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Abstract
Strong positional correlations between particles render the diffusion of a tracer particle in a single file
anomalous and non-Markovian.While ensemble average observables of tracer particles are nowadays
well understood, little is known about the statistics of the corresponding functionals, i.e. the time-
average observables. It even remains unclear how the non-Markovian nature emerges from
correlations between particle trajectories at different times.Here, wefirst present rigorous results for
fluctuations and two-tag correlations of general bounded functionals of ergodicMarkov processes
with a diagonalizable propagator. They relate the statistics of functionals on arbitrary time-scales to
the relaxation eigenspectrum. Thenwe study tagged particle local times—the time a tracer particle
spends at some predefined location along a single trajectory up to a time t. Exact results are derived for
one- and two-tag local times, which reveal how the individual particles’ histories become correlated at
higher densities because each consecutive displacement along a trajectory requires collective
rearrangements. Our results unveil the intricatemeaning of projection-inducedmemory on a
trajectory level, invisible to ensemble-average observables, and allow for a detailed analysis of single-
file experiments probing tagged particle exploration statistics.

1. Introduction

Single-file dynamics refers to themotion of particles in a narrow, effectively one-dimensional channel, which
prevents their crossing, and is central to the transport in biological channels [1] the kinetics of transcription
regulation [2], transport in zeolites [3] and in superionic conductors [4]. Recent advances in single-particle
tracking and nanofluidics enabled experimental studies of singlefile dynamics in colloidal systems, which
directly probe the fundamental physical principles of tagged particlemotion to an unprecedented
precision [5, 6].

Themotion of particles in a singlefile is strongly correlated, which gives rise to a rich and intricate
phenomenology. In a Brownian single file the non-crossing constraint leads to subdiffusionwith the ensemble
mean squared displacement (MSD) of a tagged particle scaling as x t x t0 2á - ñ µ[ ( ) ( )] [7].When confined to
afinite interval the subdiffusive scaling of theMSD is transient, saturating at an equilibrium variance, with the
extent of the subdiffusive regime growingwith the particle density (see figure 1(a) and [8]). Concurrently, an
effective harmonization emerges at increasing density, with the invariantmeasure of a tagged particle
approaching aGaussian and a vanishing kurtosis excess x x 32

4
eq

2
eq
2g = á ñ á ñ - (see inset offigure 1(a)).More

generally it holds that theMSDof a tagged particle in an unconfined singlefile and the absolute dispersion of a
free particle in the limit t  ¥ are related via x t x x t0 2

freeá - ñ µ á ñ[ ( ) ( )] ∣ ( )∣ [9]. Themotion of particles on a
many-body level isMarkovian, the resulting tagged particle dynamics is, however, highly non-Markovian [8],
and displays a staggering dependence on the respective initial conditions [10].

Tremendous effort has beenmade to study the tagged particle dynamics theoretically [11]. In particular, the
tagged particle ensemble propagator has been studied using the ‘reflection principle’ [12], Jepsenmapping [13],
momentumBethe ansatz [8], harmonization techniques [14], andmacroscopic fluctuation [15] and large
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deviation (LD) [16] theory. Notwithstanding, theseworks, with isolated exceptions [17], focused on ensemble-
average properties alone. State-of-the-art experiments, however, albeit probing particle trajectories and thereby
providing direct access to functionals of paths, are typically analyzed using ensemble-average concepts (see e.g.
[5, 6]). The analysis of functionals of tagged particle trajectories is thus not only feasible but alsomore natural
than studying ensemble-average observables.Moreover, to arrive at a deeper physical understanding of
projection-inducedmemory effects and resulting non-Markovianity, an understanding of the correlations of
particle histories and their decorrelation on ergodic time-scales is required.

In particular, we here focus on the trajectory-, or time-average analogue of the tagged particle ensemble
propagator [8]. Any time-average observable can be constructed from the local time fraction (see equation (A4)
in appendix A), which is defined as (see figure 1(b))

y t x d , 1t
j

t

y
j1

0
òq t t= -( ) [ ( )] ( )

where x 1y
j t =[ ( )] if x ydj Î centered at y, and zero otherwise [18]. yt

jq ( ) in equation (1) is a randomquantity

denoting the fraction of the local time, t yt
jq ( )— the time the tagged particle j spends in an infinitesimal region

around the point y along a trajectory up until time t. t x t x tx , , N
T

1º ¼( ) ( ( ) ( )) denotes themany-body
trajectorywritten in vector form. The dynamics of a tagged particle xi(t) irrespective of the otherN−1 is not
Markovian, and any two tagged particle trajectories xi(t) and xj(t) are correlated on all but ergodically long times.
We focus on thefluctuations and two-tag correlations of local time fractions

t x x , 2x t
i

t
i2 2 2

i
s q q= á ñ - á ñ( ) ( ) ( ) ( )

t x y x y , 3xy
ij

t
i

t
j

t
i

t
j q q q q= á ñ - á ñá ñ( ) ( ) ( ) ( ) ( ) ( )

where á ñ denotes the average over allN-particle trajectories starting from the steady-state (in this case
Boltzmann equilibrium) and propagating up to time t. Note that for ergodicMarkov dynamics

tlim 0t x
2

i
s =¥ ( ) and tlim 0t xy

ij =¥ ( ) , reflecting the fact that on ergodically long time-scales time-average
observables become deterministic and correlations between them vanish.

A general theory of local times in such correlated non-Markovian dynamics so far remained elusive. And
while the statistics of functionals of the form in equation (1) in one-dimensional stochastic processes have been
studied extensively in a variety offields [19, 20], studies of tagged particle functionals in interactingmany-body
systems are sparse, andmostly limited to extreme value statistics of vicious walkers (see e.g. [21]).

Here, we present rigorous results for variances and two-tag correlations of bounded functionals1 of
Markovian dynamics on arbitrary time-scales, in terms of the relaxation eigenspectrumof the corresponding
propagator. The theory also covers the case, when a higher-dimensional dynamics is projected onto a smaller
subspace thereby leading to non-Markovian dynamics on the reduced subspace, a hallmark example thereof
being tagged-particle dynamics in a singlefile. The theory applies to all ergodicMarkovian systemswith a
diagonalizable propagator. As an examplewe study tagged particle local times in a singlefile of Brownian point
particles in a box. Diagonalizing themany-body propagator using the coordinate Bethe ansatz, our results
uncover non-Poissonian trajectory-to-trajectory fluctuations of local times, and a cross-over fromnegatively to

Figure 1. (a)MSDof the central particle in a single file with increasing particle numberN starting from equilibrium initial conditions.
Time ismeasured in units of themean number of collisions t Dt N 2=˜ . Inset: Kurtosis excess of the invariantmeasure of the central
particle depending onN; (b) trajectories of two next-nearest neighbor particles in a singlefile of 11 particles (red and blue curves)
alongside the respective left and right nearest neighbors (gray curves). Overlaid are corresponding local time fractions up to a time t, t

iq
in the respective red and blue shaded intervals. The remaining particle trajectories are omitted for convenience.

1
We consider functionals V tx[ ( )]ofMarkovian trajectories tx( ), for which V t tx ,< ¥ "[ ( )] with probability 1 (see e.g. [19]).
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positively correlated two-tag particle histories upon increasing density,mirroring the emergence of collective
fluctuations breakingMarkovianity in tagged particlemotion and leading to tracer subdiffusion. Clear and long-
lived deviations of local time statistics from shot-noise behavior demonstrate the insufficiency of harmonization
concepts for describing tracer diffusion on a trajectory level.More generally, the connection to the relaxation
spectrumprovides an intuitive understanding of non-Poissonian statistics at sub-ergodic times in a general
setting.

2.General theory

Weconsider a trajectory of a generalN-dimensional system tx( ) evolving according to Fokker–Planck or
discrete-stateMarkovian dynamics.We are interested in ergodic systemswith a unique steady-state P x( ) and
also assume steady state initial conditions. Due to ergodicity themean local time fraction yt

jqá ñ( ) under these

conditions is independent of t2 and coincideswith the invariantmeasure y y x Px xdt
j N

jòq dá ñ = -( ) ( ) ( ), where
we introduced theDirac delta function δ(x) (for a proof see equation (A8)). In the presence of detailed balance
(DB) P x( ) is the Boltzmann–Gibbsmeasure P xeq ( ).

Obtaining equations (2)–(3) essentially amounts to computing the probability generating function of the
joint local time functional given by the Feynman–Kac path integral

Q x y t t x t y, , 4u v
i j

u v
i

t
i j

t
j

,

i j

  d J q d J q= á - - ñ
J J( ∣ ) ˆ ˆ ( ( )) ( ( )) ( )

wherewe introduced the Laplace transform f fd es
s

0
 òJ J J=

J J¥ -ˆ ( ) ( ). Themoments in equations (2)–(3) are

obtained from x y t Q x y t,t
i n

t
j m

v
n

u
m

u v
i j

u v
2

, 0q qá ñ = ¶ ¶-
= =( ) ( ) ( ∣ )∣ with n+m=2. A straightforward general-

ization of the trotterization in [22] shows that Q x y t,u v
i j

, ( ∣ ) is the propagator of a tilted evolution operator (see
appendix A)

Q x y t, e ss

ss e , 5

u v
i j t L u v

t L u v

, x
i

y
j

x
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y
j

 

 

= á ñ

= á ñ

- + +

- + +

( ∣ ) –∣ ∣

∣ ∣– ( )

( ˆ )

( ˆ )†

where L̂ and L̂
†
denote the ‘bare’ forward and adjoint (backward) generator of theMarkov process [23], andwe

introduced the ‘flat’ x xdòñ º ñ∣– ∣ and steady states Px x xss dòñ = ñ∣ ( )∣ in the bra-ket notation, which are the left

(right) and right (left) ground eigenstates of L̂ (L̂†), respectively.We obtain exact expressions for themoments in
equations (2)–(3) by performing aDyson series-expansion of equation (A3) [24], converging for any bounded
functional of tx( ) (see proof in appendix A).

Having assumed diagonalizability of L̂
† (and L̂)3 , we expand the backward operator in a complete bi-

orthogonal set of left and right eigenstates4 , L k k k
L

k
Rl y y= å ñáˆ ∣ ∣†
,λk denoting the (possibly degenerate)

eigenvalues and k
L

l
R

kly y dá ñ =∣ . The details of the calculation of themoments are shown in appendix A.
Obviously, P xR

x
i L

0 0y yá ñ =∣ ∣ ( ), since the system is ergodic. The exact results for the variance and correlations
are conceptually remarkably simple and read

t
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t t
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wherewe introduced the auxiliary function x y,k i j
R

x
i

k
L

k
R

y
j L

0 0 y y y yW º á ñá ñ( ) ∣ ∣ ∣ ∣ . The exact LD limits of

equations (6)–(7) readily follow in the limit t 1
1l-

t t x x2 , , 8x
k

k k i i
2,LD 1

1

1
i


ås l W- -( ) ( ) ( )

t t x y y x, , , 9xy
ij

k
k k i j k j i

,LD 1

1

1

å l W + W- -( ) [ ( ) ( )] ( )

where; denotes asymptotic equality. Analogous formulas for LD limits of local times not connected to a
spectral expansion have also been developed (see e.g. [26]). Notably, for systems obeyingDB tx

2,LD
i

s ( ) sets a
universal upper bound on the variance of θt (compare equations (6) and (8)). The results in equations (6)–(9)
readily extend to arbitrary functionals t V x d

t1
0ò t t- ˆ [ ( )] with a bounded and local V̂ , by performing a simple

2
On the level of themean alone the time-ordering in the functional in equation (1) is not important (for a proof see equation (A8)).

3
A sufficient but not necessary condition guaranteeing diagonalizability is that that the operator is normal, i.e. commutes with its

adjoint, L L LL 0- =ˆ ˆ ˆ ˆ† †
.

4
Note that L k

R
k k

Ry l yñ = ñˆ∣ ∣ and L k
L

k k
Ly l yñ = ñˆ ∣ ∣† [25].
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exchange Vx
i  ˆ , modifying only x y,k i jW ( ) (see appendix A). Equations (6)–(7)with the aforementioned

generalizations apply to all diagonalizable L̂, thus including all systems obeyingDB, and represent ourfirstmain
result.

Equations (6)–(9) provide an intuitive understanding of local time statistics via amapping onto relaxation
eigenmodes, with fluctuation and correlation amplitudes proportional to the sumof transition amplitudes of
excitations from the steady state to excited states and back, x y,k i jW ( ). On ergodic time scales θt at different t

decorrelate, and hence display features of shot-noise, i.e. tx
2

i
s ( ) and txy

ij ( ) decay inversely proportional to the
number of independent observations of each excitationmode, tk

1l~ - . Atfinite times t k
1 l- shot-noise

statistics are altered due to a finite survival probability of the eigenmodes at a given t, 1 e t
k

k l- l-( ) k" , setting
a hierarchy of correlation times k

1l- (see correction terms in brackets of equations (6)–(7)).

3. Local times in single-file diffusion

Consider the dynamics ofN identical hard-core interacting Brownian point particles diffusing in the unit
interval 0, 1[ ], and setD=1without loss of generality. The extension to a finite particle radius follows from a

trivial change of coordinates [8]. Let P tx x x x, e tL
0 0º á ñ-( ∣ ) ∣ ∣ˆ†

denote theN-particle backward propagator of the
singlefile with the following backward generator and N 1- internal non-crossing boundary conditions:

L P t ix x, lim , 0 . 10
i

N

x
x x

x x
1

2
0i

i i
i i

1
0, 1 0,å= - ¶ ¶ - ¶ = "

= +
+

ˆ ( ) ( ∣ ) ( )†

Confinement into a unit interval is imposed through external reflecting boundary conditions

P t P tx x x x, , 0x x x x0 0 0 1N N1 0,1 0,
¶ = ¶ == =( ∣ )∣ ( ∣ )∣ . Under these boundary conditionswe diagonalize L̂† using the

coordinate Bethe ansatz [27]5 and obtain the Bethe eigenvalues kk i i
2 2l p= å and corresponding left and right

eigenvectors

k xx x 2 cos 11k
L

k
L

k i

N

i i
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1 2

i

ki,0åy y pº á ñ = ¢ d
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( )

and mx x xk
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k
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k k
Ly y yº á ñ =( ) ∣ ( )with k

R
l
L

k l,y y dá ñ =∣ ,wheremk is themultiplicityof theBethe eigenmode

k
Ly ñ∣ (see appendixC), and ki

å ¢{ } denotes the sumover all permutationsof single-particle eigenvalueswith ki 0Î .
Thematrix elements entering x y,k i jW ( ) follow upon integration over the nl and nr particle coordinates to the

left and right, respectively, from the tagged particle iwhile strictly preserving the particle ordering [8], yielding
(see appendix B) k

R
x
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 y y y yá ñ = á ñ∣ ∣ ∣ ∣! . In equation (12)wehave defined the auxiliary functions
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This delivers exact results for tx
2

i
s ( ) and txy

ij ( ) in equations (6)–(8). An efficient numerical implementation of
our analytical results can bemade available upon request.

The results for tx
2

i
s ( ) in equation (6) for the central particle in single files with variousN are depicted in

figure 2, and reflect largefluctuations exceeding 200%on time-scales where roughly only 50%of the particles
have collidedwith their neighbors. Thefluctuations display a non-trivial dependence on x, which does not
follow the shape of P x N x x n n1t t

n
t

n
l req

l r= -( ) ! ( ) ( ! !), and reveal striking boundary-layer effects. These
deviations are clear evidence for non-Poissonian statistics and signal that harmonization concepts, which
assume a locally equilibrated environment [14], break down on themore fundamental trajectory level. At longer
t, where∼50–100 collisions/particle have occured, t

iq at different t become uncorrelated according to the central
limit theorem,with tx

2
c

s ( ) converging to its LD limit (8). On these time-scales the ensembleMSDhas already
saturated (compare figures 1(a) and 2(c) and (d)). Notably, LD asymptotics correctly capture only small
fluctuations of the order±10%.As noted above and confirmed by simulations, LDs reflectingGaussian statistics
set an upper bound to thefluctuations of t

iq (figures 2(c) and (d)).
Single-file diffusion displays no time-scale separation in the relaxation spectrum. As a result, the projection

of dynamics onto a tagged particle coordinate induces subdiffusion and strong non-Markovianity on time scales
t 1

1l< - . The respective onset of the t scaling of the tagged particleMSD shifts to shorter t upon increasingN

5
Note the difference with respect to themomentum-space Bethe ansatz solution [8], which does not diagonalize L̂.
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(figure 1(a)). IncreasingN in turn leads to a high degeneracy of Bethe eigenmodes, reflecting emerging
dynamical symmetries (see appendix F). As a result, fewer Bethemodes are required for a convergence of the
sums in equations (6)–(7).

To gaindeeper insight into thephysical origin of thememoryon a trajectory levelweanalyzed two-tag
correlations betweenparticle histories bymeans of the reduced covariance of local times

t t x yxy
ij

xy
ij

t
i

t
j  q q= á ñá ñ˜ ( ) ( ) ( ( ) ( ) ), with t 1,xy

ij Î - ¥˜ ( ) [ ). Correlations between thehistories of the central
particle c and its nearest (i.e. c 1+ ) andnext-nearest (i.e. c 2+ )neighbors at themidpoint between themaximaof
P xceq ( ) and P xc ceq 1, 2+ +( ) (see appendix E andH for details) are depicted infigure 3.Due to ergodicity, xt

iq ( ) become

veryweakly correlated at long t andGaussian statistics emerge.Consequently, txy
ij̃ ( ) vanishes for long times, after

102 collisions tookplace on average.Note that txy
ij ( )measures correlations betweenparticle histories andnot

particle positions. The latter never decorrelate, i.e. two-tag position correlation functions display an algebraic decay
even at equilibrium P x x N x x x x n m m n P x P x, 1 0ij

i j i
n

j i
m n

j
m

l r l l i jeq eq eq
l l l r= - - - - ¹-( ) ! ( ) ( ) ( ! !( )!) ( ) ( ) ,

where nl r, and ml r, are thenumber of particles to the left/right of the two taggedparticles i and j (for details see
appendixG).

Notably, we observe a transition fromnegatively to positively correlated tagged particle histories upon
increasing density (figure 3), mirroring a change in particle dynamics from single-particle to collective
fluctuations. The driving force for this transition can be found in an enhanced packing at higher densities
resembling a ‘crystallization’ transition, where invariant tagged particle densities P xeq ( ) become strongly
overlapping, whereas their respective widths shrink only very slowly (see figureD1). The ‘critical’ density, at
which the behavior shifts fromnegatively to positively correlated histories, depends on the topological
separation between the two tagged particles and is shifted to higher values ofN formore distant particles
(compare (a) and (b) infigure 3). In turn, this reflects a growing dynamical correlation-lengthwith increasingN.
As themathematical reason for the sign-change are different signs of leading eigenvectors entering the respective
elements (see equation (12)), the transitionwill eventually occur of any tagged pair.Moreover, upon increasing

N, txy
ii̃ ( ) of the central particle becomes non-monotonic, withweak anti-correlations at short t turning toweak

correlations at large t, before reaching the LD limit of uncorrelated histories, where harmonization [14] ideas
apply. The increasingly positive correlations with growingN reflect a persistence and afinite life-time of typical
collective fluctuations on a trajectory level, akin to glassy dynamics in kinetically constrainedmodels [28].
Accordingly, positive correlations are are not observed if we tag outer particles at external boundaries (see
appendixH). The exact results forfluctuations and correlations of local times in singlefile diffusion in

Figure 2. Statistics of local time fraction:mean, xt
iqá ñ( ) , (blue lines) andfluctuations reflected by the shaded area enclosed by black

lines corresponding to x tt
i

xiq sá ñ ( ) ( ) for (a) thefirst (green) and second (violet), and (b)first (green) and 8th (violet) tagged particle
in a single file withN=3 andN=10, respectively at three different lengths of trajectories. The black lines correspond to ‘error bars’
on afinite-time estimate of the probability density along a single trajectory starting in the steady-state. (c) and (d): reduced variance of
local time of the central particle t x 1 2x t

c
c1 2

2 2
c

s qá = ñ= ( ) ( ) for various oddN in order to preserve the symmetry. The full lines
denote exact results from equation (6) and dashed lines large deviation asymptotics equation (8). Symbols correspond toBrownian
dynamics simulation of an ensemble of 106 independent trajectories starting from equilibrium initial conditions.

5

New J. Phys. 20 (2018) 113021 A Lapolla andAGodec



equations (11)–(13), and the explanation of the origin of brokenMarkovianity on a trajectory level are our
secondmain result.

4. Conclusions

Weestablished a generalmethod for determining exactly the variance and two-tag correlations of bounded non-
negative functionals of stationary ergodicMarkov processes with a diagonalizable propagator. The theory relates
the statistics of functionals to the relaxation eigenspectrum, and allows for an exact treatment of non-Markovian
dynamics from the corresponding higher-dimensionalMarkovian embedding. It also holds for diagonalizable
irreversible dynamics, where a broken time-reversal symmetry can cause oscillations in higher order terms in
equations (6)–(9) and/orfluctuations exceeding the LD limit in equation (8). From the spectrumof themany-
body propagator obtained via the coordinate Bethe ansatz, we derived exact results for one- and two-tag local
times in singlefile diffusion, which unveiled non-trivial correlations between tagged particle histories and the
emergence of collective dynamics at increasing particle densities. Going beyond LD time-scales, our results
revealed that harmonization concepts, assuming dynamics in-between local equilibria—an assumption that
workswell for ensemble-average observables [14]—fail on themore fundamental trajectory level. This
highlights the intricate physicalmeaning of projection-inducedmemory on the level of single trajectories, which
is virtually invisible to ensemble-average observables. Our results on local times can be readily tested by existing
particle-tracking experiments (see e.g. [5]), and hopefully our theory will stimulate further research directed
towards tagged particle functionals. Particularly interestingwould be extensions to tagged particle dynamics in
rugged potential landscapes [29].
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AppendixA. Proof of themain result

Let tx( ) be an arbitrary-dimensional ergodicMarkov process on a discrete or continuous state-space. The
evolution of the probability density function evolves under the corresponding diagonalizable forward generator
L̂ (e.g. Fokker–Planck- or discrete-statemaster equation-type)with invariantmeasure P x( ) and the adjoint (i.e.
backward) generator L̂

†
. Let the respective eigenspectra be L k k k

R
k
Ll y y= å ñáˆ ∣ ∣, kl and L k k k

L
k
Rl y y= å ñáˆ ∣ ∣†
, kl

denoting the possibly degenerate and in general complex-valued eigenvalues. Note that L k
R

k k
Ry l yñ = ñˆ∣ ∣ and

Figure 3. t t x yxy
ij

xy
ij

t
i

t
j  q q= á ñá ñ˜ ( ) ( ) ( ( ) ( ) ), reduced two-tag local time correlation functions of the central particle c and its nearest

(a) and next-nearest (b)neighbor for differentN. Only oddNwere considered to assure the symmetry required for ameaningful
comparison. Time is expressed in units of themean collision time. Lines depict the theory in equation (7)whereas symbols correspond
to Brownian dynamics simulations of 106 independent trajectories starting from equilibrium initial conditions.
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L k
L

k k
Ly l yñ = ñˆ ∣ ∣†
, i.e. the left and right eigenstates span a bi-orthogonal eigenspace k

L
l
R

kly y dá ñ =∣ [25]. The
forward and backward propagators of the process can then bewritten as [25]

P t

P t

x x x x x x

x x x x x x

, e e

, e e . A1

tL

k
k
R

k
L t

tL

k
k
L

k
R t

f 0 0 0

b 0 0 0

k

k

å

å

y y

y y

= á ñ = á ñá ñ

= á ñ = á ñá ñ

l

l

- -

- -

( ∣ ) ∣ ∣ ∣ ∣

( ∣ ) ∣ ∣ ∣ ∣ ( )

ˆ

ˆ†

Obviously, for L̂ with a partially continuous spectrum6 the sumwould be replaced by the corresponding integral,

the probability density function of a bounded functional V x dt

t

0òj t t= ˆ [ ( )] over all paths starting from a

(potentially non-equlibrium) steady-state and propagating up to time t, is defined by the path integral

t P t Vx x x x xd d e d , A2
t

t
t

x x

x x
x

0 0
0 00

D ò ò ò òj d j t t= -
=

=
-( ∣ ) ( ) [ ( )] ( ˆ [ ( )] ) ( )

( )

( )
[ ( )]

with the corresponding stochastic action functional tx[ ( )]of the continuous [22, 30] or discrete state-space
[31]Markov process tx( ), andwherewe introduced theDirac delta function xd ( ). Bymeans of a straightforward
vectorial generalization of the trotterization of the the path integral (A2) in [19, 22] (for the backward and
forward approach, respectively), onefinds that the generating function, corresponding to the Laplace transform

u t td e u
0

 ò j j= j¥ -˜ ( ∣ ) ( ∣ ), is the propagator of a tilted operator

u t e ss ss e , A3t L uV t L uV = á ñ = á ñ- + - +˜ ( ∣ ) –∣ ∣ ∣ ∣– ( )( ˆ ˆ ) ( ˆ ˆ )†

wherewehave introduced the ‘flat’ x xdòñ º ñ∣– ∣ and steady states Px x xss dòñ = ñ∣ ( )∣ , which are the left (right)

and right (left) ground eigenstates of L̂ (L̂†), respectively. The last equality follows from u t u t =˜ ( ∣ ) ˜ ( ∣ )† † . In
taking the Laplace transformwe assumed that the functional has non-negative support (such as in the case of local
times). In case the support extends tonegative values one simply needs to take the Fourier transform instead.

Themoments of t j( ∣ ) at any given t follow immediately from u t1t
n n

u
n

u 0já ñ = - ¶ =( ) ˜ ( ∣ )∣ , where á ñ
denotes the average over all trajectories starting from a steady state and propagating up to time t. In case the
Fourier transform is used, a corresponding change of the prefactor is required.

For bounded functionals of ergodicMarkovprocesses allmoments arefinite,
f t limt

n
t t

nj já ñ á ñ < ¥¥∣ ∣ ( ) ∣ ∣ with a smooth scaling function f (t), whichdepends on the detailed formof

V txˆ [ ( )]. This follows from the fact that the integral is always over afinite time (see e.g. equation (1)) andhence
boundedness of the integrand assures the boundedness of the time-average observable.Moreover, t j( ∣ ) obeys a
LDprinciple [18, 32]. In the specific case of local times,V t tx xy

j=ˆ [ ( )] [ ( )]and f t tnµ( ) for t
njá ñ. Thefiniteness

ofmoments implies that u t̃ ( ∣ ) is an analytic (i.e. holomorphic) functionofu at least at andnearu=0 for any t.
Note that for boundedV txˆ [ ( )]we can alwayswrite

t V t t t V

V x t t t V

x x x x x

x x x x x x

d d d

d d d . A4

t t

t

t

0 0

0

ò ò ò

ò ò ò

d

d q

¢ ¢ = ¢ - ¢

= ¢ - ¢ º

ˆ [ ( )] ( ( )) ( )

( ) ( ( )) ( ) ( ) ( )

Toobtain exact results for secondmomentswe simply need to expand u t̃ ( ∣ ) in aDyson series to secondorder
in uV̂ preserving the time-ordering, and afterwards take the secondderivative atu=0. The series is guaranteed to
converge, since V̂ is bounded. Because trivially e ss ss e 1tL tLá ñ = á ñ =- -–∣ ∣ ∣ ∣–ˆ ˆ†

, theDyson expansion gives [24]

u t V

u t t V V u

ss e 1 ss d e e

ss d d e e e , A5

t L uV
t

L t t L t

t t
L t t L t t L t

0

2

0 0

3

ò

ò ò

á ñ = - á ¢ ñ

+ á ¢  ñ +

- + - - ¢ - ¢

¢
- - ¢ - ¢-  - 

∣ ∣– ∣ ˆ ∣–

∣ ˆ ˆ ∣– ( ) ( )

( ˆ ˆ ) ˆ ( ) ˆ

ˆ ( ) ˆ ( ) ˆ

† † †

† † †

with t t t 0  ¢  . An equivalent expansion can be obtained for L̂. TheDyson series (A5) converges
for u Î < ¥.

Wefirst prove the convergence for any bounded linear operator B̂. To this endwe consider the operator
norm. LetΨ be a complete normed linear space, and B : Y  Yˆ . The operator norm is then defined as
B Bsup 1 y= y =∣∣ ˆ∣∣ ∣∣ ˆ ∣∣∣∣ ∣∣ with y Î Y. The operator norm corresponds to the largest value B̂ stretches an element

ofΨ. Since B̂ is boundedwe have B B N,
N N " Î∣∣ ˆ ∣∣ ∣∣ ˆ∣∣ , which follows simply from AB A B∣∣ ˆ ˆ∣∣ ∣∣ ˆ ∣∣ ∣∣ ˆ∣∣. The

operator exponential is defined as the limit B ke limB
N k

N k
0= å¥ =

ˆ !ˆ and the convergence is in operator norm,

since B k B k N,k
N k

k
N k

0 0 å å " Î= =∣∣ ˆ !∣∣ ∣∣ ˆ∣∣ ! . The series on the right hand side converges absolutely for any

number B Î∣∣ ˆ∣∣ . Due to the completeness of the spaceΨ, eB̂ as well belongs to a complete normed linear space,

andmoreover e eB B∣∣ ∣∣ˆ ∣∣ ˆ∣∣ . Taking B uV=ˆ ˆ with u Î completes the proof of convergence of the series (A5).

6
The ground state is always discrete as we assume the existence of an invariantmeasure.
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Wenow show that the following results also hold for bounded nonlinear functionals V̂ such that the two-term
Dyson expansion in equation (A5) is always well-behaved. Utilizing the identities in equation (A4)we find that

V t Vx x xd , A6tò qá ñ = á ñ( ) ( ) ( )

V t V Vx x x x x xd d . A7t t
2 2ò ò q qá ñ = ¢ ¢ á ¢ ñ( ) ( ) ( ) ( ) ( )

Since both xtqá ñ( ) and x xt tq qá ¢ ñ( ) ( ) are strictly bounded, Vá ñand V 2á ñare also bounded, becauseV txˆ [ ( )] is by
definition bounded. For bounded V̂ (linear or nonlinear) this proves that at least the two-termDyson expansion
is thus alwaysfinite andwell behaved (in fact all orders are a.s.).

Utilizing now the spectral expansion L k k k
L

k
Rl y y= å ñáˆ ∣ ∣†
in equation (A5)we obtain for thefirst order term

t V tVd ss e e , A8
t

k
k
L

k
R t t

l
l
L

l
R t

0
00

k lò å åy y y y¢á ñá ñá ñ =l l- - ¢ - ¢∣ ∣ ∣ ˆ ∣ ∣ ∣– ( )( )

wherewe introducedV Vlk l
R

k
Ly y= á ñ∣ ˆ ∣ andwe used the fact that ssá ∣and ñ∣– are the left and right ground states of

L̂
†
aswell as the bi-orthogonality of the eigenbasis. The second order term follows similarly

t t V V
V t

t
V V

t t
d d e

2
1

1 e
. A9

t t

l
l l

t t

l

l l

l

t

l0 0
0 0

00
2 2

2

0

0 0l
l

ò ò å å l l
¢  = + -

-l
l¢

- ¢- 

¹

-⎛
⎝⎜

⎞
⎠⎟ ( )( )

Wecannow trivially extend uV uA vB +ˆ ˆ ˆ for u v, Î and any two bounded operators Â and B̂. In the
specific case of tagged particle local times studied in themain text we have A txy

i=ˆ [ ( )]and B txz
j=ˆ [ ( )],

where x 1y
j t =[ ( )] if x ydj Î centered at y, and zero otherwise [18]. The exact secondmoments are now

obtained from u tu v u v 0¶ ¶ = =˜ ( ∣ )∣ and u tu u
2

0¶ =˜ ( ∣ )∣ by considering the corresponding operators Â and B̂.
Finally, sincewe consider the local time fraction and not the total local time, wemust take

t u tu v u v
2

0¶ ¶-
= =˜ ( ∣ )∣ and t u tu u

2 2
0¶-

=˜ ( ∣ )∣ , respectively. This completes the proof of themain general results,
i.e. equations (6) and (7).

Appendix B. Extended phase-space integration in single-file diffusion

The integrals involved in the evaluation of invariantmeasures andmatrix elements in single-file diffusion
involve nesting, i.e. the ordering of particles is strictly preserved

ðB1Þ

This imposes non-trivial topology of the phase space of the system. A tremendous simplification is achieved
through the so-called ‘Extended Phase-Space Integration’ developed by Lizana andAmbjörnsson, which exactly
reduces the nested high-dimensional integrals to scaled single particle integrals, e.g. [8]:

ðB2Þ

where nl and nr are the number of particles (integrals) to the left and right of the tagged particlem, respectively.
The extended phase-space integration in equation (B2) applies to all functions f x( ), which are invariant under
the exchange x xi i 1« + . Throughout ourwork all nested integrals included in the bra-s kyá ∣ (scalar products,
matrix elements etc) are evaluated using the extended phase-space integration.

AppendixC. Eigenmodemultiplicity and eigenvalue degeneracy

As described in themain text we diagonalize themany-body Fokker–Planck operator using the coordinate Bethe
ansatzmethod. EachBethe eigenstate of a Single-File ofN particles is uniquely defined by a tuple
k k k k, , , N1 2= ¼( ). To each tuple corresponds one eigenvalue through the relation:

k C1k
i

N

i
1

2 2ål p=
=

( )

sincemore than one tuplemay correspond to the same eigenvalue, these are degenerate. To each tuple k it is
possible to associate a set  containing the elements of k counted once. Defining n

i as the number of times the
element i appears in the tuple k, we define themultiplicity of the eigenvectors associated to k as

C2m n .k
i

i= ( )!
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AppendixD. Tagged particle equilibriumprobability densities

The exact tagged particle equilibriumprobability density function of the tagged particle i is obtained by a nested
integration of all other particle positions

ðD1Þ

where nl and nr are, respectively, the number of particles to the left and to the right of the tagged particle i.
FigureD1 depicts results for P xi

eq ( ) for the central particle c and the two nearest neighbors to the right, c 1+
and c 2+ , respectively. The probability density of the central particle approaches aGaussian shape as the
number densityN increases. For large enoughN thewidth of P xi

eq ( ) stops decreasing appreciably, while the
probability densities of neighboring particles begin to overlap strongly. This has important physical
consequences for correlations of particle histories, as we explained in the discussion offigure 3 in themain text.

Appendix E. Reference points in the study of the density dependence of tagged particle
local time statistics

In order to allow for ameaningful comparison of results for different particle numbersNweneed to choose
appropriate reference conditions. To do so, we focus only on odd particle numbers, for which the system is
symmetric with respect to the peak of the invariantmeasure of the central particle P xceq ( ). This way a
comparison of correlationswith nearest c 1+ and next-nearest c 2+ neighbors at different densities is indeed
consistent.Moreover, in order to compare equilibrium and near-equilibrium tagged particle excursions with
far-from equilibrium fluctuations we choose the following reference points with respect to P xieq ( ): the point x50,
inwhich P x xd 0.5

x
i i0 eq

50

ò =( ) , point x75, where P x xd 0.75
x

i i0 eq
75

ò =( ) , and point x90, for which

FigureD1.The solid lines represent the equilibriumprobability density (D1) of the central particle and the dashed lines of the right
nearest neighbor (left) and the next-nearest neighbor (right), respectively.
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P x xd 0.9
x

i i0 eq
90

ò =( ) (see alsofigure E1). In the study of correlations of particle histories for two particles i and j
we focus on themid-point x i j x x, 2m i j50, 50,= +( ) ( ) .

Appendix F. Convergence rates of series and eigenvalue degeneracy

The exact expressions for variance and covariance of local time of a tagged particles in equations (6) and (7) in
themain text involve an infinite series, whose rate of convergence is difficult to predict, as it strongly depends on
the particular position x of the tagged particle under inspection, as well as on the number of particlesN and

k( ), the degeneracy of Bethe eigenvalue kl . To inspect the rate of convergence of the series we compute the
relative deviation of the results for the variance of local time of the central particle truncated at the kth Bethe
eigenvalue, t t tx k

2 2 2
c

s s s-∣ ( ) ( )∣ ( ) as a function of k at different positions x and at different lengths of
trajectories t. Figure F1 depicts how fast the series for the variance of local time of the central particle
(equation (6) in themain text) truncated at the kth term converges to the exact value k  ¥. n order to
compare systemswith differentNwe focused on points x50 and x75 of the central particle, with the specific values
given in table F1.

Intuitively, the convergence rate increases with increasing length of the observation t, since fastermodes
must become less and less important. The convergence rate also increases with increasingN, which is due to an
increasing degeneracy of lower-lying eigenvalues at largerN. Degenerate low-lying eigenvalues allow for a
mixing of different collective slowmodes, which become dominant. Finally, by comparing the columns offigure
F1we notice that the rate of convergence also depends on the tagging position, which in turn depends on the
curvature of themodes at differentN.

Figure E1. Invariantmeasures for the central particle and its nearest neighbor, denoting the different kinds of reference points.

10

New J. Phys. 20 (2018) 113021 A Lapolla andAGodec



AppendixG. Equilibriumposition correlation function

In themain text we focused on the covariance of tagged particle local times C t
C t

x y
xy
ij xy

ij

t
i

t
jq q

=
á ñá ñ

˜ ( )
˜ ( )

( ) ( )
reflecting

the correlations between particle histories.We found that histories decorrelate at long times as a consequence of
the central limit theorem.Conversely, the particle positions on the ensemble average level do not decorrelate,
not even in equilibrium. To demonstrate this we compute exactly the pair correlation function

ðG1Þ

where nl r, and ml r, are the number of particles to the left/right of the two tagged particles i and j. Herewewant to
focus on the ensemble-average reduced pair correlation function P x x P x P x,ij

i j i jeq eq eq( ) ( ( ) ( )) depicted infigure
G1 and corresponding tableG1. The latter is in general different from0,while the former goes to 0 in the limit
t  ¥. P x y,c c

eq
, 1+ ( ) depends onN and for largeN changesmonotonically frompositive to negative correlations

as a function of particle separation. At smallN the correlations becomesweakerwith increasing separation, but
remains positive. Intuitively, as one particle lies in-between, the dependence of Pc c

eq
, 2+ on the interparticle

separation is for largeN non-monotonic, going fromperfectly anticorrelated to correlated and back to anti-

Table F1. Location of x50
and x75 for the central
particle for various values
ofN.

N x50 x75

5 0.500 0.641

11 0.500 0.598

61 0.500 0.544

Figure F1.Analytical results for t t tx k
2 2 2

c
s s s-∣ ( ) ( )∣ ( ) of the central particle for different particle numbers (N) as a function of k at

different tagging positions. The black symbols depict the eigenvalue degeneracy k( ).
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correlation. At lowN Pc c
eq

, 2+ depends non-trivially on the interparticle separation, such that the aforementioned
terminal anticorrelation disappears for small enoughN. Notably, for x xc 90= the correlations aremuch
stronger, which suggest thatmore extensive excursions are entropically penalized as they demand collective
fluctuations.

AppendixH. Two-tag correlation function of local times

In themain text (in particular infigure 3)we analyzed one-point two-particle histories C tx x
c c

,
, 1,2
m m

+˜ ( ) at the
respectivemid-point positions xm listed in tableH1.

Togain further insightwe also compute thefirst and central-particle two-point reduced correlation functionsof

local timesC txy
1,1˜ ( ) andC txy

c c,˜ ( )with x and y given in tableH2. FigureH1. In the left plotwe show the self-reduced
revealsweak anti-correlations at short times t turning toweak correlations at longer t, before reaching theLD limit of
uncorrelatedhistories. As alreadymentioned in themain text, the correlations for the outer particles areweak and
becomeweakerwith increasingnumber of particlesN, since the outer particles are constrainedbetween the reflecting

FigureG1. P x x,ij
i jeq ( ) between the central particle c and the right nearest and next-nearest neighbor, c 1+ and c+2 respectively,

when the central particle is tagged at xc=x50, x75, x90 andwhen xc=xm (see tableG1 for the exact positions). The vertical dashed lines
are drawn at the position of the central particle (see tableG1) to denote the non-crossing boundary condition.

TableG1.Reference points for the results of figureG1.

N x50 x75 x90 xm

5 0.500 0.651 0.753 0.593

11 0.500 0.598 0.682 0.544

31 0.500 0.559 0.612 0.515

51 0.500 0.547 0.589 0.509
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wall and the right nearest neighbor. In the case of the central particleweobserve further evidence of the emergenceof
persistent collectivefluctuations at higher densities, observed anddescribed in themain text.Notablyhere evennear-
equilibriumfluctuations reveal signatures of collective behavior in the formofpersistent histories (note thatwe are
tagging at x50 and x75), i.e. C tx x

c c
,

,
50 75

˜ ( ) turns frompurelynegative toweakly positive correlations.
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