (for those models
neglecting aerosol-cloud interactions). The LW dQ is the output from the PDRMIP models, and the LW rapid adjustment
(RA) is calculated by the radiative kernel methods. The residuals are the difference between LW dQ and the LW RA.

Figure 4. Net precipitation changes for the five Precipitation Driver Response Model Intercomparison Project climate dri-
vers split into fast and slow changes (thin bars). The thick bars show the fast and slow precipitation changes split into
instantaneous, rapid adjustment (hatched), and changes in sensible heat.
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precipitation changes. Since RA is an important component of ERF at the TOA (Smith et al., 2018), it follows
that RA also influences slow precipitation changes. Here we investigate the radiative constraints on total pre-
cipitation change by evaluating the relative contributions of instantaneous perturbations and RA to fast and
slow precipitation changes. The split between the instantaneous and RA is performed using kernels, whereas
the split between fast and slow precipitation changes is calculated directly from the PDRMIP simulations (see
section 2).

Figure 4 shows the model-mean total precipitation change and its decomposition into fast and slow precipi-
tation change. Furthermore, the instantaneous radiative perturbation and RA that dictate the fast and slow
precipitation change are shown. Corresponding to the fast precipitation response, the split between instan-
taneous and RA contributions to radiative cooling are taken from Figure 2 (herein IF and RAF). The contribu-
tions of instantaneous perturbations and RA to the slow precipitation response (herein Is and RAs) are
calculated by linearly scaling the slow radiative cooling change by the instantaneous radiative forcing and
RA at the TOA. The TOA flux changes are taken from Smith et al. (2018) and listed in Table S1 in the supporting
information. Their scaled contributions to radiative cooling (through change in surface temperature) are
given in Table S2. The radiative cooling (dQ) per change in TOA ERF has a PDRMIP multimodel mean of about
1.3 for the climate drivers, except for BCx10 where it is close to 1.0. This radiative cooling can be derived from
adding IS and RAS in Table S2, whereas ERF is given in Table S1. Fast and slow changes in sensible heat are
also included; thus, all contributions to precipitation changes are accounted for.

The relative contribution of fast versus slow precipitation change to total precipitation change differs across
PDRMIP drivers, as do the contributions of instantaneous perturbations and RA. The RA for CO2x2 enhances
the instantaneous perturbation changes both for the slow and the fast change (TOA radiative forcing and
atmospheric radiative cooling, respectively). This is opposite to the BCx10 case where the RA offsets the
instantaneous changes. The combined effect of RA on fast and slow precipitation changes is a small positive
contribution to total precipitation change for all PDRMIP drivers, except for a very weak negative change for
the Solar case and Sulx5 (see Table S2). For some of the RA terms the influence on TOA forcing and atmo-
spheric radiative cooling is opposite, such as for tropospheric temperature changes, whereas for surface tem-
perature changes the influence has the same sign (compare Figure 1 with Figure 3 from Smith et al., 2018).
Robust relationships between RAS and RAF for the respective water vapor and cloud adjustments are less
obvious than for temperature adjustments since these are strongly dependent on vertical profiles, and both
LW and SW contributions are important. In Sulx5 all terms other than the instantaneous TOA forcing are small.

4. Summary and Conclusions

Rapid adjustment is crucial in the understanding of the global precipitation changes and differences among
climate drivers. The RAs have a strong influence on fast and slow precipitation changes, in particular for
changes in the atmospheric abundance of CO2 and BC. However, the RA influence on total precipitation
changes is small for the climate drivers investigated in this study since the contribution of RA to TOA ERF
and radiative cooling partly cancel each other.

We have used radiative kernels to quantify RA and show that for cases where RA can also be approximated by
dQ from PDRMIP model output (since the instantaneous perturbations are small), the residuals are less than
20% or 0.2 Wm�2. There are some differences among the five radiative kernels used in this study, but this
difference is generally smaller than the spread among the PDRMIP models in the various RA terms. It is note-
worthy that there is much smaller PDRMIPmodel diversity in our calculated RA for the Solar case compared to
CO2x2. This can also be seen from the direct model output of precipitation and sensible heat changes.
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