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ABSTRACT. In this paper we analyze Fourier coefficients of automorphic forms on adelic
reductive groups G(A). Let 7 be an automorphic representation of G(A). It is well-known
that Fourier coefficients of automorphic forms can be organized into nilpotent orbits O of
G. We prove that any Fourier coefficient F» attached to 7 is linearly determined by so-
called ‘Levi-distinguished’ coefficients associated with orbits which are equal or larger than
O. When G is split and simply-laced, and 7 is a minimal or next-to-minimal automorphic
representation of G(A), we prove that any n € 7 is completely determined by its standard
Whittaker coefficients with respect to the unipotent radical of a fixed Borel subgroup,
analogously to the Piatetski-Shapiro—Shalika formula for cusp forms on GL,,. In this setting
we also derive explicit formulas expressing any maximal parabolic Fourier coefficient in
terms of (possibly degenerate) standard Whittaker coefficients for all simply-laced groups.
We provide detailed examples for when G is of type Ds, Eg, E7 or Eg with potential
applications to scattering amplitudes in string theory.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. Let K be a number field and A its ring of adeles. Let G be a reductive
group defined over K, G(A) the group of adelic points of G and 7 be an automorphic form
on G(A). Fix a minimal parabolic subgroup B (a Borel subgroup if G is quasi-split) in
G and let N be its unipotent radical. Consider the (infinite) set of unitary characters
xn : NK)\N(A) — C*. It is well-known that the constant term of n with respect to
[N, N] can be decomposed according to

n(ng)dn =Y Wyy[nl(g), (1.1)

[N,NTE)N[N,N](A) xw

where W, € C*°(G(A)) is the standard Whittaker coefficient corresponding to xny given
by

WynInl(g) :== / n(ng)xn(n) ™ dn. (1.2)
N(E)\N(4)

This is N-equivariant, W, [n](ng) = xn(n)Wy [1](g). If n is spherical (i.e. n(gk) = n(g)
for k in the maximal compact subgroup of K C G) then, by the Iwasawa decomposition
g = nak, W,y [n](g) is determined by its restriction to the maximal torus 7' C G.

If 7 is an Eisenstein series induced from a character p = II, i, of a Borel subgroup B C G,
and yy is generic, the Whittaker coefficient is well-known to be Eulerian,

Wi [77] = HVWXNJ/[/"L]? (1'3)

where the local factors are given by so-called Jacquet integrals
Wawoli = [ (). (14)
N(K,)

This is a powerful result, as for each finite place v these integrals are explicitly computable
using the Casselman—Shalika formula [CS80].

It is natural to ask whether one can recover all of n from its Whittaker coefficients,
and not just the constant term of n with respect to [N, N]. This is known to be true
when 7 is a cusp form on GL,,(A) for which we have the Piatetski-Shapiro—Shalika formula
[PS79, Sha74]:

n(g) = > > Wil ((71) 9), (1.5)

YEN,—1(K)\ GLy,—1(K) XN

where N,_ is the unipotent radical of a Borel subgroup of GL,_;. On the other hand,
all Whittaker coefficients of non-generic cusp forms vanish, and thus such forms definitely
cannot be recovered. By [Ike01] such forms exist on Sp,. Our first result, Theorem A below,
provides a sufficient condition for recovering a form 7 from its Whittaker coefficients.

It is also natural to consider more general Fourier coefficients with respect to unipotent
radicals U of arbitrary parabolic subgroups P = LU C G. Consider a set of unitary
characters xy : U(K)\U(A) — C*. We have the associated Fourier coefficient of an
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automorphic form n on G given by:
Falilo)= [ nugho( " du. (16)
UKN\U(A)

By construction this is U-equivariant and can be viewed as a function F,,, : C(K)\C(A) —
C, where C'is the stabilizer of x inside the Levi L. In the special case when P is a minimal
parabolic, the Fourier coefficient F,,, coincides with the Whittaker coefficient (1.2). As
already stressed above, when U is non-abelian, the coefficient F,, only captures a part of
the Fourier expansion of . To reconstruct n from its coefficients one must consider the
derived series of U:

g = @ y®),  v® =y (1.7)
This series will terminate after finitely many steps since U is unipotent. A unitary character
Xy is trivial on U (i+1) and the complete non-abelian Fourier expansion of 7 with respect
to U takes the form

n= ]:0[77] + Z "TXU(O) [77] + Z "T:XU(l) [77] +ot Z FXU(¢071) [77]7
Xgr(0) 71 Xgr(1) 71 Xy (ig—1) 71

where 4 is the smallest integer for which U(0) = 1.

In general it is a hard problem to obtain explicit formulas for arbitrary Fourier coefficients
]-'XU(Z.) in the series above; in particular, they are generically non-Eulerian and no analogue
of the Casselman—Shalika formula exists. However, for special choices of data, that is, choice
of automorphic form 7, unipotent U and character Xy, the coefficients ]:Xu(i) [n] may
simplify.

In this paper we will prove many results concerning Fourier coefficients of the form
discussed above, as well as more general ones. In particular, we prove that in a large class
of cases, the coefficients .FXU(Z.) are linearly determined by the simpler Whittaker coefficients
Wy which allows us to compute ]:XU(i) explicitly. The emphasis on the reduction to
Whittaker coefficients is due to the fact that it is known how to compute them explicitly
and they take simple forms for small representations [FKP14].

Our results are strongest in the case when G is a split simply-laced group and n is
a so-called minimal or next-to-minimal automorphic form. This means that all Fourier
coefficients attached to nilpotents outside of a union of Zariski closures of minimal or
next-to-minimal nilpotent orbits vanish. We refer to §2.3 below for the precise definitions.
A sufficient condition for this is that one of the local components of the representation
generated by 7 is minimal or next-to-minimal, see Lemma 2.2.4 below. For minimal
representations, this condition is also shown to be necessary under some additional
assumptions on G, see [GS05, KS15].

The minimal representations have been extensively studied in the literature, in particular
due to their crucial role in establishing functoriality in the form of theta correspondences.
Moreover in a series of works [GRS11, GRS97, Gin06, Ginl4], myi was used to construct
global Eulerian integrals. Next-to-minimal representations have not been as extensively
analyzed though in recent years this has started to change, partly due to their importance
in understanding scattering amplitudes in string theory [GMV15, Piol0, FKP14, GKP16,
FGKP18]; see §1.3 below for more details on this connection.
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To achieve our goal we will use several notions of Fourier coefficients. We define these
in §2, following [GGS17, GGS] but with slightly different notation. In [GGS17, GGS] it
was shown that there exist G-equivariant epimorphisms between different spaces of Fourier
coefficients, thus determining their vanishing properties in terms of nilpotent orbits. In
this paper we determine exact relations (instead of only showing the existence of such)
between different types of Fourier coefficients, and in particular reduce Fourier coefficients
that are difficult to compute into more manageable coefficients such as the known Whittaker
coefficients with respect to the unipotent radical of a minimal parabolic subgroup.

1.2. Main results. Let us now explain some of our main results in more detail. To this end
we need to briefly introduce some terminology. Denote by g the K-points of the Lie algebra
of G. A Whittaker pair is an ordered pair (S, ) € g x g*, where S is a semi-simple element
with eigenvalues of ad(S) in Q, and ad*(S)(¢) = —2¢. This implies that ¢ is necessarily
nilpotent and corresponds to a unique nilpotent element f = f, € g by the Killing form
pairing. Each Whittaker pair (S, ) defines a unipotent subgroup Ng, C G given by (2.2)
below and a unitary character x, on Ng, by x,(n) = x(p(logn)) for n € Ng,(A).

Our results are applicable to a wide space of functions on G(A), that we denote
by C*(G(K)\G(A)) and call the space of automorphic function. This space consists
of functions f that are left G(K)-invariant, finite under the right action of Ky :=
[Lanite » G(O.), and smooth when restricted to Goo := [ [i1anite » G(Kv). In other words, we
remove the usual requirements of moderate growth and finiteness under the center 3 of the
universal enveloping algebra.

Following [MW87, GRS97, GRS11, GGS17] we attach to each Whittaker pair (S, ) and
automorphic function n on G the following Fourier coefficient

Fselnl(g) = / 1(ng) xe(n) ™" dn. (1.8)
N (K)\Ns,»(4)

Remark 1.2.1. This definition is more general than what is usually referred to as a Fourier
coefficient in the literature, cf. [GRS97, GRS11, Gin06, GH11].

Note that Fg ,[n](g) is a smooth function on G(A) in the above sense, but is not invariant
under G(K) any more. On the other hand, its restriction to the joint centralizer G, of
S and ¢ is left Gg,(K)-invariant. As shown in [GHI11], if  is in addition 3-finite and has
moderate growth, then the restriction of 7 to Gg,,(A) still has moderate growth, but may
stop being 3-finite.

Note also that the unipotent group Ng, is not necessarily the unipotent radical of a
parabolic subgroup of G; see the discussion of the derived series in §1.1. Consider, for
example, the case of G = Eg and let P = LU C Eg be the Heisenberg parabolic such that
the Levi is L = F7 x GL; and the unipotent radical U is the 57-dimensional Heisenberg
group with one-dimensional center C' = [U,U]. Then the Fourier coefficient Fg ,includes
the “non-abelian” coefficient corresponding to Ng, = C and X, a non-trivial character on
C. This case is relevant for applications to physics; see §1.3 below.

If a Whittaker pair (h, ) corresponds to a Jacobson-Morozov slp-triple ( f,,, h, e,) we say
that it is a neutral Whittaker pair, and call the corresponding Fourier coefficient neutral
Fourier coefficient. This is what is usually called a Fourier coefficient in the literature.



6 D. GOUREVITCH, H. GUSTAFSSON, A. KLEINSCHMIDT, D. PERSSON, AND S. SAHI

The global wave front set of n, denoted WO(n), is defined as the set of nilpotent orbits
O such that there exists a neutral pair (h,¢) with non-vanishing 73 ,[n] and ¢ € O, see
Definition 2.2.3 below. It was shown in [GGS17, Theorem C] that if F, ,[] = 0 then
Fs,0[n] = 0 for any Whittaker pair (5, ¢), not necessarily neutral.

Because of the many different kinds of Fourier coefficients figuring in this paper, we will
also make the following distinctions. If S is such that Ng, is the unipotent radical of
a minimal parabolic subgroup of G, independent of ¢, we say that (S,¢) is a standard
Whittaker pair and call the Fourier coefficient Fgs, a (standard) Whittaker coefficient
denoted by Ws . If S corresponds to our fixed minimal parabolic subgroup B we may
simply write W,, as in (1.2). Another special case of a standard Whittaker pair is a
principal Whittaker pair as introduced in Definition 2.0.5 further restricting S, which is
then also called principal. There we also define what it means for a Whittaker pair (.5, ¢)
or a character ¢ to be principal in a Levi subgroup (or a PL-pair) with the corresponding
Fourier coefficient Fg , being called a PL-coefficient.

Finally, in §2.1 we will define what we call Levi-distinguished Fourier coefficients. Such a
coefficient is defined by a parabolic subgroup P C G (defined over K), a Levi decomposition
P = LU and a Whittaker pair (H,¢) for L, in which ¢ is K-distinguished, i.e. does not
belong to the dual Lie algebra of any Levi subgroup of L defined over K. The corresponding
Fourier coefficient is given by considering the constant term with respect to U as a function
on L, and then taking the Fourier coefficient Fp . To see that this construction defines a
Fourier coefficient on G, we let Z be a rational semi-simple element that commutes with
L and has all its non-zero adjoint eigenvalues much bigger than those of H (in absolute
value). Then the Levi-distinguished Fourier coefficient is Fr4 7. By Lemma 2.1.9 below,
if ¢ is a principal nilpotent in L then Fpy 7, is a Whittaker coefficient.

Our main results can be summarized in the following theorems which are proven in §§4,5.

Theorem A. Letn be an automorphic function on a reductive group G. Then, any Fourier
coefficient Fg ,[n] is linearly determined by the Levi-distinguished Fourier coefficients with
characters in orbits which are equal to or bigger than Gyp.

In particular, if all non-PL coefficients of n vanish, then all Fourier coefficients are
linearly determined by Whittaker coefficients W,s[n].

We refer to Definition 2.2.1 below for our order relation on K-rational nilpotent orbits.
The term ‘linearly determined’ is explained in Definition 2.0.9 below. It includes taking
sums over characters, sums over G(K)-translates of the arguments and integrations over
unipotent subgroups giving expressions schematically on the form

SN / duW,y (yug) (1.9)
oy

and similarly for other Levi-distinguished Fourier coefficients.

One can show that for simply-laced groups the minimal and the next-to-minimal orbits are
always PL. Thus, Theorem A implies that minimal and next-to-minimal forms on simply-
laced groups, as well as all their Fourier coefficients are linearly determined by Whittaker
coefficients. We provide explicit formulas for this determination in Theorems C,D,E below.

In order to present our next theorems we will need to introduce some notation.
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Notation 1.2.2. For a rational semi-simple H € g and A € Q denote by gif the i-eigenspace
of ad(H). Denote also g7, := Sy S oll, gg)\ = g¥ @ g%, and similarly for gZ, and gg)\.
For ¢ € g* denote by g, its stabilizer in g under the coadjoint action.

Definition 1.2.3. Let (H,¢) be a Whittaker pair, and let Z € g(K) be a rational semi-
simple element that commutes with H and ¢ and satisfies

g, NgZs C 0%y (1.10)
We will say that (H, ) dominates (H + Z, ).

In Proposition 4.0.1 below we show that if (H, ) dominates (S, ¢) then Fg , linearly
determines Fg . The next theorem gives a sufficient condition for Fg, to determine Fpy ..

Theorem B. Let (H,p) and (S,¢) be Whittaker pairs such that (H,y) dominates (S, p).
Denote

v:=g Nng3,, and V :=Exp(v). (1.11)
Let n be an automorphic function on G, and assume that the orbit of ¢ is mazximal in
WO(n).

(i) If gff = g7 =0 then

Frenl(g) = / Fspln(vg) dv. (1.12)
V(A)

(ii) More generally, denote

u:= (g2, Nnoh))/(e2, na)), w = (g4, ngdy)/v, U:=Exp(u), W :=Exp(w) (1.13)
Then

Faollg)= Y / / Fs ol (woug) dudv (1.14)
weW(K) via) um)\U(a)

In [GGS17] (and in Corollary 3.2.2) it is shown that any Whittaker pair (H,¢p) is
dominated by a neutral pair (h, ). In §4 below we show that any Whittaker pair (H,¢)
dominates a Levi-distinguished pair (S, ). Note that if ¢ is principal in a Levi subgroup
(PL), then any Levi-distinguished Fourier coefficient is a Whittaker coefficient, and thus,
if ¢ is PL and is maximal for 7 then any Fourier coefficient Fp [n] is obtained by an
integral transform from a Whittaker coefficient Ws ,[n]. For the remaining theorems we
will consider minimal and next-to-minimal automorphic functions on a split simply-laced
group G of rank r. We define those notions in §2.3 below.

For the following theorems we assume G to be split, choose a split maximal torus and a
set of positive roots and let « be a simple root. We are interested in Fourier coefficients with
respect to the unipotent radical U, of the maximal parabolic subgroup P, where Lie U, is
spanned by the Chevalley generators of positive roots with non-zero a-component. Letting
(Sa, @) be a Whittaker pair where S, € b is defined by a(S,) = 2 and «;(S,) = 0 for all
other simple roots, we get that Ng, , = Uy, the unipotent of the maximal parabolic P,
independent of ¢. This means that, for a Whittaker pair (Sy,¢), the Fourier coefficient
Fs. . is the usual Fourier coefficient with respect to the unipotent subgroup U, and the
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character x,. Let also 3 be the only simple root that is not orthogonal to o, and I denote
the set of indices for all the remaining simple roots «;.

Theorem C. Let nyin be a minimal automorphic function on a simply-laced split group G
and (Sa, p) a Whittaker pair with S, as above. Depending on the orbit of v, we have the
following statements for the corresponding Fourier coefficient.

(i) If v is minimal, then
F Sare[Mmin] (9) = W [Thmin] (709) (1.15)

where g s an element in G(K) that conjugates ¢ to an element ¢’ of weight —c.
(ii) If ¢ is not minimal and not zero then Fs, o[Mmin) = 0.

Together with the result from [MW95] for computing the constant term (that is, ¢ = 0) in
maximal parabolics, this exhausts all possibilities for (. We also obtained an expression for
the automorphic function itself. For any root d denote by g the corresponding subspace of
g* and by g the set of non-zero elements of this subspace. Note that gj is a one dimensional
linear space over K.

Theorem D. Let nyin be a minimal automorphic function on a simply-laced split group G.
If the Dynkin diagram of G has no components of type Eg then

rk(G)
nmin(g) = Wﬂ[nmin] (g) + Z Z Z Wso[nmin] (’Yg) (1'16)

i=1 ~veA;(K) @ngai

where, for each i, A; is a subquotient of a Levi subgroup of G that is determined in the
proof. If the Dynkin diagram of G has k components of type Eg then we get k additional
terms, each accounting for the non-abelian part of the mazximal parabolic of the ag of the
corresponding component. We have

rk(G) k
nmin(g) =Wo [nmin](g) + Z Z Z Ww [nmin] (’Yg) +Z Z Z Ww [nmin](sjw.g)’

i=1 yeA;(K) v’y I=1 peg*  weW;(K)
—Q
8

(1.17)
where o is the 8-th root of E}, the j-th Eg-component of G, in the Bourbaki labeling;
s; € G(K) is an element that normalizes the Cartan and conjugates the highest root of E}

to of, and W; is a subquotient of a certain unipotent subgroup of E} that is determined in
the proof.

Theorem E. Let nym be a next-to-minimal automorphic function on a simply-laced split
group G and (S, ) a Whittaker pair with S, as above. Depending on the orbit of ¢, we
have the following statements for the corresponding Fourier coefficient.

(i) If v is minimal, then

Fsuiplim] (9) = W naeml (09) + Y D D Wiy noem (1109) (1.18)
iel ’YGFZ(K) wEBEQi
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where 7y is an element in G(K) that conjugates ¢ to ¢' € g* . and T'; are certain
subsets of Levi subgroups of G that are determined in the proof. Recall that I is the
set of indices for the simple roots that are orthogonal to a.

(ii) If ¢ is next-to-minimal, then

‘FSaW[UHtm] (g) = / WAO’ [nntm](U’YOQ) dv (1'19)
V(A)

where 7y is an element in G(K) that conjugates ¢ to ¢’ € @._, g%, and V = Exp(v)
with

b=g3,Nb (1.20)

where S' = ’yOSO/yO_l and b is the Lie algebra of the negative Borel spanned by b and
the Chevalley generators for negative roots.
(iii) If @ is not in the closure of any complex newt-to-minimal orbit, then Fs, o[Nntm| = 0.

Colloquially, we will write the condition in (iii) as ¢ being in an orbit larger than next-
to-minimal.

Remark 1.2.4. Tt is interesting to ask which Fourier coefficients are Eulerian [Gin06, Ginl4].
The expectation based on the reduction formula of [FKP14] and explicit examples checked
there is that Whittaker coefficients W, [n] of an Eisenstein series  on a group G are Eulerian
if the orbit of ¢ is maximal in WO(#n). In general, the reduction formula expresses W,[n]
through a sum of generic Whittaker coefficients on s semi-simple group determined by .
If  belongs to a maximal orbit in WO(#), this sum collapses to a single term in all known
examples and since generic Whittaker coefficients on the subgroup are Eulerian this implies
the same for W, [n]. By Theorem B this implies that any parabolic Fourier coefficient
associated to ¢ is Eulerian. By parabolic Fourier coefficient associated to ¢ we mean Fg ,
such that all the eigenvalues of S are even integers.

With this logic one obtains also from (1.15) that the Fourier coefficient Fg, ,[1min] of an
Eisenstein series in the minimal representation calculated in the unipotent of a maximal
parabolic determined by a should be Eulerian for simply-laced split groups. By contrast, if ¢
does not belong to a maximal orbit of n the Whittaker coeflicients and Fourier coefficients
are not expected to be Eulerian and this is also evident from formula (1.18) showing a
Fourier of a next-to-minimal automorphic function n for a minimal character ¢.

Theorem F. Let num be a next-to-minimal automorphic function on a simply-laced split
group G. Then

(i) Mutm 8 linearly determined by its Whittaker coefficients.
(ii) If G is of type A, for n > 2 or G is of type D, and the set WO(nnm) lies in the
Zariski closure of a single next-to-minimal complex orbit O then

Motm (9) = Fsa,0[mem] (9) + Y (W@o [ntn] (59) + Y D D Weg[ntm] (Wg)),

Y€l el veliyegX
(1.21)
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where a is ay, in type Ay, and either ay or oy, in type Dy, depending on O; o € g~
is a fived non-zero element, Iy, is the quotient of the Levi subgroup of G given by S,
by the stabilizer of g, and the rest of the notation is as in Theorem E.

(i1i) If G is of type E,, for n € {6,7} we have

i (9) = Fsoolmiml (9) + 3 (Waolnainl(9) + 33 > Wogrulmml(139))

7€l i€l v€li pegX
K

LYY / Wi o ] (0739) v, (1.22)
€Ly vEA V(A)

where a = ay,, Yo 1s a fixed element of gfamax, A is the quotient of the Levi subgroup
given by Sq by the stabilizer of wo + Yo and the rest of the notation is as above.
(i) If G is of type Eg we have

nntm(g) = fsa,ﬂ[nntm] (g) + Z (Wwo [nntm] (:Vg) + Z Z Z W<P0+1ZJ [nntm] (’V:)/g))

7€l i€l veli peg”
3

+ Z / WSOOJriZJo [nntm](v:yg) dv + Z ( Z WCsOO [nntm] (wsg) +
:YEAV(A) weW (K) ceKX

Z ZZ Z W6900+¢[77ntm](7wsg)+ Z /choer(')[nntm](v:ywsg))a (1'23)

ceKX el "Yeri wegzai :YEMV(A)

where a = ag, ¥y is a fived element of gy, on—a,.., M the quotient of the Levi
subgroup given by o, ..., o by the stabilizer of po + 1, and the rest of the notation
is as above.

The assumption in type D, is justified by the conjecture that all the maximal orbits
in WO(n) lie in the same complex orbit (see [Gin06]). Using Lemma 2.2.4 below on the
connection of Fourier coefficients of local components we obtain

Corollary G. Let m be an irreducible representation of G(A) and let 1 = Qm, be the
decomposition of w to local components. Suppose that there exists v such that m, is minimal
or next-to-minimal. Then 7 cannot be realized in cuspidal automorphic forms on G(A).

Remark 1.2.5. Theorems C, D and E generalize the results of [MS12, AGK™"18] from SL,
to arbitrary simply-laced split Lie groups G. Together with theorem F they provide explicit
expressions for the complete Fourier expansions of next-to-minimal automorphic forms on
all split simply-laced groups and we shall compare these to other results available in the
literature in §5.5.

1.3. Motivation from string theory. The results of this paper have applications in
string theory. In short, string theory predicts certain quantum corrections to Einstein’s
general theory of relativity. These quantum corrections come in the form of an expansion
in curvature tensors and their derivatives. The first non-trivial correction is of fourth order
in the Riemann tensor, denoted schematically R?, and has a coefficient which is a function
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TABLE 1. Table of Cremmer—Julia symmetry groups F,(R), n = d+1, with
compact subgroup K, (R) and U-duality groups E,,(Z) for compactifications
of IIB string theory on a d-dimensional torus 7% to D = 10 — d dimensions.

d Eqi1(R) K (R) Eq1(Z)
0 SLo(R) S04 (R) SLo(Z)
1| GLy(R) SO (R) SLo(Z)
3 SLs(R) SO5(R) SLs(Z)
4 SO55(R) (SOs5(R) x SO5(R))/Zo SO5,5(Z)
5 E6(R) USpg(R)/Zs E6(Z)
6 Er7(R) SUs(R)/Zs E7(Z)
7 Eg (R) Spinlﬁ (R)/ZQ Eg (Z)

M+ Bn/K, — C, where G,/ K, is a particular symmetric space, the classical moduli space
of the theory. The parameter n = d + 1 encodes the number of spacetime dimensions d
that have been compactified on a torus 7¢. The groups E, are all split real forms of rank
n complex Lie groups (see table 1).

In the full quantum theory the classical symmetry FE,(R) is broken to an arithmetic
subgroup E,(Z), called the U-duality group, which is the Chevalley group of integer
points of E,. Thus, the coefficient functions 7, are really functions on the double coset
E,(Z)\E,(R)/K, and in certain cases they can be uniquely determined. For the two leading
order quantum corrections, corresponding to R* and 9*R?, the coefficient functions 7, are
respectively attached to the minimal and next-to-minimal automorphic representations of
E, [Piol0, GMV15]. Fourier expanding 7, with respect to various unipotent subgroups
U C E, reveals interesting information about perturbative and non-perturbative quantum
effects. Of particular interest are the cases when U is the unipotent radical of a maximal
parabolic P, C G corresponding to a simple root « at an “extreme” node (or end node)
in the Dynkin diagram. Consider the sequence of groups FE, displayed in table 1, and the
associated Dynkin diagram in “Bourbaki labelling”. The extreme simple roots are then
a1,y and ay, (this is slightly modified for the low rank cases where the Dynkin diagram
becomes disconnected). Fourier expanding the automorphic form 7 with respect to the
corresponding maximal parabolics then have the following interpretations (see figure 1 for
the associated labelled Dynkin diagrams):

e P = P,,: String perturbation limit. In this case the constant term of the Fourier
expansion corresponds to perturbative terms (tree level, one-loop etc.) with respect
to an expansion around small string coupling, gs — 0. The non-constant Fourier
coefficients encode non-perturbative effects of the order e=1/9 and e~/ g2 arising
from so-called D-instantons and NS5-instantons.

e P = P,,: M-theory limit. This is an expansion in the limit of large volume of the
M-theory torus T9!. The non-perturbative effects arise from M2- and M5-brane
instantons.

e P = P, : Decompactification limit. This is an expansion in the limit of large
volume of a single circle S* in the torus 7% (or T9*! in the M-theory picture). The
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2
(a) o—o—i—o ----- o0—o SOn-1,n-1 C Ep
1 3 4 5 n—1n string perturbation limit
2
(b) o—o—l—o ————— o0—o SLn C Ep
1 3 4 5 n—1mn M-theory limit
2
o—o—i—o o0—e E,_1CE,
© 1 3 4 5 o _7; 1 n decompactification limit

FiGURE 1. The various string theory limits associated with different
maximal parabolic subgroups P,. Roots are labeled in the Bourbaki order-
ing.

non-perturbative effects encoded in the non-constant Fourier coefficients correspond
to so called BPS-instantons and Kaluza—Klein instantons.

For the reasons presented above, it is of interest in string theory to have general techniques
for explicitly calculating Fourier coefficients of automorphic forms with respect to arbitrary
unipotent subgroups.

In string theory the abelian and non-abelian Fourier coefficients of the type defined
in (1.6) typically reveal different types of non-perturbative effects (see for instance [PP09,
BKN10, Per12]). The archimedean and non-archimedean parts of the adelic integrals have
different interpretations in terms of combinatorial properties of instantons and the instanton
action, respectively. For example, in the simplest case of an Eisenstein series on SLo the
non-archimedean part is a divisor sum ox(n) = > din d* and corresponds to properties of
D-instantons [GG97, GGI8, KV98, MNS00] (see also [FGKP18] for a detailed discussion in
the present context). Theorem F provides explicit expressions for the Fourier coefficients of
the automorphic coupling of the next-to-minimal 9*R* higher derivative correction in the
decompactification limit.

1.4. Structure of the paper. In §2 we give the definitions of the notions mentioned above,
as well as of Whittaker triples and quasi-Fourier coefficients. These are technical notions
defined in [GGS] and widely used in the current paper as well.

In §3 we relate Fourier and quasi-Fourier coefficients corresponding to different Whittaker
pairs and triples. To do that we further develop the deformation technique of [GGS17, GGS],
making it both more general, more explicit, and better adapted to the global case. The
deformation technique is in turn is based on the root-exchange technique of [GRS97, GRS11].

In §4 we prove Theorems A and B. We first apply §3 to prove Theorem A. Then, we deduce
Theorem B from Theorem A using similar methods. In §4.3 we describe the PL property of
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minimal and next-to-minimal orbits, for the benefit of the reader. The statements in §4.3
that concern exceptional groups are due to Joseph Hundley, and are given without proofs
since they are not used in the following. In §4.4 we prove some geometric lemmas that are
used in §5. We keep these lemmas in §4 since they hold in full generality.

In §5 we deduce Theorems D-E from Theorem B and §4.4. We do not use Theorem A,
though this theorem gives an existence proof for formulas as in Theorems D-E, as well as
an algorithm to obtain similar formulas. However, in §5 we find several shortcuts that lead
to more compact formulas. Denote by L, the centralizer of S,. We first deduce from §4.4
that any minimal ¢ € (g*)f‘é can be conjugated into g*, using L, (Corollary 5.1.3). This,
together with Theorem B, implies Theorem C(i). Part (ii) follows from the definition of
minimality and Corollary 4.0.2, that says that any Fourier coefficient is linearly determined
by a neutral Fourier coefficient corresponding to the same orbit.

To prove Theorem D, assume first that G has a maximal parabolic subgroup P, with
abelian unipotent radical U,. In this case we decompose the form n,;, into Fourier series
with respect to U,. Each Fourier coefficient is of the form Fg, ,. For ¢ = 0, we show that
the restriction of this coefficient to L, is minimal and use the theorem for L, (by induction
on rank). For non-zero and non-minimal ¢, Fg, , vanishes by C(ii). For minimal ¢ the
expressions for Fg, . are given by Theorem C(i). We group them together using Corollary
5.1.3. If G does not have a maximal parabolic subgroup with an abelian unipotent radical
then G is a product of components of type Fg and thus has a maximal parabolic subgroup
P, for which the unipotent radical U, is the 57-dimensional Heisenberg group. We then
decompose Mmin into Fourier series with respect to the center of U,. The expression for
the constant terms is obtained in the same way as above. The other terms, that are also
called non-abelian terms, are neutral Fourier coefficients F /o5, ["min] and the expression
for them follows from Theorem B.

Theorem E(ii) and E(iii) follow from Theorem B and Corollary 4.0.2 respectively. To
prove E(i) we restrict Fs, [ntm] to Lo, show that it is a minimal automorphic function and
apply Theorem D. In §5.4 we obtain a full expression for nym, using the same strategy as in
the proof of Theorem D. However, we need two additional components. One is Proposition
5.4.4 that describes the action of L, on next-to-minimal elements of (g*)f‘%. The other is an
expression for non-abelian terms J Sm‘p[nmm] for next-to-minimal 9uy,. Our strategy for
obtaining this expression is the same as the strategy for the proof of Theorem E(i). Finally,
it §5.5 we compare our expressions for nyy to the results of [BP17, GKP16, KP04].

In §6 we provide examples to Theorems D-E for groups of type D5, Eg, E7 and Ejg
computing the expansions of automorphic function and Fourier coefficients with respect to
different parabolic subgroups of interest in string theory.
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2. DEFINITIONS

Let K be a number field and let A = Ak be its ring of adeles. In this section we let x be
a non-trivial unitary character of A, which is trivial on K. Then yx defines an isomorphism
between A and A via the map a — xq, where Xa(b) = x(ab) for all b € A. This isomorphism
restricts to an isomorphism

AR={reh : rlxk=1)={xa:a K} =K. (2.1)

Let g denote the Lie algebra of G. By abuse of notation we will also denote by g the
K-points of this Lie algebra.

Definition 2.0.1. A Whittaker pair is an ordered pair (S,¢) € g x g* such that S is a
rational semi-simple element (that is, with eigenvalues of the adjoint action ad(S) in Q),
and ad*(S)(¢) = —2¢. Note that ¢ € (g*)°, is necessary nilpotent.

Given a Whittaker pair (S, ¢) on g, we set u = 9§1 =g, ®gf and ng, = {X € u :
we(X,Y) =0 for all Y € u} to be the radical of the form wy |y, where w,(X,Y") = ([ X, Y]).
According to Lemma 3.2.5 below one can show that

s, =031 @ o7 Mgy (2.2)

where gf is the 1-eigenspace of S in g, gil is the direct sum of eigenspaces with eigenvalues
> 1, and g, the centralizer of ¢ in g under the coadjoint action. Let [ C u be any isotropic
subspace with respect to wy |y that includes ng . Note that ng, C [ C uand ng, [ are ideals
in u. Let U = expu, Ng, = expng, and L = expl. Observe that we can extend ¢ to a
linear functional on g(A) by linearity and, furthermore, the character Xé (expX) = x(p(X))
defined on L(A) is automorphic, that is, it is trivial on L(K). We will denote its restriction
to Ns,(A) simply by x,.

We will often identify ¢ with its dual nilpotent element f = f, € g with respect to the
Killing form (, ) or with its corresponding character x,(n) = x(¢(logn)) = x((f,logn)) =
X ¢(n), sometimes calling ¢ itself a character. For a subgroup U C G we denote by [U] the
quotient U(K)\U(A).

Definition 2.0.2. Let (S,¢) be a Whittaker pair for g and let L, Ng, x, and Xé be as
above. For an automorphic function n, we define the Fourier coefficient of n with respect
to the pair (5, ¢) to be

Fslnl(g) == / 1(ng) xe(n) " dn. (2:3)
[NS,AP]
We also define its L-Fourier coefficient to be the function

F& ml(g) = /n(lg) Xs)~tdl. (2.4)
L)
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Observe that Fg ,[n] and FL »[n] are matrix coefficients corresponding to the vector n € m
and the functional on the space of automorphic functions defined by the integrals above.

Definition 2.0.3. A Whittaker pair (H, ) is called a neutral Whittaker pair if either
(H,¢) = (0,0), or H can be completed to an sly-triple (e, H, f) such that ¢ is the Killing
form pairing with f. Equivalently, the coadjoint action on ¢ defines an epimorphism
ggl —»(g*)l_{z, and also H can be completed to an sls-triple. For more details on sly-triples

over arbitrary fields of characteristic zero see [Bou75, §11].

Remark 2.0.4. If (f,, h, e,) is an sly-triple associated with the principal nilpotent orbit then
N, is a maximal unipotent subgroup, and the Fourier coefficient Fj, ,[n] is a Whittaker
coefficient W), ,,[n]. Recall that a principal nilpotent element ¢ is a nilpotent element whose
centralizer in g is minimal. If G is quasi-split then this is equivalent to dim g, = rk g.

Definition 2.0.5. We call S principal if it can be completed to a neutral pair (S, ) such
that v is a principal nilpotent element and we call a Whittaker pair (.S, ¢) principal if S is
principal. Note that this implies that S defines a minimal parabolic subgroup, which means
that a principal pair is a special case of a standard pair.

A nilpotent element ¢ is called a PL-element, where PL stands for principal in o Levi,
if it can be completed to a Whittaker pair (S, ¢) where S is principal. Note that this is
equivalent to ¢ being a principal nilpotent element of the Lie algebra of some rational Levi
subgroup L C G. It is also equivalent to the statement that ¢ defines a character of the
nilradical of a (rational) minimal parabolic subgroup of G, see e.g. [GGS17, §3.3]. The
pair (S, ) is then said to be a PL-pair and the corresponding Fourier coefficient g, a
PL-coefficient.

A nilpotent orbit O which contains a PL nilpotent element (or, equivalently, consists of
PL nilpotent elements) is called a PL-orbit.

Remark 2.0.6. (i) In [GGS17, §6] the integrals (2.3) and (2.4) above are called Whittaker—
Fourier coefficients, but in this paper we call them Fourier coeflicients for short.
The (standard) Whittaker coefficients are called in [GGS17, §6] principal degenerate
Whittaker—Fourier coefficients.
(ii) Note that for G = GL,, all orbits O are PL-orbits. In general this is, however, not the
case, see §4.3 below.

Definition 2.0.7. We say that (S, ¢, ¢’) is a Whittaker triple if (S, ) is a Whittaker pair
and ¢’ € (g*)%_,.

For a Whittaker triple (S, ¢, ¢’), let U, L, and Ng be as in Definition 2.0.2. Note that
© + ¢’ defines a character of [. Extend it by linearity to a character of [(A) and define an
automorphic character x4, of L(A) by Xé-ﬁ-w’ (exp X) := x(o(X) + ¢'(X)).

Definition 2.0.8. For an automorphic function f, we define its (S, p, ¢’)-quasi Fourier
coefficient to be the function

Fspuwlillg) = / Nese ()" n(ng)dn. (2.5)
[Ns,]
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We also define its (S, ¢, ¢, L)-quasi Fourier coefficient to be the function

FE, L l(g) = / xs o (D) (lg) . (2.6)
[Z]

Definition 2.0.9. We say that Fg, . linearly determines Fpy 4 if there exists a linear
operator .Z on C*°(G(A)) such that Fp .y = £ 0 Fsp -
We say that Fp g is linearly determined by a set {Fg, ,, /i € I} if I is finite or

countable and there exists a set of linear operators .%; such that Fp 0 = >, ZjoF, Si il

2.1. Levi-distinguished Fourier coefficients.

Definition 2.1.1. We call a K-subgroup of G a split torus of rank m if it is isomorphic
as a K-subgroup to GLT'. We call a Lie subalgebra [ C g a K-Levi subalgebra if it is the
centralizer of a split torus.

We say that a nilpotent f € g is K-distinguished, if it does not belong to a proper K-Levi
subalgebra I C g. In this case we will also say that ¢ € g* given by the Killing form pairing
with f is K-distinguished. We will also say that the orbit of ¢ is K-distinguished.

Remark 2.1.2. We note that the Lie algebra of any split torus is spanned by rational
semisimple elements. Consequently, a subalgebra of [ C g is a K-Levi subalgebra if and only
if it is the centralizer of a rational semisimple element of g. Another equivalent condition
is that [ is the Lie algebra of a Levi subgroup of a parabolic subgroup of G defined over K.

It is easy to see that all principal nilpotent elements are distinguished.

Example 2.1.3. The nilpotent orbits of Sp,,, (C) are given by partitions of 2n such that odd
parts have even multiplicity. Each such orbit, except the zero one, decomposes to infinitely
many Sp,,, (Q)-orbits - one for each collection of equivalence classes of quadratic forms
Q1,...,Qk of dimensions my,...m; where k is the number of even parts in the partition
and mq,...my are the multiplicities of these parts. A complex orbit intersects a proper Levi
subalgebra if and only if all parts have multiplicity one (and thus there are no odd parts).
To see the “only if” part note that if the partition includes a part k with multiplicity two
then the orbit intersects the Levi GLg XSpy(,_p). If k is odd then this Levi is defined over
Q and thus all Q-distinguished orbits correspond to totally even partitions. If k£ is even then
this Levi is defined over Q if and only if the quadratic form on the multiplicity space of k
is (positive or negative) definite. Thus, we obtain that a necessary condition for an orbit
O to be Q - distinguished is that its partition A\(Q) is totally even, a sufficient condition is
that A(Q) is multiplicity free, and for totally even partitions with multiplicities there are
infinitely many Q-distinguished orbits and at least one not Q-distinguished. For example,
for the partition (4,2) all orbits in sps(Q) are Q-distinguished, for the partition 23 some
orbits are Q-distinguished and some are not, and all other partitions do not correspond to
Q-distinguished orbits.

Lemma 2.1.4. Let f € g be nilpotent. Then all K-Levi subalgebras | C g such that f € |
and f is K-distinguished in | are conjugate by the centralizer of f.

Proof. Complete f to an sly-triple v := (e, h, f) and denote its centralizer by G.. Let us
show that all K-Levi subalgebras [ of g that contain v and in which f is distinguished are
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conjugate by G.. Let [ be such a subalgebra, L C G be the corresponding Levi subgroup,
and let C' denote the maximal split torus of the center of L. Then C'is a split torus in G.
Let us show that it is a maximal split torus. Let 7' 2 C be a larger split torus in G. Then,
the centralizer of T in g is a K-Levi subalgebra that lies in [ and includes ~, and thus is
equal to [. Thus T'= C.

Since [ is the centralizer of 7" in G, T' is a maximal split torus of G, and all maximal
split tori of reductive groups are conjugate, we get that all the choices of L are conjugate.

Since all the choices of v are conjugate by the centralizer of f, the lemma follows. O

Definition 2.1.5. Let Z € g be a rational-semisimple element and [ denote its centralizer.
Let (h, ¢) be a neutral Whittaker pair for [, such that the orbit of ¢ in I* is K-distinguished.
We call the Fourier coefficient 7,7, a Levi-distinguished Fourier coefficient if

oli? =2 =02 & Ly and g7 = 11, (2.7)
Remark 2.1.6. Let (h,¢) be a neutral Whittaker pair for g. If ¢ is K-distinguished then
Fh,e is a Levi-distinguished Fourier coefficient. If a rational semi-simple Z commutes with
h and with ¢ and ¢ is K-distinguished in [ := gZ then Fhirz, 18 a Levi-distinguished
Fourier coefficient for any T' bigger then m/M + 1, where m is the maximal eigenvalue of h
and M is the minimal positive eigenvalue of Z. See also Lemma 4.0.8 for further discussion.

Lemma 2.1.7 ([GGS17, Lemma 3.0.2]). For any Whittaker pair (H, @) there ezists z € gl
such that (H — z,¢) is a neutral Whittaker pair.

Remark 2.1.8. In [GGS17] the lemma is proven over a local field, but all we use in the proof
is the Jacobson-Morozov theorem, that holds over arbitrary fields of characteristic zero.

Lemma 2.1.9. For any Whittaker pair (H, ), the followings are equivalent:

(a) The Fourier coefficient Fr ., is a Whittaker coefficient
(b) The Fp,, is a Levi-distinguished Fourier coefficient, and ¢ is a PL nilpotent.

Proof. First let Fpy , be a Whittaker coefficient. Then by Lemma 2.1.7, H can be
decomposed as H = h + Z where (h,y) is a neutral pair and Z commutes with h and
with ¢. Let [ and L denote the centralizers of Z in g and G, and N := Np . Then N
is a maximal parabolic unipotent of GG, and L is a Levi subgroup of G. Thus, NN L is
maximal unipotent subgroup in L. The Lie algebra of NNL is ny ﬂgg = g@l ﬂgg. Thus,
Exp(gh_, Ng#) is also maximal unipotent in L. Since ¢ is given by Killing form pairing
with f € 9271 N gg, we get that ¢ is principal in [. Replacing Z by tZ with ¢ large enough,
we obtain that Fp . is a Levi-distinguished coefficient.

Now, assume that ¢ is a PL nilpotent, and let Fj 7, be a Levi-distinguished Fourier
coefficient. Let [ = g& be the corresponding Levi, and let f = f,, be the element of g that
defines ¢. Since f is distinguished in [, and principal in some Levi, Lemma 2.1.4 implies
that f is principal in [. Thus, ng,, N[ is a maximal nilpotent subalgebra of [ and thus
N, = g, NI® g%, is a maximal nilpotent subalgebra of g. Thus Fp,, is a Whittaker
coefficient. O
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2.2. Order on nilpotent orbits and Whittaker support.

Definition 2.2.1. We define a partial order on nilpotent orbits in g* = g*(K) to be the
transitive closure of the following relation R: (O, 0’) € R if O # O and there exist p € O,
¢’ € O and a rational semi-simple Z € g such that ¢ € (g*)§ and ¢’ — ¢ € (g%)%,.

In Corollary 4.4.5 below we prove that this is indeed a partial order, i.e. that R is
anti-symmetric.

Note however that we will base statements such as ¢ being minimal or next-to-minimal
on the coarser ordering of complex orbits as detailed further in §2.3.

Lemma 2.2.2. If O’ is bigger than O then for any place v of K, the closure of O in g(K,)
(in the local topology) includes O.

Proof. 1t is enough to show that for any Z € g, ¢ € gg and ¢ € ggo,  lies in the closure
of G(K,)(p + ). Let ; € K, be a sequence converging to zero and let g; := exp(—¢&;Z).
Then g; centralize ¢, while g;1» — 0. Thus g;(p + 1) — ¢. O

Definition 2.2.3. For an automorphic function 7, we define WO(n) to be the set of
nilpotent orbits O in g* such that Fj ,[n] # 0 for some neutral Whittaker pair (h, )
with ¢ € O. We define the Whittaker support WS(n) to be the set of maximal elements in
WO(n).

The following well known lemma relates these notions to the local notion of wave-front
set. For a survey on this notion, and its relation to degenerate Whittaker models we refer
the reader to [GS18, §4].

Lemma 2.2.4. Suppose that n is an automorphic form in the classical sense, and that it
generates an irreducible representation m of G(A). Let m = ), m, be the decomposition of m
to local factors. Let O € WO(n). Then, for any v, there exists an orbit O,, in the wave-front
set of m, such that O lies in the Zariski closure of O.,. Moreover, if v is non-archimedean,
then O lies in the closure of O., in the topology of g*(K,).

Proof. Acting by G on the argument of 77 we can assume that there exists a neutral pair
(h, ) with ¢ € O such that Fp ,[n](1) # 0. Moreover, decomposing 7 to a sum of pure
tensors, and replacing 1 by one of the summands, we can assume that 7 is a pure tensor
and Fj,,[n](1) # 0 still holds. Let n = ®L v, be the decomposition of 7 to local factors.

Consider the functional £ on 7, given by £(v) := Fp (v ® (®L¢V vy,))(1). Substituting the
vector v, we see that this functional is non-zero. It is easy to see that this £ is (Np,, (K,), xo)-
equivariant. The theorem follows now from [MW87, Proposition I.11] and [Varl4] for non-
archimedean v, and from [Ros95, Theorem D] and [Mat87] for archimedean v. O

2.3. Minimal and next-to-minimal representations. We call a non-zero complex orbit
in g*(C) minimal if its Zariski closure consists of itself and of the zero element. We call a
non-zero complex orbit next-to-minimal, or shortly ntm, if it is not minimal and its Zariski
closure consists of itself, of minimal orbits and of the zero element. We call a rational
element or a rational orbit minimal/next-to-minimal if its complex orbit is minimal/next-
to-minimal.
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We say that an automorphic function 7 is minimal if WS(n) consists of minimal
orbits. By [GGS17, Theorem C] (or by Proposition 4.0.1 below), this implies that
Fru,p[n] = 0 for any Whittaker pair (H,y) with ¢ non-zero and non-minimal. We call
a non-trivial representation of G(A) in automorphic functions minimal if all the forms in
this representation are minimal or constant.

We say that an automorphic function 7 is next-to-minimal if WS(n) consists of next-to-
minimal orbits. Again, by [GGS17, Theorem C] (or by Proposition 4.0.1 below), this implies
that Fp [n] = 0 for any Whittaker pair (H,¢) with ¢ higher than next-to-minimal. We
call a representation m of G(A) in automorphic functions next-to-minimal if it is not trivial
and not minimal, and all the forms in this representation are next-to-minimal, minimal
or constant. By Lemma 2.2.4, if 7w consists of automorphic forms in the classical sense, is
non-trivial, irreducible and has a minimal local factor then it is minimal. Similarly, if it has
a next-to-minimal local factor then it is minimal or next-to-minimal.

Remark 2.3.1. Let g = @le gi, with g; simple. Note that the minimal orbits of g are of
the form XJ_,{0} x O x Xf: ;+1{0}, with O a minimal orbit. The next-to-minimal orbits
of g are either of the same form with O next-to-minimal, or of the form Xz;f {0} x O x

Xé;}H{O} x O x szlH{O}, where O and O’ are minimal orbits in g; and g; respectively.

3. RELATING DIFFERENT FOURIER COEFFICIENTS

3.1. Relating different isotropic subspaces. We will now see how Fg . linearly
determines F. é@ o0 and vice versa.

Lemma 3.1.1 (cf. [GGS17, Lemma 6.0.2]). Let n € m and (S, ¢, ¢’) be a Whittaker triple,
and Ns ., U and L as in Definition 2.0.1. Let [+ denote the orthogonal complement to [ in
u under the form w, and let L+ := Exp(I*). Then,

FE, L nl(g) = / Fooer [ (ug) du (3.1)
[L/Ns,,]
and
Fooull@)= S Fk (). (3.2)
ve(U/L+)(K)

Proof. We assume that ¢ is non-zero since otherwise L = Ng ,. We have that Ng , C L with
L/Ns,, abelian which means that (3.1) follows immediately from the definitions of Fg 4
and fé%w" For (3.2) observe that the function (Xé)_l - Fs,o.0' (M) on L is left-invariant
under the action of Ng ,(A)L(K). In other words, we can identify it with a function on

N (A)L(K)\L(A) = (L/Ns) (K)\(L/Ns) (A) = [L/Nsgl, (3-3)

where the equality follows from the fact that L/Ng, is abelian. Therefore, we have a Fourier
series expansion

FsowlD = > ey muDxEQ), (3.4)

YelL/Ns b 7
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where [L/Ng,]" denotes the Pontryagin dual group of [L/Ng | and

o) = [0 0L (3.5)
(L]
In particular
Fopolil)= 3 cpr () (3.6)
YE[L/Ns o]

Now observe that the map X — w, (X, ) = ¢ o ad(X) induces an isomorphism between
u/I+ and (I/n). Hence, according to equations (2.1) and (3.3), we can use the character x
to define a group isomorphism

U/L*)(K L/Ng "
UL — [E/Ns] (3.7)

where
Yu(l) = x(p([X,Y])), u=expX and [=expY.
Hence, for all u € U(K) and [ € L we have
DXy (1) = x(@([X, Y]) + & ([X, Y])x(p(Y) + ¢ (V) = x((¢ + &)Y + [X,Y)))
= x((¢+ &N EY)) = Xpre (Ad(W)Y)) = x5y (wlu™).
Here we are taking again u = exp X, [ = expY and the middle equality follows from the

vanishing of ¢ on giQ. But now, from formula (3.5) and the fact that f is automorphic, we
have

cwu’xiw,(ﬁ) = /1% X<p+g0 )_117(l)dl:/XéJr(p,(ulu_l)_ln(l)dl.

(L]
ztfdwﬂﬁwwﬂwﬂ=fﬁwmwx
(L]
for all u € U(K). Combining this with (3.6,3.7) we obtain
Fspplill@)= Y Fhy ). (3.8)
ue(U/L+)(K)
Applying this to right shifts of n we obtain (3.2). O

3.2. Relating different Whittaker pairs. Let (H,¢) be a Whittaker pair.
Lemma 3.2.1. Let z be as in Lemma 2.1.7. Then (H — z, ) dominates (H, ).
Proof. Denote h := H — z. We have to show that (1.10) holds, i.e.
g5 N021 € 00 (3.9)
Since g,, is spanned by lowest weight vectors, we have g, C 9%0 and thus gvﬂggl ={0}. O

Corollary 3.2.2. Any Whittaker pair is dominated by a neutral Whittaker pair.
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Another example of domination is provided by the following proposition, that
immediately follows from [GGS17, Proposition 3.3.3].

Proposition 3.2.3. If ¢ is a PL nilpotent then there exists Z € g such that (H + Z, ) is
a standard Whittaker pair and (H, ) dominates (H + Z, ).

From now till the end of the section let Z & gé{ be a rational semi-simple element such
that (H, ) dominates (H + Z, ¢).
For any rational number ¢t > 0 define

H :=H+tZ, u := ggi, v = ggj, and ;= g{{t. (3.10)

Definition 3.2.4. We call t > 0 regular if u; = uzy. for any small enough ¢ € Q, or in
other words tv; C gg . If t is not regular we call it critical. Equivalently, t is critical if
gft ¢ gg which we may interpret as something new has entered the 1-eigenspace of H. For
convenience, we will say that ¢ = 0 is critical.

We also say that t > 0 is quasi-critical if either gi'* ¢ g7 or gi™* ¢ gf. We may interpret
this as something new has entered either the 1-eigenspace or the 2-eigenspace. The latter
is related to new characters being available in the Whittaker pairs.

Note that there are only finitely many critical numbers. Recall the anti-symmetric form
w, on g given by w,(X,Y) = o([X,Y]).
Lemma 3.2.5 ([GGS17, Lemma 3.2.6]).
(i) The form w, is ad(Z)-invariant.
(it) Kerw, = go.
(i) Ker(wy|w,) = Ker(wy,) N 1o;.
() Ker(wyly,) = v @ Ker(wew,)-
(v) vog N gy, Cuy for any s < t.
Recall that ng, , := Ker(wyly, ), denote it by n;. and let
= (N gZy) + 1y and v = (u N gZ) + 1y (3.11)

Lemma 3.2.6. For anyt > 0 we have
(i) 1y and v are ideals in uy and [l;,v] C [ Ny = ny.
(ii) The natural projections ly/n, — w/tp and v/n, — w/l are isomorphisms.
Furthermore, l; = g{[t N ggo P ny.
(iii) Suppose that 0 < s < t, and all the elements of (s,t) are reqular. Then

by @ (v N gZg) = vs @ (0s N gZ) (3.12)

[ = t5 + (0, N gy,) and ts N (0, N gy) = o N gg N g (3.13)
Moreover, v is an ideal in ls and the quotient is commutative.
Proof. Tt is easy to see that v; is an ideal in u; with commutative quotient, and that

vy C I; Nty = ny. This proves (i). For the first part of (ii), note that ¢ := ([; + v;)/n; is a
symplectic space in which the projections of [; and v; are complementary Lagrangians.
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For the second part, we have by Lemma 3.2.5 that g{{t Ngy C ggo and thus,

=0, @ (0, NgZy) @ (0, Ngy). (3.14)
For (iii) note that
= (05N gZp) ® (05 N gZ)) (3.15)
= (0, N 9Z0) ® (0, N g%p) (3.16)
0 M El>0 = (s N 9>0) (0s N 950) (3.17)
vs N gZ0 = (0, N 6%) @ (0, N 6%) (3.18)
This implies (3.12). By Lemma 3.2.5 we have

ns =0, @ (gp N1o,) C oy @ (v, NgZy), (3.19)

and thus
ts = 05 @ (105 N gZ0) © (o N g Ng,) and ts N (10, N gy) = o N gd N gy (3.20)
Hence, (3.12) and (3.14) imply (3.13), and the rest is straightforward. O

Using Lemma 2.1.7, choose an sly-triple (ey, h, f,) in gg such that h commutes with H
and with Z, and ¢ is given by the Killing form pairing with f = f,. Let L; := Exp(ly), R; :=
Exp(tt). From Lemmas 3.2.6 and 3.1.1 we get

Lemma 3.2.7. Lett > s > 0 and ¢’ € (¢")* N (g") 2 ,. Assume that there are no critical
values in (s,t). Then

. L R
(Z) ‘FHt,%GD" ‘FHi,go,ga” and F iy,

Hy o0 linearly determine each other. In particular,

it polle) = [ Fh,slilvo) o (3o

V(a)
where v 1= (9>1 N 9<0)/<9>1 N 9<0) and V = Exp(v).

(i) FH, . is linearly determined by Fp, o . Moreover, Fy, , . is linearly determined
by the set

{Frpprp |9 € (650 (6%)° N (695}
(iii) Let ¢ € (g*)1>15_2 N (g*)"Y Then Fy, ot 05 linearly determined by the set

{(Frorvgro |9 € (@)
(iv) Let v € (g*)"5n (g*)lgi2 Then Fg, pp+p 5 linearly determined by the set

{Ftoprvgrw |0 € (@)%}

Proof. Part (i) follows from Lemmas 3.1.1 and 3.2.6(ii).

For part (ii), note first that by Lemma 3.2.6, ts C [; with commutative quotient (to; N
gy)/(rog N gg Ngy), and let B := [L;/R;] denote the corresponding compact commutative
group. Then F ﬁszp, is obtained from F gj 00 just by integration over B.
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To obtain ]:ﬁ: , we decompose it into Fourier series on B, similar to the proof of
Lemma 3.1.1. Characters of B are given by

(0 N gp)/ (o Ngd Nap))* = (g™ N (g%)° N (%)%

and the Fourier series coefficient corresponding to each v’ in this space is F I%Ii oo
For part (iii), note that v, is an ideal in [; with commutative quotient. Together with
(3.13) this implies that v, is an ideal in v with commutative quotient. Denote V := Exp(v;)

and define a new coefficient I by
)= | Xorwro ) flng)in.
Then I is linearly determined by the set

{FHt,<p+w,go’+w’ W/ € (9*)1—{5 .

Finally, from (3.12) we see that fﬁj ot

Part (iv) is proven in a similar way. Namely, denote V' := Exp(vs) and define a new
coefficient J by

, is obtained from I by integration.

Pg)i= [ Xoroes 0 frg)in
Then J is linearly determined by the set
{Fripropror [0 € (6915}

On the other hand, from (3.13) we see that ]-'Igi ot

Note that (3.21) is a special case of the root exchange lemma in [GRS11].

, is obtained from J by integration. [

Proposition 3.2.8. Let H, = H +tZ as above, s > 0 and let ¢' #0 € (g*)giQ N(g*)°nN
(g*)go. Then Fg, .o 15 linearly determined by the set

{Fu,00 |t > s critical, ® € (g*)%, P c (g*)giQ and G(K)® > G(K)¢}, (3.22)
where G(K)® > G(K)p means strictly bigger by the order relation given in Definition 2.2.1.
Note that there are finitely many critical values t.

Proof. Since ¢’ € g%, there exist t > s, ¢ € (g")"4 and 7 € (g*)l;‘(t_2 such that 1) # 0 and
¢ =1 +n. Let t be the smallest such ¢, and since [Z, e¢] = 0 we have that ¢, n € (g*)°.
Let ag := s, let ay,...,a,,—1 be the critical values between s and t and a,, := t. We
prove the statement by induction on m.
The base case is m = 1, i.e. there are no critical values between s and ¢. Then Lemma
3.2.7(iii) implies that Fp, o . is linearly determined by the set

{Fr, prpmiwr ' € (9*)513 .
Denote ® := ¢ +1. Note that ® belongs to the Slodowy slice to Gy at ¢ since ¢ € (g*)°¢,
and thus G(K)® > G(K)¢. For each ¢ denote ® := 1+ ¢ and note that Fp, ,iynte =

FH, 8-
The induction step easily follows from the base using Lemma 3.2.7(ii). O
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Lemma 3.2.9 ([GGS, Lemma 4.2.4]). Lety € (g*)7,N(g%)%,. Assume that p+1 € G(C)ep.
Then ¢ +1 € G(C) .

3.3. Conjugations and translations.

Lemma 3.3.1. Let (S,¢,v) be a Whittaker triple, n an automorphic function and v €
G(K). Then,
Fso01(9) = Fad(y)s,Ad* (7)p,Ad* ()0 1] (V9) - (3.23)

Proof. We have that X,y (u) = Xad* (y)(p+) (Ad(7)u). Indeed, the right-hand side equals

(A" () + ) (Ad(m)) = x((p + ©)Ad ) Ad()w) = xprp(n)  (3:20)

We also have that Ad(’y)g?dms = g3 since, for z € g, [Ad(7)S,Ad(y)z] = Ad(7)[S, =].

Similarly, Ad(V)gAd*(w)cp = g, and thus, Ad(V)nAd(v)S,Ad*(w)cp =g,
Hence, using the automorphic invariance of 7, the right-hand side of (3.23) equals

(v uyg) X ad () (o) () du = / N 9)XAd* () (o) (Ad (7))~ du/

[Nad(y)s,ad* (v)] [Ad(7)Nad(y)s,Ad* ()]
where we have used the usual short-hand notation [N] = N(K)\N(A). By the arguments
above, this equals g, ([n](9)- O

4. GENERAL REDUCTIVE GROUPS

Proposition 4.0.1. Let (H, ) and (S,¢) be Whittaker pairs such that (H,p) dominates
(S,¢). Then Fs, is linearly determined by Fp .

Note that this is in the other direction than the statement of Theorem B and is much
easier to prove.

Proof. Let Z := S — H, and for any t > 0 let Hy := H +tZ. Let t1,...,t; be all the
critical values of ¢ between 0 and 1. Let tp := 0 and ¢4+ := 1. By Lemma 3.2.7(ii), for
any 0 <1 < k, ]:Hti,so linearly determines FHQH’%D‘ Since Hy, = H and Hy,  , = S, the
proposition follows. O
It was shown in Corollary 3.2.2 that any Whittaker pair (S, ¢) is dominated by a neutral
pair (h, p).
Corollary 4.0.2. Fg, is linearly determined by Fy, , where (h, ) is a neutral pair.
Let (H,¢) be a Whittaker pair. Using Lemma 2.1.7, decompose H = h+ Z, where (h, ¢)
is a neutral pair, and Z commutes with h and ¢.

Definition 4.0.3. Denote by in(H, ) the number

dim 921 N ggz + dim 922 N gi;gz (4.1)
Note that this number is different from an analogous number in [GGS].

Let us now show that in(H,¢) depends only on (H,y) and does not depend on the
decomposition H = h + Z.
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Lemma 4.0.4 ([GGS, Lemma 4.2.7]). Let h € gy be another neutral element for f. Then
there exists a nilpotent element X € gy such that exp(ad(X))(h) = h.

Corollary 4.0.5. The number in(H, ) depends only on (H,p) and not on h. In fact,
in(H, @) depends only on (H,Gr(C)yp).

Proof. If H = h+ 7 is another decomposition as above, then by Lemma 4.0.4, h = Ad(v)h
for some v € Gy (K). Then Z = Ad(v)Z and

Ad(Dh ~ Ad()(h+2)

dimg_\""" Ngsy = dim gi/\ N ggf\z (4.2)

which proves that in(H, ¢) does not depend on the choice of h.

For the second statement, let ¢’ = Ad*(v)p, with v € Gy (K). Since h is neutral to ¢,
Ad(vy)h is neutral to ¢’ and H = Ad(y)h + Ad(y)Z where Ad(vy)Z commutes with Ad(vy)h
and Ad*(y)¢. By the same argument as above, in(H, Ad*(v)y) = in(H, ¢). O

Let C C G(K) denote the centralizer of (h, ). Let A denote a maximally split torus of
C such that its Lie algebra a includes Z, and let M denote the centralizer of a in G. Then
M is a Levi subgroup of G, m includes h, Z and ¢, and ¢ is K-distinguished in m. Let 2z be
a rational semi-simple element of a that is generic in the sense that its centralizer is M.

Lemma 4.0.6. As an element of m, ¢ is K-distinguished.

Proof. Let [ be the Lie algebra of a Levi subgroup of M defined over K such that ¢ € [*.
We have to show that L. = M. By replacing L by its conjugate we can assume h € [, and
that there exists a rational semi-simple element 2’ € m such that [ is the centralizer of z’.
Then 2’ commutes with h and ¢ and we have to show that 2’ is central in m.

Indeed, 2’ € mN¢ = a. Now, any X € m commutes with z, and thus with any element
of a, since z is generic in a. Thus a lies in the center of m and thus 2’ is central. ([l

Note that the eigenvalues of the adjoint action of any Lie algebra element are symmetric
around zero. Let N be a positive integer that is bigger than the ratio of the maximal
eigenvalue of ad(z) by the minimal positive eigenvalue of ad(Z). Let

7' =NZ+ . (4.3)
From our choice of N we have
0Z0=0%0® (8§ NgZ,) and gf = g5 =m C gf. (4.4)

That m C gg follows from the fact that M is the centralizer of z which equals the
centralizer of a and a includes Z.

Lemma 4.0.7. For rational T > 0, (H, ) dominates (H +TZ',p), that is, H, and TZ'
commute, and satisfy (1.10).

Proof. By construction H = h+ Z, ¢ and Z commute, and since h, Z, ¢ € m they commute
with z. Thus, Z' commutes with H and ¢. Furthermore, g, N 9[2{1 C 9%0 N 912{1 C ng C

z' _ TZ
950 = 950 - U
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Lemma 4.0.8. For a fivred A € Q, and a rational T > 0 large enough,

o7 = oy = oZy @ (o NeliT) = HATZ' ol — b (4.5)

The Fourier coefficient Fpirz , is then Levi-distinguished.

= g>0 D m>2 and g

Proof. For large enough T, we have that gHJrTZ N g<0 = {0} and gH+TZ N gglo = gglo.
Th H+TZ _ H+TZ — N H+TZ S H=h+27 d
us g = 0> (9<0 @of ©eZ) = 9>0 ® (90 9> ). Since + Z an

90 =m C 90 we have that 90 gH+TZ = 90 ﬂg>1 and since h is neutral g};l = gg. Now
90 = m and thus, gH+TZ g>0 &) (90 Z' 0922) = gglo @m@z Doing the same manipulations
for gH 12" one ends up with the same result, proving the equality gH 17— gg +TZ

Now, for any fixed A € Q and a large enough T, we have that gH +T7’
h

gA Nm= m)\ Again, since H = h+ Z and m C 90 , we get that m)\ =mjy.
Since H +TZ' = h+ Z +TZ', the semi-simple element denoted by Z in Definition 2.1.5

is here Z + T'Z', which, for 1arge enough T has the centralizer gf N gol = gol = m. By
Z+T1Z'

=gl ngf =

Lemma 4.0.6, ¢ is K-distinguished in m. Since g>0 - g>0 we have that g< = gglo and
thus (4.5) implies (2.7) which means that Fy 71z, is Levi-distinguished. d

Lemma 4.0.9. Let (H, ¢, ¢') be a Whittaker triple such that the pair (H, p) is either neutral
or Levi-distinguished. Then Fy o o = FH,p-

Proof. If (H, ) is neutral set h := H. If (H, ¢) is Levi-distinguished decompose H = h+ Z
where (h, ¢) is a neutral pair and Z commutes with it. In both cases we have ggl = gi,,
and g{l - g?. Note that g, is spanned by lowest weight vectors and thus g, C g}éo Thus
g, N gl = 0. By Lemma 3.2.5 this implies that ngy, = g&, = gf,. Since ¢’ € (g*)1_,, it
vanishes on gl>{2 and thus Fj o o = Fp - - O

4.1. Proof of Theorem A. We will prove a more general theorem.

Theorem 4.1.1. Let i be an automorphic function on a reductive group G. Then, any
quasi-Fourier coefficient Fg , »[n] is linearly determined by the Levi-distinguished Fourier
coefficients with characters in orbits which are equal or bigger than Gep.

In particular, if all non-PL coefficients of n wvanish, then all Fourier coefficients are
linearly determined by Whittaker coefficients Wiy [n).

Proof. Choose h, Z,z,7' as above and let H; := H + tZ'. Choose a large enough T from
Lemma 4.0.8. Recall that ¢ > 0 is quasi-critical if either gi’* ¢ g or g’ ¢ g7 .
If there are no quasi-critical ¢ € (0,7] then by Lemma 3.2.7(ii), Fp s is linearly

determined by the set of all Fy 7z s o4 With ¥ € (g*)ffrTZ/ N (g*)° N ()%, By
Lemma 4.0.8, Fpirz, is Levi-distinguished, and thus, by Lemma 4.0.9, we have
Fu+rz 00+ = FH4TZ,0- Thus, Fp, o is linearly determined by Fpy 7z, which is
Levi-distinguished.

Now assume that there are quasi-critical numbers in (0,7 and let s be the smallest one.
Let Hy := H + sZ'.

Since s is the first quasi-critical value we have that (g*)7_, C (g*)gi o because this is

the first point where something new may enter the —2-eigenspace. Decompose ¢’ = 1) + "
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*\Hg 1 x\ Hs . . .
where ¢ € (g*)”5 and " € (g*)2°,. By Lemma 3.2.7(iii), Fp,, o is linearly determined by

{Froprpgrror 19" € (8905 (4.6)

Now, we repeat the procedure for each triple Fp, ;14 71y and so on. To see that the
algorithm terminates, note that ¢ € (g*)glo and thus the orbit of ¢ + 9 is bigger than or
equal to the orbit of (.

Suppose the orbits are the same. Then by Corollary 4.0.5, in(Hs7 v+ 1) =in(Hs, ).

From (4.4) we see that gZ+SZ Ng? = {0} and gZ+5Z N g<0 = gZ+SZ ﬂgglo NngZ, = {0}
which means that g>gsz - g>0 and thus

/

g<1ﬂg Cg<1ﬂg and g<2ﬁg Cg<2ﬁg

Since s is quasi-critical, one of the inclusions in (4.7) is strict and thus in(Hy, ¢) > in(H, ¢).
Thus we get that either G(K)(p + ¢) > G(K)p or in(Hs,p + ) > in(H, ). Since
both the orbit dimensions and the indices are bounded by dim g, the algorithm eventually
terminates.
Finally, by Lemma 2.1.9, the Levi distinguished Fourier coefficients of PL elements are
Whittaker coefficients. This proves the second part of the statement. ]

4.2. Proof of Theorem B.

Proposition 4.2.1. Let (H,¢,¢') be a Whittaker triple and let n be an automorphic
function with F o 0] # 0. Then there exists O € WS(n) such that O > G(K)yp

Proof. By Theorem 4.1.1, Fg, . is linearly determined by Fourier -coefficients
corresponding to orbits bigger than or equal to G(K)p. By Corollary 4.0.2, these are
in turn linearly determined by neutral Fourier coefficients corresponding to the same orbits.
Since Fy . [n] # 0, some of these neutral Fourier coefficients of 7 do not vanish. O

Let us now adapt the assumption and the notation of Theorem B. Let Z := S — H and
let H:= H+tZ. Let 0 <t; < --- <ty <1 be all the critical values between 0 and 1. Let
to := 0 and t,,4+1 := 1. Lastly, let, for each ¢;, R and L be defined as in (3.11).

Lemma 4.2.2. We have ]:gt_7<p[77] = fjljt n].

i+1¥
Proof. Let f € g be the unique nilpotent element such that ¢ is given by Killing form
pairing with f. Complete f to an sla-triple (e, h, f) such that h commutes with S and H.
Denote Hj := Hy, for any j, and ¢ := (g*)lji“ N (g*)° N (g*)%,. Arguing as in the proof of
Lemma 3.2.7(ii), we obtain

u‘P Z }—HH—MO <P

p'Ec

We have to show that for any non-zero ¢’ € ¢, we have F fIiH oM = 0. This follows
from Lemma 3.1.1, Proposition 3.2.8, Proposition 4.2.1, and the condition that G(K)y €
WS(n). O
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Proof of Theorem B. Let S = H + Z and

Hy, H;,
= (921 N9%)/(g>y NgZy) and Vi =Exp(v;). (4.8)
By Lemma 3.1.1 we have

Fhpoll@) = [ Fh ol (wig) v (4.9)

Using Lemma 4.2.2 we obtain

FB nl(g) = / / / FL [ (vn - .. vog)dv (4.10)

Vi(A)  Va-1(A) Va(A)

Since v = EB?:l(gf” NgZ,), and as a commutative Lie algebra g{[ti N gZ, is naturally
isomorphic to v;, the group V is glued from V;. Thus

/ / / Fsoln] --vog)dv—/st,g;[n](vg)dv- (4.11)
1(A) Vi—1(

V(A)

To prove part (i) note from (3.11) that if g/ = g{ = 0 then Fp, = ]-"ch and Fg , = fsw
and thus part (i) follows from (4.10) and (4.11).
For part (ii), note that u and w as defined in the statement are equal to u = (9§1 N

9%,)/(g2, Ng%,) and w = (glg1 NgZ,)/ (s, Ng%,). Thus Lemmas 3.1.1 and 3.2.6 imply

.75@ /.7:5@ (ug)du, and Fp ,[n] Z .7-"H#, (4.12)
(U] weW (K)

Applying (4.10), (4.11), and (4.12) to shifts of n we obtain

FHeln] Z ‘FHcp = Y / F& ) (vwg)dv =

= Z Fs,on(uvwg)dudv  (4.13)

0

4.3. On PL-orbits. A complex orbit is a PL-orbit if and only if its Bala-Carter label
has no parenthesis. In particular, all complex minimal and next-to-minimal orbits are PL.
The classification of PL orbits of complex classical groups in terms of the corresponding
partitions is given in [GS15, §6].

The classification of rational PL-orbits is a more complicated task. In this subsection we
discuss the PL property for small K-rational orbits of simple split groups. A complex orbit
O¢ may include several or even infinitely many rational orbits. If O¢ is non-PL then all its
rational orbits are non-PL. If O¢ is PL then it includes at least one rational PL-orbit, but
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can also include non-PL rational orbits. In type A,, all rational orbits are PL. Let us now
describe the PL properties of minimal and next-to-minimal orbits.

All minimal rational orbits are PL. Indeed, for classical groups it is easy to establish
the Levi in which they are principal: for SO,41, it is SOg x(GL1)" Y, for Sp,, it is
Spy x(GL1)" ! and for SOy, it is SO22 x(GL1)" 2. For exceptional groups, the rational
minimal orbit is unique and thus PL. This uniqueness was explained to us by Joseph
Hundley.

Let us now deal with the next-to-minimal orbits.

Lemma 4.3.1. All next-to-minimal rational orbits of SOy, and SOp41, are PL.

Proof. One can give a the classification of the rational orbits in the spirit of the classification
of real orbits given in [CM93, §9.3]. Namely, a K-rational orbit with a given partition is
defined by a collection of quadratic forms (Q2;11 on multiplicity spaces of the odd parts. If
we add a hyperbolic form to the direct sum of these forms we get the initial form, which is
also hyperbolic. Here, a hyperbolic form is a direct multiple of the 2-dimensional quadratic
form given by H(z,y) = zy. By Witt’s cancelation theorem this implies that the direct
sum of the forms on multiplicity spaces of the odd parts is hyperbolic.

An orbit in SO, ,, is PL if and only if all Q2,11 are hyperbolic, except (2,11 for a single
index j > 1, which is a direct sum of a hyperbolic form and a one-dimensional quadratic
form. For SO,, ,, there are two next-to-minimal partitions. One of them is 24 127=8_ For it,
Q1 has to be hyperbolic. The other next-to-minimal partition is 3,1?"73. Thus Q3 is one-
dimensional. Now, note that H" = Q3 ® —Q3® H™ 1. Thus, Q3P Q1 = Q3 ® —Q3H H™ !
and thus Q1 = (—Q3) ® H" !, i.e. @ is a direct sum of a hyperbolic form and a one-
dimensional quadratic form.

Similarly, it is easy to see that the next-to-minimal orbits for SO,1, are principal in
Levis isomorphic to (GLz2)? x (GL1)"* or SOg1 x(GLy)" L. O

However, Sp,,,(K) has infinitely many rational next-to-minimal orbits, already for n = 2.
Moreover, by [IkeO1] there exist cuspidal next-to-minimal representations of Sp,(A). Note
that cuspidal non-generic automorphic forms cannot be determined by their Whittaker
coefficients, since the latter coefficients have to vanish on such forms. See [Gin06, §4] for a
discussion of cuspidal representations, in particular those of Sp,(A).

As for the exceptional groups, Joseph Hundley showed that the next-to-minimal orbit is
unique, and thus PL, for Eg, Fr7, E3 and G.

The group Fy has infinitely many rational next-to-minimal orbits. We expect that
infinitely many of them are not PL.

4.4. Some geometric lemmas.

Lemma 4.4.1. Let Z € g be rational semi-simple, let ¢ € gg and ¢' € ggo. Assume that
¢ is conjugate to ¢ + ¢ by G(C). Then there exists X € g%, such that ad*(X)(p) = ¢'.

Recall that we often refer to g(K) as g.
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Proof. Decompose ¢ = Zle ¢, where ¢ € (g*)f2 and \; < \g < --- < )\ are positive
eigenvalues of Z with A\; € Q. Then, for any ¢t € R, we have the following identity in g*(R):

k
exp(tZ)(p +¢') =@+ > _ exp(th)y) (4.14)

i=1
Thus, ¢ + ), exp(thi)¢; € G(C)p. Differentiating by ¢ at 0 we obtain that >, \;¢} lies
in the tangent space to the orbit G(C)¢ at ¢. This tangent space is the image of ¢ under
the coadjoint action. Thus there exists Y € g with ad*(Y)(¢) = >, Ai¢;. Decompose
Y =Y'+5,Y withY; € gi. Since ¢ commutes with Z, we obtain ad*(Y;)(¢) = i@}
Now we take X := >, A\ 'Y; € gZ,. O

Corollary 4.4.2. Let (H,p,¢’) be a Whittaker triple, and let S € géf form Whittaker pairs
(S, ) and (S, o+ ¢'). Assume that ¢ is conjugate to ¢ + ¢’ under G(C). Then there exists
Xegyn giaH such that ad*(X)(¢) = ¢'.

Proof. Let Z := H — S. By Lemma 4.4.1, there exists Y € ¢%, with ad*(Y)(p) = ¢
Decompose Y = Y_ + X + Y+ with Y_ € g%, X € g5, and Yy € ¢3. Since [Z,5] = 0,
and Y € g>0, we get X € gZ; and thus X € gZ N gS H " Since ad*(Y)(p) = ¢, and
0,4/ € (5°) %, we have ad”(Y_)() = ad*(V})(9) = 0 and ad*(X)(¢) = ¢ .

Corollary 4.4.3. Let Z € g be rational semi-simple, let p € gg and ' € ggo. Assume that
o is conjugate to o+ ¢’ by G(C). Then there exists v € Exp(gZ,) such that v(p) = ¢+ ¢'.

/

Proof. Decompose ¢ = Ele @, where ¢} € gi and A\j < A2 < --- < A\, are all the
positive eigenvalues of Z. We prove the corollary by descending induction on the maximal
index ¢ such that ¢’ € gg ;- The base case ¢ = k is obvious. For the induction step, let
1 < k such that ¢’ € giAi and let X be as in Lemma 4.4.1. Note that X is nilpotent.

Then exp(X)(¢ + ¢') = ¢ + 1, where 1) € gg/\iﬂ. By the induction hypothesis, ¢ + ¢ €
Exp(gZy)¢- .

In other words, ¢ + ¢’ can be conjugated to ¢ using a unipotent conjugation.
In the same way, but using Corollary 4.4.2 in place of Lemma 4.4.1, one proves the
following more elaborate version of this corollary.

Corollary 4.4.4. Let S, Z € g be rational semi-simple commuting elements, let ¢ € ggﬂg*EQ
and ¢' € 950 N 952. Assume that ¢ is conjugate to ¢ + ¢' by G(C). Then there exists
v € Exp(gZ,Ng5) such that v(p) = ¢ + ¢’

Corollary 4.4.5. The relation defined in Definition 2.2.1 is indeed an order relation.

Proof. We have to show that if @” is bigger than O then O cannot be bigger than O”.
Suppose the contrary. Then by Lemma 2.2.2 the complexifications Of and O¢ coincide.
Moreover, because of the above assumption there exist a rational semi-simple Z € g, ¢ €
ONgé, and ¢ € ggo such that ¢ + ¢ € Oc, but ¢ + 1 ¢ O. This contradicts Corollary
4.4.3. ]
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Lemma 4.4.6 ([Hum?78, Proposition 11.8.3]). Assume that G is split, and fix a mazimal
split torus T'. Let b be the Lie algebra of T, « be a root, and let ¢ € g . Define hy € b by

(o, B)

(o, @)

Bha) =2 (4.15)

Then (hq, @) is a neutral pair.
Note that if g is simply-laced and 8 # +a then S5(hy) € {—1,0,1}.

5. SMALL AUTOMORPHIC FUNCTIONS ON SIMPLY-LACED LIE ALGEBRAS

For the whole section we assume that G is split and the Dynkin diagram of g is simply-laced,
i.e. all the connected components have types A, D, or E. As in §1.2, let, for any root 4, g
denote the corresponding root-subspace of g* and g5 the set of non-zero elements of this
subspace.

Lemma 5.0.1. If [g, g] is simple then any two roots are Weyl-conjugate.

Proof. Any root is Weyl-conjugate to a simple root, and any two simple roots in a connected
simply-laced diagram are Weyl-conjugate. O

Corollary 5.0.2. For any root §, any ¢ € g5 lies in a minimal orbit.

Corollary 5.0.3. Assume that [g,g] is simple of type A or E. Then any two pairs of
orthogonal roots are Weyl-conjugate.

Proof. By Lemma 5.0.1, we can assume that both pairs include the highest root. Since the
diagram consisting of roots orthogonal to the highest one is still connected, the stabilizer
of the highest root acts transitively on it. ([l

5.1. Proof of Theorem C. Throughout the subsection fix a simple root «. Define S, € b
by a(S,) = 2 and v(S,) = 0 for any other simple root . Also, define hy, € h by v(ha) =
2(a,y)/{a, ) as in (4.15) for any root . Note that by Lemma 4.4.6, (hq, ) is a neutral
Whittaker pair for any ¢ € g~ .

As mentioned in the introduction, if a Fourier coefficient Fg , is a Whittaker coefficient,
i.e. Ng is the unipotent radical of a Borel subgroup, we will denote it by Ws ,,, where we
may drop the S if it corresponds to a fixed choice of Borel subgroup and simple roots. In
other words, we define Sp € h by Sg(y) = 2 for any simple root v and write Wg, , = W,,.

Lemma 5.1.1. If n is a minimal automorphic function and ¢ € g*,,, then

(1) FSayelnl = Wolnl.
(ii) Let b denote the opposite of the standard Borel subalgebra, and let

W = Exp(g;"1 nb). (5.1)
Then

Fhapl(@) = Y Welnl(wg).
weW (K)
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Proof. We will use Theorem B. We have g = {0} = 9% N g*zl, which implies (i). For
(ii) we note in addition that g};ﬁ = gg"é = gga = go and thus g};‘ll N g2, = {0}. Finally,
s -

g2, =b. O

Let L, denote the Levi subgroup of the parabolic subgroup P, of G. Denote by M, the
stabilizer in L, of the space g}, (as an element of the projective space of g*).

Lemma 5.1.2. Any root § with §(S,) = —2 can be conjugated to —a using the Weyl group
of Lg.

Proof. We can assume that g is simple. This statement can be proved using the language of
minuscule representations, i.e., representations such that the Weyl group has a single orbit
on the weights of the representations. These are given for example in [Bou75]. We thus
need to show that all representations of the Levi L, for a simple root « of a simply-laced
root system are minuscule when acting on the first internal Chevalley module U, /[Uq, Uy
This can be done by inspection case-by-case.

Case A,,: For any simple root «, the semi-simple part of L, is of Cartan type A (if the
root « is at the end of the Dynkin diagram) or of type AA (when « is in the middle). In
both cases the first internal Chevalley module is a fundamental representation (type A) or
a product of two fundamental representations (type AA). Since vector representations of
type A are minuscule, the claim is true.

Case D,,: Depending on which simple root « one chooses, the internal Chevalley modules
are exterior powers of fundamental representations of type A factors in L, or fundamental
representation or spinor representations of type D factors in L,. All the representations are
minuscule.

Case Eg: All Levi L, of Eg are of Cartan types A or D or products thereof (up to abelian
factors). The representations arising as internal Chevalley modules are all minuscule by
inspection as they are exterior powers of type A fundamental representations or spinor
representations of type D.

Case E7: There is one new case beyond the representation types above. In the new
case the Levi contains Fg and the representation of Fg that arises in the internal Chevalley
module is the 27-dimensional one. This is also a minuscule representation by inspection.

Case FEg: There is again only one new case to consider when the Levi L, contains
the factor E7. The E7 representation arising in the internal Chevalley module is the 56-
dimensional one which is minuscule as well.

]
Corollary 5.1.3. The set of minimal elements in (g*)*i% is Lo(K)(g%,)-

Proof. Let z be a generic element of h that is 0 on « and negative on other positive roots.
Decompose (g*)‘i"2 = ®F_ Vi by eigenvectors of z, with eigenvalues 0 =ty < t; < -+ <
tp. Note that Vj = g*,. Let X € (g*)f‘% be a minimal element and X = ) X its
decomposition by eigenvalues of z. By Lemma 5.1.2, we can assume, by replacing X by its
L (K)-conjugate, that X # 0. By Corollary 4.4.4 X is conjugate to Xy using L. O

Proof of Theorem C. Part (ii) follows from Proposition 4.0.1 and the minimality of 7.
Part (i) follows from Lemma 5.1.1(i), Lemma 3.3.1 and Corollary 5.1.3. O
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5.2. Proof of Theorem D. Let n be a minimal automorphic function. For any simple
root « denote by m, the maximal multiplicity of « in other roots. As above, let L, be the
Levi subgroup of P, and M, the stabilizer of g}, in L.

Proposition 5.2.1. Let o be a simple root with my = 1. Then

1n(g9) = Fsonl(g) + > > Welnl(vg)- (5.2)

YE€La(K)/Ma(K) peg* |

Proof. Since my, = 1, the group U, is abelian. Decompose 7 to Fourier series on U,. The
coefficients in the Fourier series will be given by Fg, .[n] with ¢’ € (g%)°3. Note that this
coefficient vanishes unless ¢’ is minimal or zero, and that by Corollary 5.1.3, all minimal
¢ € (g*)%y can be conjugated into g*, using Le(K). Thus we have

ng)= > Fsuphllg) =Fs.oll@)+ D Y Fsuplnl(v9) (5.3)

W’E(g*)%ﬁ YELa(K)/Ma(K) peg*
Lemma 5.1.1(i) and the minimality of 1 imply that Fs, ,[n](vg9) = W,[nl(79). O

Lemma 5.2.2. Let [ C g be a K-Levi subalgebra, and let O be the minimal nilpotent orbit
in g. Then O NI is either empty or the minimal orbit of [.

Proof. Suppose the contrary. Let Oy denote the minimal orbit of [. Then Oy lies in the
Zariski closure of O N [. Thus there exists an sly triple (e, h, f) in [ such that f € Oy, and
the Slodowy slice f + ¢ to Oy at f intersects O. Namely, there exists a non-zero X € [°
with f 4+ X € O. This contradicts the minimality of O, since f + [€ is transversal to the
orbit of f. O

Lemma 5.2.3. For any simple root «, the restriction Fs, o[nl|r, is a minimal or a trivial
automorphic function of L.

Proof. Suppose that there exists a Whittaker pair (H,¢) for L, with ¢ # 0 such that
Fi,p[Fs,0nl] # 0. Then, for T big enough, we have Fy [Fs, 0[] = Fa+75.,0n]. Thus,
the orbit of ¢ is minimal in g* and thus, by Lemma 5.2.2 also in [},. (|

Proof of Theorem D. The proof is by induction on the rank of G. The base case of rank 1
group is the classical Fourier series decomposition. For the induction step assume first that
g does not have any simple components of type Eg. Note that in this case there exists an
extreme simple root o with my = 1. By Proposition 5.2.1 we have

1(g) = Fs,o0nl(g) + > > Welnl(vg) (5.4)

V€L (K)/Ma(K) pegk

By Lemma 5.2.3, Fg, o[n] is in a minimal representation of L.

As before, let Sp € h denote the element that is 2 on all positive roots. Note that for any
@€ ([Z)‘ig , we have W,,[Fs, o[n]] = W,[n] where the prime denotes a Whittaker coefficient
with respect to L.

Enumerate the roots such that « is the last one. For any 1 < i < rk(G) denote by L; the
Levi subgroup given by the simple roots a1, ..., «;—1, and by M; the stabilizer in L; of the
space gy, (as an element of the projective space of g*).
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From the induction hypothesis we obtain

rk(G)

n(g) = D DD DR SR 1A (5.5)

i=1 yeLi(K)/Mi(K) peg*,,

Let us now deal with the remaining case in which g has a simple component of type FEs.
Fix such a component and let o denote the 8-th root of this component in the Bourbaki
labeling, and a,ax denote the highest root of this component. Then m, = 2, and (g*)‘i‘fL =
9% o, Recall that Foo[n] = 7. We now make the following deformation. Let H; := tS,,
for any rational ¢ € [0,1]. Then the only critical values are 1/4 and 1/2 and the only

quasi-critical values at eigenvalue 2 are 1/2 and 1. Thus we get

n(9) = Fsopaolnl(@) + D Fs.jaoenlg) (5.6)

X
cpleg*amax

It is easy to see from the definitions that, with ¢’ non-zero, Fg,_ /40,,/[1] = Fs, /2,[1]. Note
also that, by Lemma 4.4.6, (S,/2,¢’) is a neutral Whittaker pair. Conjugating amax to o
using the normalizer of the Cartan, we reduce the computation of Fg, /2 ./ [1] to the formula
for Fi, [n] given in Lemma 5.1.1(ii).

For Fg, /4,0[n], we proceed as in Proposition 5.2.1 and obtain

Fs./a0nl(9) = Fs..olnl(g) + > > Welnl(vg) (5.7)

v€La(K) /Mo (K) Lpegia

For the constant term Fg, o[n] we obtain a formula from the induction hypothesis.
Altogether, we get

rk(G)
n(g) = +> Y > Welnlvg +Z D> Welnl(sjwg),
i1 7€ Li(K)/Mi(K) pegX =L peg” , wew;(K)

h (55)
where O‘s is the 8-th root of Ej, the j-th Eg-component of G, in the Bourbaki labehng, 5§
is a representative of a Weyl group element conjugating the highest root of E] to o, and
W; are as in (5.1). O

5.3. Proof of Theorem E. Suppose that rk(g) > 2. Let n be a next-to-minimal
automorphic function. Let a be a simple root and let ¢’ € g .

Lemma 5.3.1. Let v # « be a positive root, and let 1 € gfv. Let O denote the orbit of
Y+ ¢'. Then the possible values of («,7) are 1, 0, or —1, and O has Bala-Carter label |,
where | is a Levi subalgebra of type A1, A1 X Ay, or Ao, respectively.

In particular, O is minimal if (o,y) > 0, O is next to minimal if (o,y) = 0 and O is
neither minimal nor next to minimal if {(a,7y) < 0.

Proof. Let b’ C b be the simultaneous kernel of a and 7, and let [ be its centralizer in
g. Then b’ has codimension at most 2 in h, hence [ is a Levi subalgebra of semisimple
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rank < 2 whose roots include o and «y. The rest of the lemma is a straightforward rank 2
calculation. 0

Notation 5.3.2. Denote by A, the set of simple roots orthogonal to a. Define S € § to
be 0 on any simple root § € A, and 2 on other simple roots. Let Z := S, — h,. Note that
Z vanishes on simple roots in A, and on « and is 1 on other simple roots.

Proposition 5.3.3. We have Fg, 1] = Fs,x[n].

Proof. Note that S, dominates S, and that gfa =gf = gialﬂgil = {0}. Thus the statement
follows from Theorem B. O

Let G’ C G be the Levi subgroup given by A,.

Proposition 5.3.4. The restriction Fg [n]|a: is a minimal or a constant automorphic
function on G'.

For the proof we will need the following geometric lemma.

Lemma 5.3.5. Let 1) € g’* be nilpotent such that ¢ +1) belongs to a next-to-minimal orbit
in g*. Then 1) belongs to the minimal orbit of g'*.

Proof. Clearly ¥ # 0. If the orbit of ¥ is not minimal then it belongs to the Slodowy slice
of some element ¢’ of the minimal orbit of (g')*. Then ¢’ + v’ belongs to a next-to-minimal
orbit of g*, and ¢’ + 1) belongs to the Slodowy slice of ¢’ + 1)’ and thus lies in an orbit that
is higher than next-to-minimal. ([l

Proof of Proposition 5.3.4. Suppose that there exists a Whittaker pair (H, ) with ¢ # 0
such that Fpg[Fse[n)] # 0. Then, for T big enough, we have Fp[Fg[n]] =
Fs4+1z+H,p+v([n). By Proposition 4.0.1 and Lemma 5.3.5, ¢ lies in the minimal orbit
of g'*. O
Proof of Theorem E. Part (iii) follows from Proposition 4.0.1, since 7 is a next-to-minimal
form.

For part (ii), let z € b, be a rational semi-simple element such that gf““ =0, gif“z is
the nilpotent radical of a Borel subalgebra b of g, and (S,, ¢) dominates (S, + 2, ¢). Such z
exists by Lemmas 4.0.7, 4.0.8 and 2.1.9, since the next-to-minimal orbit is PL. Conjugating
b to the standard one, and applying Theorem B(i) we obtain the statement. In §6 we give
explicit examples for Z (or rather conjugations) that minimize the dimension of V.

For part (i), note that Corollary 5.1.3 implies that, conjugating by v € L,(K), we can
assume that ¢ € g*,. By Proposition 5.3.3, Fg, »[n] = Fs,[n]. By Proposition 5.3.4,
Fs,o[nlcr is a minimal or constant form on G’. The statement follows now from Theorem
D together with the fact that the G'-Whittaker coefficients Wy [1'] where 1'(¢') = Fs ,[n](g")
are, in fact, G-Whittaker coefficients Wy, [n] due to the extra integral in Fg,[n]. O

5.4. Expressing the form itself through Whittaker coefficients. Let 7 be a next-to-
minimal automorphic function. If g has a component which is not of type Eg then there
exists a maximal parabolic P, with an abelian nilradical. Using Fourier transform on this
nilradical we obtain
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1(g) = Fs.olnl(g) + Yo Faell@+ D Fsaelle) (5.9)

minimal LpG(g*)'i% ntm @€e(g*)

Theorem E provides the expressions for all the terms on the right-hand side except the
constant term. Similarly to Lemma 5.2.3, one shows that the restriction of the constant
term Fg, 0[n](g) to the Levi subgroup L, is next-to-minimal or minimal or constant. Using
induction on the rank of G we can obtain an expression for this constant term in terms of
Whittaker coefficients.

Suppose now that g is a product of components of type Fg, and let « be the 8th root ag
of one of the components. As in the proof of Theorem D, we have

n(9) = Fs.aolnl(@) + D Fsujaownl(9) (5.10)

X
cpleg*amax

For Fg, /40[n], we have

Fso/a0m(9) = Fs.olnl(g) + S Fsaell@+ D Feaelll) (5.11)

minimal @€(g*)”% ntm <p€(g*)§%

The last terms in (5.10) can be evaluated as follows. As in the proof of Theorem D, we
have, for ¢’ € g%, that FS /1,0, 1M = Fs, 2,01 We conjugate Fg, 2 or[1] t0 Fhy io[1]
with ¢ € g*,. Then, we consider the deformation (1 —t)hy +tSq. First we express Fp,, (1]
through f,ﬁ »[1] using summation over W (K), where W/(K) is as in Lemma 5.1.1(ii).

Then, the critical values are 1/2 and 2/3, and the quasi-critical values at eigenvalue 2
are 1/3 and 1. At 1/3, only one root joins, namely amax, but we have no Whittaker triple
entries in (g*)_q,,., or otherwise that could move into the —2-eigenspace. At 1/2, we get
all the roots from the set

6
O, = {ZCM + 207 + ag} = {e positive root | (£, a) = 0, Sa() = 2} (5.12)
i=1
containing 27 roots, and at t = 2/3 we also get the root ¢ + 7. This means that we would
get contributions from all these root spaces in the third component of the Whittaker triple.
Let &, = @, U{d + ar}.
At t =1 all these 28 roots join a = ag and thus we obtain, for any ¢ € g*,

Fit onl(g) = Fenolnl(g) + > Fsou[nl(9) (5.13)

ntm YEp+P_ 5, 97 .
As discussed above, we already have formulas for all the expressions in the right hand
side. This finishes the proof of (i). To prove the rest of the theorem we will now group the

expressions in the above formulas.
Let T' C G be the split torus corresponding to our fixed Cartan subalgebra b.

Lemma 5.4.1. For any simple root o, T(K) acts transitively on gx.
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Proof. 1t is enough to consider g to be simple and simply-laced with rkg > 2, and to find a
coroot 3V for g such that 3Y(a) = —1. This is satisfied by any 3" such that 3 is a simple
root adjacent to « in the Dynkin diagram. O

Remark 5.4.2. Note that one may also use similar rescaling to simplify some of the
expressions in Theorems D and E whenever we have the necessary degrees of freedom.

For types A,, and E,, let Optm denote the only complex next-to-minimal orbit, and, for
type D, let it denote one of the two next-to-minimal orbits.

Notation 5.4.3. For the remainder of this section we denote by « be the extreme root
given in the Bourbaki labeling by: a = «, in types A,, F,, and o = a3 in type D, if
a1 + amax € Ontm and oy, if a1 + amax € Opgm. Denote by X := Opgy N (g*)f"Q. If g is of
type E, we let 6 be the highest root with §(S,) = 2 and (o, ) = 0, i.e. § is amax except
for Fg where it is § = 2a7 + 3as + 4ag + 6ay + Has + dag + 207 + as.

Proposition 5.4.4. If g is of type A, or D,, then X = 0. If g is of type E, then L, acts
transitively on X.

The complex version of this proposition follows from [MS12, §5]. This implies the
proposition in types A, and D,. We prove the case of E,, in §5.6 below.

For any root ¢ denote by I'c the quotient L.(K)/M.(K). Fix ¢o € g*, and let ',
denote the quotient of L,(K) by the stabilizer of ¢y in L, (K). In type D,, we assume that
WS(n) = Optm N g*. From Corollary 5.1.3, Lemma 5.4.1, Proposition 5.4.4, and (5.9) we
obtain for A,, and D,,:

1(9) = Fsaolnl(@) + Y Fsuipol(9)

T 5.14
= Fsooll@) + > (WeaallG9) +D° 3" >0 Weprulil(439)) (514
3Ty i€l 7€Ts peg”,

The second equality follows from Theorem E.

For Ey, fix ¢y € g*; with ¢ as in Notation 5.4.3 and denote by A the quotient of L, (K)
by the subgroup that stabilizes ¢g + ¥g. For Fg and E7 we have 6 = amax and we obtain
from Corollary 5.1.3, Lemma 5.4.1, Proposition 5.4.4, and (5.9):

1(9) = Fsa ol (9) + D> Fuiom(A9) + D Fsupotwonl(79) (5.15)
7€l g yEA

Using Theorem E we rewrite this as

0(9) = Fonoll @)+ > WealnlG9) + 3D 3" Weprulil(479))

F€ly, i€l vels pegX
T

+ DD / Wotwo Ml (vy79) dv - (5.16)
Z/GFLPO ’YGA V(A)
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One can also obtain expressions for Eg in the same way. From formulas (5.10, 5.11) and
the discussion after them, we have

1(g) = Fsaolnl(g) + S Fsaell@+ D Fsaplnl@)+ D Fuaplnl(sg)

minimal goe(g*)i’% ntm <p6(g*)§°‘2 peg”,
(5.17)
where s is a representative of a Weyl group element that conjugates amax to a, and
Froolilisg) = > (Fsoollwsg)+ Y Feublwsy),  (5.18)
weW (K) ntm zp@p—i—@gega g,

where W(K) is as in Lemma 5.1.1(ii).

Fix g € g*,, and ¢y € gfa, where § = 201 + 3ag + 4ag + 6ay + bas +4ag +2a7 + ag as in
Notation 5.4.3. Denote by M the Fg-type Levi subgroup generated by the roots oy, ..., ag,
and by M the quotient of M (K) by the centralizer of pg + .

Lemma 5.4.5 (See §5.6 below). The group M(K) acts transitively on the set of next-to-
minimal elements in g~ + @ 5, 9%
From this lemma and (5.18) we obtain
> Fraelilsn) = D0 (D Fswepltlwsg) + Y Fsuporuolil(rwsg))  (5.19)
e weW(K) ceKx ~EM
Using Corollary 5.1.3, Lemma 5.4.1 and Proposition 5.4.4 we obtain

1(9) = Fsa0lm(9) + D FuipoM(79) + D Foporunnl(v79)
FE€T gy F€A

+ ) (Z Fsucpol(Wsg) + Y Fsu ot [n](’ywsg)), (5.20)
weW (K) ceKX yeEM

Using Theorem E we deduce from this

n(9) = Fonoll @)+ D (WaalnlG9) + 3. D" " Weprulil(279))

F€T i€l V€T peg,
+ Z / o+ [N (V79) dv + Z ( Z Wego[n](wsg) +
"/EAV(A) wEW ) ceKX
Y S Warililwsa) + 3 [ Werlilviusg) (G21)

5.5. Comparison with related results in the literature. Various works have
determined similar Fourier coeflicients of small representations in special cases and we now
briefly compare our results to them, with a particular emphasis on the Eg expansions.

We begin with the example of a minimal automorphic form 7 on Eg with the expansion
determined in (5.8) that was also studied by Ginzburg-Rallis-Soudry [GRS11] and by
Kazhdan—Polishchuk [KP04]. In the former paper, the authors showed that the constant
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term of n with respect to the center of the Heisenberg unipotent U of Eg was given by a
single Levi (i.e. E7) orbit of a Fourier coefficient 7, on U, where ¢4, is a character on
U supported only on the single simple root ag. This corresponds precisely to the second
term in equation (5.8), but we have taken one step further in determining ]-"was explicitly
in terms of maximally degenerate Whittaker coefficients W, [n].

In [KP04], the authors give an explicit form of the full non-abelian Fourier expansion
of n with respect to U and our result (5.8) is perfectly consistent with theirs. Kazhdan
and Polishchuk have, however, a different approach, where they first determine the local
contributions (spherical vectors) to the Fourier coefficients and then assemble them together
into a global automorphic functional. To connect the two results one must therefore evaluate
the Whittaker coefficients in (5.8) and extract their contributions at each local place. For the
abelian terms, this has in fact already been done in [GKP16] and by combining those results
with ours one achieves perfect agreement with [KP04]. It remains to evaluate explicitly the
non-abelian term in (5.8) and extract its Euler product. It would be of particular interest
to see if one can reproduce the cubic phase in the spherical vectors of [KP04] in this way.

Next we turn to the Fourier expansion of an FEg automorphic form in the next-to-
minimal representation given in (5.21) that has been studied previously by Bossard—
Pioline [BP17]. According to the discussion in §1.3 the decomposition in (5.21) corresponds
to the decompactification limit and an expression for the abelian part of the Fourier
expansion for the next-to-minimal spherical Eisenstein series on Fg was given in [BP17,
Eq. (3.15)] that we reproduce here for convenience

n = Fs, oln] + 167£(4)R? Z os(T) K4(2nR|Z(T))) o2mi{T,a)

= 1Z(I)[*
I'xI'=0
K, (27R|Z(T :
+167E(3)R > 0a(T)(ged T)*nks, 1(‘23’)'3( ) 2ricr.a) (5.22)
o
I'xI'\ Bs (R%Z(I) %, R?\/A(T)) ,_.
-5 d+1 /2,3/2 ’ 2mi(T,a)
+ 167 R F%;a %I;n (73( 2 ) A(I‘)3/4 e + ...

I'xT#0, I} (1)=0

Here, explicit coordinates on FEg/(Spin;g/Z2) adapted to the E; parabolic are used.
Specifically, R is a coordinate for the GL; factor in the Levi and a denotes (axionic)
coordinates on the 56-dimensional abelian part of the unipotent. A, is a lattice in this
56-dimensional representation of F7 and the coordinates on the E; factor of the Levi enter
implicitly through the functions Z(I') and A(I"). We do not require their precise form for
the present comparison. K denotes the modified Bessel function and 775?11 a spherical vector
in the minimal representation of Fg.

We now establish that (5.22) and (5.21) are compatible. The Fourier expansion in (5.22)
is written in terms of sums over charges I' in the integral lattice A, in the 56-dimensional
unipotent and thus resembles structurally (5.17) above as the space (g*)f‘é represents the
space of characters on this unipotent. The Fourier mode for a ‘charge’ I' is given by

e2™a) and is the character on (g)5=. Besides the constant term Fs, o[n] there is a sum
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over characters in the minimal and next-to-minimal orbits within (g*)®%; the last term in
our (5.17) is a non-abelian term that was not determined in [BP17].

Minimal characters correspond to charges I' such that they satisfy the (rank-one)
condition I' x I' = 0 in the notation of [BP17] and looking at (5.22) we see that there
are two contributions from such charges. These correspond exactly to the two terms in
the parenthesis in the first line of our (5.21): The first term represents the purely minimal
charges while the second term in our equation is the second line of (5.22) where a minimal
charge is combined with a minimal automorphic form on Eg. Expanding this minimal
automorphic form on Eg leads to Whittaker coefficients of the form W, 4, as they are
given in the second term in the parenthesis of the first line in (5.21). The sums over I'y,
and I'; in our expression correspond to the F; orbits of such charges I'. The second line
in our formula (5.21) containing a non-compact integral over Whittaker coefficient W1
corresponds to the last line in (5.22) where a similar integrated Whittaker coefficient Bs /2,3/2
appears. The non-abelian terms in the last line of (5.21) have not been determined in [BP17]
and are given by the ellipses in (5.22).

5.6. Proof of Proposition 5.4.4 for type FE,.

Notation 5.6.1. Denote by U, the set of all (positive) roots ¢ that satisfy £(S,) = 2, and
by @, the set of all roots in ¥, that are orthogonal to a. Denote also z := S, — h, and
a:= (lo)%g, and A := Exp(a).

Note that a = (I,)" and g%, C (g*)Z.

Lemma 5.6.2. Let p € g*, and ¢ € (g*)f"é N (g")'e ¢ (8")20. Then there exists v € A
such that v(p) = @ + .

Proof. Case 1. ¢ € g*_ for some € € ¥:
By the assumption that ¢ € (g*)’i"1 and Lemma 5.3.1, ¢ + 1 is conjugate to ¢ over
C. By Corollary 4.4.4, there exists v € A such that v(p) = ¢ + 1.

Case 2. General:
We can assume ¢ # 0. Let H € h be a generic element that has negative integer
values on all positive roots. Note that a C 91>{0' Decompose 1 = > .. ¥;, where
Y € (g*)ZH . We prove the lemma by descending induction on the minimal j for
which v; # 0. The base of the induction follows from Case 1. For the induction step,
let j be minimal with ¢; # 0. By Case 1, there exists v; € A with v1(¢) = ¢ — ¥;.
Then vi(p + ) = ¢+ > 1, for some ¢ € (g*)E. By the induction hypothesis,
there exists vy € A such that va(p) = v1(p + ). Take v := v} ‘va.

O

Lemma 5.6.3. The stabilizer of o in the Weyl group of Lo acts transitively on ®.
Proof. Note that the roots in ¢ € @, are exactly the roots satisfying €(Sg) = 4, where 3

is the only simple root not orthogonal to «. In other words, ®, is the set of roots of the
L g-module (g*)f‘z. It is enough to check that this module is a minuscule representation of

L, N Lg. The isomorphic module gfi is described in [MS12, §5] where it is called of the
second internal Chevalley module. Let us verify case-by-case that this module is minuscule.
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Case Fg: the Cartan type of L, N Lg is A4, and gii is the standard representation.
Case E7: the Cartan type of L, N Lg is Ds, and gfi is the standard representation.
Case Fy: the Cartan type of L,NLg is Eg, and gfi is the 27-dimensional representation. [

Denote Y = g*, 4+ g”5, i.e. the complement to the coordinate axes in g* , @ g* 5. Let T
be the split torus corresponding to our fixed Cartan subalgebra b.

Lemma 5.6.4. T(K) acts transitively on Y.

Proof. 1t is enough to show that there exist coroots A, p such that (A, a) = (u,d) =1
and (\,0) = (u,a) = 0. For Es we take X := o + oy, p := ay. For E7 we take X\ :=
af + o, p:=ay. For Eg we take X\ := of + o +ay, u:=ayf. O

Proof of Proposition 5.4.4. We have Y C X by Lemma 5.3.1. Since T' C L, it is enough
to show that X C L, (K)Y. Let ¢ € X. Decompose ¢ = _ g ¢=, Where . € g*_. Let

F:={ceV,|p: #0}.

By Lemma 5.1.2, we can assume « € F. Using Lemma 5.6.2, we can assume that for any
other ¢ € F we have (a,e) < 0. Note that this implies that either F'\ (F N ®,) = {a}
or g is of type Eg and F'\ (FN®,) C {«,d + a7} by verification on the root systems. In
both cases, Lemma 5.3.1 implies that F'N ®,, is not empty. By Lemma 5.6.3 we can assume
deF.

If g is of type Eg and § + a7 € F' then we use the action of Exp(g_,,) and the term ¢;
to cancel out the term @siq,. At this point we have {«, 6} C F C &, U {a} or g = Eg and
{a,0} CF C®,U{a,a+ ar}.

Let Sp € b be 2 on all simple roots, and let Z = S, + ((S(Lﬁ — 1)z — Sp, where z is as
in Notation 5.6.1. Then ¢, + @5 € (g°)F N (g)°% and ¢ — pa — 95 € (5%)Z, N (g%)°%. The
statement follows now from Corollary 4.4.4. U

To prove Lemma 5.4.5 used for type Eg where ®, = ®, U {6 + a7}, we will use the
following.

Lemma 5.6.5. For any ¢ € ®,, ¢ — « is not a root.

Proof. ¢ — a does not include o« = ag and includes a7 with coefficient 2 or 3. Since all the
roots in E7 include a7 with multiplicity in {—1,0,1}, € — « is not a root. (|

Proof of Lemma 5.4.5. Denote the set of next-to-minimal elements in g~ + ®ae$a g*, by
X. First of all, note that M (K) preserves X since ®,, is the set of roots on which S, — hq
is at least 2 and S, is 2, and M is the joint centralizer of h, and S,.

Now, let z € X and decompose it to a sum of root covectors x = zo + .3, Le With
z. € g*.. Let F := {e¢ € O,z # 0}. By Lemma 5.3.1 F intersects ®, and thus, by
Lemma 5.1.2, we can assume 6 € F. Define Z € b by (D> cia;)(Z) = 2¢7 — cg. Then
a(Z) =68(Z) =0 and e(Z) > 0 for any € # 6 € ®,. Applying Corollary 4.4.2 to S := S,
and H := S, — Z, we obtain that there exists a nilpotent X € (I)%, with

ad®(X)(zq + 2s) =2 — x4 — x5 (5.23)
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Decompose X to a sum of root vectors X =), X, X\ € g_n. We drop from X the X
that commute with both x, and x5 and (5.23) still holds. Let ¥ be the set of all roots with
X # 0. We would like to show that W lies in the span of the first six simple roots. Assume
the contrary, i.e. there exists A = > ¢;a; € ¥ with ¢7 # 0. Since X € [,, ¢s = 0 and thus
c¢7 = £1. Also, there are three possibilities:

l.a+ )€ d,
2. a+ Ais aroot and a+ A = § + p for some p € V.
3. aa+ Aisnot aroot and § + \ € O,

Lemma 5.6.5 excludes the first possibility. Assume now that the second possibility holds.
Then M\ is a positive root, and thus ¢; = 1. Since X € ([a)go, 2¢7 > cg, ie. cg € {0,1}.
Thus, § — A — « is a root in F7 of the form a7+ 3ag + ... or a7+ 4ag+ .... By inspecting
the root system we see that there are no such roots in E7. If the third possibility holds then
X # a7 and 6 + A € ®,. This implies § + A € ®,. By definition of ®, this implies ¢7 = 0.

Altogether, we showed that X lies in the Lie algebra m of M. Thus X € mgo. But
mZ, =mZ,. Let y := Exp(—X)x — o — x5. Note that all the roots of y still lie in ®, \ {6},
since X € m. Thus z, + 25 +y € X. By the same argument as above, there exists Y € m?,
such that ad*(Y)(zq + xs5) = y.

Since Z is at least 1 on @, \ {0} and ad*(X) lowers the Z-eigenvalues by 1, we get that
y € (g%)%_,. However, ad*(Y)(za + 75) € (¢%)%; and thus y = 0.

Thus Exp(—X)z = z, + x5, i.e. we can conjugate = using Exp(—X) € M(K) into
Y =g*,+ 9 ;. By Lemma 5.6.4 the torus acts transitively on Y. O

6. DETAILED EXAMPLES

In this section we will illustrate how to use the framework introduced above to compute
certain Fourier coefficients in detail, many of which are of particular interest in string theory.
In particular, we will in §6.2 show examples for D5 with detailed steps and deformations
that reproduce the results of Theorems C, D and E, while in the following sections we will
illustrate how to apply these theorems to different examples.

As in previous sections we will here often identify ¢ of a Whittaker pair (S, ¢) with its
Killing form dual f, and its corresponding character x,. Since it is convenient to specify
a Cartan element S € h by how the simple roots act on S we introduce the notation
S = (S1,..., 5 )wv = Yoi_y Siw) where 7 is the rank of G and w;” are the fundamental
coweights which give that «;(S) = S;. We will also use the following notation for Chevalley
generators. Let (n1,...,n,) be a tuple of non-negative integers and let E,,, ,, denote the
Chevalley generator En,a,+.+npa, and Fp, n, the Chevalley generator E_(,, q,4...4n,a.)-
For the examples we will be considering, n; will always be single digit and we therefore omit
delimiters.

6.1. Whittaker triples. We will now illustrate what type of Fourier coefficients we are
able to describe using Whittaker triples that are not captured by Whittaker pairs in an
example for G = SLy.

Let (S,¢,v) be the Whittaker triple with S = %(17 1,1),v, ¢ = Fi11 and ¥ = mFyg
with m € K. The S-eigenvalues for the different Chevalley generators can be illustrated by
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the following matrix
2/3 4/3 2

| —2/3 2/3 4/3
S| Ziz —ays 2/3 | (6.1)
2 —4/3 —2/3

As seen from this matrix we get the following unipotent subgroup (independent of ¢)

1021 x2
Ns,cp:{< 1(1)%3>}7 (6.2)
1

and the corresponding Fourier coefficient of an automorphic function n on G can be
expressed as

10 x1 x2 13
Fooslile) = [ (1Y% ) xtman +2) (6.3
(K\a)? '

From this little example we see that we require Whittaker triples in addition to Whittaker
pairs if we want to construct characters that are not only sensitive to x5 in the —2-eigenspace
but also, for instance, to z1 which is in the —4/3-eigenspace. A similar construction can be
made for x3.

6.2. Examples for SO5 5. For D5 we use the conventional labelling of the roots shown in
Figure 2.

5
1 2 3 4

FIGURE 2. Root labels used for Ds.

The (complex) nilpotent orbits for D5 are labeled by certain integer partitions of 10 with
a partial ordering illustrated in the Hasse diagram of Figure 3 where Oq10 is the trivial orbit
and Ogy216 the minimal orbit. There is no unique next-to-minimal orbit and both Oy412 and
0317 occur as maximal orbits in wave-front sets arising in string theory.

Example 6.2.1. We will now consider an automorphic function 7y, in an automorphic
representation m of SO5 5 with WO(m) C {O110, Og216, Og412} corresponding to the closure
of one of the next-to-minimal orbits that we choose for this example. We will compute
Fourier coefficients of ny, with respect to the unipotent radical of the maximal parabolic
subgroup associated to the root «;, which is the string perturbation limit discussed in
§1.3. Specifically, we will consider the pair (S,¢) where S = S,g = (2,0,0,0,0),v and
¢ =mkE_,, with non-zero m € K.

According to [MS12], there are three complex character variety orbits for this parabolic
subgroup which intersect the orbits Oji0, Opin = Og216 and Og;7 with the above ¢ being
in the minimal orbit Og2y6.

We make a deformation H; = S + tZ using Z = (0, 2000, 200, 20, 2) that was chosen to
nicely separate the numerous eigenspaces corresponding to quasi-critical values. There are
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91
1
73
/N
713 52
N/
5312
7N
4212 5221
N O/
331
/
3222 51°
N/
3214
t
32213
7N
2412 317
N/
2216
t
110

FiGURE 3. Hasse diagram of nilpotent orbits for Ds. The only non-special
orbit is 52%1.

25 quasi-critical values t; for this deformation in the interval [0, 1] also counting 0 and 1,
the exact values of which will not be of importance to this discussion. For each of the first
six critical values, ny, , gets enlarged by a one-dimensional subspace generated by Epi211,
E01111, E01110, E01101, E01100 and E01000 respectively. Repeated use of Lemma 3.2.7 (11)
gives, for the sixth critical value tg, that

FS,w[nntm](g) = Z-FHtﬁ,gD,w [nntm](g) (64)
P

where the sum is over v € (Fpi211, Fo1111, Foi110, For101, For100, Foro00) (K) which is the K-
span of these elements.

As we continue the deformation, the same generators will successively enter the 2-
eigenspace for H;, where, according to Lemma 3.2.7 (iii), each corresponding character
¢’ in the sum over 1 should be moved to the Whittaker pair as ¢ + ¢’. For example, we
would, at the seventh critical value t7, have that

fS,sO[nntm] (9) = Z Zth7,go+<p’,w[77ntm] (9) (6.5)
oY

where the sums are over ¢’ € (Fyi211)(K) and ¢ € (Foi11, Foi10, For1o1, Foi100, Foro00) (K).
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Normally, we would then be unable to continue with the same deformation Z since it
would not commute with ¢ + ¢’. However, in our case we have that ¢ + ¢’ is in the orbit
Os214 unless ¢’ = 0, which means that Fp, o+ y[ntm] vanishes unless ¢’ = 0. The same
arguments follows for the remaining generators, and at the twelfth critical value t1o we get
that

fS,w[Untm](g) = ‘FHtm#P[nntm](g) (6.6)
Let Seg, = (2,2,0,0,0). Then N, = Ns g o and thus F5,0[Mutm])(9) = fs“go7¢[nntm] (9)
illustrating Proposition 5.3.3. Let G’ = G.g, be the reductive group of type Az given by
the simple roots a3, as and a;s. The elements of G’ leave both ¢ and S invariant under the
(co)adjoint action. According to Proposition 5.3.4 1,(9) = Fs g o[Mnm](¢') is attached
to a minimal representation of G’. The expansion of such automorphic forms were studied
in [GKP16] and is given by repeated use of Proposition 5.2.1 which was used to prove
Theorem D and which we will now illustrate. As noted in the proof of Theorem E, the
Whittaker coefficients of 1}, . (¢') on G’ become Whittaker coefficients on the original group
G when taking the integral in Fs_g o[7utm](g’) into account.

To simplify the calculation we will now build upon the above notation for a selection
of subgroups and semi-simple elements. Let therefore x denote a selection of simple roots,
which we mark as filled nodes in the Dynkin diagram, for example & = «%. Then, let G,
be the semi-simple subgroup obtained by the corresponding subsystem of roots keeping the
choice of simple roots, and, for a simple root « in the selection z, let PY be the maximal
parabolic subgroup of G, obtained from a. Let also LS denote the Levi subgroup of P,
M the stabilizer of (F,) in LY, and I'?(K) = L¢(K)/M2(K). Instead of explicitly showing
a we may mark it in the selectlon x like so: Tg (K) = T'og0 (K).

Repeatedly using Proposition 5.2.1, we get that F3,0[mmtm](g) equals

fs..go,@[nntm](g) = fs..&),so[nntm] (9) + Z Z W@—HO’ [Tlntm]("yg)
7€l g (K) ',

]:S..so,go[nntm](g) = fsngoﬂp[nntm] (g) + Z Z ch+go’ [ﬁntm](’yg) (6.7)
€T gy (K) o'en,,

]:S..'O,Lp[nntm](g) = W@[nntm] (g) + Z WsoJrgo’ [nntm] (g) )
¢'e0’,,

where we recall that g*, = (Fu,)(K) \ {0}. As explained in the proof of Theorem E, the
Whittaker coefficients on each successive G’ in the induction become Whittaker coefficients
on GG when taking the integration from Fg, , into account.

Altogether, the Fourier coefficient in the 8-dimensional unipotent associated with S =
Se and ¢ = mE_,, is

Mg(K) =3
fs,w[nntm} (g) = 77ntm "’ Z Z WAergo 77ntm] (79) FZ(K) = {1} =4
=3 yely K) FOO'.(K) 1=25

p'eg”,,
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which illustrates Theorem E and how to obtain the I';. We note that a formula for this
expansion was also determined in [GMV15, Eq. (4.83)] based on theta lifts.

Example 6.2.2. Similar to how the expansion of a minimal automorphic function on As
played a role in the above calculation, the expansion of a minimal automorphic function on
SOs5 5(A) will play a role in the E7 calculations of §6.4. Therefore we will now compute the
full expansion for a minimal automorphic function nmi, on SOs55(A) by expanding along
the same abelian unipotent radical as above. By repeated use of Proposition 5.2.1 we get
that

nmin(g) = ‘FS.(SWO[nmin] (g) + Z Z W@[nmin} (fyg)
VET g4 (K) pea’,,

Fsg 0lnmin](9) = Fs g olmmin] @)+ > Y. Welnminl(v9)
VET g0 (K) @ngaz

fs-go,o[nmin] (g) = fs..so,o[nmin] (g) + Z Z W@[nmin} (’7.9)

(6.9)
V€L (K) g,
fS..go,U[nmin] (g) = }_S“'O,O[nmin] (g) + Z Z W@[nmin} (’yg)
VET go (K) pea’,,
FS..'O,O[T/min]( ) WO nmln Z W 77m1n
vea’e,
In summary,
(T (K) i=1
5 leX) i=2
Tnin(9) = Wonminl(9) + > > Welnminl(vg), Ti(K) = Tea(K) i=3
i=1 ’yEFz(K) Wegiai {]_} ’L = 4
lNg(K) i=5
(6.10)

which illustrates Theorem D.

6.3. Examples for Fg. In this section we will consider a next-to-minimal automorphic
function Ny, on Fg(A). We will first compute maximal parabolic Fourier coefficients with
respect to P, corresponding to the M-theory limit discussed in §1.3, and then we will find
a full expansion of 7,tm by considering the maximal parabolic P, which will be used in one
of the Eg examples in §6.5.

Example 6.3.1. Let (S, pmin) be the Whittaker pair where S = S s, = (0,2,0,0,0,0),v
and @min = ME_q, € Opin with non-zero m € K. Using Proposition 5.3.3 we have that

FSvain [nntm](g) = me,wmin [nntm] (g) . (6.11)

According to Proposition 5.3.4, Fg m,@[nntm](g) is minimal on Gg.g, which is the
reductive group obtained from the root system of G by removing as and a4, and is of
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FIGURE 4. Root labels used for Fj.

type As x As. Using Proposition 5.2.1 repeatedly we get

fS:‘Pmin [nntm] (g) = ‘FSO.&Xy(Pmin [nntm] (g) + Z Z W‘pmin"'@/ [77] (’yg)
VET 40800 (K) ¢'eg”,,

‘FSO.'OO790min [nntm]( ) ‘FS“&X) $¥min T’Iltm Z W@mln"‘@ ( )
P'en”,,
(6.12)
FS..'OOﬁDmin [nntm] (g) = fS..‘.O7<pmin [nntm] (g) + Z Z W‘Pmin""(p, [T]] (’Yg)
TEL o oe (K) '€0%
‘FS..'.O#Pmin [nntm] (g) = W@min [nntm] (g) + Z W‘Pmin"ﬂﬂl [77] (g) .
LS
Note that I'egeo(K) = I'ge(K). To summarize,
‘FS»SOmin [nntm] (g) = W‘Pmin [nntm] (g) + Z Z Z WSDmin‘FCP/ [77] (/yg) 9
i€{1,3,5,6} 7€l (K) o/ eg”,
{1} i=1,6 (6.13)
Ti(K) = { Tog (K) i=3
To(K) i=5.

Example 6.3.2. We will now write the full expansion of npi, using Theorem D starting
with the simple root ag, or, equivalently, an expansion along the abelian unipotent radical
of P,s. We get that

77min( ) WO nmm +Z Z Z W 77m1n ’Yg)

i=1 vel';(K) o' eg—az

Fugew i=6

Tetor i=5 (6.14)
Fi: F..goo 2.22

F..goo 1 =4

Fgo ©=3

{1} i=1.

The I'; are obtained in a similar way as in the steps shown in (6.7), (6.9) and (6.12).
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6.4. Examples for E;. We will now consider a next-to-minimal automorphic function ny¢m
on F7(A) and compute its Fourier coefficients with respect to the unipotent radical of the
parabolic subgroup P, corresponding to the decompactification limit in the string theory
discussed in §1.3.

FiGURE 5. Root labels used for Fx.

Example 6.4.1. Specifically, we will first consider the Whittaker pair (S, ) where S =
Setos = (0,0,0,0,0,0,2),v and @min = mE_qs, € Opin with non-zero m € K. The unique
complex minimal orbit Opi, is often described by a Bala—Carter label as O4,. Using
Proposition 5.3.3 we have that

TS omin [Mtm] (9) = Fis g oy omin TIntm] (9) (6.15)

where S_g. = (0,0,0,0,0,2,2),v.

According to Proposition 5.3.4 we have that the right-hand side is attached to a minimal
representation of Gge,, of type Ds whose expansion is given by (6.10) although with
differently labeled roots. We get that

5
]:S,sﬂmin [nntm] (g) = thmin [nntm](g) + Z Z Z chminJrcp’ [nntm] (79)a

i=17€Ni(K) p'egX,,

Mo (K) i=1
Mg (K) i=3 (6.16)
Ti(K) = { Tog (K) =2
o (K) i—4
1 i=5.

This further illustrates Theorem E and the pattern that emerges for how to obtain I';.

Example 6.4.2. There is also a unique complex next-to-minimal orbit Opyy = O24, and
we will now consider the same S = S, g, as above but now with pnm = m1Foooooo1 +
moFh34391 € Ongm With non-zero mq, ms € K.

Since @pem in a Whittaker pair (S, ¢ntm) will still be present after a deformation,
although possibly with new contributions, we will not be able to make a deformation
to our fixed Borel subgroup since ¢pntm is not supported on only our corresponding
choice of simple roots. Therefore we first make a conjugation using Lemma 3.3.1 and
W = WiWsWEWr W WA WsWEW W3 Wawswowswsw, where w; = ePeie FoiePai for which
wSw™t = (0,2,2,-2,0,0,0),v and wenmw ! = m1 Fo100000 + m2Foo10000 giving

]:S,cpntm [nntm] (9) = Fwafl,wcpmmwfl [Untm](UJg) . (6-17)
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Using Theorem E (ii) we get that

Fsmn mtm( / omsm—i [Tt (v10g) d (6.18)

where V = EXp(<F0001000,F0001100,F0001110,F0001111>). The Weyl word above was chosen
such that the dimension of V' is minimized.

6.5. Examples for Fg. Similar to the E; examples above, we will here consider npyy in
a next-to-minimal representation of Eg and its maximal parabolic Fourier coefficients with
respect to P, corresponding to the decompactification limit in the string theory discussed
in §1.3.

FIGURE 6. Root labels used for FEjg.

Example 6.5.1. Firstly, let (S,¢min) be the Whittaker pair with S = S.g.e =
(0,0,0,0,0,0,0,2),v and @min = ME_qg € Omin = O4a,. From Proposition 5.3.3 we get
that

‘FS#Pmin [nntm] (g) = ‘/T-'S(Xﬁx)..yﬂﬂmin [nntm] (g) 9 (619)
where the right-hand side, according to Proposition 5.3.4, is in a minimal representation of
G odees Of type Eg the expansion which was found in (6.14). We get that

fsv(pmin [nntm] (g) Wﬂpmm nntm + Z Z Z W‘Pmln"'ip nntm] (f)/g)
i=1 vel';(K) ) eg_ai

Tt =6
Tty =5 (6.20)
Tg., i=2

Tugo, i=4

T =3

1y i=1.

Example 6.5.2. Secondly, let (S, ¢ntm) be the Whittaker pair where S = S g, as above,
but ©Ontm = m1F00000001 + m2F23465321 € Ontm = OQAl with non-zero mi,mo € K. Let
also w = WAWHWeW7TWW2WAWEWeW7W1W3W4W5WeW2WAWEW3W4AW] W3W2WAWSE where w; =
ePaie=FaiePei for which wSw™! = (0,2,2,-2,0,0,0,0),v and weumw ™" = m1 Fy1000000 +
maFo0100000- From Theorem E (ii) we then get that

fsyﬁpntm [nntm] (g) = / W’U)(Pntmw71 [nntm] (Uu)g) dU (621)
V(A)
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where V'

D. GOUREVITCH, H. GUSTAFSSON, A. KLEINSCHMIDT, D. PERSSON, AND S. SAHI

= Exp((F000100005 00011000, Fooo11100, Fooo11110, Fooor1111)). The Weyl word above

was chosen such that the dimension of V' is minimized.
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