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Abstract. In this paper we analyze a general class of Fourier coefficients of automorphic
forms on reductive adelic groups G(AK) and their covers. We prove that any such Fourier
coefficient is expressible through integrals and sums involving ‘Levi-distinguished’ Fourier
coefficients. By the latter we mean the class of Fourier coefficients obtained by first taking
the constant term along the nilradical of a parabolic subgroup, and then further taking a
Fourier coefficient corresponding to a K-distinguished nilpotent orbit in the Levi quotient.
In a follow-up paper we use this result to establish explicit formulas for Fourier expansions
of automorphic forms attached to minimal and next-to-minimal representations of simply-
laced reductive groups.
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1. Introduction and main results

1.1. Introduction. Let K be a number field, o its ring of integers, and A = AK its ring
of adeles. Let G be a reductive group defined over K, G(A) the group of adelic points of
G, and Γ := G(K) the group of K-points of G. For now, let G = G(A) and let η be an
automorphic form on G, although we shall also consider finite central extensions and a more
general space of functions on Γ\G below. Fix a minimal parabolic subgroup B in G defined
over K (a Borel subgroup if G is quasi-split) and let N be the A-points of the unipotent
radical of B. Consider the (infinite) set of unitary characters χN : (N ∩ Γ)\N → C×.
It is well known that the period integral, i.e. the constant term, of η with respect to the
commutator subgroup N ′ := [N,N ] can be decomposed according to∫

(N ′∩Γ)\N ′

η(ng)dn =
∑
χN

WχN [η](g), (1.1)
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where WχN [η] ∈ C∞(G) is the standard Whittaker coefficient corresponding to χN given
by

WχN [η](g) :=

∫
(N∩Γ)\N

η(ng)χN (n)−1dn, (1.2)

which satisfies the N -equivariance property WχN [η](ng) = χN (n)WχN [η](g).
It is natural to ask whether one can recover all of η from its Whittaker coefficients, and

not just the constant term (1.1). This is known to be true when η is a cusp form on GLn(A)
for which we have the Piatetski-Shapiro–Shalika formula [PS79, Sha74]:

η(g) =
∑

γ∈Nn−1(K)\GLn−1(K)

∑
χN

WχN [η]
(

( γ 1 ) g
)
, (1.3)

where Nn−1 is the unipotent radical of a Borel subgroup of GLn−1 and the sum, in this
case, is over non-degenerate χN . Similar results may be stated for non-cusp forms with the
inclusion of degenerate χN .

For other groups, there are examples of (non-generic) cusp forms for which all Whittaker
coefficients vanish, and thus such forms definitely cannot be recovered. For Sp4 for example,
the existence of such forms is shown by [Ike01]. Our first result, Theorem A below, provides
a sufficient condition for recovering a form η from its Whittaker coefficients. Another aim
of this paper is to provide results for when Whittaker coefficients alone are not sufficient
for recovering the automorphic form.

We reserve the name Whittaker coefficient to mean a Fourier coefficient with respect to
a maximal unipotent. In general, for any unipotent subgroup U of G and character χU on
U ∩ Γ\U , the associated (U, χU )-Fourier coefficient is given by

FU,χU [η](g) :=

∫
(U∩Γ)\U

η(ug)χU (u)−1du. (1.4)

This general terminology for a Fourier coefficient is, for example, used in [FGKP18], while in
[HS16] the same notion is called a unipotent period. We will use a convenient set of data to
describe both the unipotent subgroup U and character χU for a very general class of (U, χU )-
Fourier coefficients using a so called Whittaker pair of elements in the Lie algebra and its
dual as explained in §2, following [GGS17, GGS] but with slightly different notation. For the
rest of this paper we will only consider this class of Whittaker pair Fourier coefficients, and
will call them Fourier coefficients for short. Among others, this class includes Whittaker
coefficients, and more generally the cases where U is the unipotent radical of any parabolic
subgroup, as well as the notion of Fourier coefficients used in [GRS97, GRS11, Gin06, GH11,
JLS16] (which we will call neutral Fourier coefficients as explained below).

When Whittaker coefficients are not enough to recover the automorphic form it is natural
to ask what is the ‘simplest’, in some sense, type of Fourier coefficients that are. Although
it is true, for example, that the Fourier coefficients with respect to an abelian unipotent
subgroup are enough to recover the original automorphic form, these Fourier coefficients
are in general difficult to compute directly, and their computation is in fact another aim
of this paper. Whittaker coefficients can be considered ‘simple’ because they are integrals
over maximal unipotent subgroups. For spherical automorphic forms this means that they
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are determined by their values on a maximal torus, and are, up to archimedean parts, given
by the Casselman–Shalika formula [CS80].

In this paper we define a binary relation over Fourier coefficients (or rather over the
associated Whittaker pair data) called dominates and show that if A dominates B then A
naturally and linearly determines B, and the dimension of the unipotent integration domain
for A is smaller than or equal to that of B. It is with this relation that we can give a precise
meaning to the word ‘simple’ used in the question above.

As a simple example we may take the dominated coefficient B to be a Whittaker
coefficient with a character supported only on the exponentiated root space of a single
simple root, and the dominating coefficient A to be a Fourier coefficient with respect to the
unipotent radical of the standard maximal parabolic subgroup obtained from the same root,
together with a restriction of the same character. Then, B is indeed linearly determined
by A since B can be obtained as a period integral of A over the complementing unipotent
subgroup.

These properties of linear determination and monotonicity of the dimension remain true
for the transitive closure of the binary relation. Being already reflexive, we can thus consider
the associated quasiorder, which gives us the notion of minimal elements, that is, a class of
‘simplest’ Fourier coefficients. For GLn the minimal coefficients in this quasiorder (i.e. with
the largest unipotent subgroup) are all Whittaker coefficients, meaning that any Fourier
coefficient (and of course the automorphic form itself) linearly determines a corresponding
Whittaker coefficient. Note that our original question, answered by Piatetski-Shapiro and
Shalika for GLn, is in the opposite direction: when can the class of Whittaker coefficients
together linearly determine the original automorphic form?

In general, the minimal coefficients in the above quasiorder are not all Whittaker
coefficients; they are instead in the larger class of so called Levi-distinguished coefficients
which we define below. We show, in Theorem A, that the class of these Levi-distinguished
coefficients are enough to recover the original automorphic form.

The complementary notion of Levi-distinguished coefficients, i.e. the maximal coefficients
in the quasiorder, are so called neutral Fourier coefficients. These are naturally associated
to nilpotent orbits O in the Lie algebra, and their vanishing properties define the global
wave-front set of an automorphic form or representation as discussed below. Indeed, it was
shown in [GGS17] that any other Fourier coefficient is naturally and linearly determined
by a neutral Fourier coefficient which therefore determine the vanishing properties of all
Fourier coefficients. This result is now superseded by the properties of the dominance
relation introduced in this paper. Another important difference is that previous work in the
global setting has primarily focused on showing that the vanishing of one Fourier coefficient
implies the vanishing of another, while we in this paper give explicit relations and expressions
between different Fourier coefficients.

To summarize, we schematically have that,

O ←→ neutral � any � Levi-distinguished ⊇ Whittaker (1.5)

where by A � B we mean that A dominates B.
Furthermore, as a refinement of the above question we show that a Fourier coefficient

with character associated to a nilpotent orbit O is linearly determined by Levi-distinguished
coefficients associated to orbits equal to or bigger than O. Note that this statement is also
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in the opposite direction of the natural linear determination from the dominance relation.
Previous work [GGS] in this direction studied the vanishing properties of Fourier coefficients
with characters associated to a maximal orbit in the global wave-front set. Their result is
now directly implied by a special case of Theorem C in this paper. In addition, our work
has consequences for the question of Eulerianity of Fourier coefficients as we shall explore
in [GGK+20].

1.2. Main results. Let us now explain some of our main results in more detail. We
work in a generality slightly wider than linear reductive groups. Namely, we also consider
automorphic forms on finite central extensions of G(A). Let pr : G → G(A) be such an
extension. We assume that there exists a section G(K)→ G, fix such a section and denote
its image by Γ. This generality includes the groups defined in [BD01]. By [MW95, Appendix
I], for any unipotent subgroup U ⊂ G, the projection pr has a canonical section on U(A).
We will always use this section to identify U(A) with a subgroup of G.

Let g = g(K) be the Lie algebra of G(K) ∼= Γ, and let g∗ be the dual of g as a vector
space. We say that a semi-simple element S of g is rational if ad(S) has eigenvalues in Q. A
Whittaker pair is an ordered pair (S, ϕ) ∈ g×g∗, where S is a rational semi-simple element,
and ad∗(S)ϕ = −2ϕ. This eigenvalue equation implies that ϕ is a nilpotent element of g∗.
Using the Killing form we may identify ϕ with a unique nilpotent element in g which we
will denote by f = fϕ.

Let χ be a fixed additive, non-trivial unitary character on A trivial on K. A Whittaker
pair (S, ϕ) determines a unipotent subgroup NS,ϕ of G given by (2.5) below, as well as a
unitary character χϕ on NS,ϕ defined by χϕ(n) = χ(ϕ(log n)) for n ∈ NS,ϕ. Note that log n
can be expanded to a finite sum since n is unipotent and that we have extended ϕ to a
functional on g(A) := g⊗K A by linearity.

Our results are applicable to automorphic forms, but also to a wider class of functions
on G which we will call automorphic functions. The space of automorphic functions, denoted
by C∞(Γ\G), consists of functions that are left Γ-invariant, finite under the right action
of the preimage in G of

∏
finite ν G(oν), and smooth when restricted to the preimage in

G of
∏

infinite ν G(Kν). In other words, compared to automorphic forms, we remove the
usual requirements of moderate growth, and finiteness under the center z of the universal
enveloping algebra.

Following [MW87, GRS97, GRS11, GGS17] we attach to each Whittaker pair (S, ϕ) and
automorphic function η on G the Fourier coefficient

FS,ϕ[η](g) =

∫
[NS,ϕ]

η(ng)χϕ(n)−1 dn. (1.6)

where we, for a unipotent subgroup U ⊂ G, denote by [U ] the quotient (U ∩ Γ)\U . Here,
dn denotes the pushforward to [NS,ϕ] of the Haar measure on NS,ϕ, that is normalized such
that the pushforward is a probability measure. We will use similar notation in the future
without further notice.

Remark 1.2.1. This definition is more general than what is usually referred to as a Fourier
coefficient in the literature, cf. [GRS97, GRS11, Gin06, GH11, JLS16]. Note also that the
unipotent group NS,ϕ is not necessarily the unipotent radical of a parabolic subgroup of
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G. For a Jacobson–Morozov sl2-triple (e, h, f) we define ϕf ∈ g∗ to be given by Killing
form pairing with f , and call the Whittaker pair (h, ϕ) a neutral Whittaker pair, and the
corresponding Fourier coefficient a neutral Fourier coefficient. This is what is called a
Fourier coefficient in [GRS97, GRS11, Gin06, GH11, JLS16].

Note that FS,ϕ[η](g) is a smooth function on G in the above sense, but is not invariant
under Γ any more. On the other hand, its restriction to the joint centralizer GS,ϕ of S and ϕ
is left GS,ϕ∩Γ-invariant. As shown in [GH11], if η is also z-finite and has moderate growth,
then the restriction of η to GS,ϕ still has moderate growth, but may stop being z-finite.

As further detailed in Definition 2.3.3 below, we denote by WO(η) the set of nilpotent
G(K)-orbits O in g∗ such that there exists a non-vanishing neutral Fourier coefficient Fh,ϕ[η]
with ϕ ∈ O. It was shown in [GGS17, Theorem C] that if a neutral Fourier coefficient
Fh,ϕ[η] = 0 then FS,ϕ[η] = 0 for any Whittaker pair (S, ϕ), not necessarily neutral. The set
WO is also sometimes called global wave-front set in the literature [JLS16].

In Definition 2.3.1 below we introduce an order relation on K-rational nilpotent orbits.
By Lemma 2.3.2, if O′ > O under this relation then for any place ν of K, the closure of
O′ in g∗(Kν) (in the local topology) contains O. We denote the set of maximal elements in
WO(η) by WS(η) and call it the Whittaker support of η.

Because of the many different kinds of Fourier coefficients figuring in this paper, we will
also make the following distinctions. If NS,ϕ is the unipotent radical of a minimal parabolic
subgroup ofG, we say that (S, ϕ) is a standard Whittaker pair and call the Fourier coefficient
FS,ϕ a Whittaker coefficient. One can show that a nilpotent ϕ ∈ g∗ can be completed to a
standard Whittaker pair if and only if it is a principal nilpotent element of a Levi subgroup
of G defined over K. For short, we will call such ϕ a PL nilpotent and call its orbit a
PL-orbit. See §2.1 below for further details.

Finally, in §2.2 we will define what we call Levi-distinguished Fourier coefficients. Such a
coefficient is defined by a parabolic subgroup P ⊆ G (defined over K), a Levi decomposition
P = LU and a Whittaker pair (H,ϕ) for L, in which ϕ is K-distinguished, i.e. does not
belong to the dual Lie algebra of any proper Levi subgroup of L defined over K. The
corresponding Fourier coefficient is given by considering the constant term with respect
to U as a function on L, and then taking the Fourier coefficient FH,ϕ. To see that this
construction defines a Fourier coefficient on G, we let Z be a rational semi-simple element
that commutes with L and has all its non-zero adjoint eigenvalues much bigger than those
of H (in absolute value). Then the Levi-distinguished Fourier coefficient is FH+Z,ϕ. By
Lemma 2.2.9 below, if ϕ is a principal nilpotent in L then FH+Z,ϕ is a Whittaker coefficient.

We will be relating different types of Fourier coefficients using linear operations. To make
this statement precise, we introduce the following definition.

Definition 1.2.2. Let A : X → XA and B : X → XB be linear maps between vector
spaces X, XA and XB. We say that A is linearly determined by B if ker(B) ⊆ ker(A).

Now, let Bi : X → XBi be a family of linear maps index by a (possibly infinite) set I. We
say that A is linearly determined by {Bi} if A is linearly determined by B : X →

∏
i∈I XBi

defined by x 7→ (B1(x), B2(x), . . .). Note that ker(B) =
⋂
i∈I ker(Bi).

Remark 1.2.3. It is easy to see that A is linearly determined by B if and only if there
exists a linear map C : XB → XA such that A = C ◦ B. In this paper we will consider
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X = C∞(Γ\G), or a subspace thereof, and the maps A and B to be different Fourier
coefficients. In the course of the proofs of our main theorems we will provide explicit
formulas for the relevant linear maps C. They involve sums over characters, sums over
Γ-translates of the arguments and integrations over unipotent subgroups giving expressions
schematically of the form ∑

S,ϕ

∑
γ

∫
dvFS,ϕ[η](γvg) . (1.7)

In this setting, the notion of linearly determined by is equivalent to the notion of spanned
by used in [HS16].

Our main results can be summarized in the following theorems which are proven in §4.

Theorem A. Let η ∈ C∞(Γ\G). Then

(i) η is linearly determined by the family of all its Levi-distinguished Fourier coefficients.
(ii) If all orbits O ∈ WO(η) are PL-orbits then η, and all its Fourier coefficients, are

linearly determined by Whittaker coefficients.
(iii) Any Fourier coefficient FS,ϕ[η] is linearly determined by the Levi-distinguished

Fourier coefficients with characters in orbits which are equal to or bigger than Γϕ.

Theorem A immediately implies the following corollary.

Corollary B. Let η ∈ C∞(Γ\G) be cuspidal, in the sense that the constant term of η with
respect to the nilradical of any parabolic subgroup vanishes. Then η is linearly determined
by its Fourier coefficients with respect to K-distinguished orbits.

Remark 1.2.4. One can show that for split simply-laced groups the so-called minimal and
the next-to-minimal orbits are always PL. Thus, Theorem A implies that automorphic
forms attached to the minimal and next-to-minimal representations of simply-laced groups,
as well as all their Fourier coefficients, are linearly determined by Whittaker coefficients.
We provide more explicit formulas for this linear determination in a subsequent paper
[GGK+19].

In order to present our next theorem we will need to introduce some notation.

Notation 1.2.5. For a rational semi-simpleH ∈ g and λ ∈ Q denote by gHλ the λ-eigenspace

of ad(H). Denote also gH>λ :=
⊕

µ>λ g
H
λ , gH≥λ := gHλ ⊕ gH>λ, and similarly for gH<λ and gH≤λ.

For ϕ ∈ g∗ denote by gϕ its stabilizer in g under the coadjoint action.
As will be further explained in §2, the group cover splits over unipotent subgroups of G

which means that we may uniquely identify them with unipotent subgroups of G. Thus,
for a nilpotent subalgebra v ⊂ g, let v(A) := v ⊗K A and denote by Exp(v) the unipotent
subgroup of Γ obtained by exponentiation of v and by V := Exp(v(A)) the unipotent
subgroup of G obtained by exponentiation of v(A).

Definition 1.2.6. Let (H,ϕ) and (S, ϕ) be two Whittaker pairs with the same ϕ. We say
that (H,ϕ) dominates (S, ϕ) if H and S commute and

gϕ ∩ gH≥1 ⊆ gS−H≥0 . (1.8)
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The use of the term dominates is due to Proposition 4.0.1 below where we show that if
(H,ϕ) dominates (S, ϕ) then FS,ϕ[η] is linearly determined by FH,ϕ[η] for any automorphic
function η. As is shown in the proof there this follows directly and naturally from a
deformation of the dominating Whittaker pair to the other.

In contrast, the next theorem shows how to determine FH,ϕ[η] in terms of FS,ϕ[η] when
the orbit G(K)ϕ is an element of WS(η).

Theorem C. Let η be an automorphic function on G. Let (H,ϕ) and (S, ϕ) be Whittaker
pairs such that (H,ϕ) dominates (S, ϕ) and G(K)ϕ ∈WS(η). Denote

v := gH>1 ∩ gS<1, and V := Exp(v(A)). (1.9)

(i) If gH1 = gS1 = 0 then

FH,ϕ[η](g) =

∫
V

FS,ϕ[η](vg) dv . (1.10)

(ii) More generally, denote u := (gS≥1 ∩ gH>1)/(gS>1 ∩ gH>1), w := (gH≥1 ∩ gS<1)/v, Ω :=

Exp(w) and U := Exp(u(A)). Then

FH,ϕ[η](g) =
∑
w∈Ω

∫
V

∫
[U ]

FS,ϕ[η](wvug) dudv . (1.11)

We would like to emphasize that the integral over V is a non-compact adelic integral.

Remark 1.2.7. In [GGS17] (and in Corollary 3.2.2) it is shown that any Whittaker pair
(H,ϕ) is dominated by a neutral pair (h, ϕ). In §4 we will show that any Whittaker pair
(H,ϕ) dominates a Levi-distinguished pair (S, ϕ). By Lemma 2.2.9 below, if ϕ is principal in
a Levi subgroup (PL), then any Levi-distinguished Fourier coefficient FS,ϕ[η] is a Whittaker
coefficient, and thus, if ϕ is PL and G(K)ϕ ∈WS(η) then any Fourier coefficient FH,ϕ[η] is
obtained by an integral transform from a Whittaker coefficient FS,ϕ[η].

1.3. Structure of the paper. In §2 we give the definitions of the notions mentioned above,
as well as of Whittaker triples and quasi-Fourier coefficients. These are technical notions
defined in [GGS] and widely used in the current paper as well.

In §3 we relate Fourier and quasi-Fourier coefficients corresponding to different Whittaker
pairs and triples. To do that we further develop the deformation technique of [GGS17, GGS],
making it both more general, more explicit, and better adapted to the global case. The
deformation technique is in turn built upon a version of the root-exchange technique of
[GRS97, GRS11].

In §4 we provide proofs for the main theorems and in §5 we provide explicit examples in
the cases SL4,GLn, Sp4 and Heisenberg parabolics of arbitrary simply-laced Lie groups.

Two appendices contain additional proofs of lemmas on PL-orbits and an ordering
relation on rational nilpotent orbits.

More explicit results can be obtained in the case of Fourier expansions of automorphic forms
in minimal and next-to-minimal representations as will be proved in the follow-up paper
[GGK+19].
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2. Definitions

As in the introduction, let K be a number field, o its ring of integers, and let A = AK be its
ring of adeles. Let T = {z ∈ C : |z| = 1} and fix a non-trivial additive character χ : A→ T,
which is trivial on K. Then χ defines an isomorphism between A and the character group
Â := Hom(A,T) via the map a 7→ χa, where χa(b) = χ(ab) for a, b ∈ A. Furthermore, this
isomorphism restricts to an isomorphism

Â/K := Hom(A/K,T) ∼= {r ∈ Â : r|K ≡ 1} = {χa : a ∈ K} ∼= K , (2.1)

which means that we may parametrize characters on A trivial on K by elements in K.
Let G be a reductive group defined over K, G(A) the group of adelic points of G and let

G be a finite central extension of G(A). That is,

1→ C → G
pr−→ G(A)→ 1 (2.2)

for some finite group C.
We assume that there exists a section G(K) → G of the projection pr : G�G(A). Fix

such a section and denote its image in G by Γ. By [MW95, Appendix I], the cover G�G(A)
canonically splits over unipotent subgroups, and thus we will consider such subgroups as
subgroups of G. Let g(K) denote the Lie algebra of G(K) ∼= Γ which we will often abbreviate
to g. Let v be a nilpotent subalgebra of g and let v(A) := v⊗KA be its adelization. As in the
introduction, we denote by Exp(v) the unipotent subgroup of Γ obtained by exponentiation
of v using the above split over unipotent subgroups, and we denote by V := Exp(v(A)) the
unipotent subgroup of G obtained by exponentiation of v(A). We note that Exp(v) = V ∩Γ
and for later convenience we will denote by [V ] the quotient (V ∩ Γ)\V .

To conveniently describe different unipotent subgroups of G and characters on these
subgroups we introduce the following notion.

Definition 2.0.1. A Whittaker pair is an ordered pair (S, ϕ) ∈ g × g∗ such that S is a
rational semi-simple element (that is, a semi-simple element for which the eigenvalues of
the adjoint action are in Q), and ad∗(S)ϕ = −2ϕ.

We will often identify ϕ ∈ g∗ with its dual nilpotent element f = fϕ ∈ g with respect
to the Killing form 〈 , 〉. We will say that ϕ is nilpotent if fϕ is a nilpotent element of
g. Equivalently, ϕ ∈ g∗ is nilpotent if and only if the Zariski closure of its coadjoint orbit
includes zero. For example, if (S, ϕ) is a Whittaker pair then ϕ is nilpotent.
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For any rational semi-simple S ∈ g and i ∈ Q we introduce the following notation

gSi := {X ∈ g : [S,X] = iX}, gS>i :=
⊕
j∈Q
j>i

gSj , gS≥i := gSi ⊕ gS>i , (2.3)

and analogously for gS<i and gS≤i, with a similar use of notation for g∗.
For any ϕ ∈ g∗ let gϕ be the centralizer of ϕ in g under the coadjoint action and define

an anti-symmetric form ωϕ : g×g→ K by ωϕ(X,Y ) = ϕ([X,Y ]). We extend ϕ and ωϕ to a
functional and an anti-symmetric form on g(A) respectively by linearity. Given a Whittaker
pair (S, ϕ) ∈ g× g∗, we let u := gS≥1 and define

nS,ϕ := {X ∈ u : ωϕ(X,Y ) = 0 for all Y ∈ u} and NS,ϕ := Exp
(
nS,ϕ(A)

)
(2.4)

which, by Lemma 3.2.5 below, can also be written as

nS,ϕ = gS>1 ⊕ (gS1 ∩ gϕ). (2.5)

Note that nS,ϕ is an ideal in u with abelian quotient, and that ϕ defines a character of nS,ϕ.
We define a corresponding character χϕ on NS,ϕ, trivial on NS,ϕ ∩ Γ, by

χϕ(n) := χ(ϕ(log n)) = χ(〈fϕ, log n〉) . (2.6)

More generally, let r ⊆ u be any isotropic subspace (not necessarily maximal) with respect
to ωϕ|u, that includes nS,ϕ. Note that nS,ϕ ⊆ r ⊆ u, and that nS,ϕ and r are ideals in u. Let

R = Exp
(
r(A)

)
. Then χRϕ : R→ T defined by χRϕ (r) = χ(ϕ(log r)) is a character of R trivial

on R ∩ Γ. Indeed, since r is isotropic, we have that ωϕ|r(A) = 0 and thus χRϕ ∈ Hom(R,T),
and ϕ(X) ∈ K for X ∈ r(K).

Definition 2.0.2. We call a function on G an automorphic function if it satisfies the
following properties:

(i) invariant under the left action of Γ,
(ii) finite under the right action of the preimage in G of

∏
finite ν G(oν), and

(iii) smooth when restricted to the preimage in G of
∏

infinite ν G(Kν).

We denote the space of all automorphic functions by C∞(Γ\G).

Definition 2.0.3. Let (S, ϕ) be a Whittaker pair for g and let R,NS,ϕ, χϕ and χRϕ be as
above. For an automorphic function η, we define the Fourier coefficient of η with respect
to the pair (S, ϕ) to be

FS,ϕ[η](g) :=

∫
[NS,ϕ]

η(ng)χϕ(n)−1 dn. (2.7)

We also define its R-Fourier coefficient to be the function

FRS,ϕ[η](g) :=

∫
[R]

η(rg)χRϕ (r)−1 dr. (2.8)

Observe that if π denotes a subrepresentation of C∞(Γ\G) that contains η then FS,ϕ[η] and

FRS,ϕ[η] are matrix coefficients corresponding to the vector η ∈ π and the functional on the
space of automorphic functions defined by the integrals above.
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Remark 2.0.4. In [GGS17, §6] the integrals (2.7) and (2.8) above are called Whittaker–
Fourier coefficients, but in this paper we call them Fourier coefficients for short. The
Whittaker coefficients (1.2) are called in [GGS17, §6] principal degenerate Whittaker–
Fourier coefficients.

Definition 2.0.5. A Whittaker pair (h, ϕ) is called neutral if either (h, ϕ) = (0, 0), or h
and the Killing form pairing f = fϕ with ϕ can be completed to an sl2-triple (e, h, f).

Equivalently, (h, ϕ) is called neutral if ad∗(ϕ) defines an epimorphism gh0�(g∗)h−2, and h
can be completed to an sl2-triple. For more details on sl2-triples over arbitrary fields of
characteristic zero see [Bou75, §11].

Definition 2.0.6. We say that (S, ϕ, ϕ′) is a Whittaker triple if (S, ϕ) is a Whittaker pair
and ϕ′ ∈ (g∗)S>−2.

For a Whittaker triple (S, ϕ, ϕ′), let U,R, and NS,ϕ be as in Definition 2.0.3. Note that
ϕ+ ϕ′ defines a character of r. Extend it by linearity to a character of r(A) and define an
automorphic character χϕ+ϕ′ of R by χRϕ+ϕ′(expX) := χ(ϕ(X) + ϕ′(X)). For an example
for this notation see §5.2 below.

Definition 2.0.7. For an automorphic function f , we define its (S, ϕ, ϕ′)-quasi Fourier
coefficient to be the function

FS,ϕ,ϕ′ [η](g) :=

∫
[NS,ϕ]

χϕ+ϕ′(n)−1η(ng)dn. (2.9)

We also define its (S, ϕ, ϕ′, R)-quasi Fourier coefficient to be the function

FRS,ϕ,ϕ′ [η](g) :=

∫
[R]

χRϕ+ϕ′(r)
−1η(rg)dr. (2.10)

Definition 2.0.8. We call a K-subgroup of G a split torus of rank m if it is isomorphic
as a K-subgroup to GLm1 . We call a Lie subalgebra l ⊆ g a K-Levi subalgebra if it is the
centralizer of a split torus.

Remark 2.0.9. We note that the Lie algebra of any split torus is spanned by rational
semisimple elements. Consequently, a subalgebra of l ⊆ g is a K-Levi subalgebra if and only
if it is the centralizer of a rational semisimple element of g. Another equivalent condition
is that l is the Lie algebra of a Levi subgroup of a parabolic subgroup of G defined over K.

For convenience, we fix a complex embedding σ : K↪→C, which allows us to map a Γ-orbit
O in g to a G(C)-orbit in g(C) := g⊗σ(K)C. One can show, using [̄Dok98], that the complex
orbit corresponding to O does not depend on σ. However, we will not need this fact.

2.1. Principal nilpotent elements, PL elements and standard Whittaker pairs.

Definition 2.1.1. We say that a nilpotent orbit under Γ in g∗ is principal if it is Zariski
dense in the nilpotent cone N (g∗). We say that ϕ ∈ g∗ is a principal nilpotent element if
its orbit is principal.

We say that a nilpotent ϕ ∈ g∗ is principal in a Levi (or PL for short) if there exists a
K-Levi subalgebra l ⊂ g and a nilpotent element f ∈ l such that the Killing form pairing
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with f defines ϕ in g∗, and a principal nilpotent element of l∗. We call a nilpotent Γ-orbit
in g∗ a PL-orbit if it consists of PL elements.

We remark that if G is quasi-split then a nilpotent element ϕ ∈ g∗ is principal if and only
if it is regular, i.e. the dimension of its centralizer equals the rank of g.

Lemma 2.1.2. Let n be the nilpotent radical of the Lie algebra of a minimal parabolic
subgroup P0. Then n intersects any nilpotent orbit under Γ in g.

Proof. Let f ∈ g be nilpotent, and complete to an sl2-triple (e, h, f). Then h defines a
parabolic subgroup P which then includes a minimal parabolic Q0. Then Q0 is conjugate
to P0 under Γ (see [BT65, Thm. 4.13(b)]). Since f lies in the nilpotent radical of the Lie
algebra of P , its conjugate will lie in n. �

Definition 2.1.3. We say that a Whittaker pair (S, ϕ) is standard if nS,ϕ is the nilpotent
radical of the Lie algebra of a minimal parabolic subgroup of G.

Corollary 2.1.4. A nilpotent element ϕ ∈ g∗ is principal if and only if it can be completed
to a neutral standard Whittaker pair.

Proof. Let h complete ϕ to a neutral standard Whittaker pair. Then nh,ϕ = gh>1 = gh>0

is the nilpotent radical of the Lie algebra of a minimal parabolic subgroup, and thus so is
n := gh<1. Let f ∈ n define ϕ through the Killing form pairing. Then we have [f, gh≤0] = n
and thus Γf ∩ n is Zariski open, and thus Zariski dense, in n. The statement follows now
from Lemma 2.1.2.

Conversely, let ϕ ∈ g∗ be a principal nilpotent, and let (e, h, f) be an sl2-triple such
that f defines ϕ via the Killing form. Let O denote the complex orbit of f and Ō denote
its Zariski closure. Then Ō = N (g) ⊃ gh<0. Thus O is the Richardson orbit for gh≤0, and

thus dimO = 2 dim gh<0. Now suppose by way of contradiction that the pair (h, ϕ) is not

standard. Then gh≤0 is not a minimal K-parabolic subalgebra, i.e. there exists a smaller

K-parabolic subalgebra p with nilpotent radical n ) gh<0. But n ⊂ N = Ō, and thus O is a

Richardson orbit for p, thus dimO = 2 dim n > 2 dim gh<0 = dimO - contradiction. �

Corollary 2.1.5. A nilpotent ϕ ∈ g∗ is PL if and only if it can be completed to a standard
Whittaker pair (S, ϕ).

Proof. Let (S, ϕ) be a standard Whittaker pair. Then S = h + Z where (h, ϕ) is neutral
and commutes with Z. Then Z defines a Levi subalgebra l, and the Whittaker pair (h, ϕ)
is neutral and standard in l. By Corollary 2.1.4, ϕ is principal in l.

Conversely, if ϕ is principal in l and Z defines l we let S := TZ + h for T ∈ Q>0 big
enough. Then (S, ϕ) is a standard Whittaker pair. �

Let us remark that in [GGS17] a different definition of principal and PL elements was
given. The following lemma states the equivalence of the definitions.

Lemma 2.1.6. Let ϕ ∈ g∗ be nilpotent. Then

(i) ϕ is PL if and only if there exist a maximal split toral subalgebra a of g and a choice
of associated simple roots Π such that ϕ ∈

⊕
αi∈Π g∗αi, where g∗αi denotes the dual of

the root space gαi.
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(ii) If ϕ ∈
⊕

αi∈Π g∗αi then ϕ is principal in the Levi subalgebra given by those simple
roots αi for which the projection of ϕ to g∗αi is non-zero.

Proof. Let
∑

αi∈Π g×αi ⊂
⊕

αi∈Π g∗αi denote the subset of vectors with all projections non-
zero. It is enough to show that ϕ ∈ g∗ is principal if and only if there exist (a,Π) as above
such that ϕ ∈

∑
αi∈Π g×αi .

To show that, assume first that ϕ is principal. Then, by Corollary 2.1.4, ϕ can be
completed to a neutral standard pair (h, ϕ). Then h defines a torus and simple roots, and
we have ϕ ∈

∑
αi∈Π g×αi . Conversely, give a and Π as above, we let h :=

∑
ciα
∨
i , where α∨i

are the coroots given by scalar product with αi, and ci are chosen such that ϕ ∈ (g∗)h−2.

Then (h, ϕ) is a standard Whittaker pair. Moreover, ϕ is a generic element of (g∗)h−2 and
thus the Jacobson–Morozov theory implies that (h, ϕ) is a neutral pair. �

Remark 2.1.7. Note that for G = GLn(A) all orbits O are PL-orbits. In general this is,
however, not the case, see Appendix A for details.

2.2. Levi-distinguished Fourier coefficients.

Definition 2.2.1. We say that a nilpotent f ∈ g is K-distinguished, if it does not belong
to a proper K-Levi subalgebra l ( g. In this case we will also say that ϕ ∈ g∗ given by
the Killing form pairing with f is K-distinguished. We will also say that the orbit of ϕ is
K-distinguished.

Example 2.2.2. The nilpotent orbits under Sp2n(C) are given by partitions of 2n such
that odd parts have even multiplicity. Each such orbit, except the zero one, decomposes to
infinitely many Sp2n(Q)-orbits - one for each collection of equivalence classes of quadratic
forms Q1, . . . , Qk of dimensions m1, . . .mk where k is the number of even parts in the
partition and m1, . . .mk are the multiplicities of these parts. A complex orbit intersects
a proper Levi subalgebra if and only if all parts have multiplicity one (and thus there
are no odd parts). To see the “only if” part note that if the partition includes a part k
with multiplicity two then the orbit intersects the Levi GLk×Sp2(n−k). If k is odd then
this Levi is defined over Q and thus all Q-distinguished orbits correspond to totally even
partitions. If k is even then this Levi is defined over Q if and only if the quadratic form on
the multiplicity space of k is anisotropic. Thus, we obtain that a necessary condition for an
orbit O to be Q-distinguished is that its partition λ(O) is totally even, a sufficient condition
is that λ(O) is multiplicity free, and for totally even partitions with multiplicities there are
infinitely many Q-distinguished orbits and at least one not Q-distinguished. For example,
for the partition (4, 2) all orbits in sp6(Q) are Q-distinguished, for the partition 23 some
orbits are Q-distinguished and some are not, and all other partitions do not correspond to
Q-distinguished orbits.

Lemma 2.2.3. Every principal nilpotent element is K-distinguished.

Proof. Let f ∈ g define a principal nilpotent element via the Killing form. Suppose the
contrary: f lies in a proper K-Levi subalgebra l of g. Let Z ∈ g be a rational semi-simple
element that defines l. Complete f to an sl2-triple γ := (e, h, f) in l. Then ad(Z) acts by
a scalar on every irreducible submodule of the adjoint action of γ on g. Since l 6= g, there
exists an irreducible submodule V on which ad(Z) acts by a negative scalar −c. Let v be
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a highest weight vector of V of weight d, and let S := h+ c−1(d+ 2)Z. Then v + f ∈ gS−2

and thus v + f is nilpotent. Since f is principal, v + f lies in the Zariski closure of Γf . On
the other hand, v + f belongs to the affine space f + ge, which is called the Slodowy slice
to Γf at f , and is transversal to Γf , contradicting the assumption that v + f lies in the
Zariski closure of Γf . �

Lemma 2.2.4. Let f ∈ g be nilpotent. Then all K-Levi subalgebras l ⊆ g such that f ∈ l
and f is K-distinguished in l are conjugate by the centralizer of f .

Proof. Complete f to an sl2-triple γ := (e, h, f) and denote its centralizer by Gγ . Let us
show that all K-Levi subalgebras l of g that contain γ and in which f is distinguished are
conjugate by Gγ . Let l be such a subalgebra, L ⊆ G be the corresponding Levi subgroup,
and let C denote the maximal split torus of the center of L. Then C is a split torus in Gγ .
Let us show that it is a maximal split torus. Let T ⊇ C be a larger split torus in Gγ . Then,
the centralizer of T in g is a K-Levi subalgebra that lies in l and includes γ, and thus is
equal to l. Thus T = C.

Since l is the centralizer of T in G, T is a maximal split torus of Gγ , and all maximal
split tori of reductive groups are conjugate (see [Bor91, 15.14]), we get that all the choices
of L are conjugate.

Since all the choices of γ are conjugate by the centralizer of f , the lemma follows. �

Definition 2.2.5. Let Z ∈ g be a rational-semisimple element and l denote its centralizer.
Let (h, ϕ) be a neutral Whittaker pair for l, such that the orbit of ϕ in l∗ is K-distinguished.
We say that the Whittaker pair (h+ Z,ϕ) is Levi-distinguished if

gh+Z
>1 = gh+Z

≥2 = gZ>0 ⊕ lh≥2 and gh+Z
1 = lh1 . (2.11)

In this case we also say that the Fourier coefficient Fh+Z,ϕ is Levi-distinguished.

Remark 2.2.6. Let (h, ϕ) be a neutral Whittaker pair for g. If ϕ is K-distinguished then
Fh,ϕ is a Levi-distinguished Fourier coefficient. If a rational semi-simple Z commutes with

h and with ϕ, and ϕ is K-distinguished in l := gZ0 then Fh+TZ,ϕ is a Levi-distinguished
Fourier coefficient for any T bigger than m/M + 1, where m is the maximal eigenvalue of h
and M is the minimal positive eigenvalue of Z. See also Lemma 4.0.8 for further discussion.

Lemma 2.2.7 ([GGS17, Lemma 3.0.2]). For any Whittaker pair (H,ϕ) there exists Z ∈ gH0
such that (H − Z,ϕ) is a neutral Whittaker pair.

Remark 2.2.8. In [GGS17] the lemma is proven over a local field, but the proof only used
the Jacobson–Morozov theorem, that holds over arbitrary fields of characteristic zero.

Lemma 2.2.9. For any Whittaker pair (H,ϕ), the following are equivalent:

(i) (H,ϕ) is standard pair
(ii) (H,ϕ) is a Levi-distinguished Fourier coefficient, and ϕ is a PL nilpotent.

Proof. First let (H,ϕ) be a standard pair. Then by Lemma 2.2.7, H can be decomposed
as H = h + Z where (h, ϕ) is a neutral pair and Z commutes with h and with ϕ. Let l
and L denote the centralizers of Z in g and G, and N := NH,ϕ. Then N is the unipotent
radical of a minimal parabolic subgroup of G, and L is a Levi subgroup of G. Thus, N ∩L
is the unipotent radical of a minimal parabolic subgroup of L. The Lie algebra of N ∩ L is
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nH,ϕ∩gZ0 = gh≥1∩gZ0 . Thus, Exp(gh≤−1∩gZ0 ) is the unipotent radical of a minimal parabolic

subgroup of L. Since ϕ is given by Killing form pairing with f ∈ gh≤−1 ∩ gZ0 , we get by
Corollary 2.1.4 that ϕ is principal in l. Replacing Z by tZ with t large enough, we obtain
that (H,ϕ) is a Levi-distinguished pair.

Now, assume that ϕ is a PL nilpotent, and let Fh+Z,ϕ be a Levi-distinguished pair. Let

l = gZ0 be the corresponding Levi, and let f = fϕ be the element of g that defines ϕ. Since
f is distinguished in l, and principal in some Levi, Lemmas 2.2.3 and 2.2.4 imply that f
is principal in l. Thus, nH,ϕ ∩ l is the nilpotent radical of the Lie algebra of a minimal

parabolic subgroup of L and thus nH,ϕ = nH,ϕ ∩ l ⊕ gZ>0 the nilpotent radical of the Lie
algebra of a minimal parabolic subgroup of G. Thus FH,ϕ is standard Whittaker pair. �

2.3. Order on nilpotent orbits and Whittaker support.

Definition 2.3.1. We define a partial order on nilpotent orbits in g∗ = g∗(K) to be the
transitive closure of the following relation R: (O,O′) ∈ R if O 6= O′ and there exist ϕ ∈ O,
a rational semi-simple Z ∈ g and ϕ′ ∈ (g∗)Z>0 such that ϕ ∈ (g∗)Z0 and ϕ+ ϕ′ ∈ O′.

In Appendix B, we study these rational orbits in more detail. In particular, in
Corollary B.2 we prove that this is indeed a partial order, i.e. that R is anti-symmetric.

Lemma 2.3.2. If O′ is bigger than O, i.e. if (O,O′) ∈ R, then for any place ν of K, the
closure of O′ in g(Kν) (in the local topology) contains O.

Proof. It is enough to show that for any Z ∈ g, ϕ ∈ gZ0 and ψ ∈ gZ>0, ϕ lies in the closure
of G(Kν)(ϕ + ψ). Let εi ∈ Kν be a sequence converging to zero and let gi := exp(−εiZ).
Then gi centralize ϕ, while giψ → 0. Thus gi(ϕ+ ψ)→ ϕ. �

Definition 2.3.3. For an automorphic function η, we define WO(η) to be the set of
nilpotent orbits O in g∗ under the coadjoint action of G(K) such that Fh,ϕ[η] 6= 0 for
some neutral Whittaker pair (h, ϕ) with ϕ ∈ O. Using the partial order of Definition 2.3.1,
we define the Whittaker support WS(η) to be the set of maximal elements in WO(η).

3. Relating different Fourier coefficients

3.1. Relating different isotropic subspaces. We will now see how FS,ϕ,ϕ′ linearly

determines FRS,ϕ,ϕ′ and vice versa.

Lemma 3.1.1 (cf. [GGS17, Lemma 6.0.2]). Let η ∈ C∞(Γ\G), let (S, ϕ, ϕ′) be a Whittaker
triple, and NS,ϕ, U and R be as in Definition 2.0.1. Let r⊥ denote the orthogonal

complement to r in u under the form ωϕ and let R⊥ := Exp(r⊥). Then,

FRS,ϕ,ϕ′ [η](g) =

∫
[R/NS,ϕ]

FS,ϕ,ϕ′ [η](ug) du (3.1)

and

FS,ϕ,ϕ′ [η](g) =
∑

γ∈exp(u/r⊥)

FRS,ϕ,ϕ′ [η](γg). (3.2)



16 D. GOUREVITCH, H. GUSTAFSSON, A. KLEINSCHMIDT, D. PERSSON, AND S. SAHI

Proof. We assume that ϕ is non-zero since otherwise R = NS,ϕ. We have that NS,ϕ ⊆ R
with R/NS,ϕ abelian which means that (3.1) follows immediately from the definitions of

FS,ϕ,ϕ′ and FRS,ϕ,ϕ′ . For (3.2) observe that the function (χRϕ )−1 · FS,ϕ,ϕ′ [η] on R is left-

invariant under the action of NS,ϕ · (R ∩ Γ). In other words, we can identify it with a
function on

(NS,ϕ · (R ∩ Γ))\R ∼= Exp(r/nS,ϕ
)
\Exp((r/nS,ϕ)(A)) =: [R/NS,ϕ], (3.3)

where the equality follows from the fact that R/NS,ϕ is abelian. Therefore, we have a
Fourier series expansion

FS,ϕ,ϕ′ [η](u) =
∑

ψ∈[R/NS,ϕ]∧

cψ,χR
ϕ+ϕ′

(η)ψ(u)χRϕ (u), (3.4)

where [R/NS,ϕ]∧ denotes the Pontryagin dual group of [R/NS,ϕ] and

cψ,χRϕ (η) =

∫
[R]

ψ(u)−1χRϕ+ϕ′(u)−1η(u)du. (3.5)

In particular, denoting by Id ∈ G the identity element we obtain

FS,ϕ,ϕ′ [η](Id) =
∑

ψ∈[R/NS,ϕ]∧

cψ,χR
ϕ+ϕ′

(η). (3.6)

Now observe that the map X 7→ ωϕ(X, ·) = ϕ ◦ ad(X) induces an isomorphism between

u/r⊥ and (r/n)′. Hence, according to equations (2.1) and (3.3), we can use the character χ
to define a group isomorphism

(U ∩ Γ)/(R⊥ ∩ Γ) −→ [R/NS,ϕ]∧

u 7→ ψu,
(3.7)

where

ψu(r) = χ(ϕ([X,Y ])), u = expX and r = expY .

Hence, for all u ∈ U ∩ Γ and r ∈ R we have

ψu(r)χRϕ+ϕ′(r) = χ(ϕ([X,Y ]) + ϕ′([X,Y ]))χ(ϕ(Y ) + ϕ′(Y )) = χ((ϕ+ ϕ′)(Y + [X,Y ]))

= χ((ϕ+ ϕ′)(ead(X)(Y ))) = χϕ+ϕ′((Ad(u)Y )) = χRϕ+ϕ′(uru
−1).

Here we are taking again u = expX, r = expY and the middle equality follows from the
vanishing of ϕ on gS>2. But now, from formula (3.5) and the fact that f is automorphic, we
have

cψu,χRϕ+ϕ′
(η) =

∫
[R]

ψu(r)−1χRϕ+ϕ′(r)
−1η(r)dr =

∫
[R]

χRϕ+ϕ′(uru
−1)−1η(r)dr.

=

∫
[R]

χRϕ+ϕ′(r)
−1η(u−1ru)dr = FRS,ϕ,ϕ′ [η](u),
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for all u ∈ U ∩ Γ. Combining this with (3.6) and (3.7) we obtain

FS,ϕ,ϕ′ [η](Id) =
∑

u∈(U∩Γ)/(R⊥∩Γ)

FRS,ϕ,ϕ′ [η](u). (3.8)

Applying this to η and its right shifts we obtain (3.2). �

Corollary 3.1.2. Let η ∈ C∞(Γ\G), let (S, ϕ, ϕ′) be a Whittaker triple, and NS,ϕ, and U
be as in Definition 2.0.1. Let r, r′ ⊆ u be two isotropic subspaces (not necessarily maximal)
that include nS,ϕ. Assume dim r = dim r′. Then

FRS,ϕ,ϕ′ [η](g) =

∫
R/(R∩R′)

FR′S,ϕ,ϕ′ [η](ug) du . (3.9)

Note that this is a non-compact, adelic, integral.

This corollary can be seen as a version of the root exchange lemma in [GRS11].

3.2. Relating different Whittaker pairs. Let (H,ϕ) be a Whittaker pair.

Lemma 3.2.1. Let Z be as in Lemma 2.2.7. Then (H − Z,ϕ) dominates (H,ϕ).

Proof. Denote h := H − Z. We have to show that (1.8) holds, i.e.

gϕ ∩ gh≥1 ⊆ gZ≥0 . (3.10)

Since gϕ is spanned by lowest weight vectors, we have gϕ ⊆ gh≤0 and thus gϕ∩gh≥1 = {0}. �

Corollary 3.2.2. Any Whittaker pair is dominated by a neutral Whittaker pair.

Another example of domination is provided by the following proposition, that
immediately follows from [GGS17, Proposition 3.3.3].

Proposition 3.2.3. If ϕ is a PL nilpotent then there exists Z ∈ g such that (H + Z,ϕ) is
a standard Whittaker pair and (H,ϕ) dominates (H + Z,ϕ).

From now till the end of the section let Z ∈ gH0 be a rational semi-simple element such
that (H,ϕ) dominates (H + Z,ϕ). We will now consider the deformation of the former
Whittaker pair to the latter. For any rational number t ≥ 0 define

Ht := H + tZ, ut := gHt≥1, vt := gHt>1, and wt := gHt1 . (3.11)

Definition 3.2.4. We call t ≥ 0 regular if ut = ut+ε for any small enough ε ∈ Q, or in
other words wt ⊂ gZ0 . If t is not regular we call it critical. Equivalently, t is critical if

gHt1 * gZ0 which we may interpret as something new has entered the 1-eigenspace of H. For
convenience, we will say that t = 0 is critical.

We also say that t ≥ 0 is quasi-critical if either gHt1 * gZ0 or gHt2 * gZ0 . We may interpret
this as something new has entered either the 1-eigenspace or the 2-eigenspace. The latter
is related to new characters being available in the Whittaker pairs.

Note that there are only finitely many critical numbers. Recall the anti-symmetric form
ωϕ on g given by ωϕ(X,Y ) = ϕ([X,Y ]).
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Lemma 3.2.5 ([GGS17, Lemma 3.2.6]).

(i) The form ωϕ is ad(Z)-invariant.
(ii) Kerωϕ = gϕ.
(iii) Ker(ωϕ|wt) = Ker(ωϕ) ∩wt.
(iv) Ker(ωϕ|ut) = vt ⊕Ker(ωϕ|wt).
(v) ws ∩ gϕ ⊆ ut for any s < t.

Recall that nHt,ϕ := Ker(ωϕ|ut), denote it by nt. and let

lt := (ut ∩ gZ<0) + nt and rt := (ut ∩ gZ>0) + nt. (3.12)

We note that lt and rt are nilpotent subalgebras. The choice of notation for them comes
from ‘left’ and ‘right’.

Lemma 3.2.6. For any t ≥ 0 we have

(i) lt and rt are ideals in ut and [lt, rt] ⊆ lt ∩ rt = nt.
(ii) lt and rt are isotropic subspaces of ut, and the natural projections lt/nt → ut/r

⊥
t and

rt/nt → ut/l
⊥
t are isomorphisms. Furthermore, lt = gHt1 ∩ gZ<0 ⊕ nt.

(iii) Suppose that 0 ≤ s < t, and all the elements of the interval (s, t) are regular. Then

vt ⊕ (wt ∩ gZ<0) = vs ⊕ (ws ∩ gZ>0) (3.13)

lt = rs + (wt ∩ gϕ) and rs ∩ (wt ∩ gϕ) = w0 ∩ gZ0 ∩ gϕ. (3.14)

Moreover, rs is an ideal in lt and the quotient is commutative.

Proof. It is easy to see that vt is an ideal in ut with commutative quotient, and that
vt ⊆ lt ∩ rt = nt. This proves (i). For the first part of (ii), note that qt := (lt + rt)/nt is a
symplectic space in which the projections of lt and rt are complementary Lagrangians.

For the second part, we have by Lemma 3.2.5 that gHt1 ∩ gϕ ⊆ gZ≥0 and thus,

lt = vt ⊕ (wt ∩ gZ<0)⊕ (wt ∩ gϕ) . (3.15)

For part (iii) note that

vs = (vs ∩ gZ≥0)⊕ (vs ∩ gZ<0) , (3.16)

vt = (vt ∩ gZ<0)⊕ (vt ∩ gZ≥0) , (3.17)

vt ∩ gZ≥0 = (ws ∩ gZ>0)⊕ (vs ∩ gZ≥0) , (3.18)

vs ∩ gZ<0 = (wt ∩ gZ<0)⊕ (vt ∩ gZ<0) . (3.19)

This implies (3.13). By Lemma 3.2.5 we have

ns = vs ⊕ (gϕ ∩ws) ⊆ vs ⊕ (ws ∩ gZ≥0), (3.20)

and thus

rs = vs ⊕ (ws ∩ gZ>0)⊕ (w0 ∩ gZ0 ∩ gϕ) and rs ∩ (wt ∩ gϕ) = w0 ∩ gZ0 ∩ gϕ. (3.21)

Hence, (3.13) and (3.15) imply (3.14), and the rest is straightforward. �

Using Lemma 2.2.7, choose an sl2-triple (eϕ, h, fϕ) in gZ0 such that h commutes with H
and with Z, and ϕ is given by the Killing form pairing with f = fϕ. Let Lt := Exp(lt), Rt :=
Exp(rt). From Lemmas 3.2.6 and 3.1.1 we get
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Lemma 3.2.7. Let t ≥ s ≥ 0 and ϕ′ ∈ (g∗)Ht>−2∩(g∗)Hs>−2. Assume that there are no critical
values in (s, t). Then

(i) FHt,ϕ,ϕ′ , F
Lt
Ht,ϕ,ϕ′

, and FRtHt,ϕ,ϕ′ linearly determine each other. In particular,

FLtHt,ϕ,ϕ′ [η](g) =

∫
V

FRtHt,ϕ,ϕ′ [η](vg) dv , (3.22)

where v := (gHt≥1 ∩ gZ<0)/(gHt>1 ∩ gZ<0) and V = Exp(v(A)).

(ii) FHt,ϕ,ϕ′ is linearly determined by FHs,ϕ,ϕ′. Moreover, FHs,ϕ,ϕ′ is linearly determined
by the set

{FHt,ϕ,ϕ′+ψ′ | ψ′ ∈ (g∗)Ht−1 ∩ (g∗)eϕ ∩ (g∗)Z<0}.
(iii) Let ψ ∈ (g∗)Hs>−2 ∩ (g∗)Ht−2 Then FHs,ϕ,ψ+ϕ′ is linearly determined by the set

{FHt,ϕ+ψ,ϕ′+ψ′ | ψ′ ∈ (g∗)Ht−1}.

(iv) Let ψ ∈ (g∗)Hs−2 ∩ (g∗)Ht>−2 Then FHt,ϕ,ψ+ϕ′ is linearly determined by the set

{FHs,ϕ+ψ,ϕ′+ψ′ | ψ′ ∈ (g∗)Hs−1}.

Proof. Part (i) follows from Lemmas 3.1.1 and 3.2.6(ii), and Corollary 3.1.2.
For part (ii), note first that by Lemma 3.2.6, rs ⊆ lt with commutative quotient (wt ∩

gϕ)/(w0 ∩ gZ0 ∩ gϕ), and let B := [Lt/Rs] denote the corresponding compact commutative

group. Then FLtHt,ϕ,ϕ′ is obtained from FRsHs,ϕ,ϕ′ just by integration over B.

To obtain FRsHs,ϕ,ϕ′ we decompose it into Fourier series on B, similar to the proof of

Lemma 3.1.1. Characters of B are given by

((wt ∩ gϕ)/(w0 ∩ gZ0 ∩ gϕ))∗ ∼= (g∗)Ht−1 ∩ (g∗)eϕ ∩ (g∗)Z<0

and the Fourier series coefficient corresponding to each ψ′ in this space is FLtHt,ϕ,ϕ′+ψ′ .
For part (iii), note that vt is an ideal in lt with commutative quotient. Together with

(3.14) this implies that vt is an ideal in rs with commutative quotient. Denote V :=
Exp(vt(A)) and define a new coefficient I by

If (g) :=

∫
[V ]
χϕ+ψ+ϕ′(n)−1f(ng)dn.

Then I is linearly determined by the set

{FHt,ϕ+ψ,ϕ′+ψ′ |ψ′ ∈ (g∗)Ht−1}.

Finally, from (3.13) we see that FRsHs,ϕ,ψ+ϕ′ is obtained from I by integration.

Part (iv) is proven in a similar way. Namely, denote V ′ := Exp(vs) and define a new
coefficient J by

Jf (g) :=

∫
[V ′]

χϕ+ψ+ϕ′(n)−1f(ng)dn.

Then J is linearly determined by the set

{FHt,ϕ+ψ,ϕ′+ψ′ |ψ′ ∈ (g∗)Hs−1}.

On the other hand, from (3.14) we see that FLtHt,ϕ,ψ+ϕ′ is obtained from J by integration. �



20 D. GOUREVITCH, H. GUSTAFSSON, A. KLEINSCHMIDT, D. PERSSON, AND S. SAHI

Proposition 3.2.8. Let Ht = H + tZ as above, s ≥ 0 and let ϕ′ 6= 0 ∈ (g∗)Hs>−2 ∩ (g∗)eϕ ∩
(g∗)Z<0. Then FHs,ϕ,ϕ′ is linearly determined by the set

{FHt,Φ,Φ′ | t > s critical ,Φ ∈ (g∗)Ht−2,Φ
′ ∈ (g∗)Ht>−2 and ΓΦ > Γϕ}, (3.23)

where ΓΦ > Γϕ means strictly bigger by the order relation given in Definition 2.3.1.

Note that there are finitely many critical values t.

Proof. Since ϕ′ ∈ gZ<0 there exist t > s, ψ ∈ (g∗)Ht−2 and η ∈ (g∗)Ht>−2 such that ψ 6= 0 and
ϕ′ = ψ + η. Let t be the smallest such t, and since [Z, eϕ] = 0 we have that ψ, η ∈ (g∗)eϕ .

Let a0 := s, let a1, . . . , am−1 be the critical values between s and t and am := t. We
prove the statement by induction on m.

The base case is m = 1, i.e. there are no critical values between s and t. Then Lemma
3.2.7(iii) implies that FHs,ϕ,ϕ′ is linearly determined by the set

{FHt,ϕ+ψ,η+ψ′ |ψ′ ∈ (g∗)Ht−1}.

Denote Φ := ϕ+ψ. Note that Φ belongs to the Slodowy slice to Γϕ at ϕ since ψ ∈ (g∗)eϕ ,
and thus ΓΦ > Γϕ. For each ψ′ denote Φ′ := η + ψ′ and note that

FHt,ϕ+ψ,η+ψ′ = FHt,Φ,Φ′ .

The induction step easily follows from the base using Lemma 3.2.7(ii). �

Lemma 3.2.9 ([GGS, Lemma 4.2.4]). Let ψ ∈ (g∗)H−2∩(g∗)Z>0. Assume that ϕ+ψ ∈ G(C)ϕ.
Then ϕ+ ψ ∈ G(C)Hϕ.

3.3. Conjugations and translations.

Lemma 3.3.1. Let (S, ϕ, ψ) be a Whittaker triple, η an automorphic function and γ ∈ Γ.
Then,

FS,ϕ,ψ[η](g) = FAd(γ)S,Ad∗(γ)ϕ,Ad∗(γ)ψ[η](γg) . (3.24)

Proof. We have that χϕ+ψ(u) = χAd∗(γ)(ϕ+ψ)(Ad(γ)u). Indeed, the right-hand side equals

χ
((

Ad∗(γ)(ϕ+ ψ)
)
(Ad(γ)u)

)
= χ

(
(ϕ+ ψ)(Ad(γ−1) Ad(γ)u)

)
= χϕ+ψ(u) . (3.25)

We also have that g
Ad(γ)S
λ = Ad(γ)gSλ since, for x ∈ g, [Ad(γ)S,Ad(γ)x] = Ad(γ)[S, x].

Similarly, gAd∗(γ)ϕ = Ad(γ)gϕ and thus, nAd(γ)S,Ad∗(γ)ϕ = Ad(γ)nS,ϕ.
Hence, using the automorphic invariance of η, the right-hand side of (3.24) equals∫
[NAd(γ)S,Ad∗(γ)]

η(γ−1uγg)χAd∗(γ)(ϕ+ψ)(u)−1 du =

∫
[Ad(γ−1)NAd(γ)S,Ad∗(γ)]

η(u′g)χAd∗(γ)(ϕ+ψ)(Ad(γ)u′)−1 du′ .

By the arguments above, this equals FS,ϕ,ψ[η](g). �
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4. Proof of the main results

Proposition 4.0.1. Let (H,ϕ) and (S, ϕ) be Whittaker pairs such that (H,ϕ) dominates
(S, ϕ). Then FS,ϕ is linearly determined by FH,ϕ and dim nH,ϕ ≤ dim nS,ϕ.

Note that this is in the other direction compared to the statement of Theorem C and is
much easier to prove.

Proof. Let Z := S − H, and for any t ≥ 0 let Ht := H + tZ. Let t1, . . . , tk be all the
critical values of t between 0 and 1. Let t0 := 0 and tk+1 := 1. By Lemma 3.2.7(ii),
for any 0 ≤ i ≤ k, FHti ,ϕ linearly determines FHti+1 ,ϕ

. Since Ht0 = H and Htk+1
= S,

the first statement of the proposition follows. At all these critical values, the different
Fourier coefficients are related by either a root exchange as described in Corollary 3.1.2 for
which the dimension of the unipotent subgroup is unchanged, or by a further expansion
as in Lemma 3.1.1 for which the dimension is increasing (with t). This proves the second
statement of the proposition. �

It was shown in Corollary 3.2.2 that any Whittaker pair (S, ϕ) is dominated by a neutral
pair (h, ϕ).

Corollary 4.0.2. FS,ϕ is linearly determined by Fh,ϕ where (h, ϕ) is a neutral pair.

Let (H,ϕ) be a Whittaker pair. Using Lemma 2.2.7, decompose H = h+Z, where (h, ϕ)
is a neutral pair, and Z commutes with h and ϕ.

Definition 4.0.3. Denote by in(H,ϕ) the number

dim gh<1 ∩ gh+Z
≥1 + dim gh<2 ∩ gh+Z

≥2 . (4.1)

Note that this number is different from an analogous number in [GGS].

Let us now show that in(H,ϕ) depends only on (H,ϕ) and does not depend on the
decomposition H = h+ Z.

Lemma 4.0.4 ([GGS, Lemma 4.2.7]). Let h̃ ∈ gH be another neutral element for f . Then

there exists a nilpotent element X ∈ gH such that exp(ad(X))(h) = h̃.

Here, gH denotes the centralizer of H.

Corollary 4.0.5. The number in(H,ϕ) depends only on (H,ϕ) and not on h. In fact,
in(H,ϕ) depends only on (H,GH(C)ϕ).

Proof. If H = h̃+ Z̃ is another decomposition as above, then by Lemma 4.0.4, h̃ = Ad(γ)h

for some γ ∈ ΓH . Then Z̃ = Ad(γ)Z and

dim g
Ad(γ)h
<λ ∩ g

Ad(γ)(h+Z)
≥λ = dim gh<λ ∩ gh+Z

≥λ , (4.2)

which proves that in(H,ϕ) does not depend on the choice of h.
For the second statement, let ϕ′ = Ad∗(γ)ϕ, with γ ∈ ΓH . Since h is neutral to ϕ,

Ad(γ)h is neutral to ϕ′ and H = Ad(γ)h+ Ad(γ)Z where Ad(γ)Z commutes with Ad(γ)h
and Ad∗(γ)ϕ. By the same argument as above, in(H,Ad∗(γ)ϕ) = in(H,ϕ). �



22 D. GOUREVITCH, H. GUSTAFSSON, A. KLEINSCHMIDT, D. PERSSON, AND S. SAHI

Let C ⊆ Γ denote the centralizer of (h, ϕ). Let A denote a maximal split torus of C such
that its Lie algebra a includes Z, and let M denote the centralizer of a in G. Then M is
a Levi subgroup of G, m includes h, Z and ϕ, and ϕ is K-distinguished in m. Let z be a
rational semi-simple element of a that is generic in the sense that its centralizer is M .

Lemma 4.0.6. As an element of m, ϕ is K-distinguished.

Proof. Let l be the Lie algebra of a Levi subgroup of M defined over K such that ϕ ∈ l∗.
We have to show that L = M . By replacing L by its conjugate we can assume h ∈ l, and
that there exists a rational semi-simple element z′ ∈ m such that l is the centralizer of z′.
Then z′ commutes with h and ϕ and we have to show that z′ is central in m.

Indeed, z′ ∈ m ∩ c = a. Now, any X ∈ m commutes with z, and thus with any element
of a, since z is generic in a. Thus a lies in the center of m and thus z′ is central. �

Note that the eigenvalues of the adjoint action of any Lie algebra element are symmetric
around zero. Let N be a positive integer that is bigger than the ratio of the maximal
eigenvalue of ad(z) by the minimal positive eigenvalue of ad(Z). Let

Z ′ := NZ + z. (4.3)

From our choice of N we have

gZ
′

>0 = gZ>0 ⊕ (gZ0 ∩ gz>0) and gZ
′

0 = gz0 = m ⊆ gZ0 . (4.4)

That m ⊆ gZ0 follows from the fact that M is the centralizer of z which equals the
centralizer of a and a includes Z.

Lemma 4.0.7. For rational T > 0, (H,ϕ) dominates (H + TZ ′, ϕ), that is, H,ϕ and TZ ′

commute, and satisfy (1.8).

Proof. By construction H = h+Z, ϕ and Z commute, and since h, Z, ϕ ∈ m they commute
with z. Thus, Z ′ commutes with H and ϕ. Furthermore, gϕ ∩ gH≥1 ⊆ gh≤0 ∩ gH≥1 ⊆ gZ>0 ⊆
gZ
′

>0 = gTZ
′

>0 . �

Lemma 4.0.8. For a fixed λ ∈ Q, and a rational T > 0 large enough,

gH+TZ′

>1 = gH+TZ′

≥2 = gZ
′

>0 ⊕ (gZ
′

0 ∩ gH+TZ′

>1 ) = gZ
′

>0 ⊕mh
≥2 and gH+TZ′

λ = mH
λ = mh

λ. (4.5)

The Fourier coefficient FH+TZ′,ϕ is then Levi-distinguished.

Proof. For large enough T , we have that gH+TZ′

>1 ∩ gZ
′

<0 = {0} and gH+TZ′

>1 ∩ gZ
′

>0 = gZ
′

>0.

Thus gH+TZ′

>1 = gH+TZ′

>1 ∩
(
gZ
′

<0 ⊕ gZ
′

0 ⊕ gZ
′

>0

)
= gZ

′
>0 ⊕

(
gZ
′

0 ∩ g
H+TZ′

>1

)
. Since H = h+Z and

gZ
′

0 = m ⊆ gZ0 we have that gZ
′

0 ∩g
H+TZ′

>1 = gZ
′

0 ∩gh>1 and since h is neutral gh>1 = gh≥2. Now

gZ
′

0 = m and thus, gH+TZ′

>1 = gZ
′

>0⊕
(
gZ
′

0 ∩gh≥2

)
= gZ

′
>0⊕mh

≥2. Doing the same manipulations

for gH+TZ′

≥2 one ends up with the same result, proving the equality gH+TZ′

>1 = gH+TZ′

≥2 .

Now, for any fixed λ ∈ Q and a large enough T , we have that gH+TZ′

λ = gHλ ∩ gZ
′

0 =

gHλ ∩m = mH
λ . Again, since H = h+ Z and m ⊆ gZ0 , we get that mH

λ = mh
λ.

Since H + TZ ′ = h+Z + TZ ′, the semi-simple element denoted by Z in Definition 2.2.5
is here Z + TZ ′, which, for large enough T has the centralizer gZ0 ∩ gZ

′
0 = gZ

′
0 = m. By

Lemma 4.0.6, ϕ is K-distinguished in m. Since gZ>0 ⊆ gZ
′

>0 we have that gZ+TZ′

>0 = gZ
′

>0 and
thus (4.5) implies (2.11) which means that FH+TZ′,ϕ is Levi-distinguished. �
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Lemma 4.0.9. Let (H,ϕ, ϕ′) be a Whittaker triple such that the pair (H,ϕ) is either neutral
or Levi-distinguished. Then FH,ϕ,ϕ′ = FH,ϕ.

Proof. If (H,ϕ) is neutral set h := H. If (H,ϕ) is Levi-distinguished decompose H = h+Z
where (h, ϕ) is a neutral pair and Z commutes with it. In both cases we have gH>1 = gH≥2,

and gH1 ⊆ gh1 . Note that gϕ is spanned by lowest weight vectors and thus gϕ ⊆ gh≤0. Thus

gϕ ∩ gH1 = 0. By Lemma 3.2.5 this implies that nH,ϕ = gH>1 = gH≥2. Since ϕ′ ∈ (g∗)H>−2, it

vanishes on gH≥2 and thus Fh,ϕ,ϕ′ = Fh,ϕ. �

4.1. Proof of Theorem A. We will prove a more general theorem.

Theorem 4.1.1. Let η be an automorphic function on a reductive group G. Then, any
quasi-Fourier coefficient FS,ϕ,ϕ′ [η] is linearly determined by the Levi-distinguished Fourier
coefficients with characters in orbits which are equal or bigger than Gϕ.

In particular, if all non-PL coefficients of η vanish,

Proof. Choose h, Z, z, Z ′ as above and let Ht := H + tZ ′. Choose a large enough T from
Lemma 4.0.8. Recall that t ≥ 0 is quasi-critical if either gHt1 * gZ0 or gHt2 * gZ0 .

If there are no quasi-critical t ∈ (0, T ] then by Lemma 3.2.7(ii), FH,ϕ,ϕ′ is linearly

determined by the set of all FH+TZ′,ϕ,ϕ′+ψ with ψ ∈ (g∗)H+TZ′

−1 ∩ (g∗)e ∩ (g∗)Z
′

<0. By
Lemma 4.0.8, FH+TZ′,ϕ is Levi-distinguished, and thus, by Lemma 4.0.9, we have
FH+TZ′,ϕ,ϕ′+ψ = FH+TZ′,ϕ. Thus, FH,ϕ,ϕ′ is linearly determined by FH+TZ′,ϕ which is
Levi-distinguished.

Now assume that there are quasi-critical numbers in (0, T ] and let s be the smallest one.
Let Hs := H + sZ ′.

Since s is the first quasi-critical value we have that (g∗)H>−2 ⊆ (g∗)Hs≥−2 because this is

the first point where something new may enter the −2-eigenspace. Decompose ϕ′ = ψ+ϕ′′

where ψ ∈ (g∗)Hs−2 and ϕ′′ ∈ (g∗)Hs>−2. By Lemma 3.2.7(iii), FH,ϕ,ϕ′ is linearly determined by

{FHs,ϕ+ψ,ϕ′′+ψ′′ | ψ′′ ∈ (g∗)Hs−1}. (4.6)

Now, we repeat the procedure for each triple FHs,ϕ+ψ,ϕ′′+ψ′′ and so on. To see that the

algorithm terminates, note that ψ ∈ (g∗)Z
′

<0 and thus the orbit of ϕ + ψ is bigger than or
equal to the orbit of ϕ.

Suppose the orbits are the same. Then, by Corollary 4.0.5, in(Hs, ϕ+ ψ) = in(Hs, ϕ).

From (4.4) we see that gZ+sZ′

>0 ∩ gZ′0 = {0} and gZ+sZ′

>0 ∩ gZ′<0 = gZ+sZ′

>0 ∩ gZ′<0 ∩ gZ>0 = {0}
which means that gZ+sZ′

>0 ⊆ gZ
′

>0 and thus

gh<1 ∩ gh+Z
≥1 ⊆ gh<1 ∩ gh+Z+sZ′

≥1 and gh<2 ∩ gh+Z
≥2 ⊆ gh<2 ∩ gh+Z+sZ′

≥2 . (4.7)

Since s is quasi-critical, one of the inclusions in (4.7) is strict and thus in(Hs, ϕ) > in(H,ϕ).
Thus we get that either Γ(ϕ+ψ) > Γϕ or in(Hs, ϕ+ψ) > in(H,ϕ). Since both the orbit

dimensions and the indices are bounded by dim g, the algorithm eventually terminates.
Finally, by Lemma 2.2.9, the Levi distinguished Fourier coefficients of PL elements are

Whittaker coefficients. This proves the second part of the statement. �

Theorem A follows, since η = F0,0[η].
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4.2. Proof of Corollary B. Corollary B follows immediately from Theorem A and the
next lemma.

Lemma 4.2.1. Let η ∈ C∞(Γ\G), and assume that the constant term cU (η) :=
∫

[U ] η(u)du

vanishes for any U ⊂ G which is a unipotent radical of a proper parabolic subgroup. Let
FS,ϕ(η) be a non-vanishing Levi-distinguished Fourier coefficient. Then the orbit Γϕ ∈ g∗

is K-distinguished.

Proof. Recall that by Definition 2.2.5, there is a decomposition S = h+ Z such that (h, ϕ)
be a neutral Whittaker pair for l := gZ , the orbit of ϕ in l∗ is K-distinguished, and

gh+Z
>1 = gh+Z

≥2 = gZ>0 ⊕ lh≥2 and gh+Z
1 = lh1 . (4.8)

Let p := gZ≥0, P be the corresponding parabolic subgroup, and U be the unipotent radical

of P . By (4.8), FS,ϕ(η) = Fh,ϕ(cU (η)), where we view cU (η) as an element of C∞(Γ\G).
Since FS,ϕ(η) does not vanish, neither does cU (η) and thus P = G. Thus L = G and thus
the orbit Γϕ ∈ g∗ is K-distinguished. �

4.3. Proof of Theorem C.

Proposition 4.3.1. Let (H,ϕ, ϕ′) be a Whittaker triple and let η be an automorphic
function with FH,ϕ,ϕ′ [η] 6= 0. Then there exists O ∈WS(η) such that O ≥ Γϕ.

Proof. By Theorem 4.1.1, FH,ϕ,ϕ′ is linearly determined by Fourier coefficients
corresponding to orbits bigger than or equal to Γϕ. By Corollary 4.0.2, these are in turn
linearly determined by neutral Fourier coefficients corresponding to the same orbits. Since
FH,ϕ,ϕ′ [η] 6= 0, some of these neutral Fourier coefficients of η do not vanish. �

Let us now adapt the assumption and the notation of Theorem C. Let Z := S −H and
let Ht := H + tZ. Let 0 < t1 < · · · < tn < 1 be all the critical values between 0 and 1. Let
t0 := 0 and tn+1 := 1. Lastly, for each ti, let R := Rti and L := Lti be defined as in (3.12).

Lemma 4.3.2. We have FRHti ,ϕ[η] = FLHti+1 ,ϕ
[η].

Proof. Let f ∈ g be the unique nilpotent element such that ϕ is given by Killing form
pairing with f . Complete f to an sl2-triple (e, h, f) such that h commutes with S and H.

Denote Hj := Htj for any j, and c := (g∗)
Hi+1

−1 ∩ (g∗)e ∩ (g∗)Z<0. Arguing as in the proof of
Lemma 3.2.7(ii), we obtain

FRHi,ϕ[η] =
∑
ϕ′∈c
FLHi+1,ϕ,ϕ′ [η].

We have to show that for any non-zero ϕ′ ∈ c, we have FLHi+1,ϕ,ϕ′
[η] = 0. This follows from

Lemma 3.1.1, Proposition 3.2.8, Proposition 4.3.1, and the condition that Γϕ ∈WS(η). �

Proof of Theorem C. With the notation introduced above, let

vi := (g
Hti
≥1 ∩ gZ<0)/(g

Hti
>1 ∩ gZ<0) and Vi = Exp(vi) . (4.9)
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By Lemma 3.1.1 we have

FLHti ,ϕ[η](g) =

∫
Vi

FRHti ,ϕ[η](vig) dvi . (4.10)

Using Lemma 4.3.2 we obtain

FRH,ϕ[η](g) =

∫
V1

. . .

∫
Vn−1

∫
Vn

FLS,ϕ[η](vn . . . v0g)dv . (4.11)

Since v =
⊕n

i=1(g
Hti
1 ∩ gZ<0), and as a commutative Lie algebra g

Hti
1 ∩ gZ<0 is naturally

isomorphic to vi, the group V is glued from Vi. Thus∫
V1

. . .

∫
Vn−1

∫
Vn

FLS,ϕ[η](vn . . . v0g)dv =

∫
V

FLS,ϕ[η](vg) dv . (4.12)

To prove part (i) note from (3.12) that if gH1 = gS1 = 0 then FH,ϕ = FRH,ϕ and FS,ϕ = FLS,ϕ,

and thus part (i) follows from (4.11) and (4.12).
For part (ii), note that u and w as defined in the statement are given by

u = (gS≥1 ∩ gZ<0)/(gS>1 ∩ gZ<0) and w = (gH≥1 ∩ gZ<0)/(gH>1 ∩ gZ<0).

Thus Lemmas 3.1.1 and 3.2.6 imply

FLS,ϕ[η](g) =

∫
[U ]

FS,ϕ[η](ug)du, and FH,ϕ[η](g) =
∑
w∈Ω

FRH,ϕ[η](wg) . (4.13)

Applying (4.11), (4.12), and (4.13) to shifts of η we obtain

FH,ϕ[η](g) =
∑
w∈Ω

FRH,ϕ[η](wg) =
∑
w∈Ω

∫
V

FLS,ϕ[η](vwg)dv

=
∑
w∈Ω

∫
V

∫
[U ]

FS,ϕ[η](uvwg)dudv . (4.14)

�

5. Applications and examples

In this section we will illustrate how to apply the framework introduced in this paper to
compute certain Fourier coefficients in detail. We begin in §5.1 to consider the case when
G is split and simply-laced and P ⊂ G is a parabolic subgroup with unipotent radical U
isomorphic to a Heisenberg group. We use the technique of this paper in order to express
any automorphic function on G in terms of its Fourier coefficients with respect to U . In
§5.2 we then give an example of a Whittaker triple and a quasi-Fourier coefficient for the
group G = SL4. In §5.3 we demonstrate the statement and the proof of Theorem A for
G = GLn. In §5.4 we demonstrate Theorem A and Corollary B for G = Sp4.

As many examples below are built on classical groups, we shall use matrix notation and
denote by eij the elementary matrix with a 1 at position (i, j) and zeroes elsewhere.
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5.1. Fourier expansions along Heisenberg parabolics. Let G be split and simply-
laced, and let h ⊂ g be the Lie algebra of a maximal split torus. Fix a choice of positive
roots. For any simple root α define Sα ∈ h by α(Sα) := 2 and β(Sα) = 0 for any other
simple root β.

Definition 5.1.1. We say that a simple root α is a Heisenberg root if gSα>0 is a Heisenberg

Lie algebra, or, equivalently, if gSα4 has dimension one.

Lemma 5.1.2. If g is simple of type An, there are no Heisenberg roots. If g is simple of
type Dn or En then there exists a unique Heisenberg root, and this is the unique simple root
satisfying 〈α, αmax〉 = 1, where αmax denotes the highest root.

Proof. Let g be simple and let α be a Heisenberg root. Then gSα4 has to be the highest

weight space of the adjoint representation, i.e. the root space of αmax. Since gSα4 is one-
dimensional, αmax − β is not a root for any simple root β 6= α. Thus αmax − α is a root,
and thus 〈α, αmax〉 = 1. The roots α with this property are precisely the nodes in the affine
Dynkin diagram, that are connected to the affine node (corresponding to −αmax).

Checking the affine Dynkin diagrams (see [Bou68, Tables IV-VII]), we see that there is
a unique simple root α with this property in types Dn and En, and these roots are indeed
Heisenberg. In the Bourbaki notation, these roots are α2 for Dn and E6, α1 for E7 and α8

for E8. In type An there are two roots with this property but none of them is Heisenberg.

In fact, g
Sβ
>0 is abelian for any simple root β in type An. This is so, since in type An, αmax

is the sum of all simple roots (with all coefficients being 1). �

Notation 5.1.3. Let α be a root. Define hα := α∨ ∈ h by requiring for all roots β

β(hα) = 2
〈α, β〉
〈α, α〉

= 〈α, β〉 . (5.1)

Denote also by g×−α the set of non-zero covectors in the dual root space g∗−α.

Note that for β 6= ±α, β(hα) ∈ {−1, 0, 1}. By [Hum78, Proposition II.8.3], (hα, ϕ) is a
neutral pair for any ϕ ∈ g×−α.

Notation 5.1.4. For any Heisenberg root α, let Ωα ⊂ Γ be the abelian subgroup obtained
by exponentiation of the abelian Lie algebra given by the direct sum of the root spaces of
negative roots β satisfying 〈α, β〉 = 1. Let

Ψα := { root ε | 〈ε, α〉 ≤ 0, ε(Sα) = 2}. (5.2)

Note that all the roots in Ψα have to be positive.
In this subsection we use our technique to deduce the following proposition, that will be

used in the sequel paper [GGK+19].

Proposition 5.1.5. Let α be a Heisenberg root. Let γα ∈ Γ be a representative of a
Weyl group element that conjugates α to αmax, where αmax denotes the maximal root of the
component of g corresponding to α. Then we have

η(g) =
∑

ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) +
∑
ϕ∈g×−α

∑
ω∈Ωα

∑
ψ∈

⊕
ε∈Ψα

g∗−ε

FSα,ϕ+ψ[η](ωγαg) . (5.3)
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For the proof we will need the following lemma.

Lemma 5.1.6. Let α be a Heisenberg root. Then for any ϕ ∈ g×−α we have

Fhα,ϕ[η](g) =
∑
ω∈Ωα

∑
ψ∈

⊕
ε∈Ψα

g∗−ε

FSα,ϕ+ψ[η](ωg) . (5.4)

Proof. Consider the deformation (1− t)hα + tSα. By Lemma 3.1.1, we have

Fhα,ϕ[η](g) =
∑
ω∈Ωα

FR0
hα,ϕ

[η](ωg) . (5.5)

Then, the critical values are 1/2 and 2/3, and the quasi-critical values are 1/3 and 1. At
1/3, we have no Whittaker triple entries yet and thus nothing moves into the −2-eigenspace.
At 1/2, we get contributions in the third component of the Whittaker triple from the root
spaces of all the roots ε with 〈ε, α〉 = 0 and ε(Sα) = −2. At t = 2/3 we also get all the
negative roots with 〈ε, α〉 = 1 and ε(Sα) = −2. This means that we would get contributions
from all these root spaces in the third component of the Whittaker triple. At t = 1 the
Whittaker triple becomes a Whittaker pair and thus we obtain

Fhα,ϕ[η](g) =
∑
ω∈Ωα

FR0
hα,ϕ

[η](ωg) =
∑
ω∈Ωα

∑
ψ∈

⊕
ε∈Ψα

g∗−ε

FSα,ϕ+ψ[η](ωg) . (5.6)

�

Proof of Proposition 5.1.5. By the conditions, the Lie algebra gSα>0 is a Heisenberg Lie

algebra, with center gSα4 , and abelian quotient gSα2 . We restrict η to the exponential of
the center and decompose to Fourier series. The constant term with respect to the center

gSα4 is FSα/3,0[η], and the other terms are FSα/2,ϕ[η] for ϕ 6= 0 ∈ (g∗)Sα−4 = (g∗)
Sα/2
−2 . We

remark that this constant term can be denoted FcSα,0[η] for any 1/4 ≤ c < 1/2 but not for

c = 1/2 since 0 defines a zero form on the 1-eigenspace, and thus ncSα,0 = gcSα≥1 = gSα≥c−1 and

nSα/2,0 = gSα≥2. Note also that (g∗)
Sα/2
−2 = g×−αmax

. Altogether we have

η(g) = FSα/3,0[η](g) +
∑

ϕ∈g×−αmax

FSα/2,ϕ[η](g) . (5.7)

Note that γα conjugates Sα/2 to hα. Thus, by Lemma 3.3.1, we have

FSα/2,ϕ[η](g) = Fhα,Ad∗(γα)ϕ[η](γαg)

and ∑
ϕ∈g×−αmax

FSα/2,ϕ[η](g) =
∑
ϕ∈g×−α

Fhα,ϕ[η](γαg) . (5.8)

We restrict the constant term of (5.7) to the abelian quotient of Exp(gSα>0), decompose
to Fourier series and obtain

FSα/3,0[η](g) =
∑

ϕ∈(g∗)Sα−2

FSα,ϕ[η](g) . (5.9)

Formula (5.3) follows now from (5.7), (5.8), (5.4) and (5.9). �
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Remark 5.1.7. Here we elaborate a little on the structure of the Fourier expansion (5.3)
and comment on the relation to previous works on Heisenberg expansions. The semisimple
element Sα defines a Heisenberg parabolic subgroup Pα ⊂ G with Levi decomposition
Pα = LU . The Lie algebra pα ⊂ g of Pα exhibiting the following grading

pα = g0 ⊕ g1 ⊕ g2, (5.10)

where the subscripts indicate the values of the inner products 〈·, αmax〉. Thus g1 is spanned
by all roots ε such that 〈ε, αmax〉 = 1. Equivalently, these are all roots ε such that αmax− ε
is also a root. Notice that all roots in g1 are positive and the only simple root satisfying
the condition 〈ε, αmax〉 = 1 is α itself. Since only ε = αmax satisfies 〈ε, αmax〉 = 2 the
space g2 is one-dimensional, spanned by Eαmax . The zeroth subspace g0 is the Lie algebra
of the Levi L ⊂ P . The subspace g1 ⊕ g2 is thus the Heisenberg nilpotent subalgebra with
center g2. Notice that

∑
γ∈Ψα

gγ is a Lagrangian subspace of g1. Indeed, g1 has a canonical
Lagrangian decomposition

g1 =
∑
γ∈Ψα

gγ ⊕
∑
γ∈Ψ⊥α

gγ , (5.11)

where Ψ⊥α is the orthogonal complement

Ψ⊥α = { root ε | 〈ε, α〉 ≥ 1, 〈ε, αmax〉 = 1}. (5.12)

Note that the root α belongs to Ψ⊥α . The Fourier expansion (5.3) thus corresponds to the
standard non-abelian Fourier expansion along the Heisenberg unipotent U , which exhibits
a sum over the center g2 along with a sum over a Lagrangian subspace Ψα of g1. The choice
of Lagrangian decomposition is usually referred to as a choice of “polarization”. Similar
kinds of expansions have been treated in several places in the literature; see [KS90, KPW02,
PP09, BKN+10, FGKP18] for a sample. In the notation of the original paper by Kazhdan
and Savin [KS90], the space Ψα corresponds to Π∗o while Ψ⊥α corresponds to Πo.

5.2. Whittaker triples. We will now illustrate what type of quasi-Fourier coefficients we
are able to describe using Whittaker triples that are not captured by Whittaker pairs in an
example for G = SL4.

Let (S, ϕ, ψ) be the Whittaker triple with S = 1
3 diag(3, 1,−1,−3), ϕ = e41 and ψ =

me31 + ne42, where m,n ∈ K and eij denote elementary matrices. The S-eigenvalues for
the different elementary matrices can be illustrated by the following matrix 0 2/3 4/3 2

−2/3 0 2/3 4/3
−4/3 −2/3 0 2/3
−2 −4/3 −2/3 0

 , (5.13)

from which we may read out that ϕ has eigenvalue −2 while ψ has eigenvalue −4/3.
As seen from this matrix we get the following unipotent subgroup (independent of ψ)

NS,ϕ =

{(
1 0 x2 x1

1 0 x3
1 0

1

)
: x1, x2, x3 ∈ A

}
, (5.14)
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and the corresponding Fourier coefficient of an automorphic function η can be expressed as

FS,ϕ,ψ[η](g) =

∫
(K\A)3

η
(( 1 0 x2 x1

1 0 x3
1 0

1

)
g
)
χ(x1 +mx2 + nx3)−1 d3x , (5.15)

where we recall that χ is a fixed non-trivial character on A trivial on K.
From this example we see that we require Whittaker triples in addition to Whittaker pairs

if we want to construct Fourier coefficients with characters that are not only supported on
x1 but also on x2 and x3.

5.3. The case of GLn. Let G := GLn, G := GLn(A), and Γ := GLn(K). In this section
we will follow the proof of Theorem A to present any automorphic function η ∈ C∞(Γ\G)
as a countable linear combination of its Whittaker coefficients. We will show that our proof
amounts in this case morally to the same decomposition as in [PS79, Sha74].

In [PS79, Sha74], η is first restricted to the mirabolic nilradical, i.e.

U =

{(
Idn−1 ∗

0 1

)}
,

and decomposed into Fourier series with respect to U . Our algorithm does the same thing,
but in several steps. First let (h, ϕ) = (0, 0). Let N � 0,

z1 := diag(0,−1,−N, . . . ,−Nn−3,−Nn−2),

and consider the deformation St := tz1. Under this deformation, the first thing that happens
is that the highest root space (spanned by e1n) enters gSt1 . At this point η decomposes into

a sum of quasi-Whittaker coefficients. At the next step e1n enters gSt2 , and the quasi-
Whittaker coefficients become Whittaker coefficients. For the constant term, we continue
with the same deformation, until e2n enters. For the non-constant term we have to change
the deformation into something that will commute with ϕ. The ϕ can be identified with
aen1 under the trace form, for some a ∈ K×. We take the deformation by

z2 := diag(−Nn−2,−1,−N, . . . ,−Nn−4,−Nn−3,−Nn−2),

and continue in the same way. Eventually, all of U enters and all possible characters
(including the trivial one) appear.

Let us now analyze the summands. The constant term is Ftz1,0 for t = 2/(Nn−2−Nn−3),
and we can continue the deformation along z1. Any non-trivial character of U can be
conjugated using GLn−1 (embedded into the upper left corner) to the one given by en,n−1.
We can now choose the deformation

z3 := diag(−1,−N, . . . ,−Nn−4,−Nn−3,−Nn−3).

In the same way as above, it will give a decomposition of Ftz1,0 into Fourier series with
respect to the column n− 1, i.e.

U ′ =


 Idn−2 ∗ 0

0 1 0
0 0 1

 .
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Continuing in this way we obtain

η(g) =
∑

x∈2[n−1]

∑
γ∈Γx

FS,ϕx [η](γg), (5.16)

where [n − 1] denotes the set {1, . . . , n − 1}, 2[n−1] denotes the set of all its subsets, S =

diag(n − 1, n − 3, . . . , 3 − n, 1 − n), and for any x ∈ 2[n−1], ψx :=
∑

i∈x ei+1,i and Γx is a
certain subset of Γ.

For cuspidal η and x 6= [n − 1], we have FS,ϕx [η] = 0 and (5.16) becomes the formula
in [PS79, Sha74]. If η is minimal then FS,ϕx [η] = 0 for |x| > 1 and if η is next-to-minimal
then FS,ϕx [η] = 0 for |x| > 2. These cases were computed in [AGK+18], motivated by
applications in string theory.

5.4. Examples for Sp4. Let G := Sp4(A), Γ := Sp4(K) and let η ∈ C∞(Γ\G). In this
section we express η in terms of its Levi-distinguished Fourier coefficients, providing an
example for Theorem A. Let g := Lie(Γ), realized in gl4 by the 2× 2 block matrices(

A B = Bt

C = Ct −At
)
. (5.17)

Let n ⊂ g be the maximal unipotent subalgebra spanned by the matrices e12 −
e43, e13, e24, e14 +e23 and let N := Exp(n(A)). For any a, b ∈ K denote by χa,b the character
of n given by χa,b(e12 − e43) = a and χa,b(e24) = b, and let Wa,b denote the corresponding
Whittaker coefficient. Let u ⊂ n be the Siegel nilradical, i.e. the normal commutative
subalgebra spanned by the matrices e13, e24, e14 +e23 and let U := Exp(u(A)). Let L denote
the Siegel Levi subgroup of Γ given by diag(g, (gt)−1), where g ∈ GL2(A). Using the trace
form on g, we can identify u∗ with the nilradical ū of the opposite parabolic, i.e. with the
space of matrices of the form (5.17) with A = B = 0. Note that ū ∼= Sym2(K2), and L acts
on it by the standard action on symmetric forms. For any ϕ ∈ u∗ ∼= ū ∼= Sym2(K2), denote
by Fu,ϕ the corresponding parabolic Fourier coefficient.

Since U is abelian, the Fourier decomposition on it gives

η =
∑
ϕ∈u∗
Fu,ϕ[η] . (5.18)

We now decompose this sum into three different terms, by the rank of ϕ, viewed as a
quadratic form. Let us first analyze the constant term Fu,0[η]. We restrict it to L, and
decompose to Fourier series on the abelian group N ∩ L. We obtain

Fu,0[η] =
∑
a∈K
Wa,0[η] . (5.19)

Next, any ϕ of rank one is conjugate under L to ϕ1 := ( 1 0
0 0 ). This ϕ1 is normalized by

N , and thus we can again decompose Fu,ϕ[η] on N ∩ L. We obtain

Fu,ϕ1 [η] =
∑
a∈K
Wa,1[η] . (5.20)

The non-degenerate forms (i.e. those of rank two) can be divided into two subsets:
split and non-split. All the split ones are conjugate under L to ϕ2 := ( 0 1

1 0 ). Let w ∈ Γ
denote a representative for the Weyl group element given by the simple reflection with
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respect to the long simple root α2 = 2ε2, e.g. w = diag(1, 1, 1,−1)σ24, where σ24 is the
permutation matrix on indices 2 and 4. Then uw = Span(e12 − e43, e13, e42), and ϕw2 equals
the restriction to uw of χ1,0. Using Corollary 3.1.2, we can express Fuw,χ1,0 through Fu′,χ1,0 ,
where u′ = Span(e12 − e43, e13, e24) ⊂ n. The integration will be over elements matrices
of the form vx := Id +xe24 ∈ G. Using Fourier expansion by the remaining coordinate of
e14 + e23 ∈ n, we obtain

Fu,ϕ[η](g) =

∫
x∈A

W1,a[η](vxwg). (5.21)

Finally, let X ⊂ ū ∼= u∗ denote the set of anisotropic non-degenerate forms. For ϕ ∈ X,
we have no expression of Fu,ϕ[η] in terms of Whittaker coefficients. However, any ϕ ∈ X is
K-distinguished. Indeed, let h := Id ∈ l. Then (h, ϕ) is a neutral pair, and its centralizer is
anisotropic. By Lemma 4.0.6 applied to (h, ϕ) and Z := 0, ϕ is K-distinguished.

Combining (5.18)–(5.21) we obtain the following theorem, that exemplifies Theorem A.

Theorem 5.4.1. For any η ∈ C∞(Γ\G) and g ∈ G, η(g) equals∑
ϕ∈X
Fu,ϕ[η](g) +

∑
a∈K

( ∑
γ∈L/O(1,1)

∫
x∈A

W1,a[η](vxwγg) +
∑

γ∈L/(N∩L)

Wa,1[η](γg) +Wa,0[η](g)

)
,

where O(1, 1) ⊂ L denotes the stabilizer of the split form ϕ2.

If η is cuspidal thenW0,a[η] =Wa,0[η] = 0. If η is non-generic η, thenW1,a[η] =Wa,1[η] =
0, unless a = 0. Thus Theorem 5.4.1 implies the following corollary.

Corollary 5.4.2. Let η ∈ C∞(Γ\G) and g ∈ G.

(i) If η is cuspidal then

η(g) =
∑
ϕ∈X
Fu,ϕ[η](g) +

∑
a∈K×

( ∑
γ∈L/O(1,1)

∫
x∈A

W1,a[η](vxwγg) +
∑

γ∈L/(N∩L)

Wa,1[η](γg)

)
.

(ii) If η is non-generic then

η(g) =
∑
ϕ∈X
Fu,ϕ[η](g) +

∑
γ∈L/O(1,1)

∫
x∈A

W1,0[η](vxwγg) +
∑

γ∈L/(N∩L)

W0,1[η](γg) +
∑
a∈K
Wa,0[η](g) .

(iii) If η is cuspidal and non-generic then η =
∑

ϕ∈X Fu,ϕ[η].

Corollary 5.4.2(i) is an explicit example for Corollary B.

Appendix A. On PL-orbits

A complex orbit is a PL-orbit if and only if its Bala-Carter label has no parenthesis. In
particular, all complex minimal and next-to-minimal orbits are PL. The classification of
PL orbits of complex classical groups in terms of the corresponding partitions is given in
[GS15, §6].

The classification of rational PL-orbits is a more complicated task. In this subsection we
discuss the PL property for small K-rational orbits of simple split groups. A complex orbit
OC may include several or even infinitely many rational orbits. If OC is non-PL then all
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its rational orbits are non-PL. If OC is PL then it includes at least one rational PL-orbit,
but can also include non-PL rational orbits. In type An, all rational orbits are PL. Let us
now describe the PL properties of minimal and next-to-minimal orbits. Here, minimal and
next-to-minimal refers to the closure order on the complex orbits, which might be coarser
than the order defined in Definition 2.3.1.

All minimal rational orbits are PL. Indeed, for classical groups it is easy to establish
the Levi in which they are principal: for SOn+1,n it is SO2,1×(GL1)n−1, for Sp2n it is
Sp2×(GL1)n−1 and for SOn,n it is SO2,2×(GL1)n−2. For exceptional groups, the rational
minimal orbit is unique and thus PL. This uniqueness was explained to us by Joseph
Hundley. Let us now deal with the next-to-minimal orbits.

Lemma A.1. All next-to-minimal rational orbits for SOn,n and SOn+1,n are PL.

Proof. One can give a the classification of the rational orbits in the spirit of the classification
of real orbits given in [CM93, §9.3]. Namely, a K-rational orbit with a given partition is
defined by a collection of quadratic forms Q2i+1 on multiplicity spaces of the odd parts. If
we add a hyperbolic form to the direct sum of these forms we get the initial form, which is
also hyperbolic. Here, a hyperbolic form is a direct multiple of the 2-dimensional quadratic
form given by H(x, y) = xy. By Witt’s cancelation theorem this implies that the direct
sum of the forms on multiplicity spaces of the odd parts is hyperbolic.

An orbit for SOn,n is PL if and only if all Q2i+1 are hyperbolic, except Q2j+1 for a single
index j ≥ 1, which is a direct sum of a hyperbolic form and a one-dimensional quadratic
form. For SOn,n there are two next-to-minimal partitions. One of them is 2412n−8. For it,
Q1 has to be hyperbolic. The other next-to-minimal partition is 312n−3. Thus Q3 is one-
dimensional. Now, note that Hn = Q3⊕−Q3⊕Hn−1. Thus, Q3⊕Q1 = Q3⊕−Q3⊕Hn−1

and thus Q1 = (−Q3) ⊕ Hn−1, i.e. Q1 is a direct sum of a hyperbolic form and a one-
dimensional quadratic form.

Similarly, it is easy to see that the next-to-minimal orbits for SOn+1,n are principal in
Levis isomorphic to (GL2)2 × (GL1)n−4 or SO2,1×(GL1)n−1. �

However, Sp2n(K) has infinitely many rational next-to-minimal orbits, already for n = 2.
Moreover, by [Ike01] there exist cuspidal next-to-minimal representations of Sp4(A). Note
that cuspidal non-generic automorphic forms cannot be determined by their Whittaker
coefficients, since the latter coefficients have to vanish on such forms. See [Gin06, §4] for a
discussion of cuspidal representations, in particular those of Sp4(A).

As for the exceptional groups, Joseph Hundley showed that the next-to-minimal orbit is
unique, and thus PL, for E6, E7, E8 and G2 [Hun].

The group F4 has infinitely many rational next-to-minimal orbits. We expect that
infinitely many of them are not PL.

Appendix B. Some geometric lemmas

Lemma B.1. Let Z ∈ g be rational semi-simple, let ϕ ∈ gZ0 and ϕ′ ∈ gZ>0. Assume that ϕ

is conjugate to ϕ + ϕ′ by G(C). Then there exist X ∈ gZ>0 such that ad∗(X)(ϕ) = ϕ′ and

v ∈ Exp(gZ>0) such that Ad∗(v)(ϕ) = ϕ+ ϕ′.
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Proof. Decompose ϕ′ =
∑k

i=1 ϕ
′
i where ϕ′i ∈ (g∗)Zλi and λ1 < λ2 < · · · < λk ∈ Q>0 are all

the positive eigenvalues of Z.
Let us first construct X. For any t ∈ R, we have the following identity in g∗(C):

Ad∗(exp(tZ))(ϕ+ ϕ′) = ϕ+

k∑
i=1

Ad∗(exp(tλi))ϕ
′
i . (B.1)

Thus, ϕ +
∑

i Ad∗(exp(tλi))ϕ
′
i ∈ G(C)ϕ. Differentiating by t at 0 we obtain that

∑
i λiϕ

′
i

lies in the tangent space to the orbit G(C)ϕ at ϕ. This tangent space is the image of ϕ under
the coadjoint action. Thus there exists YC ∈ g(C) with ad∗(Y )(ϕ) =

∑
i λiϕ

′
i. Since both ϕ

and
∑

i λiϕ
′
i lie in the K-points g∗, there exists Y ∈ g with the same property. Decompose

Y = Y ′ +
∑

i Yi with Yi ∈ gZλi . Since ϕ commutes with Z, we obtain ad∗(Yi)(ϕ) = λiϕ
′
i.

Now we take X :=
∑

i λ
−1
i Yi ∈ gZ>0.

We now prove the existence of v by descending induction on the maximal index i such
that ϕ′ ∈ gZ>λi . The base case i = k has ϕ′ = 0. For the induction step, let i < k such

that ϕ′ ∈ gZ>λi . Then Ad∗(exp(−X))(ϕ+ ϕ′) = ϕ+ ψ, where ψ ∈ gZ>λi+1
. By the induction

hypothesis, ϕ+ ψ ∈ Ad∗(Exp(gZ>0))ϕ. �

Corollary B.2. The relation R of Definition 2.3.1 is indeed an order relation.

Proof. We have to show that if (O,O′) ∈ R then (O′,O) /∈ R. Suppose the contrary. Then
by Lemma 2.3.2 the complexifications O′C and OC coincide. Moreover, because of the above

assumption there exist a rational semi-simple Z ∈ g, ϕ ∈ O ∩ gZ0 , and ψ ∈ gZ>0 such that
ϕ+ ψ ∈ OC, but ϕ+ ψ /∈ O. This contradicts Lemma B.1. �

For future applications, we will need the following generalization of Lemma B.1.

Lemma B.3. Let Z, S ∈ g be commuting rational semi-simple elements, let q ∈ Q and let
ϕ ∈ gZ0 ∩ gSq and ϕ′ ∈ gZ>0 ∩ gSq . Assume that ϕ is conjugate to ϕ + ϕ′ by G(C). Then

there exist X ∈ gZ>0 ∩ gS0 such that ad∗(X)(ϕ) = ϕ′ and v ∈ Exp(gZ>0 ∩ gS0 ) such that
Ad∗(v)(ϕ) = ϕ+ ϕ′.

Proof. To construct X we proceed in the same way as in the proof of Lemma B.1, and
then decompose it with respect to eigenspaces of S and take projection on the 0 eigenspace.
Then we construct v in the same way as in the proof of Lemma B.1. �
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