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Abstract. In this paper we analyze Fourier coefficients of automorphic forms on adelic
reductive groups G(A). Let π be an automorphic representation of G(A). It is well-known
that Fourier coefficients of automorphic forms can be organized into nilpotent orbits O of
G. We prove that any Fourier coefficient FO attached to π is linearly determined by so-
called ‘Levi-distinguished’ coefficients associated with orbits which are equal or larger than
O. When G is split and simply-laced, and π is a minimal or next-to-minimal automorphic
representation of G(A), we prove that any η ∈ π is completely determined by its standard
Whittaker coefficients with respect to the unipotent radical of a fixed Borel subgroup,
analogously to the Piatetski-Shapiro–Shalika formula for cusp forms on GLn. In this setting
we also derive explicit formulas expressing any maximal parabolic Fourier coefficient in
terms of (possibly degenerate) standard Whittaker coefficients for all simply-laced groups.
We provide detailed examples for when G is of type D5, E6, E7 or E8 with potential
applications to scattering amplitudes in string theory.
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1. Introduction and main results

1.1. Introduction. Let K be a number field and A its ring of adeles. Let G be a reductive
group defined over K, G(A) the group of adelic points of G and η be an automorphic form
on G(A). Fix a minimal parabolic subgroup B (a Borel subgroup if G is quasi-split) in
G and let N be its unipotent radical. Consider the (infinite) set of unitary characters
χN : N(K)\N(A) → C×. It is well-known that the constant term of η with respect to
[N,N ] can be decomposed according to∫

[N,N ](K)\[N,N ](A)

η(ng)dn =
∑
χN

WχN [η](g), (1.1)

where WχN ∈ C∞(G(A)) is the standard Whittaker coefficient corresponding to χN given
by

WχN [η](g) :=

∫
N(K)\N(A)

η(ng)χN (n)−1dn. (1.2)

This is N -equivariant, WχN [η](ng) = χN (n)WχN [η](g). If η is spherical (i.e. η(gk) = η(g)
for k in the maximal compact subgroup of K ⊂ G) then, by the Iwasawa decomposition
g = nak, WχN [η](g) is determined by its restriction to the maximal torus T ⊂ G.

If η is an Eisenstein series induced from a character µ = Πνµν of a Borel subgroup B ⊂ G,
and χN is generic, the Whittaker coefficient is well-known to be Eulerian,

WχN [η] = ΠνWχN ,ν [µ], (1.3)

where the local factors are given by so-called Jacquet integrals

WχN ,ν [µ] =

∫
N(Kν)

µν(n)χN,ν(n)−1dn. (1.4)

This is a powerful result, as for each finite place ν these integrals are explicitly computable
using the Casselman–Shalika formula [CS80].

It is natural to ask whether one can recover all of η from its Whittaker coefficients,
and not just the constant term of η with respect to [N,N ]. This is known to be true
when η is a cusp form on GLn(A) for which we have the Piatetski–Shapiro–Shalika formula
[PS79, Sha74]:

η(g) =
∑

γ∈Nn−1(K)\GLn−1(K)

∑
χN

WχN [η]
(

( γ 1 ) g
)
, (1.5)

where Nn−1 is the unipotent radical of a Borel subgroup of GLn−1. On the other hand,
all Whittaker coefficients of non-generic cusp forms vanish, and thus such forms definitely
cannot be recovered. By [Ike01] such forms exist on Sp4. Our first result, Theorem A below,
provides a sufficient condition for recovering a form η from its Whittaker coefficients.

It is also natural to consider more general Fourier coefficients with respect to unipotent
radicals U of arbitrary parabolic subgroups P = LU ⊆ G. Consider a set of unitary
characters χU : U(K)\U(A) → C×. We have the associated Fourier coefficient of an
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automorphic form η on G given by:

FχU [η](g) :=

∫
U(K)\U(A)

η(ug)χU (u)−1du. (1.6)

By construction this is U -equivariant and can be viewed as a function FχU : C(K)\C(A)→
C, where C is the stabilizer of χU inside the Levi L. In the special case when P is a minimal
parabolic, the Fourier coefficient FχU coincides with the Whittaker coefficient (1.2). As
already stressed above, when U is non-abelian, the coefficient FχU only captures a part of
the Fourier expansion of η. To reconstruct η from its coefficients one must consider the
derived series of U :

U (i+1) = [U (i), U (i)], U (0) = U. (1.7)

This series will terminate after finitely many steps since U is unipotent. A unitary character
χU(i) is trivial on U (i+1) and the complete non-abelian Fourier expansion of η with respect
to U takes the form

η = F0[η] +
∑

χ
U(0) 6=1

Fχ
U(0)

[η] +
∑

χ
U(1) 6=1

Fχ
U(1)

[η] + · · ·+
∑

χ
U(i0−1) 6=1

Fχ
U(i0−1)

[η],

where i0 is the smallest integer for which U (i0) = 1.
In general it is a hard problem to obtain explicit formulas for arbitrary Fourier coefficients

Fχ
U(i)

in the series above; in particular, they are generically non-Eulerian and no analogue

of the Casselman–Shalika formula exists. However, for special choices of data, that is, choice
of automorphic form η, unipotent U (i) and character χU(i) , the coefficients Fχ

U(i)
[η] may

simplify.
In this paper we will prove many results concerning Fourier coefficients of the form

discussed above, as well as more general ones. In particular, we prove that in a large class
of cases, the coefficients Fχ

U(i)
are linearly determined by the simpler Whittaker coefficients

WχN which allows us to compute Fχ
U(i)

explicitly. The emphasis on the reduction to

Whittaker coefficients is due to the fact that it is known how to compute them explicitly
and they take simple forms for small representations [FKP14].

Our results are strongest in the case when G is a split simply-laced group and η is
a so-called minimal or next-to-minimal automorphic form. This means that all Fourier
coefficients attached to nilpotents outside of a union of Zariski closures of minimal or
next-to-minimal nilpotent orbits vanish. We refer to §2.3 below for the precise definitions.
A sufficient condition for this is that one of the local components of the representation
generated by η is minimal or next-to-minimal, see Lemma 2.2.4 below. For minimal
representations, this condition is also shown to be necessary under some additional
assumptions on G, see [GS05, KS15].

The minimal representations have been extensively studied in the literature, in particular
due to their crucial role in establishing functoriality in the form of theta correspondences.
Moreover in a series of works [GRS11, GRS97, Gin06, Gin14], πmin was used to construct
global Eulerian integrals. Next-to-minimal representations have not been as extensively
analyzed though in recent years this has started to change, partly due to their importance
in understanding scattering amplitudes in string theory [GMV15, Pio10, FKP14, GKP16,
FGKP18]; see §1.3 below for more details on this connection.
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To achieve our goal we will use several notions of Fourier coefficients. We define these
in §2, following [GGS17, GGS] but with slightly different notation. In [GGS17, GGS] it
was shown that there exist G-equivariant epimorphisms between different spaces of Fourier
coefficients, thus determining their vanishing properties in terms of nilpotent orbits. In
this paper we determine exact relations (instead of only showing the existence of such)
between different types of Fourier coefficients, and in particular reduce Fourier coefficients
that are difficult to compute into more manageable coefficients such as the known Whittaker
coefficients with respect to the unipotent radical of a minimal parabolic subgroup.

1.2. Main results. Let us now explain some of our main results in more detail. To this end
we need to briefly introduce some terminology. Denote by g the K-points of the Lie algebra
of G. A Whittaker pair is an ordered pair (S, ϕ) ∈ g× g∗, where S is a semi-simple element
with eigenvalues of ad(S) in Q, and ad∗(S)(ϕ) = −2ϕ. This implies that ϕ is necessarily
nilpotent and corresponds to a unique nilpotent element f = fϕ ∈ g by the Killing form
pairing. Each Whittaker pair (S, ϕ) defines a unipotent subgroup NS,ϕ ⊂ G given by (2.2)
below and a unitary character χϕ on NS,ϕ by χϕ(n) = χ(ϕ(log n)) for n ∈ NS,ϕ(A).

Our results are applicable to a wide space of functions on G(A), that we denote
by C∞(G(K)\G(A)) and call the space of automorphic function. This space consists
of functions f that are left G(K)-invariant, finite under the right action of Kf :=∏

finite ν G(Oν), and smooth when restricted to G∞ :=
∏

infinite ν G(Kν). In other words, we
remove the usual requirements of moderate growth and finiteness under the center z of the
universal enveloping algebra.

Following [MW87, GRS97, GRS11, GGS17] we attach to each Whittaker pair (S, ϕ) and
automorphic function η on G the following Fourier coefficient

FS,ϕ[η](g) =

∫
NS,ϕ(K)\NS,ϕ(A)

η(ng)χϕ(n)−1 dn. (1.8)

Remark 1.2.1. This definition is more general than what is usually referred to as a Fourier
coefficient in the literature, cf. [GRS97, GRS11, Gin06, GH11].

Note that FS,ϕ[η](g) is a smooth function on G(A) in the above sense, but is not invariant
under G(K) any more. On the other hand, its restriction to the joint centralizer GS,ϕ of
S and ϕ is left GS,ϕ(K)-invariant. As shown in [GH11], if η is in addition z-finite and has
moderate growth, then the restriction of η to GS,ϕ(A) still has moderate growth, but may
stop being z-finite.

Note also that the unipotent group NS,ϕ is not necessarily the unipotent radical of a
parabolic subgroup of G; see the discussion of the derived series in §1.1. Consider, for
example, the case of G = E8 and let P = LU ⊂ E8 be the Heisenberg parabolic such that
the Levi is L = E7 × GL1 and the unipotent radical U is the 57-dimensional Heisenberg
group with one-dimensional center C = [U,U ]. Then the Fourier coefficient FS,ϕincludes
the “non-abelian” coefficient corresponding to NS,ϕ = C and χϕ a non-trivial character on
C. This case is relevant for applications to physics; see §1.3 below.

If a Whittaker pair (h, ϕ) corresponds to a Jacobson–Morozov sl2-triple (fϕ, h, eϕ) we say
that it is a neutral Whittaker pair, and call the corresponding Fourier coefficient neutral
Fourier coefficient. This is what is usually called a Fourier coefficient in the literature.
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The global wave front set of η, denoted WO(η), is defined as the set of nilpotent orbits
O such that there exists a neutral pair (h, ϕ) with non-vanishing Fh,ϕ[η] and ϕ ∈ O, see
Definition 2.2.3 below. It was shown in [GGS17, Theorem C] that if Fh,ϕ[η] = 0 then
FS,ϕ[η] = 0 for any Whittaker pair (S, ϕ), not necessarily neutral.

Because of the many different kinds of Fourier coefficients figuring in this paper, we will
also make the following distinctions. If S is such that NS,ϕ is the unipotent radical of
a minimal parabolic subgroup of G, independent of ϕ, we say that (S, ϕ) is a standard
Whittaker pair and call the Fourier coefficient FS,ϕ a (standard) Whittaker coefficient
denoted by WS,ϕ. If S corresponds to our fixed minimal parabolic subgroup B we may
simply write Wϕ as in (1.2). Another special case of a standard Whittaker pair is a
principal Whittaker pair as introduced in Definition 2.0.5 further restricting S, which is
then also called principal. There we also define what it means for a Whittaker pair (S, ϕ)
or a character ϕ to be principal in a Levi subgroup (or a PL-pair) with the corresponding
Fourier coefficient FS,ϕ being called a PL-coefficient.

Finally, in §2.1 we will define what we call Levi-distinguished Fourier coefficients. Such a
coefficient is defined by a parabolic subgroup P ⊆ G (defined over K), a Levi decomposition
P = LU and a Whittaker pair (H,ϕ) for L, in which ϕ is K-distinguished, i.e. does not
belong to the dual Lie algebra of any Levi subgroup of L defined over K. The corresponding
Fourier coefficient is given by considering the constant term with respect to U as a function
on L, and then taking the Fourier coefficient FH,ϕ. To see that this construction defines a
Fourier coefficient on G, we let Z be a rational semi-simple element that commutes with
L and has all its non-zero adjoint eigenvalues much bigger than those of H (in absolute
value). Then the Levi-distinguished Fourier coefficient is FH+Z,ϕ. By Lemma 2.1.9 below,
if ϕ is a principal nilpotent in L then FH+Z,ϕ is a Whittaker coefficient.

Our main results can be summarized in the following theorems which are proven in §§4,5.

Theorem A. Let η be an automorphic function on a reductive group G. Then, any Fourier
coefficient FS,ϕ[η] is linearly determined by the Levi-distinguished Fourier coefficients with
characters in orbits which are equal to or bigger than Gϕ.

In particular, if all non-PL coefficients of η vanish, then all Fourier coefficients are
linearly determined by Whittaker coefficients Wϕ′ [η].

We refer to Definition 2.2.1 below for our order relation on K-rational nilpotent orbits.
The term ‘linearly determined’ is explained in Definition 2.0.9 below. It includes taking
sums over characters, sums over G(K)-translates of the arguments and integrations over
unipotent subgroups giving expressions schematically on the form∑

ϕ′

∑
γ

∫
duWϕ′(γug) (1.9)

and similarly for other Levi-distinguished Fourier coefficients.
One can show that for simply-laced groups the minimal and the next-to-minimal orbits are

always PL. Thus, Theorem A implies that minimal and next-to-minimal forms on simply-
laced groups, as well as all their Fourier coefficients are linearly determined by Whittaker
coefficients. We provide explicit formulas for this determination in Theorems C,D,E below.

In order to present our next theorems we will need to introduce some notation.
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Notation 1.2.2. For a rational semi-simple H ∈ g and λ ∈ Q denote by gHλ the i-eigenspace

of ad(H). Denote also gH>λ :=
⊕

µ>λ g
H
λ , gH≥λ := gHλ ⊕ gH>λ, and similarly for gH<λ and gH≤λ.

For ϕ ∈ g∗ denote by gϕ its stabilizer in g under the coadjoint action.

Definition 1.2.3. Let (H,ϕ) be a Whittaker pair, and let Z ∈ g(K) be a rational semi-
simple element that commutes with H and ϕ and satisfies

gϕ ∩ gH≥1 ⊆ gZ≥0 (1.10)

We will say that (H,ϕ) dominates (H + Z,ϕ).

In Proposition 4.0.1 below we show that if (H,ϕ) dominates (S, ϕ) then FH,ϕ linearly
determines FS,ϕ. The next theorem gives a sufficient condition for FS,ϕ to determine FH,ϕ.

Theorem B. Let (H,ϕ) and (S, ϕ) be Whittaker pairs such that (H,ϕ) dominates (S, ϕ).
Denote

v := gH>1 ∩ gS<1, and V := Exp(v). (1.11)

Let η be an automorphic function on G, and assume that the orbit of ϕ is maximal in
WO(η).

(i) If gH1 = gS1 = 0 then

FH,ϕ[η](g) =

∫
V (A)

FS,ϕ[η](vg) dv . (1.12)

(ii) More generally, denote

u := (gS≥1 ∩ gH>1)/(gS>1 ∩ gH>1), w := (gH≥1 ∩ gS<1)/v, U := Exp(u), W := Exp(w) (1.13)

Then

FH,ϕ[η](g) =
∑

w∈W (K)

∫
V (A)

∫
U(K)\U(A)

FS,ϕ[η](wvug) dudv . (1.14)

In [GGS17] (and in Corollary 3.2.2) it is shown that any Whittaker pair (H,ϕ) is
dominated by a neutral pair (h, ϕ). In §4 below we show that any Whittaker pair (H,ϕ)
dominates a Levi-distinguished pair (S, ϕ). Note that if ϕ is principal in a Levi subgroup
(PL), then any Levi-distinguished Fourier coefficient is a Whittaker coefficient, and thus,
if ϕ is PL and is maximal for η then any Fourier coefficient FH,ϕ[η] is obtained by an
integral transform from a Whittaker coefficient WS,ϕ[η]. For the remaining theorems we
will consider minimal and next-to-minimal automorphic functions on a split simply-laced
group G of rank r. We define those notions in §2.3 below.

For the following theorems we assume G to be split, choose a split maximal torus and a
set of positive roots and let α be a simple root. We are interested in Fourier coefficients with
respect to the unipotent radical Uα of the maximal parabolic subgroup Pα where LieUα is
spanned by the Chevalley generators of positive roots with non-zero α-component. Letting
(Sα, ϕ) be a Whittaker pair where Sα ∈ h is defined by α(Sα) = 2 and αi(Sα) = 0 for all
other simple roots, we get that NSα,ϕ = Uα, the unipotent of the maximal parabolic Pα,
independent of ϕ. This means that, for a Whittaker pair (Sα, ϕ), the Fourier coefficient
FSα,ϕ is the usual Fourier coefficient with respect to the unipotent subgroup Uα and the
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character χϕ. Let also β be the only simple root that is not orthogonal to α, and I denote
the set of indices for all the remaining simple roots αi.

Theorem C. Let ηmin be a minimal automorphic function on a simply-laced split group G
and (Sα, ϕ) a Whittaker pair with Sα as above. Depending on the orbit of ϕ, we have the
following statements for the corresponding Fourier coefficient.

(i) If ϕ is minimal, then

FSα,ϕ[ηmin](g) =Wϕ′ [ηmin](γ0g) (1.15)

where γ0 is an element in G(K) that conjugates ϕ to an element ϕ′ of weight −α.
(ii) If ϕ is not minimal and not zero then FSα,ϕ[ηmin] = 0.

Together with the result from [MW95] for computing the constant term (that is, ϕ = 0) in
maximal parabolics, this exhausts all possibilities for ϕ. We also obtained an expression for
the automorphic function itself. For any root δ denote by g∗δ the corresponding subspace of

g∗ and by g×δ the set of non-zero elements of this subspace. Note that g∗δ is a one dimensional
linear space over K.

Theorem D. Let ηmin be a minimal automorphic function on a simply-laced split group G.
If the Dynkin diagram of G has no components of type E8 then

ηmin(g) =W0[ηmin](g) +

rk(G)∑
i=1

∑
γ∈Λi(K)

∑
ϕ∈g×−αi

Wϕ[ηmin](γg) (1.16)

where, for each i, Λi is a subquotient of a Levi subgroup of G that is determined in the
proof. If the Dynkin diagram of G has k components of type E8 then we get k additional
terms, each accounting for the non-abelian part of the maximal parabolic of the α8 of the
corresponding component. We have

ηmin(g) =W0[ηmin](g)+

rk(G)∑
i=1

∑
γ∈Λi(K)

∑
ϕ∈g×−αi

Wϕ[ηmin](γg)+
k∑
j=1

∑
ϕ∈g×

−αj8

∑
w∈Wj(K)

Wϕ[ηmin](sjwg),

(1.17)

where αj8 is the 8-th root of Ej8, the j-th E8-component of G, in the Bourbaki labeling;

sj ∈ G(K) is an element that normalizes the Cartan and conjugates the highest root of Ej8
to αj8, and Wj is a subquotient of a certain unipotent subgroup of Ej8 that is determined in
the proof.

Theorem E. Let ηntm be a next-to-minimal automorphic function on a simply-laced split
group G and (Sα, ϕ) a Whittaker pair with Sα as above. Depending on the orbit of ϕ, we
have the following statements for the corresponding Fourier coefficient.

(i) If ϕ is minimal, then

FSα,ϕ[ηntm](g) =Wϕ′ [ηntm](γ0g) +
∑
i∈I

∑
γ∈Γi(K)

∑
ψ∈g×−αi

Wϕ′+ψ[ηntm](γγ0g) (1.18)
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where γ0 is an element in G(K) that conjugates ϕ to ϕ′ ∈ g∗−α and Γi are certain
subsets of Levi subgroups of G that are determined in the proof. Recall that I is the
set of indices for the simple roots that are orthogonal to α.

(ii) If ϕ is next-to-minimal, then

FSα,ϕ[ηntm](g) =

∫
V (A)

Wϕ′ [ηntm](vγ0g) dv (1.19)

where γ0 is an element in G(K) that conjugates ϕ to ϕ′ ∈
⊕r

i=1 g
∗
−αi and V = Exp(v)

with

v = gS
′

>1 ∩ b (1.20)

where S′ = γ0Sαγ
−1
0 and b is the Lie algebra of the negative Borel spanned by h and

the Chevalley generators for negative roots.
(iii) If ϕ is not in the closure of any complex next-to-minimal orbit, then FSα,ϕ[ηntm] = 0.

Colloquially, we will write the condition in (iii) as ϕ being in an orbit larger than next-
to-minimal.

Remark 1.2.4. It is interesting to ask which Fourier coefficients are Eulerian [Gin06, Gin14].
The expectation based on the reduction formula of [FKP14] and explicit examples checked
there is that Whittaker coefficientsWϕ[η] of an Eisenstein series η on a group G are Eulerian
if the orbit of ϕ is maximal in WO(η). In general, the reduction formula expresses Wϕ[η]
through a sum of generic Whittaker coefficients on s semi-simple group determined by ϕ.
If ϕ belongs to a maximal orbit in WO(η), this sum collapses to a single term in all known
examples and since generic Whittaker coefficients on the subgroup are Eulerian this implies
the same for Wϕ[η]. By Theorem B this implies that any parabolic Fourier coefficient
associated to ϕ is Eulerian. By parabolic Fourier coefficient associated to ϕ we mean FS,ϕ
such that all the eigenvalues of S are even integers.

With this logic one obtains also from (1.15) that the Fourier coefficient FSα,ϕ[ηmin] of an
Eisenstein series in the minimal representation calculated in the unipotent of a maximal
parabolic determined by α should be Eulerian for simply-laced split groups. By contrast, if ϕ
does not belong to a maximal orbit of η the Whittaker coefficients and Fourier coefficients
are not expected to be Eulerian and this is also evident from formula (1.18) showing a
Fourier of a next-to-minimal automorphic function η for a minimal character ϕ.

Theorem F. Let ηntm be a next-to-minimal automorphic function on a simply-laced split
group G. Then

(i) ηntm is linearly determined by its Whittaker coefficients.
(ii) If G is of type An for n > 2 or G is of type Dn and the set WO(ηntm) lies in the

Zariski closure of a single next-to-minimal complex orbit O then

ηntm(g) = FSα,0[ηntm](g) +
∑
γ̃∈Γϕ0

(
Wϕ0 [ηntm](γ̃g) +

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wϕ0+ψ[ηntm](γγ̃g)
)
,

(1.21)
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where α is αn in type An and either α1 or αn in type Dn, depending on O; ϕ0 ∈ g×−α
is a fixed non-zero element, Γϕ0 is the quotient of the Levi subgroup of G given by Sα
by the stabilizer of ϕ0, and the rest of the notation is as in Theorem E.

(iii) If G is of type En for n ∈ {6, 7} we have

ηntm(g) = FSα,0[ηntm](g) +
∑
γ̃∈Γϕ0

(
Wϕ0 [ηntm](γ̃g) +

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wϕ0+ψ[ηntm](γγ̃g)
)

+
∑
γ̃∈Γϕ0

∑
γ∈Λ

∫
V (A)

Wϕ0+ψ0 [ηntm](vγγ̃g) dv, (1.22)

where α = αn, ψ0 is a fixed element of g×−αmax
, Λ is the quotient of the Levi subgroup

given by Sα by the stabilizer of ϕ0 + ψ0 and the rest of the notation is as above.
(iv) If G is of type E8 we have

ηntm(g) = FSα,0[ηntm](g) +
∑
γ̃∈Γϕ0

(
Wϕ0 [ηntm](γ̃g) +

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wϕ0+ψ[ηntm](γγ̃g)
)

+
∑
γ̃∈Λ

∫
V (A)

Wϕ0+ψ0 [ηntm](vγ̃g) dv +
∑

w∈W (K)

(∑
c∈K×

Wcϕ0 [ηntm](wsg) +

∑
c∈K×

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wcϕ0+ψ[ηntm](γwsg) +
∑
γ̃∈M

∫
V (A)

Wϕ0+ψ′0
[ηntm](vγ̃wsg)

)
, (1.23)

where α = α8, ψ′0 is a fixed element of g×α8+α7−αmax
, M the quotient of the Levi

subgroup given by α1, . . . , α6 by the stabilizer of ϕ0 + ψ′0 and the rest of the notation
is as above.

The assumption in type Dn is justified by the conjecture that all the maximal orbits
in WO(η) lie in the same complex orbit (see [Gin06]). Using Lemma 2.2.4 below on the
connection of Fourier coefficients of local components we obtain

Corollary G. Let π be an irreducible representation of G(A) and let π =
⊗
πν be the

decomposition of π to local components. Suppose that there exists ν such that πν is minimal
or next-to-minimal. Then π cannot be realized in cuspidal automorphic forms on G(A).

Remark 1.2.5. Theorems C, D and E generalize the results of [MS12, AGK+18] from SLn
to arbitrary simply-laced split Lie groups G. Together with theorem F they provide explicit
expressions for the complete Fourier expansions of next-to-minimal automorphic forms on
all split simply-laced groups and we shall compare these to other results available in the
literature in §5.5.

1.3. Motivation from string theory. The results of this paper have applications in
string theory. In short, string theory predicts certain quantum corrections to Einstein’s
general theory of relativity. These quantum corrections come in the form of an expansion
in curvature tensors and their derivatives. The first non-trivial correction is of fourth order
in the Riemann tensor, denoted schematically R4, and has a coefficient which is a function
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Table 1. Table of Cremmer–Julia symmetry groups En(R), n = d+1, with
compact subgroup Kn(R) and U-duality groups En(Z) for compactifications
of IIB string theory on a d-dimensional torus T d to D = 10− d dimensions.

d Ed+1(R) Kd+1(R) Ed+1(Z)
0 SL2(R) SO2(R) SL2(Z)
1 GL2(R) SO2(R) SL2(Z)
2 SL2(R)× SL3(R) SO2(R)× SO2(R) SL3(Z)× SL2(Z)
3 SL5(R) SO5(R) SL5(Z)
4 SO5,5(R) (SO5(R)× SO5(R))/Z2 SO5,5(Z)
5 E6(R) USp8(R)/Z2 E6(Z)
6 E7(R) SU8(R)/Z2 E7(Z)
7 E8(R) Spin16(R)/Z2 E8(Z)

ηn : En/Kn → C, where Gn/Kn is a particular symmetric space, the classical moduli space
of the theory. The parameter n = d + 1 encodes the number of spacetime dimensions d
that have been compactified on a torus T d. The groups En are all split real forms of rank
n complex Lie groups (see table 1).

In the full quantum theory the classical symmetry En(R) is broken to an arithmetic
subgroup En(Z), called the U-duality group, which is the Chevalley group of integer
points of En. Thus, the coefficient functions ηn are really functions on the double coset
En(Z)\En(R)/Kn and in certain cases they can be uniquely determined. For the two leading
order quantum corrections, corresponding to R4 and ∂4R4, the coefficient functions ηn are
respectively attached to the minimal and next-to-minimal automorphic representations of
En [Pio10, GMV15]. Fourier expanding ηn with respect to various unipotent subgroups
U ⊂ En reveals interesting information about perturbative and non-perturbative quantum
effects. Of particular interest are the cases when U is the unipotent radical of a maximal
parabolic Pα ⊂ G corresponding to a simple root α at an “extreme” node (or end node)
in the Dynkin diagram. Consider the sequence of groups En displayed in table 1, and the
associated Dynkin diagram in “Bourbaki labelling”. The extreme simple roots are then
α1, α2 and αn (this is slightly modified for the low rank cases where the Dynkin diagram
becomes disconnected). Fourier expanding the automorphic form η with respect to the
corresponding maximal parabolics then have the following interpretations (see figure 1 for
the associated labelled Dynkin diagrams):

• P = Pα1 : String perturbation limit. In this case the constant term of the Fourier
expansion corresponds to perturbative terms (tree level, one-loop etc.) with respect
to an expansion around small string coupling, gs → 0. The non-constant Fourier

coefficients encode non-perturbative effects of the order e−1/gs and e−1/g2
s arising

from so-called D-instantons and NS5-instantons.
• P = Pα2 : M-theory limit. This is an expansion in the limit of large volume of the

M-theory torus T d+1. The non-perturbative effects arise from M2- and M5-brane
instantons.
• P = Pαn : Decompactification limit. This is an expansion in the limit of large

volume of a single circle S1 in the torus T d (or T d+1 in the M-theory picture). The
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1 3 4

2

5 n− 1 n
(c)

En−1 ⊂ En

decompactification limit

1 3 4

2

5 n− 1 n
(a)

SOn−1,n−1 ⊂ En

string perturbation limit

1 3 4

2

5 n− 1 n
(b)

SLn ⊂ En

M-theory limit

Figure 1. The various string theory limits associated with different
maximal parabolic subgroups Pα. Roots are labeled in the Bourbaki order-
ing.

non-perturbative effects encoded in the non-constant Fourier coefficients correspond
to so called BPS-instantons and Kaluza–Klein instantons.

For the reasons presented above, it is of interest in string theory to have general techniques
for explicitly calculating Fourier coefficients of automorphic forms with respect to arbitrary
unipotent subgroups.

In string theory the abelian and non-abelian Fourier coefficients of the type defined
in (1.6) typically reveal different types of non-perturbative effects (see for instance [PP09,
BKN+10, Per12]). The archimedean and non-archimedean parts of the adelic integrals have
different interpretations in terms of combinatorial properties of instantons and the instanton
action, respectively. For example, in the simplest case of an Eisenstein series on SL2 the
non-archimedean part is a divisor sum σk(n) =

∑
d|n d

k and corresponds to properties of

D-instantons [GG97, GG98, KV98, MNS00] (see also [FGKP18] for a detailed discussion in
the present context). Theorem F provides explicit expressions for the Fourier coefficients of
the automorphic coupling of the next-to-minimal ∂4R4 higher derivative correction in the
decompactification limit.

1.4. Structure of the paper. In §2 we give the definitions of the notions mentioned above,
as well as of Whittaker triples and quasi-Fourier coefficients. These are technical notions
defined in [GGS] and widely used in the current paper as well.

In §3 we relate Fourier and quasi-Fourier coefficients corresponding to different Whittaker
pairs and triples. To do that we further develop the deformation technique of [GGS17, GGS],
making it both more general, more explicit, and better adapted to the global case. The
deformation technique is in turn is based on the root-exchange technique of [GRS97, GRS11].

In §4 we prove Theorems A and B. We first apply §3 to prove Theorem A. Then, we deduce
Theorem B from Theorem A using similar methods. In §4.3 we describe the PL property of
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minimal and next-to-minimal orbits, for the benefit of the reader. The statements in §4.3
that concern exceptional groups are due to Joseph Hundley, and are given without proofs
since they are not used in the following. In §4.4 we prove some geometric lemmas that are
used in §5. We keep these lemmas in §4 since they hold in full generality.

In §5 we deduce Theorems D-E from Theorem B and §4.4. We do not use Theorem A,
though this theorem gives an existence proof for formulas as in Theorems D-E, as well as
an algorithm to obtain similar formulas. However, in §5 we find several shortcuts that lead
to more compact formulas. Denote by Lα the centralizer of Sα. We first deduce from §4.4
that any minimal ϕ ∈ (g∗)Sα−2 can be conjugated into g×−α using Lα (Corollary 5.1.3). This,
together with Theorem B, implies Theorem C(i). Part (ii) follows from the definition of
minimality and Corollary 4.0.2, that says that any Fourier coefficient is linearly determined
by a neutral Fourier coefficient corresponding to the same orbit.

To prove Theorem D, assume first that G has a maximal parabolic subgroup Pα with
abelian unipotent radical Uα. In this case we decompose the form ηmin into Fourier series
with respect to Uα. Each Fourier coefficient is of the form FSα,ϕ. For ϕ = 0, we show that
the restriction of this coefficient to Lα is minimal and use the theorem for Lα (by induction
on rank). For non-zero and non-minimal ϕ, FSα,ϕ vanishes by C(ii). For minimal ϕ the
expressions for FSα,ϕ are given by Theorem C(i). We group them together using Corollary
5.1.3. If G does not have a maximal parabolic subgroup with an abelian unipotent radical
then G is a product of components of type E8 and thus has a maximal parabolic subgroup
Pα for which the unipotent radical Uα is the 57-dimensional Heisenberg group. We then
decompose ηmin into Fourier series with respect to the center of Uα. The expression for
the constant terms is obtained in the same way as above. The other terms, that are also
called non-abelian terms, are neutral Fourier coefficients F1/2Sα,ϕ[ηmin] and the expression
for them follows from Theorem B.

Theorem E(ii) and E(iii) follow from Theorem B and Corollary 4.0.2 respectively. To
prove E(i) we restrict FSα,ϕ[ηntm] to Lα, show that it is a minimal automorphic function and
apply Theorem D. In §5.4 we obtain a full expression for ηntm using the same strategy as in
the proof of Theorem D. However, we need two additional components. One is Proposition
5.4.4 that describes the action of Lα on next-to-minimal elements of (g∗)Sα−2. The other is an
expression for non-abelian terms F1/2Sα,ϕ[ηntm] for next-to-minimal ηntm. Our strategy for
obtaining this expression is the same as the strategy for the proof of Theorem E(i). Finally,
it §5.5 we compare our expressions for ηntm to the results of [BP17, GKP16, KP04].

In §6 we provide examples to Theorems D-E for groups of type D5, E6, E7 and E8

computing the expansions of automorphic function and Fourier coefficients with respect to
different parabolic subgroups of interest in string theory.
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2. Definitions

Let K be a number field and let A = AK be its ring of adeles. In this section we let χ be
a non-trivial unitary character of A, which is trivial on K. Then χ defines an isomorphism
between A and Â via the map a 7→ χa, where χa(b) = χ(ab) for all b ∈ A. This isomorphism
restricts to an isomorphism

Â/K ∼= {r ∈ Â : |r|K ≡ 1} = {χa : a ∈ K} ∼= K. (2.1)

Let g denote the Lie algebra of G. By abuse of notation we will also denote by g the
K-points of this Lie algebra.

Definition 2.0.1. A Whittaker pair is an ordered pair (S, ϕ) ∈ g × g∗ such that S is a
rational semi-simple element (that is, with eigenvalues of the adjoint action ad(S) in Q),
and ad∗(S)(ϕ) = −2ϕ. Note that ϕ ∈ (g∗)S−2 is necessary nilpotent.

Given a Whittaker pair (S, ϕ) on g, we set u = gS≥1 = gS>1 ⊕ gS1 and nS,ϕ = {X ∈ u :

ωϕ(X,Y ) = 0 for all Y ∈ u} to be the radical of the form ωϕ|u, where ωϕ(X,Y ) = ϕ([X,Y ]).
According to Lemma 3.2.5 below one can show that

nS,ϕ = gS>1 ⊕ gS1 ∩ gϕ (2.2)

where gS1 is the 1-eigenspace of S in g, gS>1 is the direct sum of eigenspaces with eigenvalues
> 1, and gϕ the centralizer of ϕ in g under the coadjoint action. Let l ⊆ u be any isotropic
subspace with respect to ωϕ|u that includes nS,ϕ. Note that nS,ϕ ⊆ l ⊆ u and nS,ϕ, l are ideals
in u. Let U = exp u, NS,ϕ = exp nS,ϕ and L = exp l. Observe that we can extend ϕ to a

linear functional on g(A) by linearity and, furthermore, the character χLϕ(expX) = χ(ϕ(X))
defined on L(A) is automorphic, that is, it is trivial on L(K). We will denote its restriction
to NS,ϕ(A) simply by χϕ.

We will often identify ϕ with its dual nilpotent element f = fϕ ∈ g with respect to the
Killing form 〈 , 〉 or with its corresponding character χϕ(n) = χ(ϕ(log n)) = χ(〈f, log n〉) =
χf (n), sometimes calling ϕ itself a character. For a subgroup U ⊆ G we denote by [U ] the
quotient U(K)\U(A).

Definition 2.0.2. Let (S, ϕ) be a Whittaker pair for g and let L,NS,ϕ, χϕ and χLϕ be as
above. For an automorphic function η, we define the Fourier coefficient of η with respect
to the pair (S, ϕ) to be

FS,ϕ[η](g) :=

∫
[NS,ϕ]

η(ng)χϕ(n)−1 dn. (2.3)

We also define its L-Fourier coefficient to be the function

FLS,ϕ[η](g) :=

∫
[L]

η(lg)χLϕ(l)−1 dl. (2.4)
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Observe that FS,ϕ[η] and FLS,ϕ[η] are matrix coefficients corresponding to the vector η ∈ π
and the functional on the space of automorphic functions defined by the integrals above.

Definition 2.0.3. A Whittaker pair (H,ϕ) is called a neutral Whittaker pair if either
(H,ϕ) = (0, 0), or H can be completed to an sl2-triple (e,H, f) such that ϕ is the Killing
form pairing with f . Equivalently, the coadjoint action on ϕ defines an epimorphism
gH0 �(g∗)H−2, and also H can be completed to an sl2-triple. For more details on sl2-triples
over arbitrary fields of characteristic zero see [Bou75, §11].

Remark 2.0.4. If (fϕ, h, eϕ) is an sl2-triple associated with the principal nilpotent orbit then
Nh,ϕ, is a maximal unipotent subgroup, and the Fourier coefficient Fh,ϕ[η] is a Whittaker
coefficientWh,ϕ[η]. Recall that a principal nilpotent element ψ is a nilpotent element whose
centralizer in g is minimal. If G is quasi-split then this is equivalent to dim gψ = rk g.

Definition 2.0.5. We call S principal if it can be completed to a neutral pair (S, ψ) such
that ψ is a principal nilpotent element and we call a Whittaker pair (S, ϕ) principal if S is
principal. Note that this implies that S defines a minimal parabolic subgroup, which means
that a principal pair is a special case of a standard pair.

A nilpotent element ϕ is called a PL-element, where PL stands for principal in a Levi,
if it can be completed to a Whittaker pair (S, ϕ) where S is principal. Note that this is
equivalent to ϕ being a principal nilpotent element of the Lie algebra of some rational Levi
subgroup L ⊆ G. It is also equivalent to the statement that ϕ defines a character of the
nilradical of a (rational) minimal parabolic subgroup of G, see e.g. [GGS17, §3.3]. The
pair (S, ϕ) is then said to be a PL-pair and the corresponding Fourier coefficient FS,ϕ a
PL-coefficient.

A nilpotent orbit O which contains a PL nilpotent element (or, equivalently, consists of
PL nilpotent elements) is called a PL-orbit.

Remark 2.0.6. (i) In [GGS17, §6] the integrals (2.3) and (2.4) above are called Whittaker–
Fourier coefficients, but in this paper we call them Fourier coefficients for short.
The (standard) Whittaker coefficients are called in [GGS17, §6] principal degenerate
Whittaker–Fourier coefficients.

(ii) Note that for G = GLn all orbits O are PL-orbits. In general this is, however, not the
case, see §4.3 below.

Definition 2.0.7. We say that (S, ϕ, ϕ′) is a Whittaker triple if (S, ϕ) is a Whittaker pair
and ϕ′ ∈ (g∗)S>−2.

For a Whittaker triple (S, ϕ, ϕ′), let U,L, and NS,ϕ be as in Definition 2.0.2. Note that
ϕ + ϕ′ defines a character of l. Extend it by linearity to a character of l(A) and define an
automorphic character χϕ+ϕ′ of L(A) by χLϕ+ϕ′(expX) := χ(ϕ(X) + ϕ′(X)).

Definition 2.0.8. For an automorphic function f , we define its (S, ϕ, ϕ′)-quasi Fourier
coefficient to be the function

FS,ϕ,ϕ′ [η](g) :=

∫
[NS,ϕ]

χϕ+ϕ′(n)−1η(ng)dn. (2.5)
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We also define its (S, ϕ, ϕ′, L)-quasi Fourier coefficient to be the function

FLS,ϕ,ϕ′ [η](g) :=

∫
[L]

χLϕ+ϕ′(l)
−1η(lg)dl. (2.6)

Definition 2.0.9. We say that FS,ϕ,ϕ′ linearly determines FH,ψ,ψ′ if there exists a linear
operator L on C∞(G(A)) such that FH,ψ,ψ′ = L ◦ FS,ϕ,ϕ′ .

We say that FH,ψ,ψ′ is linearly determined by a set {FSi,ϕi,ϕ′i | i ∈ I} if I is finite or

countable and there exists a set of linear operators Li such that FH,ψ,ψ′ =
∑

i Li ◦FSi,ϕi,ϕ′i .

2.1. Levi-distinguished Fourier coefficients.

Definition 2.1.1. We call a K-subgroup of G a split torus of rank m if it is isomorphic
as a K-subgroup to GLm1 . We call a Lie subalgebra l ⊆ g a K-Levi subalgebra if it is the
centralizer of a split torus.

We say that a nilpotent f ∈ g is K-distinguished, if it does not belong to a proper K-Levi
subalgebra l ( g. In this case we will also say that ϕ ∈ g∗ given by the Killing form pairing
with f is K-distinguished. We will also say that the orbit of ϕ is K-distinguished.

Remark 2.1.2. We note that the Lie algebra of any split torus is spanned by rational
semisimple elements. Consequently, a subalgebra of l ⊆ g is a K-Levi subalgebra if and only
if it is the centralizer of a rational semisimple element of g. Another equivalent condition
is that l is the Lie algebra of a Levi subgroup of a parabolic subgroup of G defined over K.

It is easy to see that all principal nilpotent elements are distinguished.

Example 2.1.3. The nilpotent orbits of Sp2n(C) are given by partitions of 2n such that odd
parts have even multiplicity. Each such orbit, except the zero one, decomposes to infinitely
many Sp2n(Q)-orbits - one for each collection of equivalence classes of quadratic forms
Q1, . . . , Qk of dimensions m1, . . .mk where k is the number of even parts in the partition
and m1, . . .mk are the multiplicities of these parts. A complex orbit intersects a proper Levi
subalgebra if and only if all parts have multiplicity one (and thus there are no odd parts).
To see the “only if” part note that if the partition includes a part k with multiplicity two
then the orbit intersects the Levi GLk×Sp2(n−k). If k is odd then this Levi is defined over
Q and thus all Q-distinguished orbits correspond to totally even partitions. If k is even then
this Levi is defined over Q if and only if the quadratic form on the multiplicity space of k
is (positive or negative) definite. Thus, we obtain that a necessary condition for an orbit
O to be Q - distinguished is that its partition λ(O) is totally even, a sufficient condition is
that λ(O) is multiplicity free, and for totally even partitions with multiplicities there are
infinitely many Q-distinguished orbits and at least one not Q-distinguished. For example,
for the partition (4, 2) all orbits in sp6(Q) are Q-distinguished, for the partition 23 some
orbits are Q-distinguished and some are not, and all other partitions do not correspond to
Q-distinguished orbits.

Lemma 2.1.4. Let f ∈ g be nilpotent. Then all K-Levi subalgebras l ⊆ g such that f ∈ l
and f is K-distinguished in l are conjugate by the centralizer of f .

Proof. Complete f to an sl2-triple γ := (e, h, f) and denote its centralizer by Gγ . Let us
show that all K-Levi subalgebras l of g that contain γ and in which f is distinguished are
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conjugate by Gγ . Let l be such a subalgebra, L ⊆ G be the corresponding Levi subgroup,
and let C denote the maximal split torus of the center of L. Then C is a split torus in Gγ .
Let us show that it is a maximal split torus. Let T ⊇ C be a larger split torus in Gγ . Then,
the centralizer of T in g is a K-Levi subalgebra that lies in l and includes γ, and thus is
equal to l. Thus T = C.

Since l is the centralizer of T in G, T is a maximal split torus of Gγ , and all maximal
split tori of reductive groups are conjugate, we get that all the choices of L are conjugate.

Since all the choices of γ are conjugate by the centralizer of f , the lemma follows. �

Definition 2.1.5. Let Z ∈ g be a rational-semisimple element and l denote its centralizer.
Let (h, ϕ) be a neutral Whittaker pair for l, such that the orbit of ϕ in l∗ is K-distinguished.
We call the Fourier coefficient Fh+Z,ϕ a Levi-distinguished Fourier coefficient if

gh+Z
>1 = gh+Z

≥2 = gZ>0 ⊕ lh≥2 and gh+Z
1 = lh1 . (2.7)

Remark 2.1.6. Let (h, ϕ) be a neutral Whittaker pair for g. If ϕ is K-distinguished then
Fh,ϕ is a Levi-distinguished Fourier coefficient. If a rational semi-simple Z commutes with

h and with ϕ and ϕ is K-distinguished in l := gZ0 then Fh+TZ,ϕ is a Levi-distinguished
Fourier coefficient for any T bigger then m/M + 1, where m is the maximal eigenvalue of h
and M is the minimal positive eigenvalue of Z. See also Lemma 4.0.8 for further discussion.

Lemma 2.1.7 ([GGS17, Lemma 3.0.2]). For any Whittaker pair (H,ϕ) there exists z ∈ gH0
such that (H − z, ϕ) is a neutral Whittaker pair.

Remark 2.1.8. In [GGS17] the lemma is proven over a local field, but all we use in the proof
is the Jacobson-Morozov theorem, that holds over arbitrary fields of characteristic zero.

Lemma 2.1.9. For any Whittaker pair (H,ϕ), the followings are equivalent:

(a) The Fourier coefficient FH,ϕ is a Whittaker coefficient
(b) The FH,ϕ is a Levi-distinguished Fourier coefficient, and ϕ is a PL nilpotent.

Proof. First let FH,ϕ be a Whittaker coefficient. Then by Lemma 2.1.7, H can be
decomposed as H = h + Z where (h, ϕ) is a neutral pair and Z commutes with h and
with ϕ. Let l and L denote the centralizers of Z in g and G, and N := NH,ϕ. Then N
is a maximal parabolic unipotent of G, and L is a Levi subgroup of G. Thus, N ∩ L is
maximal unipotent subgroup in L. The Lie algebra of N ∩L is nH,ϕ∩gZ0 = gh≥1∩gZ0 . Thus,

Exp(gh≤−1 ∩ gZ0 ) is also maximal unipotent in L. Since ϕ is given by Killing form pairing

with f ∈ gh≤−1 ∩ gZ0 , we get that ϕ is principal in l. Replacing Z by tZ with t large enough,
we obtain that FH,ϕ is a Levi-distinguished coefficient.

Now, assume that ϕ is a PL nilpotent, and let Fh+Z,ϕ be a Levi-distinguished Fourier

coefficient. Let l = gZ0 be the corresponding Levi, and let f = fϕ be the element of g that
defines ϕ. Since f is distinguished in l, and principal in some Levi, Lemma 2.1.4 implies
that f is principal in l. Thus, nH,ϕ ∩ l is a maximal nilpotent subalgebra of l and thus

nH,ϕ = nH,ϕ ∩ l ⊕ gZ>0 is a maximal nilpotent subalgebra of g. Thus FH,ϕ is a Whittaker
coefficient. �
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2.2. Order on nilpotent orbits and Whittaker support.

Definition 2.2.1. We define a partial order on nilpotent orbits in g∗ = g∗(K) to be the
transitive closure of the following relation R: (O,O′) ∈ R if O 6= O′ and there exist ϕ ∈ O,
ϕ′ ∈ O′ and a rational semi-simple Z ∈ g such that ϕ ∈ (g∗)Z0 and ϕ′ − ϕ ∈ (g∗)Z>0.

In Corollary 4.4.5 below we prove that this is indeed a partial order, i.e. that R is
anti-symmetric.

Note however that we will base statements such as ϕ being minimal or next-to-minimal
on the coarser ordering of complex orbits as detailed further in §2.3.

Lemma 2.2.2. If O′ is bigger than O then for any place ν of K, the closure of O′ in g(Kν)
(in the local topology) includes O.

Proof. It is enough to show that for any Z ∈ g, ϕ ∈ gZ0 and ψ ∈ gZ>0, ϕ lies in the closure
of G(Kν)(ϕ + ψ). Let εi ∈ Kν be a sequence converging to zero and let gi := exp(−εiZ).
Then gi centralize ϕ, while giψ → 0. Thus gi(ϕ+ ψ)→ ϕ. �

Definition 2.2.3. For an automorphic function η, we define WO(η) to be the set of
nilpotent orbits O in g∗ such that Fh,ϕ[η] 6= 0 for some neutral Whittaker pair (h, ϕ)
with ϕ ∈ O. We define the Whittaker support WS(η) to be the set of maximal elements in
WO(η).

The following well known lemma relates these notions to the local notion of wave-front
set. For a survey on this notion, and its relation to degenerate Whittaker models we refer
the reader to [GS18, §4].

Lemma 2.2.4. Suppose that η is an automorphic form in the classical sense, and that it
generates an irreducible representation π of G(A). Let π =

⊗
ν πν be the decomposition of π

to local factors. Let O ∈WO(η). Then, for any ν, there exists an orbit O′ν in the wave-front
set of πν such that O lies in the Zariski closure of O′ν . Moreover, if ν is non-archimedean,
then O lies in the closure of O′ν in the topology of g∗(Kν).

Proof. Acting by G on the argument of η we can assume that there exists a neutral pair
(h, ϕ) with ϕ ∈ O such that Fh,ϕ[η](1) 6= 0. Moreover, decomposing η to a sum of pure
tensors, and replacing η by one of the summands, we can assume that η is a pure tensor
and Fh,ϕ[η](1) 6= 0 still holds. Let η =

⊗′
µ vµ be the decomposition of η to local factors.

Consider the functional ξ on πν given by ξ(v) := Fh,ϕ(v ⊗ (
⊗′

µ 6=ν vµ))(1). Substituting the

vector vν we see that this functional is non-zero. It is easy to see that this ξ is (Nh,ϕ(Kν), χϕ)-
equivariant. The theorem follows now from [MW87, Proposition I.11] and [Var14] for non-
archimedean ν, and from [Ros95, Theorem D] and [Mat87] for archimedean ν. �

2.3. Minimal and next-to-minimal representations. We call a non-zero complex orbit
in g∗(C) minimal if its Zariski closure consists of itself and of the zero element. We call a
non-zero complex orbit next-to-minimal, or shortly ntm, if it is not minimal and its Zariski
closure consists of itself, of minimal orbits and of the zero element. We call a rational
element or a rational orbit minimal/next-to-minimal if its complex orbit is minimal/next-
to-minimal.
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We say that an automorphic function η is minimal if WS(η) consists of minimal
orbits. By [GGS17, Theorem C] (or by Proposition 4.0.1 below), this implies that
FH,ϕ[η] = 0 for any Whittaker pair (H,ϕ) with ϕ non-zero and non-minimal. We call
a non-trivial representation of G(A) in automorphic functions minimal if all the forms in
this representation are minimal or constant.

We say that an automorphic function η is next-to-minimal if WS(η) consists of next-to-
minimal orbits. Again, by [GGS17, Theorem C] (or by Proposition 4.0.1 below), this implies
that FH,ϕ[η] = 0 for any Whittaker pair (H,ϕ) with ϕ higher than next-to-minimal. We
call a representation π of G(A) in automorphic functions next-to-minimal if it is not trivial
and not minimal, and all the forms in this representation are next-to-minimal, minimal
or constant. By Lemma 2.2.4, if π consists of automorphic forms in the classical sense, is
non-trivial, irreducible and has a minimal local factor then it is minimal. Similarly, if it has
a next-to-minimal local factor then it is minimal or next-to-minimal.

Remark 2.3.1. Let g =
⊕k

i=1 gi, with gi simple. Note that the minimal orbits of g are of

the form×j
i=1{0} × O ××k

i=j+1{0}, with O a minimal orbit. The next-to-minimal orbits

of g are either of the same form with O next-to-minimal, or of the form×j−1
i=1{0} × O ×

×l−1
i=j+1{0} ×O

′ ××k
i=l+1{0}, where O and O′ are minimal orbits in gj and gl respectively.

3. Relating different Fourier coefficients

3.1. Relating different isotropic subspaces. We will now see how FS,ϕ,ϕ′ linearly

determines FLS,ϕ,ϕ′ and vice versa.

Lemma 3.1.1 (cf. [GGS17, Lemma 6.0.2]). Let η ∈ π and (S, ϕ, ϕ′) be a Whittaker triple,
and NS,ϕ, U and L as in Definition 2.0.1. Let l⊥ denote the orthogonal complement to l in

u under the form ωϕ and let L⊥ := Exp(l⊥). Then,

FLS,ϕ,ϕ′ [η](g) =

∫
[L/NS,ϕ]

FS,ϕ,ϕ′ [η](ug) du (3.1)

and

FS,ϕ,ϕ′ [η](g) =
∑

γ∈(U/L⊥)(K)

FLS,ϕ,ϕ′ [η](γg). (3.2)

Proof. We assume that ϕ is non-zero since otherwise L = NS,ϕ. We have that NS,ϕ ⊆ L with
L/NS,ϕ abelian which means that (3.1) follows immediately from the definitions of FS,ϕ,ϕ′
and FLS,ϕ,ϕ′ . For (3.2) observe that the function (χLϕ)−1 · FS,ϕ,ϕ′ [η] on L is left-invariant

under the action of NS,ϕ(A)L(K). In other words, we can identify it with a function on

NS,ϕ(A)L(K)\L(A) ∼=
(
L/NS,ϕ

)
(K)\

(
L/NS,ϕ

)
(A) =: [L/NS,ϕ], (3.3)

where the equality follows from the fact that L/NS,ϕ is abelian. Therefore, we have a Fourier
series expansion

FS,ϕ,ϕ′ [η](l) =
∑

ψ∈[L/NS,ϕ]∧

cψ,χL
ϕ+ϕ′

(η)ψ(l)χLϕ(l), (3.4)
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where [L/NS,ϕ]∧ denotes the Pontryagin dual group of [L/NS,ϕ] and

cψ,χLϕ(η) =

∫
[L]

ψ(l)−1χLϕ+ϕ′(l)
−1η(l)dl. (3.5)

In particular

FS,ϕ,ϕ′ [η](e) =
∑

ψ∈[L/NS,ϕ]∧

cψ,χL
ϕ+ϕ′

(η). (3.6)

Now observe that the map X 7→ ωϕ(X, ·) = ϕ ◦ ad(X) induces an isomorphism between

u/l⊥ and (l/n)′. Hence, according to equations (2.1) and (3.3), we can use the character χ
to define a group isomorphism

(U/L⊥)(K) −→ [L/NS,ϕ]∧

u 7→ ψu,
(3.7)

where

ψu(l) = χ(ϕ([X,Y ])), u = expX and l = expY .

Hence, for all u ∈ U(K) and l ∈ L we have

ψu(l)χLϕ+ϕ′(l) = χ(ϕ([X,Y ]) + ϕ′([X,Y ]))χ(ϕ(Y ) + ϕ′(Y )) = χ((ϕ+ ϕ′)(Y + [X,Y ]))

= χ((ϕ+ ϕ′)(ead(X)(Y ))) = χϕ+ϕ′((Ad(u)Y )) = χLϕ+ϕ′(ulu
−1).

Here we are taking again u = expX, l = expY and the middle equality follows from the
vanishing of ϕ on gS>2. But now, from formula (3.5) and the fact that f is automorphic, we
have

cψu,χLϕ+ϕ′
(η) =

∫
[L]

ψu(l)−1χLϕ+ϕ′(l)
−1η(l)dl =

∫
[L]

χLϕ+ϕ′(ulu
−1)−1η(l)dl.

=

∫
[L]

χLϕ+ϕ′(l)
−1η(u−1lu)dl = FLS,ϕ,ϕ′ [η](u),

for all u ∈ U(K). Combining this with (3.6,3.7) we obtain

FS,ϕ,ϕ′ [η](e) =
∑

u∈(U/L⊥)(K)

FLS,ϕ,ϕ′ [η](u). (3.8)

Applying this to right shifts of η we obtain (3.2). �

3.2. Relating different Whittaker pairs. Let (H,ϕ) be a Whittaker pair.

Lemma 3.2.1. Let z be as in Lemma 2.1.7. Then (H − z, ϕ) dominates (H,ϕ).

Proof. Denote h := H − z. We have to show that (1.10) holds, i.e.

gϕ ∩ gh≥1 ⊆ gz≥0 (3.9)

Since gϕ is spanned by lowest weight vectors, we have gϕ ⊆ gh≤0 and thus gϕ∩gh≥1 = {0}. �

Corollary 3.2.2. Any Whittaker pair is dominated by a neutral Whittaker pair.
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Another example of domination is provided by the following proposition, that
immediately follows from [GGS17, Proposition 3.3.3].

Proposition 3.2.3. If ϕ is a PL nilpotent then there exists Z ∈ g such that (H + Z,ϕ) is
a standard Whittaker pair and (H,ϕ) dominates (H + Z,ϕ).

From now till the end of the section let Z ∈ gH0 be a rational semi-simple element such
that (H,ϕ) dominates (H + Z,ϕ).

For any rational number t ≥ 0 define

Ht := H + tZ, ut := gHt≥1, vt := gHt>1, and wt := gHt1 . (3.10)

Definition 3.2.4. We call t ≥ 0 regular if ut = ut+ε for any small enough ε ∈ Q, or in
other words wt ⊂ gZ0 . If t is not regular we call it critical. Equivalently, t is critical if

gHt1 * gZ0 which we may interpret as something new has entered the 1-eigenspace of H. For
convenience, we will say that t = 0 is critical.

We also say that t ≥ 0 is quasi-critical if either gHt1 * gZ0 or gHt2 * gZ0 . We may interpret
this as something new has entered either the 1-eigenspace or the 2-eigenspace. The latter
is related to new characters being available in the Whittaker pairs.

Note that there are only finitely many critical numbers. Recall the anti-symmetric form
ωϕ on g given by ωϕ(X,Y ) = ϕ([X,Y ]).

Lemma 3.2.5 ([GGS17, Lemma 3.2.6]).

(i) The form ωϕ is ad(Z)-invariant.
(ii) Kerωϕ = gϕ.

(iii) Ker(ωϕ|wt) = Ker(ωϕ) ∩wt.
(iv) Ker(ωϕ|ut) = vt ⊕Ker(ωϕ|wt).
(v) ws ∩ gϕ ⊆ ut for any s < t.

Recall that nHt,ϕ := Ker(ωϕ|ut), denote it by nt. and let

lt := (ut ∩ gZ<0) + nt and rt := (ut ∩ gZ>0) + nt. (3.11)

Lemma 3.2.6. For any t ≥ 0 we have

(i) lt and rt are ideals in ut and [lt, rt] ⊆ lt ∩ rt = nt.
(ii) The natural projections lt/nt → ut/r

⊥
t and rt/nt → ut/l

⊥
t are isomorphisms.

Furthermore, lt = gHt1 ∩ gZ<0 ⊕ nt.
(iii) Suppose that 0 ≤ s < t, and all the elements of (s, t) are regular. Then

vt ⊕ (wt ∩ gZ<0) = vs ⊕ (ws ∩ gZ>0) (3.12)

lt = rs + (wt ∩ gϕ) and rs ∩ (wt ∩ gϕ) = w0 ∩ gZ0 ∩ gϕ. (3.13)

Moreover, rt is an ideal in ls and the quotient is commutative.

Proof. It is easy to see that vt is an ideal in ut with commutative quotient, and that
vt ⊆ lt ∩ rt = nt. This proves (i). For the first part of (ii), note that qt := (lt + rt)/nt is a
symplectic space in which the projections of lt and rt are complementary Lagrangians.
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For the second part, we have by Lemma 3.2.5 that gHt1 ∩ gϕ ⊆ gZ≥0 and thus,

lt = vt ⊕ (wt ∩ gZ<0)⊕ (wt ∩ gϕ) . (3.14)

For (iii) note that

vs = (vs ∩ gZ≥0)⊕ (vs ∩ gZ<0) (3.15)

vt = (vt ∩ gZ<0)⊕ (vt ∩ gZ≥0) (3.16)

vt ∩ gZ≥0 = (ws ∩ gZ>0)⊕ (vs ∩ gZ≥0) (3.17)

vs ∩ gZ<0 = (wt ∩ gZ<0)⊕ (vt ∩ gZ<0) (3.18)

This implies (3.12). By Lemma 3.2.5 we have

ns = vs ⊕ (gϕ ∩ws) ⊆ vs ⊕ (ws ∩ gZ≥0), (3.19)

and thus

rs = vs ⊕ (ws ∩ gZ>0)⊕ (w0 ∩ gZ0 ∩ gϕ) and rs ∩ (wt ∩ gϕ) = w0 ∩ gZ0 ∩ gϕ. (3.20)

Hence, (3.12) and (3.14) imply (3.13), and the rest is straightforward. �

Using Lemma 2.1.7, choose an sl2-triple (eϕ, h, fϕ) in gZ0 such that h commutes with H
and with Z, and ϕ is given by the Killing form pairing with f = fϕ. Let Lt := Exp(lt), Rt :=
Exp(rt). From Lemmas 3.2.6 and 3.1.1 we get

Lemma 3.2.7. Let t ≥ s ≥ 0 and ϕ′ ∈ (g∗)Ht>−2∩(g∗)Hs>−2. Assume that there are no critical
values in (s, t). Then

(i) FHt,ϕ,ϕ′ , F
Lt
Ht,ϕ,ϕ′

, and FRtHt,ϕ,ϕ′ linearly determine each other. In particular,

FLtHt,ϕ,ϕ′ [η](g) =

∫
V (A)

FRtHt,ϕ,ϕ′ [η](vg) dv (3.21)

where v := (gHt≥1 ∩ gZ<0)/(gHt>1 ∩ gZ<0) and V = Exp(v).

(ii) FHt,ϕ,ϕ′ is linearly determined by FHs,ϕ,ϕ′. Moreover, FHs,ϕ,ϕ′ is linearly determined
by the set

{FHt,ϕ,ϕ′+ψ′ | ψ′ ∈ (g∗)Ht−1 ∩ (g∗)e ∩ (g∗)Z<0}.

(iii) Let ψ ∈ (g∗)Hs>−2 ∩ (g∗)Ht−2 Then FHs,ϕ,ψ+ϕ′ is linearly determined by the set

{FHt,ϕ+ψ,ϕ′+ψ′ | ψ′ ∈ (g∗)Ht−1}.

(iv) Let ψ ∈ (g∗)Hs−2 ∩ (g∗)Ht>−2 Then FHt,ϕ,ψ+ϕ′ is linearly determined by the set

{FHs,ϕ+ψ,ϕ′+ψ′ | ψ′ ∈ (g∗)Hs−1}.

Proof. Part (i) follows from Lemmas 3.1.1 and 3.2.6(ii).
For part (ii), note first that by Lemma 3.2.6, rs ⊆ lt with commutative quotient (wt ∩

gϕ)/(w0 ∩ gZ0 ∩ gϕ), and let B := [Lt/Rs] denote the corresponding compact commutative

group. Then FLtHt,ϕ,ϕ′ is obtained from FRsHs,ϕ,ϕ′ just by integration over B.
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To obtain FRsHs,ϕ,ϕ′ we decompose it into Fourier series on B, similar to the proof of

Lemma 3.1.1. Characters of B are given by

((wt ∩ gϕ)/(w0 ∩ gZ0 ∩ gϕ))∗ ∼= (g∗)Ht−1 ∩ (g∗)e ∩ (g∗)Z<0

and the Fourier series coefficient corresponding to each ψ′ in this space is FLtHt,ϕ,ϕ′+ψ′ .
For part (iii), note that vt is an ideal in lt with commutative quotient. Together with

(3.13) this implies that vt is an ideal in rs with commutative quotient. Denote V := Exp(vt)
and define a new coefficient I by

If (g) :=

∫
[V ]
χϕ+ψ+ϕ′(n)−1f(ng)dn.

Then I is linearly determined by the set

{FHt,ϕ+ψ,ϕ′+ψ′ |ψ′ ∈ (g∗)Ht−1}.

Finally, from (3.12) we see that FRsHs,ϕ,ψ+ϕ′ is obtained from I by integration.

Part (iv) is proven in a similar way. Namely, denote V ′ := Exp(vs) and define a new
coefficient J by

Jf (g) :=

∫
[V ′]

χϕ+ψ+ϕ′(n)−1f(ng)dn.

Then J is linearly determined by the set

{FHt,ϕ+ψ,ϕ′+ψ′ |ψ′ ∈ (g∗)Hs−1}.

On the other hand, from (3.13) we see that FLtHt,ϕ,ψ+ϕ′ is obtained from J by integration. �

Note that (3.21) is a special case of the root exchange lemma in [GRS11].

Proposition 3.2.8. Let Ht = H + tZ as above, s ≥ 0 and let ϕ′ 6= 0 ∈ (g∗)Hs>−2 ∩ (g∗)e ∩
(g∗)Z<0. Then FHs,ϕ,ϕ′ is linearly determined by the set

{FHt,Φ,Φ′ | t > s critical,Φ ∈ (g∗)Ht−2,Φ
′ ∈ (g∗)Ht>−2 and G(K)Φ > G(K)ϕ}, (3.22)

where G(K)Φ > G(K)ϕ means strictly bigger by the order relation given in Definition 2.2.1.

Note that there are finitely many critical values t.

Proof. Since ϕ′ ∈ gZ<0 there exist t > s, ψ ∈ (g∗)Ht−2 and η ∈ (g∗)Ht>−2 such that ψ 6= 0 and
ϕ′ = ψ + η. Let t be the smallest such t, and since [Z, e] = 0 we have that ψ, η ∈ (g∗)e.

Let a0 := s, let a1, . . . , am−1 be the critical values between s and t and am := t. We
prove the statement by induction on m.

The base case is m = 1, i.e. there are no critical values between s and t. Then Lemma
3.2.7(iii) implies that FHs,ϕ,ϕ′ is linearly determined by the set

{FHt,ϕ+ψ,η+ψ′ |ψ′ ∈ (g∗)Ht−1}.
Denote Φ := ϕ+ψ. Note that Φ belongs to the Slodowy slice to Gϕ at ϕ since ψ ∈ (g∗)e,

and thus G(K)Φ > G(K)ϕ. For each ψ′ denote Φ′ := η + ψ′ and note that FHt,ϕ+ψ,η+ψ′ =
FHt,Φ,Φ′ .

The induction step easily follows from the base using Lemma 3.2.7(ii). �
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Lemma 3.2.9 ([GGS, Lemma 4.2.4]). Let ψ ∈ (g∗)H−2∩(g∗)Z>0. Assume that ϕ+ψ ∈ G(C)ϕ.
Then ϕ+ ψ ∈ G(C)Hϕ.

3.3. Conjugations and translations.

Lemma 3.3.1. Let (S, ϕ, ψ) be a Whittaker triple, η an automorphic function and γ ∈
G(K). Then,

FS,ϕ,ψ[η](g) = FAd(γ)S,Ad∗(γ)ϕ,Ad∗(γ)ψ[η](γg) . (3.23)

Proof. We have that χϕ+ψ(u) = χAd∗(γ)(ϕ+ψ)(Ad(γ)u). Indeed, the right-hand side equals

χ
((

Ad∗(γ)(ϕ+ ψ)
)
(Ad(γ)u)

)
= χ

(
(ϕ+ ψ)(Ad(γ−1) Ad(γ)u)

)
= χϕ+ψ(u) (3.24)

We also have that Ad(γ)g
Ad(γ)S
λ = gSλ since, for x ∈ g, [Ad(γ)S,Ad(γ)x] = Ad(γ)[S, x].

Similarly, Ad(γ)gAd∗(γ)ϕ = gϕ and thus, Ad(γ)nAd(γ)S,Ad∗(γ)ϕ = nS,ϕ.
Hence, using the automorphic invariance of η, the right-hand side of (3.23) equals∫
[NAd(γ)S,Ad∗(γ)]

η(γ−1uγg)χAd∗(γ)(ϕ+ψ)(u)−1 du =

∫
[Ad(γ)NAd(γ)S,Ad∗(γ)]

η(u′g)χAd∗(γ)(ϕ+ψ)(Ad(γ)u′)−1 du′

where we have used the usual short-hand notation [N ] = N(K)\N(A). By the arguments
above, this equals FS,ϕ,ψ[η](g). �

4. General reductive groups

Proposition 4.0.1. Let (H,ϕ) and (S, ϕ) be Whittaker pairs such that (H,ϕ) dominates
(S, ϕ). Then FS,ϕ is linearly determined by FH,ϕ.

Note that this is in the other direction than the statement of Theorem B and is much
easier to prove.

Proof. Let Z := S − H, and for any t ≥ 0 let Ht := H + tZ. Let t1, . . . , tk be all the
critical values of t between 0 and 1. Let t0 := 0 and tk+1 := 1. By Lemma 3.2.7(ii), for
any 0 ≤ i ≤ k, FHti ,ϕ linearly determines FHti+1 ,ϕ

. Since Ht0 = H and Htk+1
= S, the

proposition follows. �

It was shown in Corollary 3.2.2 that any Whittaker pair (S, ϕ) is dominated by a neutral
pair (h, ϕ).

Corollary 4.0.2. FS,ϕ is linearly determined by Fh,ϕ where (h, ϕ) is a neutral pair.

Let (H,ϕ) be a Whittaker pair. Using Lemma 2.1.7, decompose H = h+Z, where (h, ϕ)
is a neutral pair, and Z commutes with h and ϕ.

Definition 4.0.3. Denote by in(H,ϕ) the number

dim gh<1 ∩ gh+Z
≥1 + dim gh<2 ∩ gh+Z

≥2 (4.1)

Note that this number is different from an analogous number in [GGS].

Let us now show that in(H,ϕ) depends only on (H,ϕ) and does not depend on the
decomposition H = h+ Z.
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Lemma 4.0.4 ([GGS, Lemma 4.2.7]). Let h̃ ∈ gH be another neutral element for f . Then

there exists a nilpotent element X ∈ gH such that exp(ad(X))(h) = h̃.

Corollary 4.0.5. The number in(H,ϕ) depends only on (H,ϕ) and not on h. In fact,
in(H,ϕ) depends only on (H,GH(C)ϕ).

Proof. If H = h̃+ Z̃ is another decomposition as above, then by Lemma 4.0.4, h̃ = Ad(γ)h

for some γ ∈ GH(K). Then Z̃ = Ad(γ)Z and

dim g
Ad(γ)h
<λ ∩ g

Ad(γ)(h+Z)
≥λ = dim gh<λ ∩ gh+Z

≥λ (4.2)

which proves that in(H,ϕ) does not depend on the choice of h.
For the second statement, let ϕ′ = Ad∗(γ)ϕ, with γ ∈ GH(K). Since h is neutral to ϕ,

Ad(γ)h is neutral to ϕ′ and H = Ad(γ)h+ Ad(γ)Z where Ad(γ)Z commutes with Ad(γ)h
and Ad∗(γ)ϕ. By the same argument as above, in(H,Ad∗(γ)ϕ) = in(H,ϕ). �

Let C ⊆ G(K) denote the centralizer of (h, ϕ). Let A denote a maximally split torus of
C such that its Lie algebra a includes Z, and let M denote the centralizer of a in G. Then
M is a Levi subgroup of G, m includes h, Z and ϕ, and ϕ is K-distinguished in m. Let z be
a rational semi-simple element of a that is generic in the sense that its centralizer is M .

Lemma 4.0.6. As an element of m, ϕ is K-distinguished.

Proof. Let l be the Lie algebra of a Levi subgroup of M defined over K such that ϕ ∈ l∗.
We have to show that L = M . By replacing L by its conjugate we can assume h ∈ l, and
that there exists a rational semi-simple element z′ ∈ m such that l is the centralizer of z′.
Then z′ commutes with h and ϕ and we have to show that z′ is central in m.

Indeed, z′ ∈ m ∩ c = a. Now, any X ∈ m commutes with z, and thus with any element
of a, since z is generic in a. Thus a lies in the center of m and thus z′ is central. �

Note that the eigenvalues of the adjoint action of any Lie algebra element are symmetric
around zero. Let N be a positive integer that is bigger than the ratio of the maximal
eigenvalue of ad(z) by the minimal positive eigenvalue of ad(Z). Let

Z ′ := NZ + z. (4.3)

From our choice of N we have

gZ
′

>0 = gZ>0 ⊕ (gZ0 ∩ gz>0) and gZ
′

0 = gz0 = m ⊆ gZ0 . (4.4)

That m ⊆ gZ0 follows from the fact that M is the centralizer of z which equals the
centralizer of a and a includes Z.

Lemma 4.0.7. For rational T > 0, (H,ϕ) dominates (H + TZ ′, ϕ), that is, H,ϕ and TZ ′

commute, and satisfy (1.10).

Proof. By construction H = h+Z, ϕ and Z commute, and since h, Z, ϕ ∈ m they commute
with z. Thus, Z ′ commutes with H and ϕ. Furthermore, gϕ ∩ gH≥1 ⊆ gh≤0 ∩ gH≥1 ⊆ gZ>0 ⊆
gZ
′

>0 = gTZ
′

>0 . �
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Lemma 4.0.8. For a fixed λ ∈ Q, and a rational T > 0 large enough,

gH+TZ′

>1 = gH+TZ′

≥2 = gZ
′

>0 ⊕ (gZ
′

0 ∩ gH+TZ′

>1 ) = gZ
′

>0 ⊕mh
≥2 and gH+TZ′

λ = mH
λ = mh

λ. (4.5)

The Fourier coefficient FH+TZ′,ϕ is then Levi-distinguished.

Proof. For large enough T , we have that gH+TZ′

>1 ∩ gZ
′

<0 = {0} and gH+TZ′

>1 ∩ gZ
′

>0 = gZ
′

>0.

Thus gH+TZ′

>1 = gH+TZ′

>1 ∩
(
gZ
′

<0 ⊕ gZ
′

0 ⊕ gZ
′

>0

)
= gZ

′
>0 ⊕

(
gZ
′

0 ∩ g
H+TZ′

>1

)
. Since H = h+Z and

gZ
′

0 = m ⊆ gZ0 we have that gZ
′

0 ∩g
H+TZ′

>1 = gZ
′

0 ∩gh>1 and since h is neutral gh>1 = gh≥2. Now

gZ
′

0 = m and thus, gH+TZ′

>1 = gZ
′

>0⊕
(
gZ
′

0 ∩gh≥2

)
= gZ

′
>0⊕mh

≥2. Doing the same manipulations

for gH+TZ′

≥2 one ends up with the same result, proving the equality gH+TZ′

>1 = gH+TZ′

≥2 .

Now, for any fixed λ ∈ Q and a large enough T , we have that gH+TZ′

λ = gHλ ∩ gZ
′

0 =

gHλ ∩m = mH
λ . Again, since H = h+ Z and m ⊆ gZ0 , we get that mH

λ = mh
λ.

Since H + TZ ′ = h+Z + TZ ′, the semi-simple element denoted by Z in Definition 2.1.5
is here Z + TZ ′, which, for large enough T has the centralizer gZ0 ∩ gZ

′
0 = gZ

′
0 = m. By

Lemma 4.0.6, ϕ is K-distinguished in m. Since gZ>0 ⊆ gZ
′

>0 we have that gZ+TZ′

>0 = gZ
′

>0 and
thus (4.5) implies (2.7) which means that FH+TZ′,ϕ is Levi-distinguished. �

Lemma 4.0.9. Let (H,ϕ, ϕ′) be a Whittaker triple such that the pair (H,ϕ) is either neutral
or Levi-distinguished. Then FH,ϕ,ϕ′ = FH,ϕ.

Proof. If (H,ϕ) is neutral set h := H. If (H,ϕ) is Levi-distinguished decompose H = h+Z
where (h, ϕ) is a neutral pair and Z commutes with it. In both cases we have gH>1 = gH≥2,

and gH1 ⊆ gh1 . Note that gϕ is spanned by lowest weight vectors and thus gϕ ⊆ gh≤0. Thus

gϕ ∩ gH1 = 0. By Lemma 3.2.5 this implies that nH,ϕ = gH>1 = gH≥2. Since ϕ′ ∈ (g∗)H>−2, it

vanishes on gH≥2 and thus Fh,ϕ,ϕ′ = Fh,ϕ. �

4.1. Proof of Theorem A. We will prove a more general theorem.

Theorem 4.1.1. Let η be an automorphic function on a reductive group G. Then, any
quasi-Fourier coefficient FS,ϕ,ϕ′ [η] is linearly determined by the Levi-distinguished Fourier
coefficients with characters in orbits which are equal or bigger than Gϕ.

In particular, if all non-PL coefficients of η vanish, then all Fourier coefficients are
linearly determined by Whittaker coefficients Wψ[η].

Proof. Choose h, Z, z, Z ′ as above and let Ht := H + tZ ′. Choose a large enough T from
Lemma 4.0.8. Recall that t ≥ 0 is quasi-critical if either gHt1 * gZ0 or gHt2 * gZ0 .

If there are no quasi-critical t ∈ (0, T ] then by Lemma 3.2.7(ii), FH,ϕ,ϕ′ is linearly

determined by the set of all FH+TZ′,ϕ,ϕ′+ψ with ψ ∈ (g∗)H+TZ′

−1 ∩ (g∗)e ∩ (g∗)Z
′

<0. By
Lemma 4.0.8, FH+TZ′,ϕ is Levi-distinguished, and thus, by Lemma 4.0.9, we have
FH+TZ′,ϕ,ϕ′+ψ = FH+TZ′,ϕ. Thus, FH,ϕ,ϕ′ is linearly determined by FH+TZ′,ϕ which is
Levi-distinguished.

Now assume that there are quasi-critical numbers in (0, T ] and let s be the smallest one.
Let Hs := H + sZ ′.

Since s is the first quasi-critical value we have that (g∗)H>−2 ⊆ (g∗)Hs≥−2 because this is

the first point where something new may enter the −2-eigenspace. Decompose ϕ′ = ψ+ϕ′′
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where ψ ∈ (g∗)Hs−2 and ϕ′′ ∈ (g∗)Hs>−2. By Lemma 3.2.7(iii), FH,ϕ,ϕ′ is linearly determined by

{FHs,ϕ+ψ,ϕ′′+ψ′′ | ψ′′ ∈ (g∗)Hs−1}. (4.6)

Now, we repeat the procedure for each triple FHs,ϕ+ψ,ϕ′′+ψ′′ and so on. To see that the

algorithm terminates, note that ψ ∈ (g∗)Z
′

<0 and thus the orbit of ϕ + ψ is bigger than or
equal to the orbit of ϕ.

Suppose the orbits are the same. Then, by Corollary 4.0.5, in(Hs, ϕ+ ψ) = in(Hs, ϕ).

From (4.4) we see that gZ+sZ′

>0 ∩ gZ′0 = {0} and gZ+sZ′

>0 ∩ gZ′<0 = gZ+sZ′

>0 ∩ gZ′<0 ∩ gZ>0 = {0}
which means that gZ+sZ′

>0 ⊆ gZ
′

>0 and thus

gh<1 ∩ gh+Z
≥1 ⊆ gh<1 ∩ gh+Z+sZ′

≥1 and gh<2 ∩ gh+Z
≥2 ⊆ gh<2 ∩ gh+Z+sZ′

≥2 (4.7)

Since s is quasi-critical, one of the inclusions in (4.7) is strict and thus in(Hs, ϕ) > in(H,ϕ).
Thus we get that either G(K)(ϕ + ψ) > G(K)ϕ or in(Hs, ϕ + ψ) > in(H,ϕ). Since

both the orbit dimensions and the indices are bounded by dim g, the algorithm eventually
terminates.

Finally, by Lemma 2.1.9, the Levi distinguished Fourier coefficients of PL elements are
Whittaker coefficients. This proves the second part of the statement. �

4.2. Proof of Theorem B.

Proposition 4.2.1. Let (H,ϕ, ϕ′) be a Whittaker triple and let η be an automorphic
function with FH,ϕ,ϕ′ [η] 6= 0. Then there exists O ∈WS(η) such that O ≥ G(K)ϕ.

Proof. By Theorem 4.1.1, FH,ϕ,ϕ′ is linearly determined by Fourier coefficients
corresponding to orbits bigger than or equal to G(K)ϕ. By Corollary 4.0.2, these are
in turn linearly determined by neutral Fourier coefficients corresponding to the same orbits.
Since FH,ϕ,ϕ′ [η] 6= 0, some of these neutral Fourier coefficients of η do not vanish. �

Let us now adapt the assumption and the notation of Theorem B. Let Z := S −H and
let Ht := H + tZ. Let 0 < t1 < · · · < tn < 1 be all the critical values between 0 and 1. Let
t0 := 0 and tn+1 := 1. Lastly, let, for each ti, R and L be defined as in (3.11).

Lemma 4.2.2. We have FRHti ,ϕ[η] = FLHti+1 ,ϕ
[η].

Proof. Let f ∈ g be the unique nilpotent element such that ϕ is given by Killing form
pairing with f . Complete f to an sl2-triple (e, h, f) such that h commutes with S and H.

Denote Hj := Htj for any j, and c := (g∗)
Hi+1

−1 ∩ (g∗)e ∩ (g∗)Z<0. Arguing as in the proof of
Lemma 3.2.7(ii), we obtain

FRHi,ϕ[η] =
∑
ϕ′∈c
FLHi+1,ϕ,ϕ′ [η].

We have to show that for any non-zero ϕ′ ∈ c, we have FLHi+1,ϕ,ϕ′
[η] = 0. This follows

from Lemma 3.1.1, Proposition 3.2.8, Proposition 4.2.1, and the condition that G(K)ϕ ∈
WS(η). �
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Proof of Theorem B. Let S = H + Z and

vi := (g
Hti
≥1 ∩ gZ<0)/(g

Hti
>1 ∩ gZ<0) and Vi = Exp(vi) . (4.8)

By Lemma 3.1.1 we have

FLHti ,ϕ[η](g) =

∫
Vi(A)

FRHti ,ϕ[η](vig) dvi (4.9)

Using Lemma 4.2.2 we obtain

FRH,ϕ[η](g) =

∫
V1(A)

. . .

∫
Vn−1(A)

∫
Vn(A)

FLS,ϕ[η](vn . . . v0g)dv (4.10)

Since v =
⊕n

i=1(g
Hti
1 ∩ gZ<0), and as a commutative Lie algebra g

Hti
1 ∩ gZ<0 is naturally

isomorphic to vi, the group V is glued from Vi. Thus∫
V1(A)

. . .

∫
Vn−1(A)

∫
Vn(A)

FLS,ϕ[η](vn . . . v0g)dv =

∫
V (A)

FLS,ϕ[η](vg) dv . (4.11)

To prove part (i) note from (3.11) that if gH1 = gS1 = 0 then FH,ϕ = FRH,ϕ and FS,ϕ = FLS,ϕ,

and thus part (i) follows from (4.10) and (4.11).
For part (ii), note that u and w as defined in the statement are equal to u = (gS≥1 ∩

gZ<0)/(gS>1 ∩ gZ<0) and w = (gH≥1 ∩ gZ<0)/(gH>1 ∩ gZ<0). Thus Lemmas 3.1.1 and 3.2.6 imply

FLS,ϕ[η](g) =

∫
[U ]

FS,ϕ[η](ug)du, and FH,ϕ[η](g) =
∑

w∈W (K)

FRH,ϕ[η](wg) (4.12)

Applying (4.10), (4.11), and (4.12) to shifts of η we obtain

FH,ϕ[η](g) =
∑

w∈W (K)

FRH,ϕ[η](wg) =
∑

w∈W (K)

∫
V (A)

FLS,ϕ[η](vwg)dv =

=
∑

w∈W (K)

∫
V (A)

∫
[U ]

FS,ϕ[η](uvwg)dudv (4.13)

�

4.3. On PL-orbits. A complex orbit is a PL-orbit if and only if its Bala-Carter label
has no parenthesis. In particular, all complex minimal and next-to-minimal orbits are PL.
The classification of PL orbits of complex classical groups in terms of the corresponding
partitions is given in [GS15, §6].

The classification of rational PL-orbits is a more complicated task. In this subsection we
discuss the PL property for small K-rational orbits of simple split groups. A complex orbit
OC may include several or even infinitely many rational orbits. If OC is non-PL then all its
rational orbits are non-PL. If OC is PL then it includes at least one rational PL-orbit, but
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can also include non-PL rational orbits. In type An, all rational orbits are PL. Let us now
describe the PL properties of minimal and next-to-minimal orbits.

All minimal rational orbits are PL. Indeed, for classical groups it is easy to establish
the Levi in which they are principal: for SOn+1,n it is SO2,1×(GL1)n−1, for Sp2n it is
Sp2×(GL1)n−1 and for SOn,n it is SO2,2×(GL1)n−2. For exceptional groups, the rational
minimal orbit is unique and thus PL. This uniqueness was explained to us by Joseph
Hundley.

Let us now deal with the next-to-minimal orbits.

Lemma 4.3.1. All next-to-minimal rational orbits of SOn,n and SOn+1,n are PL.

Proof. One can give a the classification of the rational orbits in the spirit of the classification
of real orbits given in [CM93, §9.3]. Namely, a K-rational orbit with a given partition is
defined by a collection of quadratic forms Q2i+1 on multiplicity spaces of the odd parts. If
we add a hyperbolic form to the direct sum of these forms we get the initial form, which is
also hyperbolic. Here, a hyperbolic form is a direct multiple of the 2-dimensional quadratic
form given by H(x, y) = xy. By Witt’s cancelation theorem this implies that the direct
sum of the forms on multiplicity spaces of the odd parts is hyperbolic.

An orbit in SOn,n is PL if and only if all Q2i+1 are hyperbolic, except Q2j+1 for a single
index j ≥ 1, which is a direct sum of a hyperbolic form and a one-dimensional quadratic
form. For SOn,n there are two next-to-minimal partitions. One of them is 24, 12n−8. For it,
Q1 has to be hyperbolic. The other next-to-minimal partition is 3, 12n−3. Thus Q3 is one-
dimensional. Now, note that Hn = Q3⊕−Q3⊕Hn−1. Thus, Q3⊕Q1 = Q3⊕−Q3⊕Hn−1

and thus Q1 = (−Q3) ⊕ Hn−1, i.e. Q1 is a direct sum of a hyperbolic form and a one-
dimensional quadratic form.

Similarly, it is easy to see that the next-to-minimal orbits for SOn+1,n are principal in
Levis isomorphic to (GL2)2 × (GL1)n−4 or SO2,1×(GL1)n−1. �

However, Sp2n(K) has infinitely many rational next-to-minimal orbits, already for n = 2.
Moreover, by [Ike01] there exist cuspidal next-to-minimal representations of Sp4(A). Note
that cuspidal non-generic automorphic forms cannot be determined by their Whittaker
coefficients, since the latter coefficients have to vanish on such forms. See [Gin06, §4] for a
discussion of cuspidal representations, in particular those of Sp4(A).

As for the exceptional groups, Joseph Hundley showed that the next-to-minimal orbit is
unique, and thus PL, for E6, E7, E8 and G2.

The group F4 has infinitely many rational next-to-minimal orbits. We expect that
infinitely many of them are not PL.

4.4. Some geometric lemmas.

Lemma 4.4.1. Let Z ∈ g be rational semi-simple, let ϕ ∈ gZ0 and ϕ′ ∈ gZ>0. Assume that

ϕ is conjugate to ϕ+ ϕ′ by G(C). Then there exists X ∈ gZ>0 such that ad∗(X)(ϕ) = ϕ′.

Recall that we often refer to g(K) as g.
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Proof. Decompose ϕ′ =
∑k

i=1 ϕ
′
i where ϕ′i ∈ (g∗)Zλi and λ1 < λ2 < · · · < λk are positive

eigenvalues of Z with λi ∈ Q. Then, for any t ∈ R, we have the following identity in g∗(R):

exp(tZ)(ϕ+ ϕ′) = ϕ+
k∑
i=1

exp(tλi)ϕ
′
i (4.14)

Thus, ϕ +
∑

i exp(tλi)ϕ
′
i ∈ G(C)ϕ. Differentiating by t at 0 we obtain that

∑
i λiϕ

′
i lies

in the tangent space to the orbit G(C)ϕ at ϕ. This tangent space is the image of ϕ under
the coadjoint action. Thus there exists Y ∈ g with ad∗(Y )(ϕ) =

∑
i λiϕ

′
i. Decompose

Y = Y ′ +
∑

i Yi with Yi ∈ gZλi . Since ϕ commutes with Z, we obtain ad∗(Yi)(ϕ) = λiϕ
′
i.

Now we take X :=
∑

i λ
−1
i Yi ∈ gZ>0. �

Corollary 4.4.2. Let (H,ϕ, ϕ′) be a Whittaker triple, and let S ∈ gH0 form Whittaker pairs
(S, ϕ) and (S, ϕ+ϕ′). Assume that ϕ is conjugate to ϕ+ϕ′ under G(C). Then there exists

X ∈ gS0 ∩ gS−H<0 such that ad∗(X)(ϕ) = ϕ′.

Proof. Let Z := H − S. By Lemma 4.4.1, there exists Y ∈ gZ>0 with ad∗(Y )(ϕ) = ϕ′.

Decompose Y = Y− + X + Y+ with Y− ∈ gS<0, X ∈ gS0 , and Y+ ∈ gS>0. Since [Z, S] = 0,

and Y ∈ gZ>0, we get X ∈ gZ>0 and thus X ∈ gZ0 ∩ gS−H<0 . Since ad∗(Y )(ϕ) = ϕ′, and

ϕ,ϕ′ ∈ (g∗)S−2, we have ad∗(Y−)(ϕ) = ad∗(Y+)(ϕ) = 0 and ad∗(X)(ϕ) = ϕ′. �

Corollary 4.4.3. Let Z ∈ g be rational semi-simple, let ϕ ∈ gZ0 and ϕ′ ∈ gZ>0. Assume that

ϕ is conjugate to ϕ+ϕ′ by G(C). Then there exists v ∈ Exp(gZ>0) such that v(ϕ) = ϕ+ϕ′.

Proof. Decompose ϕ′ =
∑k

i=1 ϕ
′
i where ϕ′i ∈ gZλi and λ1 < λ2 < · · · < λk are all the

positive eigenvalues of Z. We prove the corollary by descending induction on the maximal
index i such that ϕ′ ∈ gZ>λi . The base case i = k is obvious. For the induction step, let

i < k such that ϕ′ ∈ gZ>λi and let X be as in Lemma 4.4.1. Note that X is nilpotent.

Then exp(X)(ϕ + ϕ′) = ϕ + ψ, where ψ ∈ gZ>λi+1
. By the induction hypothesis, ϕ + ψ ∈

Exp(gZ>0)ϕ. �

In other words, ϕ+ ϕ′ can be conjugated to ϕ using a unipotent conjugation.
In the same way, but using Corollary 4.4.2 in place of Lemma 4.4.1, one proves the

following more elaborate version of this corollary.

Corollary 4.4.4. Let S,Z ∈ g be rational semi-simple commuting elements, let ϕ ∈ gZ0 ∩gS−2

and ϕ′ ∈ gZ>0 ∩ gS−2. Assume that ϕ is conjugate to ϕ + ϕ′ by G(C). Then there exists

v ∈ Exp(gZ>0 ∩ gS0 ) such that v(ϕ) = ϕ+ ϕ′.

Corollary 4.4.5. The relation defined in Definition 2.2.1 is indeed an order relation.

Proof. We have to show that if O′′ is bigger than O then O cannot be bigger than O′′.
Suppose the contrary. Then by Lemma 2.2.2 the complexifications O′′C and OC coincide.
Moreover, because of the above assumption there exist a rational semi-simple Z ∈ g, ϕ ∈
O ∩ gZ0 , and ψ ∈ gZ>0 such that ϕ + ψ ∈ OC, but ϕ + ψ /∈ O. This contradicts Corollary
4.4.3. �
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Lemma 4.4.6 ([Hum78, Proposition II.8.3]). Assume that G is split, and fix a maximal
split torus T . Let h be the Lie algebra of T , α be a root, and let ϕ ∈ g×−α. Define hα ∈ h by

β(hα) = 2
〈α, β〉
〈α, α〉

. (4.15)

Then (hα, ϕ) is a neutral pair.

Note that if g is simply-laced and β 6= ±α then β(hα) ∈ {−1, 0, 1}.

5. Small automorphic functions on simply-laced Lie algebras

For the whole section we assume that G is split and the Dynkin diagram of g is simply-laced,
i.e. all the connected components have types A,D, or E. As in §1.2, let, for any root δ, g∗δ
denote the corresponding root-subspace of g∗ and g×δ the set of non-zero elements of this
subspace.

Lemma 5.0.1. If [g, g] is simple then any two roots are Weyl-conjugate.

Proof. Any root is Weyl-conjugate to a simple root, and any two simple roots in a connected
simply-laced diagram are Weyl-conjugate. �

Corollary 5.0.2. For any root δ, any ϕ ∈ g×δ lies in a minimal orbit.

Corollary 5.0.3. Assume that [g, g] is simple of type A or E. Then any two pairs of
orthogonal roots are Weyl-conjugate.

Proof. By Lemma 5.0.1, we can assume that both pairs include the highest root. Since the
diagram consisting of roots orthogonal to the highest one is still connected, the stabilizer
of the highest root acts transitively on it. �

5.1. Proof of Theorem C. Throughout the subsection fix a simple root α. Define Sα ∈ h
by α(Sα) = 2 and γ(Sα) = 0 for any other simple root γ. Also, define hα ∈ h by γ(hα) =
2〈α, γ〉/〈α, α〉 as in (4.15) for any root γ. Note that by Lemma 4.4.6, (hα, ϕ) is a neutral
Whittaker pair for any ϕ ∈ g×−α.

As mentioned in the introduction, if a Fourier coefficient FS,ϕ is a Whittaker coefficient,
i.e. NS,ϕ is the unipotent radical of a Borel subgroup, we will denote it by WS,ϕ, where we
may drop the S if it corresponds to a fixed choice of Borel subgroup and simple roots. In
other words, we define SB ∈ h by SB(γ) = 2 for any simple root γ and write WSB ,ϕ =Wϕ.

Lemma 5.1.1. If η is a minimal automorphic function and ϕ ∈ g×−α, then

(i) FSα,ϕ[η] =Wϕ[η].

(ii) Let b denote the opposite of the standard Borel subalgebra, and let

W := Exp(ghα≥1 ∩ b). (5.1)

Then

Fhα,ϕ[η](g) =
∑

w∈W (K)

Wϕ[η](wg).
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Proof. We will use Theorem B. We have gS1 = {0} = gSα≥1 ∩ gS<1, which implies (i). For

(ii) we note in addition that ghα>1 = ghα≥2 = ghα2 = gα and thus ghα>1 ∩ gS<1 = {0}. Finally,

gS<1 = b. �

Let Lα denote the Levi subgroup of the parabolic subgroup Pα of G. Denote by Mα the
stabilizer in Lα of the space g∗α (as an element of the projective space of g∗).

Lemma 5.1.2. Any root δ with δ(Sα) = −2 can be conjugated to −α using the Weyl group
of Lα.

Proof. We can assume that g is simple. This statement can be proved using the language of
minuscule representations, i.e., representations such that the Weyl group has a single orbit
on the weights of the representations. These are given for example in [Bou75]. We thus
need to show that all representations of the Levi Lα for a simple root α of a simply-laced
root system are minuscule when acting on the first internal Chevalley module Uα/[Uα, Uα].
This can be done by inspection case-by-case.

Case An: For any simple root α, the semi-simple part of Lα is of Cartan type A (if the
root α is at the end of the Dynkin diagram) or of type AA (when α is in the middle). In
both cases the first internal Chevalley module is a fundamental representation (type A) or
a product of two fundamental representations (type AA). Since vector representations of
type A are minuscule, the claim is true.

Case Dn: Depending on which simple root α one chooses, the internal Chevalley modules
are exterior powers of fundamental representations of type A factors in Lα, or fundamental
representation or spinor representations of type D factors in Lα. All the representations are
minuscule.

Case E6: All Levi Lα of E6 are of Cartan types A or D or products thereof (up to abelian
factors). The representations arising as internal Chevalley modules are all minuscule by
inspection as they are exterior powers of type A fundamental representations or spinor
representations of type D.

Case E7: There is one new case beyond the representation types above. In the new
case the Levi contains E6 and the representation of E6 that arises in the internal Chevalley
module is the 27-dimensional one. This is also a minuscule representation by inspection.

Case E8: There is again only one new case to consider when the Levi Lα contains
the factor E7. The E7 representation arising in the internal Chevalley module is the 56-
dimensional one which is minuscule as well.

�

Corollary 5.1.3. The set of minimal elements in (g∗)Sα−2 is Lα(K)(g×−α).

Proof. Let z be a generic element of h that is 0 on α and negative on other positive roots.
Decompose (g∗)Sα−2 = ⊕ki=0Vk by eigenvectors of z, with eigenvalues 0 = t0 < t1 < · · · <
tk. Note that V0 = g∗−α. Let X ∈ (g∗)Sα−2 be a minimal element and X =

∑
iXi its

decomposition by eigenvalues of z. By Lemma 5.1.2, we can assume, by replacing X by its
Lα(K)-conjugate, that X0 6= 0. By Corollary 4.4.4 X is conjugate to X0 using Lα. �

Proof of Theorem C. Part (ii) follows from Proposition 4.0.1 and the minimality of η.
Part (i) follows from Lemma 5.1.1(i), Lemma 3.3.1 and Corollary 5.1.3. �
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5.2. Proof of Theorem D. Let η be a minimal automorphic function. For any simple
root α denote by mα the maximal multiplicity of α in other roots. As above, let Lα be the
Levi subgroup of Pα and Mα the stabilizer of g∗α in Lα.

Proposition 5.2.1. Let α be a simple root with mα = 1. Then

η(g) = FSα,0[η](g) +
∑

γ∈Lα(K)/Mα(K)

∑
ϕ∈g×−α

Wϕ[η](γg). (5.2)

Proof. Since mα = 1, the group Uα is abelian. Decompose η to Fourier series on Uα. The
coefficients in the Fourier series will be given by FSα,ϕ′ [η] with ϕ′ ∈ (g∗)Sα−2. Note that this
coefficient vanishes unless ϕ′ is minimal or zero, and that by Corollary 5.1.3, all minimal
ϕ′ ∈ (g∗)Sα−2 can be conjugated into g×−α using Lα(K). Thus we have

η(g) =
∑

ϕ′∈(g∗)Sα−2

FSα,ϕ′ [η](g) = FSα,0[η](g) +
∑

γ∈Lα(K)/Mα(K)

∑
ϕ∈g×−α

FSα,ϕ[η](γg)
(5.3)

Lemma 5.1.1(i) and the minimality of η imply that FSα,ϕ[η](γg) =Wϕ[η](γg). �

Lemma 5.2.2. Let l ⊂ g be a K-Levi subalgebra, and let O be the minimal nilpotent orbit
in g. Then O ∩ l is either empty or the minimal orbit of l.

Proof. Suppose the contrary. Let Ol denote the minimal orbit of l. Then Ol lies in the
Zariski closure of O ∩ l. Thus there exists an sl2 triple (e, h, f) in l such that f ∈ Ol, and
the Slodowy slice f + le to Ol at f intersects O. Namely, there exists a non-zero X ∈ le

with f + X ∈ O. This contradicts the minimality of O, since f + le is transversal to the
orbit of f . �

Lemma 5.2.3. For any simple root α, the restriction FSα,0[η]|Lα is a minimal or a trivial
automorphic function of Lα.

Proof. Suppose that there exists a Whittaker pair (H,ϕ) for Lα with ϕ 6= 0 such that
FH,ϕ[FSα,0[η]] 6= 0. Then, for T big enough, we have FH,ϕ[FSα,0[η]] = FH+TSα,ϕ[η]. Thus,
the orbit of ϕ is minimal in g∗ and thus, by Lemma 5.2.2 also in l∗α. �

Proof of Theorem D. The proof is by induction on the rank of G. The base case of rank 1
group is the classical Fourier series decomposition. For the induction step assume first that
g does not have any simple components of type E8. Note that in this case there exists an
extreme simple root α with mα = 1. By Proposition 5.2.1 we have

η(g) = FSα,0[η](g) +
∑

γ∈Lα(K)/Mα(K)

∑
ϕ∈g×α

Wϕ[η](γg) (5.4)

By Lemma 5.2.3, FSα,0[η] is in a minimal representation of Lα.
As before, let SB ∈ h denote the element that is 2 on all positive roots. Note that for any

ϕ ∈ (l∗α)SB−2 , we have W ′ϕ[FSα,0[η]] =Wϕ[η] where the prime denotes a Whittaker coefficient
with respect to Lα.

Enumerate the roots such that α is the last one. For any 1 ≤ i ≤ rk(G) denote by Li the
Levi subgroup given by the simple roots α1, . . . , αi−1, and by Mi the stabilizer in Li of the
space g∗αi (as an element of the projective space of g∗).
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From the induction hypothesis we obtain

η(g) =W0[η](g) +

rk(G)∑
i=1

∑
γ∈Li(K)/Mi(K)

∑
ϕ∈g×−αi

Wϕ[η](γg) (5.5)

Let us now deal with the remaining case in which g has a simple component of type E8.
Fix such a component and let α denote the 8-th root of this component in the Bourbaki
labeling, and αmax denote the highest root of this component. Then mα = 2, and (g∗)Sα−4 =
g∗−αmax

. Recall that F0,0[η] = η. We now make the following deformation. Let Ht := tSα,
for any rational t ∈ [0, 1]. Then the only critical values are 1/4 and 1/2 and the only
quasi-critical values at eigenvalue 2 are 1/2 and 1. Thus we get

η(g) = FSα/4,0[η](g) +
∑

ϕ′∈g×−αmax

FSα/4,0,ϕ′ [η](g) (5.6)

It is easy to see from the definitions that, with ϕ′ non-zero, FSα/4,0,ϕ′ [η] = FSα/2,ϕ′ [η]. Note
also that, by Lemma 4.4.6, (Sα/2, ϕ

′) is a neutral Whittaker pair. Conjugating αmax to α
using the normalizer of the Cartan, we reduce the computation of FSα/2,ϕ′ [η] to the formula
for Fhα,ϕ′ [η] given in Lemma 5.1.1(ii).

For FSα/4,0[η], we proceed as in Proposition 5.2.1 and obtain

FSα/4,0[η](g) = FSα,0[η](g) +
∑

γ∈Lα(K)/Mα(K)

∑
ϕ∈g×−α

Wϕ[η](γg) (5.7)

For the constant term FSα,0[η] we obtain a formula from the induction hypothesis.
Altogether, we get

η(g) =W0[η](g) +

rk(G)∑
i=1

∑
γ∈Li(K)/Mi(K)

∑
ϕ∈g×−αi

Wϕ[η](γg) +
k∑
j=1

∑
ϕ∈g×

−αj8

∑
w∈Wj(K)

Wϕ[η](sjwg),

(5.8)

where αj8 is the 8-th root of Ej8, the j-th E8-component of G, in the Bourbaki labeling; sj
is a representative of a Weyl group element conjugating the highest root of Ej8 to αj8, and
Wj are as in (5.1). �

5.3. Proof of Theorem E. Suppose that rk(g) > 2. Let η be a next-to-minimal
automorphic function. Let α be a simple root and let ϕ′ ∈ g×−α.

Lemma 5.3.1. Let γ 6= α be a positive root, and let ψ ∈ g×−γ. Let O denote the orbit of

ψ + ϕ′. Then the possible values of 〈α, γ〉 are 1, 0, or −1, and O has Bala-Carter label l,
where l is a Levi subalgebra of type A1, A1 ×A1, or A2, respectively.

In particular, O is minimal if 〈α, γ〉 > 0, O is next to minimal if 〈α, γ〉 = 0 and O is
neither minimal nor next to minimal if 〈α, γ〉 < 0.

Proof. Let h′ ⊂ h be the simultaneous kernel of α and γ, and let l be its centralizer in
g. Then h′ has codimension at most 2 in h, hence l is a Levi subalgebra of semisimple
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rank ≤ 2 whose roots include α and γ. The rest of the lemma is a straightforward rank 2
calculation. �

Notation 5.3.2. Denote by ∆α the set of simple roots orthogonal to α. Define S ∈ h to
be 0 on any simple root δ ∈ ∆α, and 2 on other simple roots. Let Z := Sα − hα. Note that
Z vanishes on simple roots in ∆α and on α and is 1 on other simple roots.

Proposition 5.3.3. We have FSα,ϕ′ [η] = FS,ϕ′ [η].

Proof. Note that Sα dominates S, and that gSα1 = gS1 = gSα>1∩gS<1 = {0}. Thus the statement
follows from Theorem B. �

Let G′ ⊂ G be the Levi subgroup given by ∆α.

Proposition 5.3.4. The restriction FS,ϕ′ [η]|G′ is a minimal or a constant automorphic
function on G′.

For the proof we will need the following geometric lemma.

Lemma 5.3.5. Let ψ ∈ g′∗ be nilpotent such that ϕ′+ψ belongs to a next-to-minimal orbit
in g∗. Then ψ belongs to the minimal orbit of g′∗.

Proof. Clearly ψ 6= 0. If the orbit of ψ is not minimal then it belongs to the Slodowy slice
of some element ψ′ of the minimal orbit of (g′)∗. Then ϕ′+ψ′ belongs to a next-to-minimal
orbit of g∗, and ϕ′+ψ belongs to the Slodowy slice of ϕ′+ψ′ and thus lies in an orbit that
is higher than next-to-minimal. �

Proof of Proposition 5.3.4. Suppose that there exists a Whittaker pair (H,ψ) with ψ 6= 0
such that FH,ψ[FS,ϕ′ [η]] 6= 0. Then, for T big enough, we have FH,ψ[FS,ϕ′ [η]] =
FS+TZ+H,ϕ′+ψ[η]. By Proposition 4.0.1 and Lemma 5.3.5, ψ lies in the minimal orbit
of g′∗. �

Proof of Theorem E. Part (iii) follows from Proposition 4.0.1, since η is a next-to-minimal
form.

For part (ii), let z ∈ hϕ be a rational semi-simple element such that gSα+z
1 = 0, gSα+z

>1 is
the nilpotent radical of a Borel subalgebra b of g, and (Sα, ϕ) dominates (Sα+z, ϕ). Such z
exists by Lemmas 4.0.7, 4.0.8 and 2.1.9, since the next-to-minimal orbit is PL. Conjugating
b to the standard one, and applying Theorem B(i) we obtain the statement. In §6 we give
explicit examples for Z (or rather conjugations) that minimize the dimension of V .

For part (i), note that Corollary 5.1.3 implies that, conjugating by γ ∈ Lα(K), we can
assume that ϕ ∈ g×−α. By Proposition 5.3.3, FSα,ϕ[η] = FS,ϕ[η]. By Proposition 5.3.4,
FS,ϕ[η]|G′ is a minimal or constant form on G′. The statement follows now from Theorem
D together with the fact that the G′-Whittaker coefficientsW ′ψ[η′] where η′(g′) = FS,ϕ[η](g′)

are, in fact, G-Whittaker coefficients Wϕ+ψ[η] due to the extra integral in FS,ϕ[η]. �

5.4. Expressing the form itself through Whittaker coefficients. Let η be a next-to-
minimal automorphic function. If g has a component which is not of type E8 then there
exists a maximal parabolic Pα with an abelian nilradical. Using Fourier transform on this
nilradical we obtain
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η(g) = FSα,0[η](g) +
∑

minimal ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) +
∑

ntm ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) (5.9)

Theorem E provides the expressions for all the terms on the right-hand side except the
constant term. Similarly to Lemma 5.2.3, one shows that the restriction of the constant
term FSα,0[η](g) to the Levi subgroup Lα is next-to-minimal or minimal or constant. Using
induction on the rank of G we can obtain an expression for this constant term in terms of
Whittaker coefficients.

Suppose now that g is a product of components of type E8, and let α be the 8th root α8

of one of the components. As in the proof of Theorem D, we have

η(g) = FSα/4,0[η](g) +
∑

ϕ′∈g×−αmax

FSα/4,0,ϕ′ [η](g) (5.10)

For FSα/4,0[η], we have

FSα/4,0[η](g) = FSα,0[η](g) +
∑

minimal ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) +
∑

ntm ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) (5.11)

The last terms in (5.10) can be evaluated as follows. As in the proof of Theorem D, we
have, for ϕ′ ∈ g×−αmax

, that FSα/4,0,ϕ′ [η] = FSα/2,ϕ′ [η]. We conjugate FSα/2,ϕ′ [η] to Fhα,ϕ[η]

with ϕ ∈ g×−α. Then, we consider the deformation (1− t)hα+ tSα. First we express Fhα,ϕ[η]

through FRhα,ϕ[η] using summation over W (K), where W (K) is as in Lemma 5.1.1(ii).

Then, the critical values are 1/2 and 2/3, and the quasi-critical values at eigenvalue 2
are 1/3 and 1. At 1/3, only one root joins, namely αmax, but we have no Whittaker triple
entries in (g∗)−αmax or otherwise that could move into the −2-eigenspace. At 1/2, we get
all the roots from the set

Φα :=
{ 6∑
i=1

ciαi + 2α7 + α8

}
= {ε positive root | 〈ε, α〉 = 0, Sα(ε) = 2} (5.12)

containing 27 roots, and at t = 2/3 we also get the root δ + α7. This means that we would
get contributions from all these root spaces in the third component of the Whittaker triple.
Let Φα = Φα ∪ {δ + α7}.

At t = 1 all these 28 roots join α = α8 and thus we obtain, for any ϕ ∈ g×−α,

FRhα,ϕ[η](g) = FSα,ϕ[η](g) +
∑

ntm ψ∈ϕ+
⊕
ε∈Φα

g∗−ε

FSα,ψ[η](g) (5.13)

As discussed above, we already have formulas for all the expressions in the right hand
side. This finishes the proof of (i). To prove the rest of the theorem we will now group the
expressions in the above formulas.

Let T ⊂ G be the split torus corresponding to our fixed Cartan subalgebra h.

Lemma 5.4.1. For any simple root α, T (K) acts transitively on g×α .
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Proof. It is enough to consider g to be simple and simply-laced with rk g ≥ 2, and to find a
coroot β∨ for g such that β∨(α) = −1. This is satisfied by any β∨ such that β is a simple
root adjacent to α in the Dynkin diagram. �

Remark 5.4.2. Note that one may also use similar rescaling to simplify some of the
expressions in Theorems D and E whenever we have the necessary degrees of freedom.

For types An and En, let Ontm denote the only complex next-to-minimal orbit, and, for
type Dn, let it denote one of the two next-to-minimal orbits.

Notation 5.4.3. For the remainder of this section we denote by α be the extreme root
given in the Bourbaki labeling by: α = αn in types An, En, and α = α1 in type Dn if
α1 + αmax /∈ Ontm and αn if α1 + αmax ∈ Ontm. Denote by X := Ontm ∩ (g∗)Sα−2. If g is of
type En we let δ be the highest root with δ(Sα) = 2 and 〈α, δ〉 = 0, i.e. δ is αmax except
for E8 where it is δ = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 2α7 + α8.

Proposition 5.4.4. If g is of type An or Dn then X = ∅. If g is of type En then Lα acts
transitively on X.

The complex version of this proposition follows from [MS12, §5]. This implies the
proposition in types An and Dn. We prove the case of En in §5.6 below.

For any root ε denote by Γε the quotient Lε(K)/Mε(K). Fix ϕ0 ∈ g×−α and let Γϕ0

denote the quotient of Lα(K) by the stabilizer of ϕ0 in Lα(K). In type Dn we assume that
WS(η) = Ontm ∩ g∗. From Corollary 5.1.3, Lemma 5.4.1, Proposition 5.4.4, and (5.9) we
obtain for An and Dn:

η(g) = FSα,0[η](g) +
∑
γ̃∈Γϕ0

FSα,ϕ0 [η](γ̃g)

= FSα,0[η](g) +
∑
γ̃∈Γϕ0

(
Wϕ0 [η](γ̃g) +

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wϕ0+ψ[η](γγ̃g)
) (5.14)

The second equality follows from Theorem E.
For En, fix ψ0 ∈ g×−δ with δ as in Notation 5.4.3 and denote by Λ the quotient of Lα(K)

by the subgroup that stabilizes ϕ0 + ψ0. For E6 and E7 we have δ = αmax and we obtain
from Corollary 5.1.3, Lemma 5.4.1, Proposition 5.4.4, and (5.9):

η(g) = FSα,0[η](g) +
∑
γ̃∈Γϕ0

FSα,ϕ0 [η](γ̃g) +
∑
γ∈Λ

FSα,ϕ0+ψ0 [η](γg) (5.15)

Using Theorem E we rewrite this as

η(g) = FSα,0[η](g) +
∑
γ̃∈Γϕ0

(
Wϕ0 [η](γ̃g) +

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wϕ0+ψ[η](γγ̃g)
)

+
∑
γ̃∈Γϕ0

∑
γ∈Λ

∫
V (A)

Wϕ0+ψ0 [η](vγγ̃g) dv (5.16)
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One can also obtain expressions for E8 in the same way. From formulas (5.10, 5.11) and
the discussion after them, we have

η(g) = FSα,0[η](g) +
∑

minimal ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) +
∑

ntm ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) +
∑
ϕ∈g×−α

Fhα,ϕ[η](sg),

(5.17)
where s is a representative of a Weyl group element that conjugates αmax to α, and

Fhα,ϕ[η](sg) =
∑

w∈W (K)

(
FSα,ϕ[η](wsg) +

∑
ntm ψ∈ϕ+

⊕
ε∈Φα

g∗−ε

FSα,ψ[η](wsg)
)
, (5.18)

where W (K) is as in Lemma 5.1.1(ii).
Fix ϕ0 ∈ g×−α and ψ0 ∈ g×−δ, where δ = 2α1 +3α2 +4α3 +6α4 +5α5 +4α6 +2α7 +α8 as in

Notation 5.4.3. Denote by M the E6-type Levi subgroup generated by the roots α1, . . . , α6,
and by M the quotient of M(K) by the centralizer of ϕ0 + ψ0.

Lemma 5.4.5 (See §5.6 below). The group M(K) acts transitively on the set of next-to-
minimal elements in g×−α +

⊕
ε∈Φα

g∗−ε.

From this lemma and (5.18) we obtain∑
ϕ∈g×−α

Fhα,ϕ[η](sg) =
∑

w∈W (K)

(∑
c∈K×

FSα,cϕ0 [η](wsg) +
∑
γ∈M

FSα,ϕ0+ψ0 [η](γwsg)
)

(5.19)

Using Corollary 5.1.3, Lemma 5.4.1 and Proposition 5.4.4 we obtain

η(g) = FSα,0[η](g) +
∑
γ̃∈Γϕ0

FSα,ϕ0 [η](γ̃g) +
∑
γ̃∈Λ

FSα,ϕ0+ψ0 [η](γγ̃g)

+
∑

w∈W (K)

(∑
c∈K×

FSα,cϕ0 [η](wsg) +
∑
γ∈M

FSα,ϕ0+ψ0 [η](γwsg)
)
, (5.20)

Using Theorem E we deduce from this

η(g) = FSα,0[η](g) +
∑
γ̃∈Γϕ0

(
Wϕ0 [η](γ̃g) +

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wϕ0+ψ[η](γγ̃g)
)

+
∑
γ̃∈Λ

∫
V (A)

Wϕ0+ψ0 [η](vγ̃g) dv +
∑

w∈W (K)

(∑
c∈K×

Wcϕ0 [η](wsg) +

∑
c∈K×

∑
i∈I

∑
γ∈Γi

∑
ψ∈g×−αi

Wcϕ0+ψ[η](γwsg) +
∑
γ̃∈M

∫
V (A)

Wϕ0+ψ0 [η](vγ̃wsg)
)

(5.21)

5.5. Comparison with related results in the literature. Various works have
determined similar Fourier coefficients of small representations in special cases and we now
briefly compare our results to them, with a particular emphasis on the E8 expansions.

We begin with the example of a minimal automorphic form η on E8 with the expansion
determined in (5.8) that was also studied by Ginzburg–Rallis–Soudry [GRS11] and by
Kazhdan–Polishchuk [KP04]. In the former paper, the authors showed that the constant
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term of η with respect to the center of the Heisenberg unipotent U of E8 was given by a
single Levi (i.e. E7) orbit of a Fourier coefficient Fψα8

on U , where ψα8 is a character on
U supported only on the single simple root α8. This corresponds precisely to the second
term in equation (5.8), but we have taken one step further in determining Fψα8

explicitly

in terms of maximally degenerate Whittaker coefficients Wϕ[η].
In [KP04], the authors give an explicit form of the full non-abelian Fourier expansion

of η with respect to U and our result (5.8) is perfectly consistent with theirs. Kazhdan
and Polishchuk have, however, a different approach, where they first determine the local
contributions (spherical vectors) to the Fourier coefficients and then assemble them together
into a global automorphic functional. To connect the two results one must therefore evaluate
the Whittaker coefficients in (5.8) and extract their contributions at each local place. For the
abelian terms, this has in fact already been done in [GKP16] and by combining those results
with ours one achieves perfect agreement with [KP04]. It remains to evaluate explicitly the
non-abelian term in (5.8) and extract its Euler product. It would be of particular interest
to see if one can reproduce the cubic phase in the spherical vectors of [KP04] in this way.

Next we turn to the Fourier expansion of an E8 automorphic form in the next-to-
minimal representation given in (5.21) that has been studied previously by Bossard–
Pioline [BP17]. According to the discussion in §1.3 the decomposition in (5.21) corresponds
to the decompactification limit and an expression for the abelian part of the Fourier
expansion for the next-to-minimal spherical Eisenstein series on E8 was given in [BP17,
Eq. (3.15)] that we reproduce here for convenience

η = FSα,0[η] + 16πξ(4)R4
∑
Γ∈Λα

Γ×Γ=0

σ8(Γ)
K4(2πR|Z(Γ)|)
|Z(Γ)|4

e2πi〈Γ,a〉

+ 16πξ(3)R
∑
Γ∈Λα

Γ×Γ=0

σ2(Γ)(gcd Γ)2ηE6
min

K1(2πR|Z(Γ)|)
|Z(Γ)|3

e2πi〈Γ,a〉 (5.22)

+ 16πR−5
∑
Γ∈Λα

Γ×Γ6=0, I′4(Γ)=0

∑
n|Γ

nd+1σ3

(Γ× Γ

n2

)B5/2,3/2(R2|Z(Γ)|2, R2
√

∆(Γ))

∆(Γ)3/4
e2πi〈Γ,a〉 + . . . .

Here, explicit coordinates on E8/(Spin16 /Z2) adapted to the E7 parabolic are used.
Specifically, R is a coordinate for the GL1 factor in the Levi and a denotes (axionic)
coordinates on the 56-dimensional abelian part of the unipotent. Λα is a lattice in this
56-dimensional representation of E7 and the coordinates on the E7 factor of the Levi enter
implicitly through the functions Z(Γ) and ∆(Γ). We do not require their precise form for

the present comparison. Ks denotes the modified Bessel function and ηE6
min a spherical vector

in the minimal representation of E6.
We now establish that (5.22) and (5.21) are compatible. The Fourier expansion in (5.22)

is written in terms of sums over charges Γ in the integral lattice Λα in the 56-dimensional
unipotent and thus resembles structurally (5.17) above as the space (g∗)Sα−2 represents the
space of characters on this unipotent. The Fourier mode for a ‘charge’ Γ is given by
e2πi〈Γ,a〉 and is the character on (g)Sα2 . Besides the constant term FSα,0[η] there is a sum
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over characters in the minimal and next-to-minimal orbits within (g∗)Sα−2; the last term in
our (5.17) is a non-abelian term that was not determined in [BP17].

Minimal characters correspond to charges Γ such that they satisfy the (rank-one)
condition Γ × Γ = 0 in the notation of [BP17] and looking at (5.22) we see that there
are two contributions from such charges. These correspond exactly to the two terms in
the parenthesis in the first line of our (5.21): The first term represents the purely minimal
charges while the second term in our equation is the second line of (5.22) where a minimal
charge is combined with a minimal automorphic form on E6. Expanding this minimal
automorphic form on E6 leads to Whittaker coefficients of the form Wϕ0+ψ as they are
given in the second term in the parenthesis of the first line in (5.21). The sums over Γα
and Γi in our expression correspond to the E7 orbits of such charges Γ. The second line
in our formula (5.21) containing a non-compact integral over Whittaker coefficient Wϕ0+ψ

corresponds to the last line in (5.22) where a similar integrated Whittaker coefficient B5/2,3/2

appears. The non-abelian terms in the last line of (5.21) have not been determined in [BP17]
and are given by the ellipses in (5.22).

5.6. Proof of Proposition 5.4.4 for type En.

Notation 5.6.1. Denote by Ψα the set of all (positive) roots ε that satisfy ε(Sα) = 2, and
by Φα the set of all roots in Ψα that are orthogonal to α. Denote also z := Sα − hα and
a := (lα)z<0, and A := Exp(a).

Note that a = (lα)hα1 and g×−α ⊂ (g∗)z0.

Lemma 5.6.2. Let ϕ ∈ g×−α and ψ ∈ (g∗)Sα−2 ∩ (g∗)hα−1 ⊂ (g∗)z<0. Then there exists v ∈ A
such that v(ϕ) = ϕ+ ψ.

Proof. Case 1. ψ ∈ g∗−ε for some ε ∈ Ψα:

By the assumption that ψ ∈ (g∗)hα−1 and Lemma 5.3.1, ϕ+ψ is conjugate to ϕ over
C. By Corollary 4.4.4, there exists v ∈ A such that v(ϕ) = ϕ+ ψ.

Case 2. General:
We can assume ψ 6= 0. Let H ∈ h be a generic element that has negative integer
values on all positive roots. Note that a ⊂ gH>0. Decompose ψ =

∑
i>0 ψi, where

ψi ∈ (g∗)Hi . We prove the lemma by descending induction on the minimal j for
which ψj 6= 0. The base of the induction follows from Case 1. For the induction step,
let j be minimal with ψj 6= 0. By Case 1, there exists v1 ∈ A with v1(ϕ) = ϕ− ψj .
Then v1(ϕ+ ψ) = ϕ+

∑
i>j ψ

′
i, for some ψ′i ∈ (g∗)Hi . By the induction hypothesis,

there exists v2 ∈ A such that v2(ϕ) = v1(ϕ+ ψ). Take v := v−1
1 v2.

�

Lemma 5.6.3. The stabilizer of α in the Weyl group of Lα acts transitively on Φα.

Proof. Note that the roots in ε ∈ Φα are exactly the roots satisfying ε(Sβ) = 4, where β
is the only simple root not orthogonal to α. In other words, Φα is the set of roots of the

Lβ-module (g∗)
Sβ
−4. It is enough to check that this module is a minuscule representation of

Lα ∩ Lβ. The isomorphic module g
Sβ
−4 is described in [MS12, §5] where it is called of the

second internal Chevalley module. Let us verify case-by-case that this module is minuscule.
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Case E6: the Cartan type of Lα ∩ Lβ is A4, and g
Sβ
−4 is the standard representation.

Case E7: the Cartan type of Lα ∩ Lβ is D5, and g
Sβ
−4 is the standard representation.

Case E8: the Cartan type of Lα∩Lβ is E6, and g
Sβ
−4 is the 27-dimensional representation. �

Denote Y = g×−α + g×−δ, i.e. the complement to the coordinate axes in g∗−α ⊕ g∗−δ. Let T
be the split torus corresponding to our fixed Cartan subalgebra h.

Lemma 5.6.4. T (K) acts transitively on Y .

Proof. It is enough to show that there exist coroots λ, µ such that 〈λ, α〉 = 〈µ, δ〉 = 1
and 〈λ, δ〉 = 〈µ, α〉 = 0. For E6 we take λ := α∨5 + α∨6 , µ := α∨2 . For E7 we take λ :=
α∨6 + α∨7 , µ := α∨1 . For E8 we take λ := α∨6 + α∨7 + α∨8 , µ := α∨6 . �

Proof of Proposition 5.4.4. We have Y ⊂ X by Lemma 5.3.1. Since T ⊂ Lα, it is enough
to show that X ⊆ Lα(K)Y . Let ϕ ∈ X. Decompose ϕ =

∑
ε∈Ψα

ϕε, where ϕε ∈ g∗−ε. Let

F := {ε ∈ Ψα |ϕε 6= 0}.

By Lemma 5.1.2, we can assume α ∈ F . Using Lemma 5.6.2, we can assume that for any
other ε ∈ F we have 〈α, ε〉 ≤ 0. Note that this implies that either F \ (F ∩ Φα) = {α}
or g is of type E8 and F \ (F ∩ Φα) ⊆ {α, δ + α7} by verification on the root systems. In
both cases, Lemma 5.3.1 implies that F ∩Φα is not empty. By Lemma 5.6.3 we can assume
δ ∈ F .

If g is of type E8 and δ + α7 ∈ F then we use the action of Exp(g−α7) and the term ϕδ
to cancel out the term ϕδ+α7 . At this point we have {α, δ} ⊆ F ⊆ Φα ∪ {α} or g = E8 and
{α, δ} ⊆ F ⊆ Φα ∪ {α, α+ α7}.

Let SB ∈ h be 2 on all simple roots, and let Z = Sα + ( δ(SB)
2 − 1)z − SB, where z is as

in Notation 5.6.1. Then ϕα + ϕδ ∈ (g∗)Z0 ∩ (g∗)Sα−2 and ϕ− ϕα − ϕδ ∈ (g∗)Z>0 ∩ (g∗)Sα−2. The
statement follows now from Corollary 4.4.4. �

To prove Lemma 5.4.5 used for type E8 where Φα = Φα ∪ {δ + α7}, we will use the
following.

Lemma 5.6.5. For any ε ∈ Φα, ε− α is not a root.

Proof. ε− α does not include α = α8 and includes α7 with coefficient 2 or 3. Since all the
roots in E7 include α7 with multiplicity in {−1, 0, 1}, ε− α is not a root. �

Proof of Lemma 5.4.5. Denote the set of next-to-minimal elements in g×−α +
⊕

ε∈Φα
g∗−ε by

X. First of all, note that M(K) preserves X since Φα is the set of roots on which Sα − hα
is at least 2 and Sα is 2, and M is the joint centralizer of hα and Sα.

Now, let x ∈ X and decompose it to a sum of root covectors x = xα +
∑

ε∈Φα
xε with

xε ∈ g∗−ε. Let F := {ε ∈ Φα |xε 6= 0}. By Lemma 5.3.1 F intersects Φα and thus, by
Lemma 5.1.2, we can assume δ ∈ F . Define Z ∈ h by (

∑
ciαi)(Z) = 2c7 − c6. Then

α(Z) = δ(Z) = 0 and ε(Z) > 0 for any ε 6= δ ∈ Φα. Applying Corollary 4.4.2 to S := Sα
and H := Sα − Z, we obtain that there exists a nilpotent X ∈ (lα)Z<0 with

ad∗(X)(xα + xδ) = x− xα − xδ (5.23)
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Decompose X to a sum of root vectors X =
∑

λXλ, Xλ ∈ g−λ. We drop from X the Xλ

that commute with both xα and xδ and (5.23) still holds. Let Ψ be the set of all roots with
Xλ 6= 0. We would like to show that Ψ lies in the span of the first six simple roots. Assume
the contrary, i.e. there exists λ =

∑
ciαi ∈ Ψ with c7 6= 0. Since X ∈ lα, c8 = 0 and thus

c7 = ±1. Also, there are three possibilities:

1. α+ λ ∈ Φα

2. α+ λ is a root and α+ λ = δ + µ for some µ ∈ Ψ.
3. α+ λ is not a root and δ + λ ∈ Φα

Lemma 5.6.5 excludes the first possibility. Assume now that the second possibility holds.
Then λ is a positive root, and thus c7 = 1. Since X ∈ (lα)Z<0, 2c7 > c6, i.e. c6 ∈ {0, 1}.
Thus, δ− λ−α is a root in E7 of the form α7 + 3α6 + . . . or α7 + 4α6 + . . . . By inspecting
the root system we see that there are no such roots in E7. If the third possibility holds then
λ 6= α7 and δ + λ ∈ Φα. This implies δ + λ ∈ Φα. By definition of Φα this implies c7 = 0.

Altogether, we showed that X lies in the Lie algebra m of M . Thus X ∈ mZ
<0. But

mZ
<0 = mZ

−1. Let y := Exp(−X)x−xα−xδ. Note that all the roots of y still lie in Φ̄α \ {δ},
since X ∈ m. Thus xα +xδ + y ∈ X. By the same argument as above, there exists Y ∈ mZ

−1

such that ad∗(Y )(xα + xδ) = y.
Since Z is at least 1 on Φ̄α \ {δ} and ad∗(X) lowers the Z-eigenvalues by 1, we get that

y ∈ (g∗)Z≤−2. However, ad∗(Y )(xα + xδ) ∈ (g∗)Z−1 and thus y = 0.

Thus Exp(−X)x = xα + xδ, i.e. we can conjugate x using Exp(−X) ∈ M(K) into
Y = g×−α + g×−δ. By Lemma 5.6.4 the torus acts transitively on Y . �

6. Detailed examples

In this section we will illustrate how to use the framework introduced above to compute
certain Fourier coefficients in detail, many of which are of particular interest in string theory.
In particular, we will in §6.2 show examples for D5 with detailed steps and deformations
that reproduce the results of Theorems C, D and E, while in the following sections we will
illustrate how to apply these theorems to different examples.

As in previous sections we will here often identify ϕ of a Whittaker pair (S, ϕ) with its
Killing form dual fϕ and its corresponding character χϕ. Since it is convenient to specify
a Cartan element S ∈ h by how the simple roots act on S we introduce the notation
S = (S1, . . . , Sr)ω∨ =

∑r
i=1 Siω

∨
i where r is the rank of G and ω∨i are the fundamental

coweights which give that αj(S) = Sj . We will also use the following notation for Chevalley
generators. Let (n1, . . . , nr) be a tuple of non-negative integers and let En1...nr denote the
Chevalley generator En1α1+···+nrαr and Fn1...nr the Chevalley generator E−(n1α1+···+nrαr).
For the examples we will be considering, ni will always be single digit and we therefore omit
delimiters.

6.1. Whittaker triples. We will now illustrate what type of Fourier coefficients we are
able to describe using Whittaker triples that are not captured by Whittaker pairs in an
example for G = SL4.

Let (S, ϕ, ψ) be the Whittaker triple with S = 2
3(1, 1, 1)ω∨ , ϕ = F111 and ψ = mF110

with m ∈ K. The S-eigenvalues for the different Chevalley generators can be illustrated by
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the following matrix

S :

 2/3 4/3 2
−2/3 2/3 4/3
−4/3 −2/3 2/3
−2 −4/3 −2/3

 . (6.1)

As seen from this matrix we get the following unipotent subgroup (independent of ϕ)

NS,ϕ =

{(
1 0 x1 x2

1 0 x3
1 0

1

)}
, (6.2)

and the corresponding Fourier coefficient of an automorphic function η on G can be
expressed as

FS,ϕ,ψ[η](g) =

∫
(K\A)3

η
(( 1 0 x1 x2

1 0 x3
1 0

1

)
g
)
χ(mx1 + x2)−1 d3x . (6.3)

From this little example we see that we require Whittaker triples in addition to Whittaker
pairs if we want to construct characters that are not only sensitive to x2 in the −2-eigenspace
but also, for instance, to x1 which is in the −4/3-eigenspace. A similar construction can be
made for x3.

6.2. Examples for SO5,5. For D5 we use the conventional labelling of the roots shown in
Figure 2.

1 2 3

5

4

Figure 2. Root labels used for D5.

The (complex) nilpotent orbits for D5 are labeled by certain integer partitions of 10 with
a partial ordering illustrated in the Hasse diagram of Figure 3 where O110 is the trivial orbit
and O2216 the minimal orbit. There is no unique next-to-minimal orbit and both O2412 and
O317 occur as maximal orbits in wave-front sets arising in string theory.

Example 6.2.1. We will now consider an automorphic function ηntm in an automorphic
representation π of SO5,5 with WO(π) ⊂ {O110 ,O2216 ,O2412} corresponding to the closure
of one of the next-to-minimal orbits that we choose for this example. We will compute
Fourier coefficients of ηntm with respect to the unipotent radical of the maximal parabolic
subgroup associated to the root α1, which is the string perturbation limit discussed in
§1.3. Specifically, we will consider the pair (S, ϕ) where S = S = (2, 0, 0, 0, 0)ω∨ and
ϕ = mE−α1 with non-zero m ∈ K.

According to [MS12], there are three complex character variety orbits for this parabolic
subgroup which intersect the orbits O110 , Omin = O2216 and O317 with the above ϕ being
in the minimal orbit O2216 .

We make a deformation Ht = S + tZ using Z = (0, 2000, 200, 20, 2) that was chosen to
nicely separate the numerous eigenspaces corresponding to quasi-critical values. There are
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110

2216

2412 317

32213

3214

3222 515

331

4212 5221

5312

52713

73

91

Figure 3. Hasse diagram of nilpotent orbits for D5. The only non-special
orbit is 5221.

25 quasi-critical values ti for this deformation in the interval [0, 1] also counting 0 and 1,
the exact values of which will not be of importance to this discussion. For each of the first
six critical values, nHt,ϕ gets enlarged by a one-dimensional subspace generated by E01211,
E01111, E01110, E01101, E01100 and E01000 respectively. Repeated use of Lemma 3.2.7 (ii)
gives, for the sixth critical value t6, that

FS,ϕ[ηntm](g) =
∑
ψ

FHt6 ,ϕ,ψ[ηntm](g) (6.4)

where the sum is over ψ ∈ 〈F01211, F01111, F01110, F01101, F01100, F01000〉(K) which is the K-
span of these elements.

As we continue the deformation, the same generators will successively enter the 2-
eigenspace for Ht, where, according to Lemma 3.2.7 (iii), each corresponding character
ϕ′ in the sum over ψ should be moved to the Whittaker pair as ϕ + ϕ′. For example, we
would, at the seventh critical value t7, have that

FS,ϕ[ηntm](g) =
∑
ϕ′

∑
ψ

FHt7 ,ϕ+ϕ′,ψ[ηntm](g) (6.5)

where the sums are over ϕ′ ∈ 〈F01211〉(K) and ψ ∈ 〈F01111, F01110, F01101, F01100, F01000〉(K).
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Normally, we would then be unable to continue with the same deformation Z since it
would not commute with ϕ + ϕ′. However, in our case we have that ϕ + ϕ′ is in the orbit
O3214 unless ϕ′ = 0, which means that FHt7 ,ϕ+ϕ′,y[ηntm] vanishes unless ϕ′ = 0. The same
arguments follows for the remaining generators, and at the twelfth critical value t12 we get
that

FS,ϕ[ηntm](g) = FHt12 ,ϕ
[ηntm](g) (6.6)

Let S = (2, 2, 0, 0, 0). Then NHt12 ,ϕ
= NS ,ϕ and thus FS,ϕ[ηntm](g) = FS ,ϕ[ηntm](g)

illustrating Proposition 5.3.3. Let G′ = G be the reductive group of type A3 given by
the simple roots α3, α4 and α5. The elements of G′ leave both ϕ and S invariant under the
(co)adjoint action. According to Proposition 5.3.4 η′ntm(g′) = FS ,ϕ[ηntm](g′) is attached

to a minimal representation of G′. The expansion of such automorphic forms were studied
in [GKP16] and is given by repeated use of Proposition 5.2.1 which was used to prove
Theorem D and which we will now illustrate. As noted in the proof of Theorem E, the
Whittaker coefficients of η′ntm(g′) on G′ become Whittaker coefficients on the original group
G when taking the integral in FS ,ϕ[ηntm](g′) into account.

To simplify the calculation we will now build upon the above notation for a selection
of subgroups and semi-simple elements. Let therefore x denote a selection of simple roots,
which we mark as filled nodes in the Dynkin diagram, for example x = . Then, let Gx
be the semi-simple subgroup obtained by the corresponding subsystem of roots keeping the
choice of simple roots, and, for a simple root α in the selection x, let Pαx be the maximal
parabolic subgroup of Gx obtained from α. Let also Lαx denote the Levi subgroup of Pαx ,
Mα
x the stabilizer of 〈Fα〉 in Lαx , and Γαx(K) = Lαx(K)/Mα

x (K). Instead of explicitly showing
α we may mark it in the selection x like so: Γα5 (K) = Γ (K).

Repeatedly using Proposition 5.2.1, we get that FS,ϕ[ηntm](g) equals

FS ,ϕ[ηntm](g) = FS ,ϕ[ηntm](g) +
∑

γ∈Γ (K)

∑
ϕ′∈g×−α5

Wϕ+ϕ′ [ηntm](γg)

FS ,ϕ[ηntm](g) = FS ,ϕ[ηntm](g) +
∑

γ∈Γ (K)

∑
ϕ′∈g×−α3

Wϕ+ϕ′ [ηntm](γg)

FS ,ϕ[ηntm](g) =Wϕ[ηntm](g) +
∑

ϕ′∈g×−α4

Wϕ+ϕ′ [ηntm](g) ,

(6.7)

where we recall that g×−αi = 〈Fαi〉(K) \ {0}. As explained in the proof of Theorem E, the
Whittaker coefficients on each successive G′ in the induction become Whittaker coefficients
on G when taking the integration from FSx,ϕ into account.

Altogether, the Fourier coefficient in the 8-dimensional unipotent associated with S =
S and ϕ = mE−α1 is

FS,ϕ[ηntm](g) =Wϕ[ηntm](g) +
5∑
i=3

∑
γ∈Γi(K)

ϕ′∈g×−αi

Wϕ+ϕ′ [ηntm](γg), Γi(K) =


Γ (K) i = 3

{1} i = 4

Γ (K) i = 5

(6.8)
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which illustrates Theorem E and how to obtain the Γi. We note that a formula for this
expansion was also determined in [GMV15, Eq. (4.83)] based on theta lifts.

Example 6.2.2. Similar to how the expansion of a minimal automorphic function on A3

played a role in the above calculation, the expansion of a minimal automorphic function on
SO5,5(A) will play a role in the E7 calculations of §6.4. Therefore we will now compute the
full expansion for a minimal automorphic function ηmin on SO5,5(A) by expanding along
the same abelian unipotent radical as above. By repeated use of Proposition 5.2.1 we get
that

ηmin(g) = FS ,0[ηmin](g) +
∑

γ∈Γ (K)

∑
ϕ∈g×−α1

Wϕ[ηmin](γg)

FS ,0[ηmin](g) = FS ,0[ηmin](g) +
∑

γ∈Γ (K)

∑
ϕ∈g×−α2

Wϕ[ηmin](γg)

FS ,0[ηmin](g) = FS ,0[ηmin](g) +
∑

γ∈Γ (K)

∑
ϕ∈g×−α5

Wϕ[ηmin](γg)

FS ,0[ηmin](g) = FS ,0[ηmin](g) +
∑

γ∈Γ (K)

∑
ϕ∈g×−α3

Wϕ[ηmin](γg)

FS ,0[ηmin](g) =W0[ηmin](g) +
∑

ϕ∈g×−α4

Wϕ[ηmin](g)

(6.9)

In summary,

ηmin(g) =W0[ηmin](g) +
5∑
i=1

∑
γ∈Γi(K)

∑
ϕ∈g×−αi

Wϕ[ηmin](γg), Γi(K) =



Γ (K) i = 1

Γ (K) i = 2

Γ (K) i = 3

{1} i = 4

Γ (K) i = 5

(6.10)
which illustrates Theorem D.

6.3. Examples for E6. In this section we will consider a next-to-minimal automorphic
function ηntm on E6(A). We will first compute maximal parabolic Fourier coefficients with
respect to Pα2 corresponding to the M-theory limit discussed in §1.3, and then we will find
a full expansion of ηntm by considering the maximal parabolic Pα6 which will be used in one
of the E8 examples in §6.5.

Example 6.3.1. Let (S, ϕmin) be the Whittaker pair where S = S = (0, 2, 0, 0, 0, 0)ω∨
and ϕmin = mE−α2 ∈ Omin with non-zero m ∈ K. Using Proposition 5.3.3 we have that

FS,ϕmin [ηntm](g) = FS ,ϕmin [ηntm](g) . (6.11)

According to Proposition 5.3.4, FS ,ϕ[ηntm](g) is minimal on G which is the
reductive group obtained from the root system of G by removing α2 and α4, and is of
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1 3 4

2

5 6

Figure 4. Root labels used for E6.

type A2 ×A2. Using Proposition 5.2.1 repeatedly we get

FS,ϕmin [ηntm](g) = FS ,ϕmin [ηntm](g) +
∑

γ∈Γ (K)

∑
ϕ′∈g×−α3

Wϕmin+ϕ′ [η](γg)

FS ,ϕmin [ηntm](g) = FS ,ϕmin [ηntm](g) +
∑

ϕ′∈g×−α1

Wϕmin+ϕ′ [η](g)

FS ,ϕmin [ηntm](g) = FS ,ϕmin [ηntm](g) +
∑

γ∈Γ (K)

∑
ϕ′∈g×−α5

Wϕmin+ϕ′ [η](γg)

FS ,ϕmin [ηntm](g) =Wϕmin [ηntm](g) +
∑

ϕ′∈g×−α6

Wϕmin+ϕ′ [η](g) .

(6.12)

Note that Γ (K) = Γ (K). To summarize,

FS,ϕmin [ηntm](g) =Wϕmin [ηntm](g) +
∑

i∈{1,3,5,6}

∑
γ∈Γi(K)

∑
ϕ′∈g×−αi

Wϕmin+ϕ′ [η](γg) ,

Γi(K) =


{1} i = 1, 6

Γ (K) i = 3

Γ (K) i = 5 .

(6.13)

Example 6.3.2. We will now write the full expansion of ηmin using Theorem D starting
with the simple root α6, or, equivalently, an expansion along the abelian unipotent radical
of Pα6 . We get that

ηmin(g) =W0[ηmin](g) +
6∑
i=1

∑
γ∈Γi(K)

∑
ϕ′∈g×−αi

Wϕ′ [ηmin](γg)

Γi =



Γ i = 6

Γ i = 5

Γ i = 2

Γ i = 4

Γ i = 3

{1} i = 1 .

(6.14)

The Γi are obtained in a similar way as in the steps shown in (6.7), (6.9) and (6.12).
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6.4. Examples for E7. We will now consider a next-to-minimal automorphic function ηntm

on E7(A) and compute its Fourier coefficients with respect to the unipotent radical of the
parabolic subgroup Pα7 corresponding to the decompactification limit in the string theory
discussed in §1.3.

1 3 4

2

5 6 7

Figure 5. Root labels used for E7.

Example 6.4.1. Specifically, we will first consider the Whittaker pair (S, ϕ) where S =
S = (0, 0, 0, 0, 0, 0, 2)ω∨ and ϕmin = mE−α7 ∈ Omin with non-zero m ∈ K. The unique
complex minimal orbit Omin is often described by a Bala–Carter label as OA1 . Using
Proposition 5.3.3 we have that

FS,ϕmin [ηntm](g) = FS ,ϕmin [ηntm](g) (6.15)

where S = (0, 0, 0, 0, 0, 2, 2)ω∨ .
According to Proposition 5.3.4 we have that the right-hand side is attached to a minimal

representation of G of type D5 whose expansion is given by (6.10) although with
differently labeled roots. We get that

FS,ϕmin [ηntm](g) =Wϕmin [ηntm](g) +
5∑
i=1

∑
γ∈Γi(K)

∑
ϕ′∈g×−αi

Wϕmin+ϕ′ [ηntm](γg),

Γi(K) =



Γ (K) i = 1

Γ (K) i = 3

Γ (K) i = 2

Γ (K) i = 4

{1} i = 5 .

(6.16)

This further illustrates Theorem E and the pattern that emerges for how to obtain Γi.

Example 6.4.2. There is also a unique complex next-to-minimal orbit Ontm = O2A1 and
we will now consider the same S = S as above but now with ϕntm = m1F0000001 +
m2F2234321 ∈ Ontm with non-zero m1,m2 ∈ K.

Since ϕntm in a Whittaker pair (S, ϕntm) will still be present after a deformation,
although possibly with new contributions, we will not be able to make a deformation
to our fixed Borel subgroup since ϕntm is not supported on only our corresponding
choice of simple roots. Therefore we first make a conjugation using Lemma 3.3.1 and
w = w4w5w6w7w2w4w5w6w1w3w4w5w2w4w3w1 where wi = eEαie−FαieEαi for which
wSw−1 = (0, 2, 2,−2, 0, 0, 0)ω∨ and wϕntmw

−1 = m1F0100000 +m2F0010000 giving

FS,ϕntm [ηntm](g) = FwSw−1,wϕntmw−1 [ηntm](wg) . (6.17)
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Using Theorem E (ii) we get that

FS,ϕntm [ηntm](g) =

∫
V (A)

Wwϕntmw−1 [ηntm](vwg) dv (6.18)

where V = Exp(〈F0001000, F0001100, F0001110, F0001111〉). The Weyl word above was chosen
such that the dimension of V is minimized.

6.5. Examples for E8. Similar to the E7 examples above, we will here consider ηntm in
a next-to-minimal representation of E8 and its maximal parabolic Fourier coefficients with
respect to Pα8 corresponding to the decompactification limit in the string theory discussed
in §1.3.

1 3 4

2

5 6 7 8

Figure 6. Root labels used for E8.

Example 6.5.1. Firstly, let (S, ϕmin) be the Whittaker pair with S = S =
(0, 0, 0, 0, 0, 0, 0, 2)ω∨ and ϕmin = mE−α8 ∈ Omin = OA1 . From Proposition 5.3.3 we get
that

FS,ϕmin [ηntm](g) = FS ,ϕmin [ηntm](g) , (6.19)

where the right-hand side, according to Proposition 5.3.4, is in a minimal representation of
G of type E6 the expansion which was found in (6.14). We get that

FS,ϕmin [ηntm](g) =Wϕmin [ηntm](g) +
6∑
i=1

∑
γ∈Γi(K)

∑
ϕ′∈g×−αi

Wϕmin+ϕ′ [ηntm](γg)

Γi =



Γ i = 6

Γ i = 5

Γ i = 2

Γ i = 4

Γ i = 3

{1} i = 1 .

(6.20)

Example 6.5.2. Secondly, let (S, ϕntm) be the Whittaker pair where S = S as above,
but ϕntm = m1F00000001 + m2F23465321 ∈ Ontm = O2A1 with non-zero m1,m2 ∈ K. Let
also w = w4w5w6w7w8w2w4w5w6w7w1w3w4w5w6w2w4w5w3w4w1w3w2w4w5 where wi =
eEαie−FαieEαi for which wSw−1 = (0, 2, 2,−2, 0, 0, 0, 0)ω∨ and wϕntmw

−1 = m1F01000000 +
m2F00100000. From Theorem E (ii) we then get that

FS,ϕntm [ηntm](g) =

∫
V (A)

Wwϕntmw−1 [ηntm](vwg) dv (6.21)
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where V = Exp(〈F00010000, F00011000, F00011100, F00011110, F00011111〉). The Weyl word above
was chosen such that the dimension of V is minimized.
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