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Abstract

Strong positional correlations between particles render the diffusion of a tracer particle in a single file
anomalous and non-Markovian. While ensemble average observables of tracer particles are nowadays
well understood, little is known about the statistics of the corresponding functionals, i.e. the time-
average observables. It even remains unclear how the non-Markovian nature emerges from
correlations between particle trajectories at different times. Here, we first present rigorous results for
fluctuations and two-tag correlations of general bounded functionals of ergodic Markov processes
with a diagonalizable propagator. They relate the statistics of functionals on arbitrary time-scales to
the relaxation eigenspectrum. Then we study tagged particle local times—the time a tracer particle
spends at some predefined location along a single trajectory up to a time t. Exact results are derived for
one- and two-tag local times, which reveal how the individual particles’ histories become correlated at
higher densities because each consecutive displacement along a trajectory requires collective
rearrangements. Our results unveil the intricate meaning of projection-induced memory on a
trajectory level, invisible to ensemble-average observables, and allow for a detailed analysis of single-
file experiments probing tagged particle exploration statistics.

1. Introduction

Single-file dynamics refers to the motion of particles in a narrow, effectively one-dimensional channel, which
prevents their crossing, and is central to the transport in biological channels [1] the kinetics of transcription
regulation [2], transport in zeolites [3] and in superionic conductors [4]. Recent advances in single-particle
tracking and nanofluidics enabled experimental studies of single file dynamics in colloidal systems, which
directly probe the fundamental physical principles of tagged particle motion to an unprecedented

precision [5, 6].

The motion of particles in a single file is strongly correlated, which gives rise to a rich and intricate
phenomenology. In a Brownian single file the non-crossing constraint leads to subdiffusion with the ensemble
mean squared displacement (MSD) of a tagged particle scaling as ([x () — x(0)]*) oc /% [7]. When confined to
a finite interval the subdiffusive scaling of the MSD is transient, saturating at an equilibrium variance, with the
extent of the subdiffusive regime growing with the particle density (see figure 1(a) and [8]). Concurrently, an
effective harmonization emerges at increasing density, with the invariant measure of a tagged particle
approaching a Gaussian and a vanishing kurtosis excess 7, = (x*)eq / (xz)ﬁq — 3 (seeinset of figure 1(a)). More
generally it holds that the MSD of a tagged particle in an unconfined single file and the absolute dispersion of a
free particle in thelimit t — oo are related via ([x(¢) — x(0)]*) o< {|x(£)|)fee [9]. The motion of particles on a
many-body level is Markovian, the resulting tagged particle dynamics is, however, highly non-Markovian [8],
and displays a staggering dependence on the respective initial conditions [10].

Tremendous effort has been made to study the tagged particle dynamics theoretically [11]. In particular, the
tagged particle ensemble propagator has been studied using the ‘reflection principle’ [12], Jepsen mapping [13],
momentum Bethe ansatz [8], harmonization techniques [14], and macroscopic fluctuation [15] and large
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Figure 1. (a) MSD of the central particle in a single file with increasing particle number N starting from equilibrium initial conditions.
Time is measured in units of the mean number of collisions f = Dt/N?2. Inset: Kurtosis excess of the invariant measure of the central
particle depending on N; (b) trajectories of two next-nearest neighbor particles in a single file of 11 particles (red and blue curves) _
alongside the respective left and right nearest neighbors (gray curves). Overlaid are corresponding local time fractions up to a time t, 6;
in the respective red and blue shaded intervals. The remaining particle trajectories are omitted for convenience.

deviation (LD) [16] theory. Notwithstanding, these works, with isolated exceptions [17], focused on ensemble-
average properties alone. State-of-the-art experiments, however, albeit probing particle trajectories and thereby
providing direct access to functionals of paths, are typically analyzed using ensemble-average concepts (see e.g.
[5, 6]). The analysis of functionals of tagged particle trajectories is thus not only feasible but also more natural
than studying ensemble-average observables. Moreover, to arrive at a deeper physical understanding of
projection-induced memory effects and resulting non-Markovianity, an understanding of the correlations of
particle histories and their decorrelation on ergodic time-scales is required.

In particular, we here focus on the trajectory-, or time-average analogue of the tagged particle ensemble
propagator [8]. Any time-average observable can be constructed from the local time fraction (see equation (A4)
in appendix A), which is defined as (see figure 1(b))

0i(y) =t fo " x(n)ldr, )

where Jl; [x(7)] = lif x; € dy centered at y, and zero otherwise [18]. 6 (y) in equation (1) is a random quantity
denoting the fraction of the local time, 6/ (y) — the time the tagged particle j spends in an infinitesimal region
around the point y along a trajectory up until time . x(¢) = (x;(t), ..., xy (t))" denotes the many-body
trajectory written in vector form. The dynamics of a tagged particle x;(t) irrespective of the other N — 1isnot
Markovian, and any two tagged particle trajectories x;(f) and x,(t) are correlated on all but ergodically long times.
We focus on the fluctuations and two-tag correlations of local time fractions

a2, (1) = (01(0)?) — (6;(0))?, @
Cht) = (i@ 0 () — (B:) (01 (y), 3)

where (---) denotes the average over all N-particle trajectories starting from the steady-state (in this case
Boltzmann equilibrium) and propagating up to time ¢. Note that for ergodic Markov dynamics

lim,_.o 07 (t) = 0and lim;_,C %(t) = 0, reflecting the fact that on ergodically long time-scales time-average
observables become deterministic and correlations between them vanish.

A general theory of local times in such correlated non-Markovian dynamics so far remained elusive. And
while the statistics of functionals of the form in equation (1) in one-dimensional stochastic processes have been
studied extensively in a variety of fields [ 19, 20], studies of tagged particle functionals in interacting many-body
systems are sparse, and mostly limited to extreme value statistics of vicious walkers (see e.g. [21]).

Here, we present rigorous results for variances and two-tag correlations of bounded functionals' of
Markovian dynamics on arbitrary time-scales, in terms of the relaxation eigenspectrum of the corresponding
propagator. The theory also covers the case, when a higher-dimensional dynamics is projected onto a smaller
subspace thereby leading to non-Markovian dynamics on the reduced subspace, a hallmark example thereof
being tagged-particle dynamics in a single file. The theory applies to all ergodic Markovian systems with a
diagonalizable propagator. As an example we study tagged particle local times in a single file of Brownian point
particles in a box. Diagonalizing the many-body propagator using the coordinate Bethe ansatz, our results
uncover non-Poissonian trajectory-to-trajectory fluctuations of local times, and a cross-over from negatively to

! We consider functionals V [x(t)] of Markovian trajectories x(t), for which V [x(¢)] < oo, V¢ with probability 1 (see e.g. [19]).
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positively correlated two-tag particle histories upon increasing density, mirroring the emergence of collective
fluctuations breaking Markovianity in tagged particle motion and leading to tracer subdiffusion. Clear and long-
lived deviations of local time statistics from shot-noise behavior demonstrate the insufficiency of harmonization
concepts for describing tracer diffusion on a trajectory level. More generally, the connection to the relaxation
spectrum provides an intuitive understanding of non-Poissonian statistics at sub-ergodic times in a general
setting.

2. General theory

We consider a trajectory of a general N-dimensional system x(¢) evolving according to Fokker—Planck or
discrete-state Markovian dynamics. We are interested in ergodic systems with a unique steady-state P(x) and
also assume steady state initial conditions. Due to ergodicity the mean local time fraction (87 (y)) under these
conditions is independent of #* and coincides with the invariant measure (6 (y)) = f dxN§(y — x;)P(x), where
we introduced the Dirac delta function 6(x) (for a proof see equation (A8)). In the presence of detailed balance
(DB) P(x) is the Boltzmann—Gibbs measure Pq(X).

Obtaining equations (2)—(3) essentially amounts to computing the probability generating function of the
jointlocal time functional given by the Feynman—Kac path integral

Qua s yIl) = L0 22 (69 — 105 ()6 — 01 (»))), @)

where we introduced the Laplace transform ﬁj‘ ) = fo . de f(19). The moments in equations (2)—(3) are

obtained from <9§ (x)”@{ ") = 720000 Quy (X, YI|t) ly=y—o withn + m = 2. A straightforward general-
ization of the trotterization in [22] shows that Q,,, (x/, y/|t) is the propagator of a tilted evolution operator (see
appendix A)

Qu (', yilt) = (—|eErubtvb|ss)
G
_ <ssle7t(L +u11x+v111y)|_>’ (5)

where I and L' denote the ‘bare’ forward and adjoint (backward) generator of the Markov process [23], and we
introduced the ‘flat’|-) = f dx|x) and steady states |ss) = f dxP(x) |x) in the bra-ket notation, which are the left

(right) and right (left) ground eigenstates of L (LAT), respectively. We obtain exact expressions for the moments in

equations (2)—(3) by performing a Dyson series-expansion of equation (A3) [24], converging for any bounded
functional of x(¢) (see proofin appendix A).

Having assumed diagonalizability of '’ (and L)’ , we expand the backward operator in a complete bi-
orthogonal set of left and right eigenstates” "= S MVE) (10F], A denoting the (possibly degenerate)
eigenvalues and (¢)f|y)R) = &y. The details of the calculation of the moments are shown in appendix A.
Obviously, (/X|1i|15) = P (x), since the system is ergodic. The exact results for the variance and correlations
are conceptually remarkably simple and read

Qi(xi, x;) 1 —e M
o2 ()= 2-* (1 —~ ) (6)
! ,;1 At Akt
. Qi 7)) + Qe (yis x0) 1 — e M
Ci(ty= ! ! (1 - ) (7)
Y /?;21 )\kt )\kt

where we introduced the auxiliary function Qk(x;, y,) = (YR |ty <1/J£|]1§,|1/)é>. The exact LD limits of
equations (6)—(7) readily follow in the limit £ > ;!

o (1) = 271 A s x0), ®)
k>1
CHMP(t) ~ t“k; e Tk 1) + u(ypp x)1 ©

where 2 denotes asymptotic equality. Analogous formulas for LD limits of local times not connected to a
spectral expansion have also been developed (see e.g. [26]). Notably, for systems obeying DB Ui’iLD (t)setsa
universal upper bound on the variance of §; (compare equations (6) and (8)). The results in equations (6)—(9)

readily extend to arbitrary functionals ¢ ! fo s [x(7)]d7 with a bounded and local V, by performing a simple

2 On the level of the mean alone the time-ordering in the functional in equation (1) is not important (for a proof see equation (A8)).
A sufficient but not necessary condition guaranteeing diagonalizability is that that the operator is normal, i.e. commutes with its
adjoint, L' — f£" = o.

4 Note that LRy = MleoR) and LA+|1/1£> = Mlvb) [25].
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exchange Jl; -V, modifying only 2 (x;, yj) (see appendix A). Equations (6)—(7) with the aforementioned
generalizations apply to all diagonalizable L, thus including all systems obeying DB, and represent our first main
result.

Equations (6)—(9) provide an intuitive understanding of local time statistics via a mapping onto relaxation
eigenmodes, with fluctuation and correlation amplitudes proportional to the sum of transition amplitudes of
excitations from the steady state to excited states and back, (% (x;, yj). On ergodic time scales 6, at different ¢
decorrelate, and hence display features of shot-noise, i.e. 0%, (t) and C Zy(t) decay inversely proportional to the
number of independent observations of each excitation mode, ~ ;' /t. At finite times ¢ < ) ' shot-noise
statistics are altered due to a finite survival probability of the eigenmodes ata given t, (1 — e~ ') / A Vk, setting
ahierarchy of correlation times ) ' (see correction terms in brackets of equations (6)—(7)).

3. Local times in single-file diffusion

Consider the dynamics of Nidentical hard-core interacting Brownian point particles diffusing in the unit
interval [0, 1],and set D = 1 withoutloss of generality. The extension to a finite particle radius follows from a
trivial change of coordinates [8]. Let P (xg, t|x) = <x0|e*’i7|x> denote the N-particle backward propagator of the
single file with the following backward generator and N — 1internal non-crossing boundary conditions:

N

=370%,  lim (D, — Ox )P0, ) =0 Vi (10)
; Xip17X;

Confinement into a unit interval is imposed through external reflecting boundary conditions

O0x,P (X0, t|X)|xy,—0 = Ox P (X, t]X0)|x, =1 = 0. Under these boundary conditions we diagonalize It using the

coordinate Bethe ansatz [27]” and obtain the Bethe eigenvalues \; = 725", k7 and corresponding left and right

eigenvectors

N
vhe = (o) = ] 207 costhime) (11)
{ki} i=1
and YR (x) = (YRIX) = myabt (x) with (YR|YF) = & 1, where my is the multiplicity of the Bethe eigenmode
|4F) (see appendix C),and 3 (k) denotes the sum over all permutations of single-particle eigenvalues with k; € Nj.
The matrix elements entering € (x;, ”) follow upon integration over the n;and n, particle coordinates to the
left and right, respectively, from the tagged particle i while strictly preserving the particle ordering[8], yielding

(see appendix B) (4f1Jvf) = §<w§|ﬂz;|w£> with
i—1 N

TSTACTT A TT VAL (12)

mln,! (ki) j=1 k=i+1

(Pollidy) =

and (PRI [L) = <w0|}l |4F) . In equation (12) we have defined the auxiliary functions
WAS = yOr,0 — (1 = 61,00 V2 cos(mkix)
WA= yoro — (1 — 5k,-,o)x/5 sin(wk;x) /7k;. (13)

This delivers exact results for aii (t)and C Zy(t) in equations (6)—(8). An efficient numerical implementation of
our analytical results can be made available upon request.

The results for aii (t) in equation (6) for the central particle in single files with various N are depicted in
figure 2, and reflect large fluctuations exceeding 200% on time-scales where roughly only 50% of the particles
have collided with their neighbors. The fluctuations display a non-trivial dependence on x, which does not
follow the shape of g (x;) = N!x/"(1 — x,)" /(m!n,!), and reveal striking boundary-layer effects. These
deviations are clear evidence for non-Poissonian statistics and signal that harmonization concepts, which
assume a locally equilibrated environment [14], break down on the more fundamental trajectory level. Atlonger
t, where ~50-100 collisions/particle have occured, Hi at different t become uncorrelated according to the central
limit theorem, with o}, (t) converging to its LD limit (8). On these time-scales the ensemble MSD has already
saturated (compare figures 1(a) and 2(c) and (d)). Notably, LD asymptotics correctly capture only small
fluctuations of the order £10%. As noted above and confirmed by simulations, LDs reflecting Gaussian statistics
set an upper bound to the fluctuations of 9; (figures 2(c) and (d)).

Single-file diffusion displays no time-scale separation in the relaxation spectrum. As a result, the projection
of dynamics onto a tagged particle coordinate induces subdiffusion and strong non-Markovianity on time scales
t < A, The respective onset of the +/ scaling of the tagged particle MSD shifts to shorter t upon increasing N

5 . . . . . .
Note the difference with respect to the momentum-space Bethe ansatz solution [8], which does not diagonalize L.
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Figure 2. Statistics of local time fraction: mean, (0’ (x)), (blue lines) and fluctuations reflected by the shaded area enclosed by black
lines corresponding to (0; (%)) £ oy,;(t) for (a) the first (green) and second (violet), and (b) first (green) and 8th (violet) tagged particle
inasingle filewith N = 3and N = 10, respectively at three different lengths of trajectories. The black lines correspond to ‘error bars’
on a finite-time estimate of the probability density along a single trajectory starting in the steady-state. (c) and (d): reduced variance of
local time of the central particle o5 _, /,(t) /{65 (x. = 1/2))? for various odd Nin order to preserve the symmetry. The full lines
denote exact results from equation (6) and dashed lines large deviation asymptotics equation (8). Symbols correspond to Brownian
dynamics simulation of an ensemble of 10° independent trajectories starting from equilibrium initial conditions.

(figure 1(a)). Increasing N in turn leads to a high degeneracy of Bethe eigenmodes, reflecting emerging
dynamical symmetries (see appendix F). As a result, fewer Bethe modes are required for a convergence of the
sums in equations (6)—(7).

To gain deeper insight into the physical origin of the memory on a trajectory level we analyzed two-tag
correlations between particle histories by means of the reduced covariance of local times
C’Zy(t) = Ci{y(t)/(<9i ) (01(»))), with @Zy(t) € [—1, 00). Correlations between the histories of the central
particle cand its nearest (i.e. ¢ + 1) and next-nearest (i.e. ¢ + 2) neighbors at the midpoint between the maxima of
Pq(x;)and P.q (X1 1,c+2) (see appendix E and H for details) are depicted in figure 3. Due to ergodicity, 0; (x) become
very weakly correlated at long rand Gaussian statistics emerge. Consequently, C Zy(t) vanishes for long times, after
2102 collisions took place on average. Note that C Zy(t) measures correlations between particle histories and not
particle positions. The latter never decorrelate, i.e. two-tag position correlation functions display an algebraic decay
even at equilibrium P;il (xi> xj) = Nx/"(xj — x;)™ (1 — x;)™ /(nl!mr!(ml — m)!) — Pq(x))Rq(xj) = 0,
where 7y, and my, are the number of particles to the left/right of the two tagged particles i and j (for details see
appendix G).

Notably, we observe a transition from negatively to positively correlated tagged particle histories upon
increasing density (figure 3), mirroring a change in particle dynamics from single-particle to collective
fluctuations. The driving force for this transition can be found in an enhanced packing at higher densities
resemblinga ‘crystallization” transition, where invariant tagged particle densities P.q (x) become strongly
overlapping, whereas their respective widths shrink only very slowly (see figure D1). The ‘critical’ density, at
which the behavior shifts from negatively to positively correlated histories, depends on the topological
separation between the two tagged particles and is shifted to higher values of N for more distant particles
(compare (a) and (b) in figure 3). In turn, this reflects a growing dynamical correlation-length with increasing N.
As the mathematical reason for the sign-change are different signs of leading eigenvectors entering the respective
elements (see equation (12)), the transition will eventually occur of any tagged pair. Moreover, upon increasing
N, C Zy(t) of the central particle becomes non-monotonic, with weak anti-correlations at short ¢ turning to weak
correlations at large t, before reaching the LD limit of uncorrelated histories, where harmonization [ 14] ideas
apply. The increasingly positive correlations with growing N reflect a persistence and a finite life-time of typical
collective fluctuations on a trajectory level, akin to glassy dynamics in kinetically constrained models [28].
Accordingly, positive correlations are are not observed if we tag outer particles at external boundaries (see
appendix H). The exact results for fluctuations and correlations of local times in single file diffusion in
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Figure 3. C Zy( )==C E'y(t) / (85 (x)) {0 (y))), reduced two-tag local time correlation functions of the central particle cand its nearest
(a) and next-nearest (b) neighbor for different N. Only odd N were considered to assure the symmetry required for a meaningful
comparison. Time is expressed in units of the mean collision time. Lines depict the theory in equation (7) whereas symbols correspond
to Brownian dynamics simulations of 10® independent trajectories starting from equilibrium initial conditions.

equations (11)—(13), and the explanation of the origin of broken Markovianity on a trajectory level are our
second main result.

4. Conclusions

We established a general method for determining exactly the variance and two-tag correlations of bounded non-
negative functionals of stationary ergodic Markov processes with a diagonalizable propagator. The theory relates
the statistics of functionals to the relaxation eigenspectrum, and allows for an exact treatment of non-Markovian
dynamics from the corresponding higher-dimensional Markovian embedding. It also holds for diagonalizable
irreversible dynamics, where a broken time-reversal symmetry can cause oscillations in higher order terms in
equations (6)—(9) and/or fluctuations exceeding the LD limit in equation (8). From the spectrum of the many-
body propagator obtained via the coordinate Bethe ansatz, we derived exact results for one- and two-taglocal
times in single file diffusion, which unveiled non-trivial correlations between tagged particle histories and the
emergence of collective dynamics at increasing particle densities. Going beyond LD time-scales, our results
revealed that harmonization concepts, assuming dynamics in-between local equilibria—an assumption that
works well for ensemble-average observables [ 14]—fail on the more fundamental trajectory level. This
highlights the intricate physical meaning of projection-induced memory on the level of single trajectories, which
is virtually invisible to ensemble-average observables. Our results on local times can be readily tested by existing
particle-tracking experiments (see e.g. [5]), and hopefully our theory will stimulate further research directed
towards tagged particle functionals. Particularly interesting would be extensions to tagged particle dynamics in
rugged potential landscapes [29].
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Appendix A. Proof of the main result

Let x(¢) be an arbitrary-dimensional ergodic Markov process on a discrete or continuous state-space. The
evolution of the probability density function evolves under the corresponding diagonalizable forward generator
L (e.g. Fokker—Planck- or discrete-state master equation-type) with invariant measure P(x) and the adjoint (i.e.
backward) generator I'. Let the respective eigenspectrabe L = 3, M|¢oR) (5], A and i = SR (R, A
denoting the possibly degenerate and in general complex-valued eigenvalues. Note that L|1/%) = A¢|/R) and
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LA+|1ZJ]I;> = M|¥5), i.e. the left and right eigenstates span a bi-orthogonal eigenspace (1/£|¢F) = 6 [25]. The
forward and backward propagators of the process can then be written as [25]

Pr(x, tixg) = (xle Elxg) = 37 (x|yf) (whxope Mt

k
~t
Py(x, tlxo) = (xole™™ [x) = D (xolvoi) (¥klx) e M. (A1)
k
Obviously, for L with a partially continuous spectrum® the sum would be replaced by the corresponding integral,
the probability density function of a bounded functional ¢, = J; s [x(7)]dT over all paths starting from a
(potentially non-equlibrium) steady-state and propagating up to time t, is defined by the path integral
_ x(t)=x t,
Fiolo = [ [axdxPxo)f — aix@le s — [ Vixmldr), (A2)
X 0

0)=x

with the corresponding stochastic action functional S[x(#)] of the continuous [22, 30] or discrete state-space
[31] Markov process x(t), and where we introduced the Dirac delta function ¢ (x). By means of a straightforward
vectorial generalization of the trotterization of the the path integral (A2) in [19, 22] (for the backward and
forward approach, respectively), one finds that the generating function, corresponding to the Laplace transform
Fult) = fooc dpe " F(p|t), is the propagator of a tilted operator

Fult) = <—|e*t(i+“‘7) |ss) = <ss|e*t(£.¥.+“‘>)|—>, (A3)
where we have introduced the ‘flat’ |-) = f dx|x) and steady states |ss) = f dxP(x)|x), which are the left (right)

and right (left) ground eigenstates of L (LAT), respectively. The last equality follows from F'lt = F(ult).In
taking the Laplace transform we assumed that the functional has non-negative support (such as in the case of local
times). In case the support extends to negative values one simply needs to take the Fourier transform instead.

The moments of F(¢]|t) atany given tfollow immediately from (¢} = (—1)"9}F (ult)|,—o, where (---)
denotes the average over all trajectories starting from a steady state and propagating up to time #. In case the
Fourier transform is used, a corresponding change of the prefactor is required.

For bounded functionals of ergodic Markov processes all moments are finite,

[(ef) | < f(®)lim_ | (p))| < oo withasmooth scaling function f(#), which depends on the detailed form of

V [x(1)]. This follows from the fact that the integral is always over a finite time (see e.g. equation (1)) and hence

boundedness of the integrand assures the boundedness of the time-average observable. Moreover, F(¢]|t) obeysa

LD principle [18, 32]. In the specific case of local times, V [x(¢)] = Jl; [x(t)]and f(¢) o t" for (¢). The finiteness

of moments implies that (ut) is an analytic (i.e. holomorphic) function of u at least at and near u = 0 for any .
Note that for bounded V [x(#)] we can always write

j; AV [x(t)] = fo ' f xS (x — x(t") V (%)
:fde(x)ft dt’'d(x — x(t") = tf dxV (x)6,(x). (A4)
0

To obtain exact results for second moments we simply need to expand F(ut) in a Dyson series to second order
in 4V preserving the time-ordering, and afterwards take the second derivative at u = 0. The series is guaranteed to
~ A .
converge, since V is bounded. Because trivially (~|e~*|ss) = (ss|e~" |-) = 1, the Dyson expansion gives [24]

£t Y 4 21 NS )
(ssle”t &+ =1 — u(ss|f dt’e L t=ye L ¥))
0
4 v al N FAPWEENAN A
4 u? <SS[[ dt’ dt”e_L (t—t)Ve—L t'—t )Ve—L t |_> + O(ua), (AS)
0 0

witht > t' > t” > 0. An equivalent expansion can be obtained for L. The Dyson series (A5) converges
foru € C < o0.

We first prove the convergence for any bounded linear operator B. To this end we consider the operator
norm. Let U be a complete normed linear space, and B : ¥ — . The operator norm is then defined as
[1B]| = SUP|| 1= 1 [|By|| with ¢ € 0. The operator norm corresponds to the largest value B stretches an element
of . Since B isbounded we have ||B"|| < ||BI[N, VN € N, which follows simply from ||AB|| < ||A]|] ||B||. The
operator exponential is defined as the limit ef = limy_ o0 ZkN:() Bt / k!and the convergence is in operator norm,
since ||Z,Ij:0 ﬁk/k! | < ZkN:0| |B| |k/k! , VN € N.Theseries on the right hand side converges absolutely for any
number ||B|| € C. Due to the completeness of the space ¥, eBaswell belongs to a complete normed linear space,
and moreover ||e8]| < ellBll, Taking B = uV with u € C completes the proof of convergence of the series (A5).

6 . . . . .
The ground state is always discrete as we assume the existence of an invariant measure.

7
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We now show that the following results also hold for bounded nonlinear functionals V such that the two-term
Dyson expansion in equation (A5) is always well-behaved. Utilizing the identities in equation (A4) we find that

V) =t [axv o (8.), (A6)
(V) = ¢ f dx f XV XV &) (6: ()6, (). (A7)

Since both (6, (x)) and (6, (x) 6, (x')) are strictlybounded, (V') and (V'2) are also bounded, because V [x(¢)]is by
definition bounded. For bounded V (linear or nonlinear) this proves that at least the two-term Dyson expansion
is thus always finite and well behaved (in fact all orders are a.s.).

Utilizing now the spectral expansion i = S MlvF) (¥R in equation (A5) we obtain for the first order term
t 5 !
I v (I hle MV k) (6fle M) = tho (A8)
k 1

where we introduced Vi = (¢F|V|1E) and we used the fact that (ss| and |-) are the left and right ground states of
L" as well as the bi-orthogonality of the eigenbasis. The second order term follows similarly

! " V - 7)\,t
fdtfdt,,ZVmee -y _ Voot szovoz( 1—e ) (A9

=0 At At

We can now trivially extend 4V — uA + vB for u, v € C andany two bounded operators Aand é Inthe
specific case of tagged particle local times studied in the main text we have A = I [x(t)]and B= VIx(@®)],

where Jlf, [x(7)] = lif x; € dy centered at y, and zero otherwise [ 18]. The exact second moments are now

obtained from 9,8, F (u|t)|,—y—o and 02F (u|t)],—o by considering the corresponding operators Aand B.
Finally, since we consider the local time fraction and not the total local time, we must take

t720,0, F (ut) |y—y—o and t 202 F(u|t) |,—o, respectively. This completes the proof of the main general results,

i.e. equations (6) and (7).

Appendix B. Extended phase-space integration in single-file diffusion

The integrals involved in the evaluation of invariant measures and matrix elements in single-file diffusion
involve nesting, i.e. the ordering of particles is strictly preserved

}f(x)d)(:j; dx1f dx - f deflfb dxy f (%). (B1)

AN-2 AN-1
This imposes non-trivial topology of the phase space of the system. A tremendous simplification is achieved
through the so-called ‘Extended Phase-Space Integration’ developed by Lizana and Ambjérnsson, which exactly
reduces the nested high-dimensional integrals to scaled single particle integrals, e.g. [8]:

ff(x)é(xm _ 2)dx = (1‘[ f dxl) ( I fbdx]]w, (B2)

i’ll!l’l,.!

where n;and n, are the number of particles (integrals) to the left and right of the tagged particle m, respectively.
The extended phase-space integration in equation (B2) applies to all functions f (x), which are invariant under
the exchange x; < x;,. Throughout our work all nested integrals included in the bra-s (4| (scalar products,
matrix elements etc) are evaluated using the extended phase-space integration.

Appendix C. Eigenmode multiplicity and eigenvalue degeneracy

As described in the main text we diagonalize the many-body Fokker—Planck operator using the coordinate Bethe
ansatz method. Each Bethe eigenstate of a Single-File of N particles is uniquely defined by a tuple
k = (k, k, ..., ky). To each tuple corresponds one eigenvalue through the relation:

N
e = w2k} (C1)

since more than one tuple may correspond to the same eigenvalue, these are degenerate. To each tuple kit is
possible to associate a set KC containing the elements of k counted once. Defining n, as the number of times the
element /C; appears in the tuple k, we define the multiplicity of the eigenvectors associated to k as

=TT nc.!- (C2)
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Figure D1. The solid lines represent the equilibrium probability density (D1) of the central particle and the dashed lines of the right
nearest neighbor (left) and the next-nearest neighbor (right), respectively.

Appendix D. Tagged particle equilibrium probability densities

The exact tagged particle equilibrium probability density function of the tagged particle i is obtained by a nested
integration of all other particle positions

1
PG = f Py — 0dx = (1 — 0, (o1
0

n'n,!

where nyand n, are, respectively, the number of particles to the left and to the right of the tagged particle i.
Figure D1 depicts results for P/(x) for the central particle c and the two nearest neighbors to the right, ¢ + 1
and ¢ + 2, respectively. The probability density of the central particle approaches a Gaussian shape as the
number density N increases. For large enough N the width of P(x) stops decreasing appreciably, while the
probability densities of neighboring particles begin to overlap strongly. This has important physical
consequences for correlations of particle histories, as we explained in the discussion of figure 3 in the main text.

Appendix E. Reference points in the study of the density dependence of tagged particle
local time statistics

In order to allow for a meaningful comparison of results for different particle numbers N we need to choose
appropriate reference conditions. To do so, we focus only on odd particle numbers, for which the system is
symmetric with respect to the peak of the invariant measure of the central particle P (x.). This waya
comparison of correlations with nearest ¢ + 1and next-nearest ¢ 4+ 2 neighbors at different densities is indeed
consistent. Moreover, in order to compare equilibrium and near-equilibrium tagged particle excursions with
far-from equilibrium fluctuations we choose the following reference points with respect to B (x;): the point x5,

in which J(; o Rq(x))dx; = 0.5, point x;s5, where J(; s Pq(x;)dx; = 0.75, and point xq0, for which
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Figure E1. Invariant measures for the central particle and its nearest neighbor, denoting the different kinds of reference points.

fo o0 Pq(x;)dx; = 0.9 (see also figure E1). In the study of correlations of particle histories for two particles i and

we focus on the mid-point x,, (i, j) = (xs0,i + Xs0,7) /2.

Appendix F. Convergence rates of series and eigenvalue degeneracy

The exact expressions for variance and covariance oflocal time of a tagged particles in equations (6) and (7) in
the main text involve an infinite series, whose rate of convergence is difficult to predict, as it strongly depends on
the particular position x of the tagged particle under inspection, as well as on the number of particles Nand
D(k), the degeneracy of Bethe eigenvalue \;. To inspect the rate of convergence of the series we compute the
relative deviation of the results for the variance of local time of the central particle truncated at the kth Bethe
eigenvalue, |aic (t) — ot ()] / o%(t) asa function of k at different positions x and at different lengths of
trajectories t. Figure F1 depicts how fast the series for the variance of local time of the central particle

(equation (6) in the main text) truncated at the kth term converges to the exact value k — co. norder to
compare systems with different N we focused on points xsq and x5 of the central particle, with the specific values
givenin table F1.

Intuitively, the convergence rate increases with increasing length of the observation £, since faster modes
must become less and less important. The convergence rate also increases with increasing N, which is due to an
increasing degeneracy of lower-lying eigenvalues at larger N. Degenerate low-lying eigenvalues allow for a
mixing of different collective slow modes, which become dominant. Finally, by comparing the columns of figure
F1 we notice that the rate of convergence also depends on the tagging position, which in turn depends on the
curvature of the modes at different N.
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Figure F1. Analytical results for |0’ic t) — oi(t)] / o%(t) of the central particle for different particle numbers (V) as a function of k at
different tagging positions. The black symbols depict the eigenvalue degeneracy D(k).

Table F1. Location of x5,
and x5 for the central
particle for various values

of N.
N X50 X75
5 0.500 0.641

11 0.500 0.598
61 0.500 0.544

Appendix G. Equilibrium position correlation function

~ l]

Co(0)
(01 {(0/()
the correlations between particle histories. We found that histories decorrelate at long times as a consequence of
the central limit theorem. Conversely, the particle positions on the ensemble average level do not decorrelate,
not even in equilibrium. To demonstrate this we compute exactly the pair correlation function

In the main text we focused on the covariance of tagged particle local times C‘Qg, t) = reflecting

1 1 1
Phxi %) = f RqG8(xs = 050 — 7)dx —  RaGO8(r — x)dx f Rq(0d(x; — y)dx
0 0 0 (G1)

N A ) e A D D B S

>

nl!m,!(ml — nl)! nz!n,!ml!m,!

where 7, . and m , are the number of particles to the left /right of the two tagged particles i and j. Here we want to
focus on the ensemble-average reduced pair correlation function Pei{'] (xi» x;) / (Pq (xi) Pq (x)) depicted in figure
G1 and corresponding table G1. The latter is in general different from 0, while the former goes to 0 in the limit

t — 00. P !(x, y) depends on Nand for large N changes monotonically from positive to negative correlations
as a function of particle separation. At small N the correlations becomes weaker with increasing separation, but
remains positive. Intuitively, as one particle lies in-between, the dependence of Pg;{” on the interparticle
separation is for large N non-monotonic, going from perfectly anticorrelated to correlated and back to anti-

11
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Figure G1. Pe"{'1 (xi xj) between the central particle cand the right nearest and next-nearest neighbor, ¢ + 1and ¢ + 2 respectively,
when the central particle is tagged at x. = Xs0, X75, X90 and when x, = x,, (see table G1 for the exact positions). The vertical dashed lines
are drawn at the position of the central particle (see table G1) to denote the non-crossing boundary condition.

Table G1. Reference points for the results of figure G1.

N

Xs0 X75 X90 Xm
5 0.500 0.651 0.753 0.593
11 0.500 0.598 0.682 0.544
31 0.500 0.559 0.612 0.515
51 0.500 0.547 0.589 0.509

correlation. Atlow N Pecc’f“ depends non-trivially on the interparticle separation, such that the aforementioned
terminal anticorrelation disappears for small enough N. Notably, for x, = xo, the correlations are much
stronger, which suggest that more extensive excursions are entropically penalized as they demand collective
fluctuations.

Appendix H. Two-tag correlation function of local times
In the main text (in particular in figure 3) we analyzed one-point two-particle histories C ;Cimlz
respective mid-point positions x;, listed in table H1.

To gain further insight we also compute the first and central-particle two-point reduced correlation functions of
local times Ci)’,l (t)and C,fy’c (t) with x and y given in table H2. Figure H1. In the left plot we show the self-reduced
reveals weak anti-correlations at short times ¢ turning to weak correlations at longer ¢, before reaching the LD limit of
uncorrelated histories. As already mentioned in the main text, the correlations for the outer particles are weak and
become weaker with increasing number of particles N, since the outer particles are constrained between the reflecting

(t) atthe
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Table H2. Reference points for the results of

figure H1.
First Central

N X50 X75 X50 X75
3 0.206 0.370 0.500 0.673
5 0.129 0.242 0.500 0.641
11 0.061 0.118 0.500 0.598
21 0.032 0.064 0.500 0.572
61 0.011 0.022 0.500 0.544

a) b)005 BRIl L
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§ §
) —0.04 185* 01
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I -0.15 I
—0.06 11 —
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Figure H1. (a) CN‘;;:WS (t) of the first particle and (b) c;;SY75 (t) of the central particle.
Table H1. The location of the midpoint between the central
particle and the right nearest and second nearest neighbors
used in figure 3 in the main text.
N X Yim
5 0.593 0.685
7 0.567 0.635
9 0.553 0.606
11 0.544 0.588
21 0.523 0.546
31 0.515 0.531
51 0.509 0.519
61 0.508 0.516
71 0.507 0.514
101 0.505 0.510

wall and the right nearest neighbor. In the case of the central particle we observe further evidence of the emergence of
persistent collective fluctuations at higher densities, observed and described in the main text. Notably here even near-
equilibrium fluctuations reveal signatures of collective behavior in the form of persistent histories (note that we are

(t) turns from purely negative to weakly positive correlations.

tagging at x5 and x7s), i.e.
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