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Supplementary Figure 1 Protein homeostasis parameters are conserved among tissues and 
conditions (a) Examples of protein amounts compared between different human organs and from 
different technical replicates (inset on the right). The levels of the proteins do vary among tissues, albeit 
not enormously: for example, abundant proteins are relatively abundant in all tissues. (b) Protein 
amounts compared between different human organs, or among technical replicates (inset on the right). 
Part of the variation is due to technical replicates. (c) Correlation coefficient among different tissues. 
The data used for the analysis derives from different studies. In detail: I1; II2; III3; IV4; V5 ; VI6; VII7; VIII8; 
IX9; X10 and XI11. (d) Correlation coefficient among different species. The data used was obtained from 
several different studies and it is summarized in Supplementary Dataset 3. 



 5 

 
 
Legend in the following page 



 6 

Supplementary Figure 2 Models and predictions. (a) Hyper-parameter optimization. For each model 
hyper-parameters such as the mixing percentage and regularization (glmnet) were optimized for the 
lowest RMSE (white regions) during cross-validation. Parameters were then estimated based on the 
whole cross-validation set and final model performance was assessed on the test set. (b) Outlier 
detection. Data that contains outliers, in other words observations that are extreme and potentially 
biased, can distort the accuracy of a regression analysis. To estimate the impact of potential outliers 
the leverage and Cook’s distance were plotted for each fit, and observations with high leverage and 
Cook’s distance were inspected more closely. Altogether, we did not observe outliers that would warrant 
removal, further consolidating the robustness of the models and predictions. (c) Cross-validation 
performance of RF, glmnet, and FoBa models predicting protein turnover based on sequence 
composition features. Shown are the mean Pearson’s correlation and 95% confidence intervals (CI) for 
the best model and the tolerance model (within 2% of best model RMSE). (d) Filtering for linearly 
dependent or near zero variance features does not affect model performance. Shown are the RMSEs 
of all models (RF in blue, elastic-net in red, FoBa in green) built with (filtering RMSE) or without (no-
filtering RMSE) filtering for co-linear dependencies or near zero variance predictors (features). (e) 
Model sparsity overview. Box-and-whisker representation of the percentage of features used for all 
response – feature-set comparisons. (f) Comparison of linear and non-linear models. (g) Cross-
validation and test RMSEs for all models and response – feature-set comparisons are highly similar, 
providing evidence for good model generalization. (h, i), Protein length does not show a linear 
correlation with the feature-sets used. (h) A strictly linear glmnet prediction of the logarithm of the protein 
length shows a strong bias for short and long proteins whereas (i) RF predictions of the logarithm of 
the protein length shows a good fit. 
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Supplementary Figure 3 N-terminal degrons and N-terminal codon usage have a limited influence on 
protein lifetimes. (a) Box-and-whisker representation of the distribution of protein lifetimes (from1 with 
respect to the first amino acid that follows the N-terminal methionine. An ANOVA test revealed only a 
handful of significant differences, with proteins containing N-terminal Leucines being significantly more 
stable than those containing D, E, N, K, S, V and P (p<0.001). The relevance of this observation is 
unclear. The fact that the predictive models have not selected this feature suggests that this is probably 
redundant with respect to other features. (b) Scatter plot of protein lifetimes from the mouse brain in 
vivo against the lifetimes determined in mammalian reticulocytes for N-terminal degrons in vitro, also 
known as the N-end rule (respectively from1 and12). There is no correlation between the in vivo 
measurements and the lifetime observed in vitro in reticulocyte experiments, suggesting that in vivo the 
effects of the N-end rule are probably overruled by other factors, an therefore the N-end rule has virtually 
no correlation with the protein lifetimes measured in vivo (c) Same as panel a but plotting single codons 
separately. The ANOVA analysis indicates that the UUG codons for Leucine follow the same trend 
observed with the amino acids (p<0.01 against GAG (E), CCC (P), CCG (P), UCG (S) and UCU (S)). 
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Supplementary Figure 4 Limited correlations can be found between different protein homeostasis 
parameters in the mouse brain. We measured protein abundances in the mouse brain using iBAQ13 
and mRNA abundances by whole transcriptome shotgun sequencing14. The ribosome density values 
were obtained from a published study15.  
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Supplementary Figure 5 Sequence correlations to protein and mRNA abundances, to the ribosome 
density, and to the protein length. We calculated the amino acid and codon correlation coefficients to 
these parameters, in the same fashion we have done in Fig. 1b and 1e for the protein lifetime. The plots 
show the coefficients of the amino acids (left panels), and the coefficients of the codons, averaged for 
the G-/C- or A-/U-ending codons of each amino acid (right panels). (a,b) Protein abundance. This 
parameter was determined in our brain cortex samples by iBAQ (see Methods for details). (c,d) mRNA 
abundances, as determined in brain cortex samples1 (e,f) The ribosome density on mRNA molecules, 
as measured by Gonzales and collaborators in the mouse brain15 (g,h) The protein length, as annotated 
on the mouse UniProt database. For proteins with multiple splicing isoforms, the most abundant isoform 
was taken into consideration. The results were then averaged, and the coefficients to these averages 
are plotted. For the codon analysis, we tested statistically whether the coefficients of the G-/C- or A-/U-
ending codons were different, using t-tests (n = 21 sets of codons). Indeed, the coefficients of the G-
/C-ending codons were significantly larger (more positive) than those of the A-/U-ending codons for the 
protein and mRNA abundances and for the ribosome density. The opposite was observed for the protein 
length. The P values are indicated on the graphs. 
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Supplementary Figure 6 The codon behavior in relation to turnover parameters is conserved through 
evolution. (a-d) We used a total of 800 data sets from the literature to investigate the correlation 
between the mouse codon coefficients and the coefficients from different organisms (refer to 
Supplementary Dataset 3 for details concerning the databases taken into consideration). In detail we 
evaluated the protein abundance (a), the mRNA abundance (b), the ribosome density on mRNA 
transcripts (c) and the protein length (d) for the following organisms: bacteria (Escherichia coli), yeast 
(Saccharomyces cerevisiae), rice (Oryx sativa), mouse-ear cress (Arabidopsis thaliana), nematode 
(Caenorhabditis elegans), fruit fly (Drosophila melanogaster), zebrafish (Danio rerio), human (Homo 
sapiens) and rat (Rattus norvegicus). The panels on the left are scatter plots of the mouse codon 
coefficients against the coefficients arising from human tissues. The scatter plots serve as examples 
for this analysis, and each dot represents a codon. We calculated the Pearson correlation between the 
human and mouse codon coefficients (r, shown on the plots, along with the P value). The r serves as 
an indication for how similar the codon behavior from the mouse is to that from the human. The Pearson 
correlation r values were also obtained between the mouse codon coefficients and those from all other 
species, and were plotted in the bar graphs. The high r values between the results obtained in mouse 
and in other vertebrates (human, rat, zebrafish) show that codons relate in the same fashion to the 
different turnover parameters in all of these organisms (e.g., the same codons are linked to high protein 
abundance in mouse, human, rat and zebrafish). The similarity is lower for other organisms, but most 
correlations are nevertheless significant (the P values of the Pearson’s correlation coefficients are 
shown above the bars; n = 61 codons for all bars). The values calculated for human cell lines are also 
represented, and indicate that these correlations are maintained in immortalized cells (gray bars; no 
gray bar is shown for the protein length, since the protein lengths in human tissues and in human cell 
cultures are identical – only one bar, for the human tissues, is shown). 
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Supplementary Figure 7 Evaluation of signal linearity in the imaging setup used for the determination 
of protein lifetimes. (a) Distribution of fluorescence intensities in the imaging experiments used to 
evaluate protein turnover (Fig. 4b and Fig. 5a-d). All detected cells have a signal intensity ranging from 
548 to 31294 arbitrary units. (b) Detection of serially-diluted the SNAP-Cell TMR-Star dye with the same 
settings used in the imaging experiments summarized in panel a. The signal shows a virtually perfect 
linearity in the range where all detected cells are distributed. (c) The signal is saturated for values higher 
than 216 a.u. (65536) and loses its linearity for values under ~200 a.u., where the fluorescence of the 
detected dye has probably the same magnitude of the auto-fluorescence detected by the setup 
(background). 
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Supplementary Figure 8 Calmodulin has a half-life of ~6h as measured with an analogous imaging 
approach16. (a) A calmodulin-SNAP turnover sensor was created and transfected in COS7 cells. 
Experiments were carried out as in Fig. 4 and Fig. 5. Briefly, the graph represents the chase following 
a 2h pulse of the new protein (synthesized just during the pulse). For every chase time, cells were fixed, 
imaged with a high content microscope and analyzed in an automated fashion. Each dot in the graph 
represents the average of three separate experiments with SEM (n = 3) and shows the results from 
>2’000 cells analyzed per condition. (b) Lifetime (expressed as t1/2) calculated from the values from 
panel a compared with the lifetime reported in Supplementary Table 4 from Eden et al16. The two 
calculated lifetimes are not significantly different. The fact that the two lifetimes are not exactly the same 
might be due to the differences in cell types and/or in the fusion tag used (respectively SNAP-tag for 
our experiments and GFP for the bleach-chase approach used by Eden and collaborators). 
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Supplementary Figure 9 Additional data supporting the hypothetical scenario introduced in Figure 6. 
(a) The overall G/C contents of the mouse brain mRNAs correlate well to the G/C contents at the third 
position of their codons. (b) Interestingly, the G/C contents at the first and at the second position of 
codons are correlated to the overall G/C contents of mRNAs, but to a lesser extent than for the third 
nucleotide, implying that the latter is the most important nucleotide in determining the overall G/C 
contents. (c) The G/C contents at the third nucleotide is negatively correlated to the estimated free 
energy (ΔG) of mRNAs (normalized for mRNA length). Since lower free energies correspond to more 
stably folded structures, higher G/C contents at the third nucleotide implies more stably folded mRNAs. 
(d) The same was observed in the case of our synthetic genes (from Figure 6). (e and f) Lower free 
energies (more stably folded mRNA structures) correlate with more abundant mRNAs both in our 
mouse brain dataset (e, determined by next generation sequencing) and in our synthetic gene subset 
(f, determined by RT-qPCR). (g) G-/C-ending codons are more frequently used to code for structured 
protein domains. In detail, the analysis of the percentage of G-/C- or A-/U-ending codons in the vicinity 
of regions with defined protein structures revealed that disorganized protein regions have a prominent 
increase of A-/U-ending codons, while more structured regions, containing alpha helices and beta 
sheets, are characterized by G-/C-ending codons. The data were obtained from the secondary structure 
calculations used in Figure 3, which provide the probable secondary structure at each amino acid. Only 
regions in which the particular structure (disorganized, alpha helix or beta sheet) was found with high 
probability over several adjacent amino acids were analyzed, to avoid the analysis of uncertain 
structures.   
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