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1 Introduction

Quantum description of chaos has three important properties boundedness, exponential

sensitivity and infinite recurrence. In the context of the study of dynamical systems the

concept of quantum chaos describes quantum signatures of classically chaotic systems.

Quantum chaos [1] can be formulated for two observable represented by hermitian operators

X(t) and Y (t) using their commutator relation. This actually explains the perturbation

effect of one operator Y (t) on the measurement of other operator X(t). Strength of this

perturbation can be measured by formulating a time dependent function, defined by the

following expression:

C(t) = − 1

Z
Tr[e−βH [X(t), Y (0)]2] (1.1)

at temperature β = 1/T and T is the temperature of the system under consideration. Also

the partition function of the system is defined as:

Z = Tr
[
e−βH

]
, (1.2)

where H representing the system Hamiltonian under consideration. Here we specifically

assume that X and Y have zero one point function at finite temperature i.e.

〈X(t)〉 =
1

Z
Tr
[
e−βHX(t)

]
= 0, (1.3)

〈Y (t)〉 =
1

Z
Tr
[
e−βHY (t)

]
= 0, (1.4)
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where by the parenthesis symbol 〈· · · 〉 we represent the thermal average or expectation of

a physical observable associated with the physical system under consideration. For this

specific reason we use thermal two point function for measuring quantum chaos, which

technically has been explained by the late time behaviour of the time dependent function

C(t), from which we can derive a generic bound on quantum chaos.

Another important observation is that, instead of using the commutator bracket of

two quantum mechanical operators we actually use the square of the commutator bracket

in the definition of observable C(t), which represents the out-of-time-ordered correlation

function in the present context. To know about the actual physical reason of this fact

let us assume for the time being that we replace the commutator bracket by the Poisson

bracket by considering the semi-classical approximation. In this situation the Poisson

bracket shows an exponential growth with respect to time, eλt, where λ represents the

Lyapunov exponent which quantifies chaos. Now if we take the thermal average over the

previously mentioned commutator bracket representing two point function then both the

contributions are cancelled in the semi-classical approximation and will not contribute to

quantify quantum chaos. On the other hand, from the quantum perspective, the two point

thermal averaged function, captures the effect of correlation between the two quantum

Hermitian operators, which decay with respect to time in the large time limit and cannot

characterise the chaotic behaviour at all. Instead of that if we consider the square of the

commutator bracket which actually represents the four point function after transforming it

to the Poisson bracket in the semi-classical limiting approximation it is perfectly consistent

with the signature of the co-efficient as it takes only positive value, which implies no

cancellation at all. After taking thermal average we get non trivial contribution using

which one can quantify quantum chaos. In the same way, in the quantum picture the

four point thermal averaged function, not decays exponentially with respect to time at the

leading order approximation in the large time limiting region.

It has been previously shown that due to quantum effects two point function for chaos

decrease to a particular constant value. In this connection, Lyapunov Exponent, λL, mea-

sure this effect and it entirely depends on system properties and the detail of the observable.

For specific quench system it has been shown that Lyapunov exponent decay exponentially

to a certain value. Thus a bound on Lyapunov Exponent can be treated as measure of

quantum chaos. Using quantum field theory it has been shown that an universal bound [2]

on the Lyapunov exponent exists:

λL ≤
2π

β
. (1.5)

This bound is unique feature for all classes of out of equilibrium quantum field theory set up.

In this article, we have also discussed similarly the saturation of chaos bound at late time

scale using Random matrix theory (RMT) with Gaussian Unitray Ensemble (GUE) where

the system under consideration has the unitary invarience. Additionally for completeness

we have also discussed about the quantum chatoic behaviour in the early time scale as well.

The asymptotic behaviour from both early and late time scales helps us to know about

the complete chaotic behaviour of RMT with GUE. These class of system was previously

discussed in the context of the quantization of classical chaotic systems, usually in the semi-
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classical or high quantum-number regimes. For this discussion, we construct Spectral From

Factor (SFF) [3] from the mentioned GUE class of RMT, which is arising from two point

thermal out-of- time-orderd correlation (OTOC) function in RMT.1 This two point OTOC

has been used to derive an alternative bound on quantum chaos.2 This gives us an extra

freedom and strong motivation to generalize our discussion for any quantum mechanical

system with random interaction. This interaction has been included by a polynomial

potential function of any general order.3 By studying the late time behaviour of SFF

from RMT we get its upper bound. Also it is important to note that, this approach of

finding bound on SFF (or two point OTOC) to quantify quantum chaos is itself unique as

it is valid for any arbitrary (infinite and finite) temperature of the quantum system under

consideration. We also obtained a lower bound for SFF which depicts the minimal chaos

a quantum system can have within the framework of GUE inspired RMT. For arbitrary

random interaction where the specific mathematical structure of the interaction potential

is unknown we can get a eigen value distribution from RMT with GUE. For simplicity the

arbitrary random interaction potential can be expressed in terms of a general polynomial

of different order. From this specific eigen value distribution one can explicitly compute

the expression for the thermal partition function Z in the present context of discussion.

For our computation of SFF (or two point thermal OTOC) and make further prediction for

the chaotic behaviour of the quantum system under consideration from RMT we have used

any arbitrary order of polynomial potential which characterise the random interaction.

Quantifying quantum aspects of chaos through SFF using the principles of RMT is very

useful when a specific type of interaction at the level of action of the quantum system

under consideration is not exactly known, which is also true for our quantum system under

consideration. To use the principles of RMT in the present context of discussion first of all

we start with creating a Gaussian Unitary statistical ensemble (GUE), which includes all

possible random interaction between the energy levels of many-body Hamiltonian with the

various random matrices appearing in the GUE. If the many-body Hamiltonian is time-

reversal in the present context, then the symmetric distribution of the potential will be

invariant under the application of orthogonal transformation within the framework of GUE

based RMT. Most importantly it is important to note that, in the thermodynamic limit

(large N or N → ∞) eigen value distribution of the random matrices showed a universal

behaviour for GUE based RMT, characterized by the well known Wigner’s Semicircle law.

The results derived in this paper seemed to be applicable to a wide varied class of quantum

1Important Note I : studying the chaotic behaviour in both the early and late time scales actually helps

us to check the validity and applicability of the derived bound on quantum chaos through SFF (or two

point OTOC) computed from RMT.
2Crucial Assumption : if we restrict our assumption to just only to an unitary ensemble then one can

explicitly show that the Spectral From Factor (SFF) as well as the two point OTOC could simply violate

the bound derived in this paper. For this reason, we will only consider a specific class of statistical ensem-

ble, which is the well known Gaussian Unitray Ensemble (GUE) to compute SFF and two point OTOC

from RMT.
3Important Note II : here by the phrase“general” we actually pointing towards the fact that our analysis

and derived bound is independent of the mathematical structure of the potentials appearing in the distribu-

tion of RMT. But it does not correspond to the independence over statistical ensemble appearing in RMT.

We will explicitly show that, our derived bound will be only valid for GUE, not for any other ensembles.

– 3 –
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mechanical systems displaying chaotic behaviour. Even for many-body Hamiltonian (where

N finite) the phenomena of quantum chaos can be devised in a more better way in systems

where nearest neighbour spacing distribution (NNSD) of eigenvalues of the random matrices

of the system explicitly show chaotic behaviour.

The plan of this paper is as follows. In section 2, we briefly review the basics of

Random Matrix Theory (RMT) relevant for the quantification of quantum chaos. Next in

section 3, we elaborately discuss about the role of out of time ordered correlation function

(OTOC) in the context of RMT to quantify quantum chaos. Further, in section 4, we

derive the expression for the two point Spectral Form Factor (SFF) from GUE based RMT

from the thermal Green’s function. Next, in section 5, we derive the saturation bound

on two point SFF at the late time scale, which is very important to fix quantum chaos

obtained from GUE based RMT set up. Further, in section 6, we study the early time

behaviour of two point SFF to check the consistency and validity of our derived bound at

the late time scale. Next, in section 7, we study the application of our derived bound by

analysing the integrability issue from a specific GUE based RMT set up, aka Toda lattice

model. Finally, in section 8, we conclude with some promising future prospects.

2 Random Matrix Theory (RMT) redux: quantifying quantum chaos

In this section, we explicitly discuss about the quantification of quantum chaotic behaviour

using the principles of GUE based RMT [4, 5]. To illustrate our discussion let us start with

Gaussian Unitary matrix ensemble (GUE) which is described as [6].a collection of large

number of matrices are filled with random numbers picked arbitrarily from a Gaussian

Unitary probability distribution. The corresponding partition function of this random

system can be written in the basis of eigen value of the random matrix as:

Z =

N∏
i=1

∫
dλi e

−N2S(λ1,...λN ), (2.1)

where S(λ1, . . . λN ) is the required action describing the random system at temperature

β = 1/T and in the present context of discussion this thermal action is defined as:4

S(λ1, . . . λN ) =
1

N

N∑
i=1

V (λi) + β

N∑
i<j

log |λi − λj |. (2.2)

Here N represents the total number of eigen values appearing in the GUE based random

distribution under consideration. Using standard formulation of time independent RMT,

one can actually fix β = 2 for GUE. In the above mentioned action, in front of the ran-

dom potential term 1/N scaling is particularly required to explicitly demonstrate that the

eigenvalues of the random distribution scaled by a factor of
√
N . Further eextremizing the

4Important Note III : if the particle interaction is not specifically characterized by any mathematical

function then at the level of the effective action this present approach is highly suitable for the computation

of various physical observables including SFF (or two point thermal OTOC). If any information about the

interaction is not known then action in usual notation can’t be defined.
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random action with respect to all eigen values, λi∀ i = 1, · · · , N , we can get the required

solutions in the present context. To compute the expression for the partition function one

can use the method of resolvent, in which the resolvent is defined as follows:

O(x) =
1

N

N∑
i=1

1

(x− λi)
, (2.3)

using which one can further write:

O2(x) +
1

N
O′(x) = V ′(x)O(x)− ρ(x) . (2.4)

Here we express the density function ρ(x) and the resolvent function O(x) as:

ρ(x) =

N∑
i=1

V ′(x)− V ′(λi)
(x− λi)

, (2.5)

O(x) =
1

N

Θ′(x)

Θ(x)
, (2.6)

where V (λ) represents the interaction random potential. It can be shown that the function

Θ(x) has the following characteristic polynomial:

Θ(x) =

N∏
i=1

(x− λi) = det(x I−R). (2.7)

Here R is the random matrix under consideration which have the eigenvalues λi ∀ i =

1, · · · , N . Here it is important to note that, the solution obtained in the large N limit is

analogues to the solution obtained from the WKB approximation in Schrödinger equation,

which is obviously a very very useful fact as far as the present computation is concerned.

Considering the large N limiting approximation, we can neglect the term 1
NO

′(x) and

express the characteristic equation for O(x) by the following simplified expression:

O
2
(x)− V ′(x)O(x) + ρ(x) = 0 (2.8)

where we have introduced two new quantities at the large N limit, O(x) and ρ(x), which

are defined as follows:

O(x) = lim
N→∞

O(x), (2.9)

ρ(x) = lim
N→∞

ρ(x). (2.10)

Then the preferred algebraic solution of O(x) in the large N limit is given by the following

expression:

O(x) ≡ O±(x) =
1

2

[
V ′(x)±

√
(V ′(x))2 − 4ρ(x)

]
. (2.11)
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Here for our purpose O+(x) is completely redundant and O−(x) is the required physical

solution. Further, it is important to note that, for our computation considering large N

limiting approximation we can write:

ρ(x) = lim
N→∞

ρ(x) ≈ ρ(x) = V ′′(x), (2.12)

where ρ(x) is the density function of eigen values of the random distribution. Consequently,

at large N the preferred solution of O(x) can be recast as:

O(x) ≡ O−(x) =
1

2

[
V ′(x)−

√
(V ′(x))2 − 4V ′′(x)

]
. (2.13)

On the other hand for finite N , using Schrödinger equation we get the corrected result

of O(x):

O(x) ≡ O−(x) =
K(x)

2
√

2

[
1−

√
1− 4ρ(x)

(K(x))2

]
. (2.14)

where we introduce a new function K(x), which is defined in the finite N limit as:

K(x) =

√
4Õ(x) + 1

[
1−

√
16[(Õ(x))2 + V ′′(x)]

(4Õ(x) + 1)

] 1
2

. (2.15)

Here, at finite N the resolvent Õ(x) is defined as:

Õ(x) = lim
N→finite

O(x). (2.16)

Now, we consider the most general solution for the density function, which is represented

by the following expression:5

ρ(λ) =
1

2π
R(λ)

√
−Σ(λ) =

1

2π

∞∑
k=1

an−kλ
(n−k+1)

n∏
i=1

(λ− a2i−1)(λ− a2i) ∀ general n,

(2.18)

where both the functions, R(λ) and σ(λ) are general polynomial in λ and in the present

context it is defined as:

R(λ) =

∞∑
k=1

an−kλ
(n−k+1) ∀ general n, (2.19)

Σ(λ) =

n∏
i=1

(λ− a2i−1)(λ− a2i) ∀ general n. (2.20)

Here for the computational purpose we actually consider n number of intervals on which

the density function ρ(λ) is supported and particularly a2i−1 and a2i are appearing as the

5Here the density function satisfy the following normalization condition:∫
supp µ

dµ ρ(µ) = 1 . (2.17)

– 6 –
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position of the end point. To demonstrate the significance of this result here we consider

the simplest situation in which we fix, n = 1 and in that case we get the following simplified

expression for the density function on a semi-circle:

ρ(λ) =
1

π

√
4a2 − λ2

∞∑
k=1

a1−kλ
2−k for n = 1. (2.21)

In this context, the in a complex plane the expression for O(λ + i0) is computed using

Residue theorem as:

O(λ+ i0) =
1

2
V

′
(λ)− iπρ(λ). (2.22)

Further substituting the expression for the density function mentioned in eq. (2.21) and

taking the Taylor series expansion in the limiting situation, λ → ∞ we get the following

simplified result:

O(λ→∞) =
1

λ
+O

(
λ2
)
, (2.23)

where all the coefficients appearing in the above expansion can be explicitly evaluated. This

details of the computation and final outcomes will helps us further to explicitly compute

the expression for SFF (or thermal two point OTOC) from GUE based RMT setup.

3 Out of time ordered correlation function (OTOC) from RMT

In this section, we briefly review about the construction of two and four point OTOC from

GUE based RMT. [7–9] This will help us to futher connect with the computation of SFF

and derive the bound on quantum chaos in the next sections of this paper. To serve this

purpose, let us start our discussion with the well known two point correlation function for

the GUE based RMT, which is described by the following expression:

〈W1(0)W2(t)〉GUE ≡
∫
dH 〈W1(0)W2(t)〉, (3.1)

where the time evolution of the quantum operator W2(t) can be expressed in terms of the

following unitary similarity transformation defined in the Heisenberg picture as:

W2(t) = e−iHtW2(0)eiHt. (3.2)

In this context, GUE integral Haar measure dH is actually represented by the system

Hamiltonian H which describes the random distribution we have already mentioned earlier

in our discussion. In GUE based RMT such Haar measure is remain invariant under

the following unitary conjugation operation, which is explicitly defined by the following

expression:

dH = d(UHU†) ∀ U , (3.3)

were U is representing the unitary matrix in the present context, which helps us to perform

the unitary conjugation operation on the matrix Haar measure in GUE based RMT.

– 7 –
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Now, let us consider a very special situation where two quantum operators, W1 andW2

are described by the Pauli operators in the context of GUE based RMT. In such a specific

situation, the GUE two point correlation function (OTOC) can be further simplified to the

following expression:

〈W1(0)W2(t)〉GUE =


S2(t)− 1

A2 − 1
, W1 =W2

0 , W1 6=W2

, (3.4)

where S2(t) represents the two point Spectral Form Factor (SFF) which we have explicitly

derive for our system in the next section of this paper. For further simplification one can

consider a physically justifiable the situation where the SFF is very large i.e. S2(t) � 1

and in this situation we have an additional constraint condition, given by:

W2(t) =W†1(t), (3.5)

which we have to maintain always during our computation. For this specific situation the

GUE two point correlation function (OTOC) for RMT can be expressed by the following

simplified expression:

〈W1(0)W2(t)〉GUE ∼
S2(t)

A2
. (3.6)

Most importantly in this context, the factor A represents the 2n dimensional Hilbert space

in which we are performing the present computation.

In the same way the four point OTOC for the GUE based RMT can be expressed as:

〈W1(0)W2(t)W3(0)W4(t)〉GUE =

∫
dH

∫
dU 〈W1Ue

−iHtU†W2UeiHtU†W3Ue−iHtU†W4UeiHtU†〉,

(3.7)

Under same assumption as mentioned for two point OTOC, the four point OTOC for GUE

based RMT can be further simplified to the following expression:

〈W1(0)W2(t)W3(0)W4(t)〉GUE ∼ 〈W1W2W3W4〉 ×
S4(t)

A4

∼ 〈W1W2W3W4〉 ×
[
A2

π2t6
+

1

2A4
t(t− 2)

]
(3.8)

where S4(t) is the four point SFF for GUE based RMT, which is defined by the following

expression:

S4(t) ≡ 〈Z(t)Z(t)Z∗(t)Z∗(t)〉GUE =

∫
Dλ
∑
p

eiλpt
∑
j

eiλjt
∑
k

e−iλkt
∑
m

e−iλmt

=

∫
Dλ

∑
p,j,k,m

ei(λp+λj−λk−λm)t

∼ A6

π2t6
+

1

2
t(t− 2). (3.9)

– 8 –
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4 Two point Spectral Form Factor (SFF) from thermal Green’s function

of RMT

In this subsection our main focus is to explicitly compute the expression for two point

SFF (S2(t)) for any arbitrary polynomial potential of GUE based random distribution of

matrices. We will see that how this particular computation is very useful to quantify the

quantum chaotic behaviour when we have no particular information about the interaction

term at the level of system action. [10]

To demonstrate this, first of all consider a Thermofield Double State (TDS) which

actually describes the canonical quantum mechanical state at finite temperature β = 1/T .

The time evolution of the TDS can be described by the following expression:

|Ψ(β, t)〉 = e−iHt|Ψ(β, t = 0)〉 =
1√
Z(β)

∑
n

e−(it+β
2 )En |n〉1 ⊗ |n〉2, (4.1)

where 1 and 2 stands for two identical copies of the eigen quantum state of the Hamiltonian

H, which are CPT conjugate of each other representing the degrees of freedom under

consideration within this GUE based RMT set up. Also in this computation both the

copies are entangled with each other, where the total Hamiltonian of the this bipartite

quantum system can be represented as:

H = H1 ⊗ I2. (4.2)

Here |Ψ(β, 0)〉 represents the TDS at time t = 0, which can be expressed as:

|Ψ(β, t = 0)〉 =
1√
Z(β)

∑
n

e−
β
2
En |n〉1 ⊗ |n〉2. (4.3)

In this context, the thermal partition function Z(β) is defined as:

Z(β) = Tr
[
e−βH

]
=
∑
n

e−βEn . (4.4)

Using this TDS one can further compute the survival amplitude or overlap, which can be

expressed as:

M(β, t) = 〈Ψ(β, 0)|Ψ(β, t)〉 =
1

Z(β)

∑
n

e−(it+β)En . (4.5)

Finally, using this survival amplitude or overlap one can further compute the survival

probability or fidelity from the GUE based RMT, which can be expressed as:

P(β, t) = |M(β, t)|2 =
1

|Z(β)|2

 ∑
m,n,m 6=n

e−β(Em+En)e−it(Em−En) +
∑
n

e−2βEn


=

1

|Z(β)|2
(
|Z(β + it)|2 + |Z(2β)|2

)
= S2(t) + N(β), (4.6)

– 9 –
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where the two point SFF S2(t) is defined as:

S2(t) =
1

|Z(β)|2
∑

m,n,m 6=n
e−β(Em+En)e−it(Em−En) =

|Z(β + it)|2

|Z(β)|2
. (4.7)

Here also introduce a temperature dependent function N(β), which is defined as:

N(β) =
|Z(2β)|2

|Z(β)|2
= lim

T→∞

1

T

∫ T

t=0
dt P(β, t) = P̃(β). (4.8)

Here it is important to note that, for quantum systems which is characterised by a con-

tinuum spectrum, the survival probability or fidelity of an arbitrary initial quantum state

vanishes exactly in the limiting situation, t → ∞. Additionally, it is important to note

that, for a finite quantum mechanical systems which is described by a discrete spectrum

and not contain large number of degeneracies in the quantum spectrum, survival probabil-

ity or fidelity (P(β, t)) saturates to its infinite time average or expectation value P̃(β) and

randomly fluctuating around this infinite time average value.

Also, in this computation, En and Em correspond to the n-th and m-th level of the

quantum system under consideration within GUE based RMT set up. Here the Boltzmann

factor β = 1/T , where T is the temperature associated to the system. Apart from Boltz-

mann factor the definition of two point SFF also involves physical time t. Additionally, it is

important to note that, the formulation of two point SFF in terms of the TDS within GUE

based RMT allows us to exactly map the unitarity constraints on the decay of most general

type of quantum mechanical systems, which is usually expressed in terms of the decay of

survival probability or fidelity (fidelity) to the spectral properties of quantum mechanical

systems through two point SFF as explicitly shown here.

Now it important to note that, at very high temperature (β = 1/T → 0) and low

temperature (β = 1/T →∞) the two point SFF simplified to the following result:

S2(t) =


∑

m,n,m 6=n
e−it(Em−En) , β = 1/T → 0

0 , β = 1/T →∞
, (4.9)

It is also observed that in t → ∞ limit the nearest neighbour energy spacings contribute

only to quantify two point SFF. This implies that the concept of SFF in GUE based RMT

also helps us to understand the dynamical behaviour of the quantum system and also very

useful concept to analyse the discreteness appearing in quantum spectrum. Additionally,

it is important to note that, chaotic system confronts Wigner’s formula in a semi-circle

which makes two point SFF a good theoretical observable to quantify quantum chaos.

In practical applications, two point SFF is averaged over a well known statistical

ensemble i.e. GUE of random distribution of matrices. This is a very interesting feature

of SFF appearing in GUE based RMT which can be directly connected to the quantify

quantum chaos in the present context. Before going to discuss the further detail, we note

that all distribution representing eigenvalues are different from each other in general but

similar at small scales.
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Now, in the present context we define the thermal Green’s function G(β, t), which is

represented by the following expression:

G(β, t) =
〈|Z(β + it)|2〉GUE

〈|Z(β)|2〉GUE

=

∫
supp ρ dλ dµ e

−β(λ+µ) e−it(λ−µ)〈J (λ)J (µ)〉GUE∫
supp ρ dλ dµ e

−β(λ+µ)〈J (λ)〉〈J (µ)〉GUE
. (4.10)

Here, density of eigen values are defined as:

J (λ) = ρ(λ). (4.11)

Now, one can decompose the total Green’s function G in two parts (connected and

disconnected part), as given by:

G(β, t) = Gdc(β, t) + Gc(β, t), (4.12)

where disconnected part of the Green’s function Gdc and connected part of the Green’s

function Gc can be expressed as:

Gdc(β, t) =

[
〈Z(β + it)〉〈Z(β − it)〉

〈|Z(β)|2〉

]
=

∫
dλ dµ e−β(λ+µ) e−it(λ−µ) 〈J (λ)〉〈J (µ)〉∫

dλ dµ e−β(λ+µ) 〈J (λ)〉〈J (µ)〉
. (4.13)

Gc(β, t) = G(β, t)− Gdc(β, t)

=

[
〈|Z(β + it)|2〉GUE

〈|Z(β)|2〉GUE

]
−
[
〈Z(β + it)〉〈Z(β − it)〉

〈|Z(β)|2〉

]
=

∫
dλ dµ e−β(λ+µ) e−it(λ−µ) 〈J (λ)J (µ)〉c∫

dλ dµ e−β(λ+µ) 〈J (λ)〉〈J (µ)〉
. (4.14)

Here, we define the connected two-point function, which is given by the following expression:

〈J (λ)J (µ)〉c ≡ (〈J (λ)J (µ)〉 − 〈J (λ)〉〈J (µ)〉). (4.15)

To quantify this explicitly one can define the eigen value distribution function J (λ) in the

neighbourhood of extremum of level density (ρ(λ)) as:

J (λ) = J̃ (λ) + δJ (λ), (4.16)

where J̃ (λ) represents the average value of the eigen value random distribution function

over GUE and δJ (λ) represents the quantum mechanical small fluctuation on J̃ (λ). Con-

sequently the two point connected function can be expressed by the following simplified

expression:

〈J (λ)J (µ)〉c = 〈δJ (λ)δJ (µ)〉. (4.17)
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Additionally, it is important to note that, the mean level distribution can be normalised

in a semi circle using the following two constraints:

1

N

∫ 2a

−2a
dλ J (λ) = 1, (4.18)∫ 2a

−2a
dλ ρ(λ) = 1. (4.19)

Here J (λ) represents the number of eigen values lying within the interval (λ, λ+ dλ) and

it is proportional to O(
√
N). Also, ρ(λ) is the density function which can be determined

by extremising the action of GUE based RMT, which is treated to be free from N and

eigen values which are O(1). Now we need to find the specific point after which properties

of SFF drastically changes. This points are identified as the critical points in the present

context. Here the partition function is computed for general order polynomial as:

ρ(λ) =
1

π

√
4a2 − λ2

n∑
k=1

an−kλ
(n−k+1) ∀ general n . (4.20)

Now we calculate two point SFF by following the steps mentioned below:-

1. Step I:

First, of all we compute the expectation of the partition function Z(β+ it) over GUE

based RMT:

〈Z(β+it)〉GUE =
1

π

∫ 2a

−2a
dλ e−itλ e−βλ

√
4a2−λ2×

n∑
k=1

dn−kλ
−k+n+1

≡
n∑
k=1

a(−a2)1−k2−k+n+1dn−k

(
(ak(−a)n−(−a)kan)Γ

(
1

2
(−k+n+2)

)
×

1F̃2

(
1

2
(−k+n+2);

1

2
,

1

2
(−k+n+5);−a2(t−iβ)2

)
+a(β+it)((−a)kan+ak(−a)n)×

Γ

(
1

2
(−k+n+3)

)
1F̃2

(
1

2
(−k+n+3) ;

3

2
,

1

2
(−k+n+6);−a2(t−iβ)2

))
.

(4.21)

2. Step II:

Secondly, we compute the expectation of the partition function Z(β − it) over GUE

based RMT:

〈Z(β−it)〉GUE =
1

π

∫ 2a

−2a
dλ eitλ e−βλ

√
4a2−λ2×

n∑
k=1

dn−kλ
−k+n+1

≡
n∑
k=1

a3(−a2)−k2−k+n+1dn−k

(
i(eiπk+eiπn)(t+iβ)ak+n+1Γ

(
1

2
(−k+n+3)

)
×

1F̃2

(
1

2
(−k+n+3);

3

2
,

1

2
(−k+n+6);−a2(t+iβ)2

)
+((−a)kan−ak(−a)n)×

Γ

(
1

2
(−k+n+2)

)
1F̃2

(
1

2
(−k+n+2);

1

2
,

1

2
(−k+n+5);−a2(t+iβ)2

))
.
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3. Step III:

Then, we compute the expectation of the partition function Z(β) over GUE

based RMT:

〈Z(β)〉GUE =

n∑
k=1

a3(−a2)−k(−2−k+n+1)an−k

(
β((−1)k+(−1)n)ak+n+1Γ

(
1

2
(−k+n+3)

)
×

1F̃2

(
1

2
(−k+n+3);

3

2
,

1

2
(−k+n+6); a2β2

)
+(ak(−a)n−(−a)kan)Γ

(
1

2
(−k+n+2)

)
×

1F̃2

(
1

2
(−k+n+2);

1

2
,

1

2
(−k+n+5); a2β2

))
.

4. Step IV:

At finite temperature the disconnected part of the Green’s function (Gdc(β, t)) can

be expressed as:

Gdc(β, t) =
〈Z(β + it)〉〈Z(β − it)〉

〈|Z(β)|2〉
, (4.22)

where each of the components of the disconnected Green’s function are computed

earlier.

5. Step V:

The connected part of the Green’s function Gc depends on the two point function

〈δJ (λ)δJ (µ)〉. From GUE based RMT the exact functional form near the centre

of spectrum of the eigen values of the random distribution can be expressed in the

following form:

〈δJ (λ)δJ (µ)〉 = −sin2[N(λ− µ)]

(πN(λ− µ))2
+

1

πN
δ(λ− µ) (4.23)

which can be derived using the method of orthogonal polynomials for GUE.6

There are two parts appearing in the above mentioned kernel, which give different

physical measures:

(a) 1/N2 part with sine squared function gives the ramp and have sub-dominant

contribution in the integral kernel.

(b) 1/N part with Delta function gives the plateau and dominant contribution in

the integral kernel.

6. Step VI:

Next, we get the following simplified expression for the connected part of the Green’s

function Gc as given by:

Gc(t) =
1

N2

∫
dλ dµ e−it(λ−µ)

[
−sin2[N(λ− µ)]

(πN(λ− µ))2
+

1

πN
δ(λ− µ)

]
. (4.24)

6Important Note IV : the derived expression for this sine kernel is only valid for any polynomial potential

measure whose matrix (operator) is of single trace. Various polynomial potentials change only the eigen

value distribution near edges of the distribution.
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To perform the integral we further substitute,

λ+ µ = E, (4.25)

λ− µ = ω. (4.26)

Since the integral over E gives trivial Diarc Delta function we choose our working

region for which E = 0 (at hight temperature limit). Then the remaining integrand

is only over ω and it finally gives:

S(t) = N2Gc(t) =

∫ ∞
−∞

dω e−itω
[
− 1

π2

sin2[Nω]

(Nω)2
+

1

πN
δ(ω)

]
. (4.27)

which gives us finally the following simplified expression:

S(t) =


t

(2πN)2
− 1

N
+

1

(πN)
, t < 2πN

1

πN
, t > 2πN

, (4.28)

7. Step VII:

Now to compute two point SFF we need to add both connected and disconnected

part of the Green’s function. Therefore, for different polynomial potential we get

finally the following expression for two point SFF from GUE based RMT at finite

temperature:

S2(β, t) ≡ G(β, t) =


Gdc(β, t) +

t

(2πN)2
− 1

N
+

1

(πN)
, t < 2πN

Gdc(β, t) +
1

πN
, t > 2πN

,

(4.29)

where S2(β, t) is defined with proper normalization.

8. Step VIII:

After substituting the expression for disconnected part we get the following expression

for the two point SFF from GUE based RMT at finite temperature:

S2(β, t) ≡

{
n∑
k=1

a3(−a2)−k(−2−k+n+1)an−k

×(β((−1)k+(−1)n)ak+n+1Γ

(
−k+n+3

2

)
×1F̃2

(
1

2
(−k+n+3);

3

2
,

1

2
(−k+n+6); a2β2

)
+(ak(−a)n−(−a)kan)Γ

(
−k+n+2

2

)

×1F̃2

(
1

2
(−k+n+2);

1

2
,

1

2
(−k+n+5); a2β2

)}−2
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×

{
n∑
k=1

a(−a2)1−k2−k+n+1bn−k

×
(

(ak(−a)n−(−a)kan)Γ

(
−k+n+2

2

)
× 1F̃2

(
−k+n+2

2
;
1

2
,
−k+n+5

2
;−a2(t−iβ)2

)
+a(β+it)((−a)kan+ak(−a)n)

×Γ

(
−k+n+3

2

)
1F̃2

(
−k+n+3

2
;

3

2
,
−k+n+6

2
;−a2(t−iβ)2

))}

×
n∑
k=1

a3(−a2)−k2−k+n+1dn−k

×
(
i(eiπk+eiπn)(t+iβ)ak+n+1Γ

(
1

2
(−k+n+3)

)
× 1F̃2

(
1

2
(−k+n+3);

3

2
,

1

2
(−k+n+6);−a2(t+iβ)2

)
+((−a)kan−ak(−a)n)

×Γ

(
1

2
(−k+n+2)

)
1F̃2

(
1

2
(−k+n+2);

1

2
,
1

2
(−k+n+5);−a2(t+iβ)2

))

+


t

(2πN)2
− 1

N
+

1

(πN)
, t < 2πN

1

πN
, t > 2πN .

(4.30)

9. Step IX:

Further taking the high temperature limit we get the following simplified expression

for two point SFF from GUE based RMT:

S2(t) ≡ 1

N2

{
n∑
k=1

a(−a2)1−k2−k+n+1bn−k

×
(

(ak(−a)n−(−a)kan)Γ

(
1

2
(−k+n+2)

)
× 1F̃2

(
1

2
(−k+n+2);

1

2
,

1

2
(−k+n+5);−a2t2

)
+iat((−a)kan+ak(−a)n)

×Γ

(
1

2
(−k+n+3)

)
1F̃2

(
1

2
(−k+n+3);

3

2
,
1

2
(−k+n+6);−a2t2)

))}
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×

{
n∑
k=1

a3(−a2)−k2−k+n+1dn−k

×
(

((−a)kan−ak(−a)n)Γ

(
1

2
(−k+n+2)

)
× 1F̃2

(
1

2
(−k+n+2);

1

2
,

1

2
(−k+n+5);−a2t2

)
+it(eiπk+eiπn)ak+n+1

×Γ

(
1

2
(−k+n+3)

)
1F̃2

(
1

2
(−k+n+3);

3

2
,
1

2
(−k+n+6);−a2t2

))}

+


t

(2πN)2
− 1

N
+

1

(πN)
, t < 2πN

1

πN
, t > 2πN .

(4.31)

This equation for the nearest neighbor spacing distributions of random matrix models are

not as simple as this. Also, at infinite temperature, it picks out contribution form the

difference between nearest neighbor energy eigenvalues at very late time scale. Further

averaging over Gaussian random matrices, two point SFF shows very particular behaviour

at large N , particularly initial decay followed by a linear rise and then a saturation after

critical point. This saturation can be related to saturation limit for large N which finally

fix the bound on quantum chaos.

5 Bound on two point SFF from GUE based RMT

Now we will talk about the HypergeometricPFQregularized function which is appearing in

the expression for two point SFF. This function can be related to well known Hypergeo-

metric function of single variable by the following expression:

pF̃q (a1, . . . , ap; b1, . . . , bq; z) =
pFq (a1, . . . , ap; b1, . . . , bq; z)

q∏
k=1

Γ (bk)

. (5.1)

To derive the required bound on two point SFF from the GUE based RMT setup we

first use the asymptotic behavior of regularized HypergeomtericPFQ function [11],7 which

is precisely given below:

lim
t→∞ 1F̃2

[
A(t);B(t), C(t); a2(β ± it)2

]
= 0 ∀ k = 1, · · · , n (5.2)

7Mathematica Function Page for HypergeometricPFQ regularized function http://functions.wolfram.com/

07.22.02.0001.01.
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where A(t), B(t) and C(t) are time independent variables. Also n represents the high-

est order of the polynomial of the general random potential under consideration for this

discussion. Now from eq. (4.31) it is important to note that every Hypergeomtric PFQ

function has finite number in its first three argument as long as order of polynomial n is

finite. Consequently, the asymptotic behaviour of the connected and disconnected part of

the Green’s function in the regime t > 2πN can be expressed with finite N by the following

expression:

lim
t→∞
Gc(β, t) =


1

πN
, β 6= 0

0. β = 0
, (5.3)

lim
t→∞
Gdc(β, t) = 0 ∀ t > 2πN, ∀ β. (5.4)

Finally, adding the contribution from the disconnected and connected part of the Green’s

function in the asymptotic limit we get the following simplified expression for two point

SFF from GUE based RMT in the regime t > 2πN for finite N :

lim
t→∞

S2(β, t > 2πN) =


1

πN
, β 6= 0

0. β = 0
, (5.5)

For t → ∞ asymptotic limit till now we have only considered the part of two point SFF

from GUE based RMT appearing only after the time scale, t > 2πN with finite N . On the

other hand, the main obstacle of taking t → ∞ asymptotic limit in the regime, t < 2πN

with finite N is we get divergent contribution in the connected part of the Green’s function

from the term t/(2πN)2 →∞. Also, the disconnected part of the Green’s function behave

same as eq. (5.4). Consequently, in the regime t < 2πN with finite N the two point SFF

for GUE based RMT can be computed as:

lim
t→∞

S2(β, t < 2πN) =∞ ∀ β. (5.6)

Hence, combining both the contribution from connected and disconnected part of the total

Green’s function we get the following upper and lower bound on two point SFF for GUE

based RMT in the regime, t > 2πN , as given by:

Quantum Chaos Saturation Bound I: 0 ≤ S2(β, t > 2πN) ≤ 1

πN
∀ 0 ≤ β ≤ ∞ .

(5.7)

With large N asymptotic limit in the time regime, t < 2πN , gives finite contribution to

the connected and disconnected part of the Green’s function as given by:

lim
t→∞
Gc(β, t) ' −

1

N

(
1− 1

π

)
, ∀ β (5.8)

lim
t→∞
Gdc(β, t) = 0 ∀ β. (5.9)
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Further adding both the contribution from connected and disconnected part of the Green’s

function for the asymptotic region t < 2πN with large N , we get the following upper and

lower bound on two point SFF from GUE based RMT, as given by:

Quantum Chaos Saturation Bound II: − 1

N

(
1− 1

π

)
≤ SFF(β, t < 2πN) ≤ 0 ∀ 0 ≤ β ≤ ∞.

(5.10)

In figure 1 we have explicitly shown the time dependent behaviour of two point SFF from

GUE based RMT at fixed finite temperatures. Additionally, we have explicitly depicted

the saturation bound on quantum chaos both in the regime, t > 2πN (for finite N) and

t < 2πN (for large N) respectively. We use a general n th order polynomial random

potential to derive the saturation bound on quantum chaos. The symmetry property for

λ → −λ is lost and non-vanishing support should be chosen [12]. Particularly for odd

polynomial potential the resolvent method is not applicable. But for the even and general

one it works perfectly well.

6 Early time behaviour of two point SFF from GUE based RMT

In this section we analyse the early time behaviour of two point SFF from GUE based

RMT. To serve this purpose we start our discussion we use eq. (4.30) and eq. (4.31),in the

limit t → 0. To explain early time behaviour of quantum chaos from two point SFF from

GUE based RMT we first use the asymptotic behavior of regularized HypergeomtericPFQ

function [13], which is given below:

lim
t→0

1F̃2

[
A(t);B(t), C(t); a2(β ± it)2

]
= 1 ∀ k = 1, · · · , n (6.1)

where A(t), B(t) and C(t) are time independent variables. Also n represents the highest

order of the polynomial of the general random potential under consideration for this dis-

cussion. This gives the following simplified expression for two point SFF from GUE based

RMT at early time scale (small t):

S2(β, t) =

{
n∑
k=1

a3(−a2)−k(−2−k+n+1)an−k

×
(
β((−1)k + (−1)n)ak+n+1Γ

(
1

2
(−k + n+ 3)

)

+ (ak(−a)n − (−a)kan)Γ

(
1

2
(−k + n+ 2)

))}−2

×

[
n∑
k=1

a(−a2)1−k2−k+n+1bn−k

×
(

(ak(−a)n − (−a)kan)Γ

(
1

2
(−k + n+ 2)

)

+ a(β + it)((−a)kan + ak(−a)n)Γ

(
1

2
(−k + n+ 3)

))]
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Figure 1. Behavior of SFF at finite temperature for different quartic and cubic) polynomial random

potentials.
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×

[
n∑
k=1

a3(−a2)−k2−k+n+1dn−k

×
(

((−a)kan − ak(−a)n)Γ

(
1

2
(−k + n+ 2)

)

+ i(eiπk + eiπn)(t+ iβ)ak+n+1Γ

(
1

2
(−k + n+ 3)

))]

+


t

(2πN)2
− 1

N
+

1

(πN)
, t < 2πN

1

πN
, t > 2πN .

(6.2)

Further, taking the high temperature limit, β → 0 the two point SFF from GUE based

RMT can be recast at early time scale as:

S2(t) =
1

N2

[
n∑
k=1

a(−a2)1−k2−k+n+1bn−k

×
(

(ak(−a)n − (−a)kan)Γ

(
1

2
(−k + n+ 2)

)
+ iat((−a)kan

+ ak(−a)n)Γ

(
1

2
(−k + n+ 3)

))]

×

[
n∑
k=1

a3(−a2)−k2−k+n+1dn−k

×
(

((−a)kan − ak(−a)n)Γ

(
1

2
(−k + n+ 2)

)

+ it(eiπk + eiπn)ak+n+1Γ

(
1

2
(−k + n+ 3)

))]

+


t

(2πN)2
− 1

N
+

1

(πN)
, t < 2πN

1

πN
, t > 2πN .

(6.3)

Finally, at exactly t = 0 the two point SFF from GUE based RMT takes a finite value and

it actually depends on the nature and highest degree of the polynomial potential of the

random distribution. It is expressed by the following simplified result:

S2(β → 0, t = 0) =
1

N2

[
n∑
k=1

a(−a2)1−k2−k+n+1bn−k

×
(

(ak(−a)n − (−a)kan)Γ

(
1

2
(−k + n+ 2)

))]
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×

[
n∑
k=1

a3(−a2)−k2−k+n+1dn−k

×
(

((−a)kan − ak(−a)n)Γ

(
1

2
(−k + n+ 2)

))]

− 1

N
+

1

(πN)
, ∀ t < 2πN . (6.4)

The last two terms are explicitly appearing due to the disconnected part of the Green’s

function appearing for the time regime, t < 2πN at t = 0. For any finite order of the

polynomial n this has some constant magnitude which depends on the co-efficient of the

polynomial random potential.

In same way we can calculate the two point SFF from GUE based RMT for finite vale

of β (finite temperature), which is expressed by the following simplified expression:

S2(β → finite, t = 0) =

{
n∑
k=1

a3(−a2)−k(−2−k+n+1)an−k

×
(
β((−1)k + (−1)n)ak+n+1Γ

(
1

2
(−k + n+ 3)

)

+ (ak(−a)n − (−a)kan)Γ

(
1

2
(−k + n+ 2)

))}−2

×

[
n∑
k=1

a(−a2)1−k2−k+n+1bn−k

×
(

(ak(−a)n − (−a)kan)Γ

(
1

2
(−k + n+ 2)

)

+ a(β)((−a)kan + ak(−a)n)Γ

(
1

2
(−k + n+ 3)

))]

×

[
n∑
k=1

a3(−a2)−k2−k+n+1dn−k

×
(

((−a)kan − ak(−a)n)Γ

(
1

2
(−k + n+ 2)

)

− β(eiπk + eiπn)ak+n+1Γ

(
1

2
(−k + n+ 3)

))]

− 1

N
+

1

(πN)
, ∀ t < 2πN . (6.5)

In figure 2a, figure 2b, figure 2d and figure 2c we have shown the early time behaviour

of two point SFF from GUE based RMT which shows increment upto a certain limiting

point. In figure 1, the two point SFF from GUE based RMT near t = 0 has a finite large
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Figure 2. Early time behavior for cubic potential.

value. Starting from the constant value at t = 0,8 one can observe that it actually increases

near t = 0 exponentially to a finite value and then it merges to the normal behaviour of two

point SFF from GUE based RMT and show the oscillatory behaviour and at last saturate

at the value where we fix the bound on quantum chaos. In general early time behaviour

has no effect to fix the saturation bound on quantum chaos from GUE based RMT. The

saturation bound on two point SFF from GUE based RMT is defined previously at large

time scale as no considerable effect is coming from the early time scale. But if we choose the

value of N in such a way that we can come in the regime of early time chaos then we found

that the disconnected part of the thermal Green’s function is not zero for all time scales,

where t > 2πN . This implies that, we have to wait until the time has reached infinity

by tuning the parameters of the general n th degree polynomial of the random potential

under consideration for this specific discussion. Further, at late time scale we found that

again the value of two point SFF from GUE based RMT reached the saturation bound of

quantum chaos. We explicitly observed that in the small time scale the value of two point

8For cubic potential this is b1d1
a21

which can be evaluated using method of resolvent and then putting only

parameter inside the potential.
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SFF from GUE based RMT depicts almost exponential increase with small oscillation and

then will reach the saturation bound at late time scales.

Also, we observe the following features by studying the behaviour of two point SFF

from GUE based RMT at early time scale:

1. Value of the two point SFF from GUE based RMT at t = 0 has a particular nature.

For any generic odd polynomial potential for the random distribution the value of

two point SFF from GUE based RMT exactly same as appearing for any generic even

polynomial potential except for the specific case appearing for n = 1 order polynomial

potential.

2. We also observed that the early time chaos become dominant at very small value of

number of degrees of freedom N .In this specific situation, the two point SFF from

GUE based RMT increase from its zero point value and show exponential increment

and as soon as the point t = 2πN is crossed it actually converge to the same saturation

bound of quantum chaos. So from this discussion it is very clearly appearing as the

saturation bound on the two point SFF from GUE based RMT is dependent on only

the choice of the value of number of degrees of freedom N .

3. As we go for larger values of β (small temperature) the growth of the two point

SFF from GUE based RMT become approximately linear in nature. This can be

explained based on the fact that the Hypergeometric functions are also function of

the variable β. So, at β → ∞ we found that the disconnected part of the thermal

Green’s function identically vanishes again. It is also observed that the increase in

the two point SFF from GUE based RMT is due to the non vanishing contrbution

appearing in the connected part of the thermal Green’s function, which is actually

linear in t.

7 Integrablity from GUE based RMT: Toda Lattice model

In this section our prime objective is to discuss the integrability issue from the GUE based

RMT set up. This actually justifies the application of our derived analysis performed in

this paper. To serve this purpose we need to consider the following steps:

1. Let us firsst consider an example of dispersionless Integrable system in the light of

RMT set up [14], where the partition function of GUE of random matrices has a

direct representation in Toda lattice hierarchy. Asymptotic expansion of the free

energies given by the logarithm of the partition function leads to continuous limits

of Toda and Pfaff lattice hierarchies. For more details see refs. [15–19]. The Toda

lattice equation is given by the following expressions:

∂an
∂t1

= an(bn+1 − bn) (7.1)

∂bn
∂t2

= an − an−1 ∀ n = 1, 2, 3. (7.2)

– 23 –



J
H
E
P
0
5
(
2
0
1
9
)
1
4
9

The sequence of {τn : n ≥ 0} τ -functions with τ0 = 1 fix the coefficients an bn as

given by:

an =
τn+1τn−1

τ2
n

, (7.3)

bn =
∂

∂t1
log

(
τn

τn − 1

)
. (7.4)

Therefore, Toda lattice equation in Hirota bilinear form can be simplified as:

D̂2
1τn.τn = 2τn+1τn−1, (7.5)

where, D̂1 is the usual Hirota derivative for a variable xn, representing a flow-

parameter for n-th member of Toda lattice hierarchy, can be written as:

D̂nf.g :=

(
∂

∂xn
− ∂

∂x′
n

)
f(xn)g(x

′
n)|xn=x′n

. (7.6)

Now, using the well known Lax representation the hierarchy of the Toda lattice is

defined as:

∂L

∂tk
= [L,Bk], Bk = [Lk]−, k = 1, 2, 3, . . . (7.7)

Then τn-functions also satisfy KP-hierarchy [20, 21] and one can get the following

sets of equations:

(D̂k − hk(D̂)τn+1.τn = 0 k = 2, 3, 4 . (7.8)

Here it is important to note that, for k = 2 this gives the non-linear Schrödinger

equation which is interpreted as the second member of toda lattice hierarchy.

In continuous limiting approximation free energy term has been introduced

explicitly, which is given by the following expression:

τn(t; ~) = exp

(
1

~2
F (T0, T ) +O(h−1)

)
. (7.9)

Here ~ is a small parameter and T = (T1, T2, . . .) is the slow variables with the

following form:

Tk = ~tk for n ≥ 1. (7.10)

It is important to note that, for ~→ 0 gives a continuous limit of the lattice structure.

The Free energy F (T0, T ) is given as the following:

F (T0, T ) = lim
~→0

~2 log
[
τk(~−1T ; ~)

]
, (7.11)

which can be further represented by two point functions of corresponding topological

quantum field theory (TQFT) as:

Fmn =
∂2

∂Tm∂Tn
m,n ≥ 0. (7.12)
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In the continuous limiting approximation, the spectral problem represented by the

following equation:

Lφ = λφ, (7.13)

with Lax operator and the corresponding eigen vector φ = (φ1, φ2, . . .)
T gives the

spectral curve for Toda equation:

λ =

(
p(λ) + F01 +

eF00

p(λ)

)
, (7.14)

where p(λ) represents a quasi-momentum in the present context. The eigen vector

can be represented by the WKB form at ~→ 0 limit, as given by:

φn(t; ~) = exp

[
1

~
S(T0, T ) +O(1)

]
, (7.15)

where we introduce a function S(T0, T ), which is defined as:

S(T0, T ) =

∞∑
n=1

λnTn + T0 log λ−
∞∑
k=1

1

kλk
Fk(T0, T ). (7.16)

Special class of Toda lattice equation solution defines the partition function of

GUE of random matrices. The τ -functions are taken to be the following form:

τn(t) = Z2
n(V0(λ); t) =

∫
<
. . .

∫
<

∏
i<j

|λi − λj |2 exp

[
−

n∑
k=1

Vt(λk)

]
, (7.17)

with the following expression for the random potential:

Vt(λk) = V0(λk)−
∞∑
j=1

λjktj . (7.18)

HereV0(λ) is an even degree polynomial.

Now it is important to note that, for GUE we have the following expression:

log

[
Z

(2)
N

(
N
2 λ

2;NT
)

Z
(2)
N

(
N
2 λ

2; 0
) ] =

∑
g≥0

eg(T )N2−2g, (7.19)

where we define eg(T ) by the following expression:

eg(T ) =
∑

0≤j1,j2,...
κg(j1, j2, . . .)

T j11 T j22 T j33 . . .

j1!j2! . . .
. (7.20)

A fundamental result of RMT is that for a quardatic potential the function V0(λ)

and log(Z
(2)
N ) posses as asymptotic expansion in even powers of N , whose terms

give generating partitioning ribbon graphs by genus. From this argument it can be

explicitly shown that continuous assumption of Toda lattice is satisfied by GUE based

RMT. From this calculated partition function we can further calculate the two point

SFF for Toda Lattice within GUE.

Now, we know that Toda lattice system is a completely integrable system and

in continuous limiting approximation the present idea can be easily related to GUE

based RMT model.
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2. Now, to justify the applicability and validity of our calculated saturation bound on

two point SFF we choose slight modification in Toda lattice system and from previ-

ously shown result on two point correlation function this bound has been explicitly

justified in the present context. It has been shown, that after applying replica trick

the partition function of GUE in its original and dual (σ model) representation sat-

isfy Toda Lattice equation. For unitary ensemble with probability density function

represented by the following expression:

P (H) = exp [−Tr (V (H))] , (7.21)

with the following logarithmic confining potential, given by:

V (x) =
∞∑
n=0

ln[1 + 2qn+1
√

1 + 4x2 + q2n+2], (7.22)

where we define the factors x and q by the following expressions:

x ≡ 1

2
sinhβχ, (7.23)

q ≡ e−β β > 0. (7.24)

This confining potential has been chosen for the calculation of two point correlation

function for such model. Here it is important to note that, in the asymptotic limit,

|x| → ∞ the confining potential is behaving by the following fashion:

lim
|x|→∞

V (x) ∝ ln2(|x|). (7.25)

This model is very famous because of its eigenvalue distribution for β < π2 is interme-

diate between Wigner-Dyson and Poisson distribution and explicitly have qualities

of critical level statistics.

3. Now consider a matrix H, which can be expressed as:

H2 =
1

4

(
TT † + T †T − 2I

)
, (7.26)

where T is transfer matrix defining the disorder inside a conductor.

The replica partition function for this model has been defined by the following

expression:

Zn,N (ε) = 〈detn(ε−H)〉H

= (CM )N
∫
dH detn(ε−H)

M∏
k=1

1

det[(µk + iH)(µk − iH)]
, (7.27)

where we define, µk and CM as:

µk = cosh
kβ

2
, (7.28)

CM =

{
M∏
n=1

4qn

}−1

with M →∞. (7.29)
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For contour integration at infinity and poles necessary transformation can be intro-

duced.

For the two point correlation function S2(x, y) in the limit N = M →∞ we get:

S2(x, y) =
1

Z0,N (ε)

∫ ∞
−∞

dH Tr(δ(x−H)) Tr(δ(y −H)) P (H) . (7.30)

Further, Cauchy integration over poles and the sum over all possible position m and

n gives the following result:

S2(x, y) =
1

π2

M∑
m,n

µnµm
(x2 + µ2

n)(x2 + µ2
m)(y2 + µ2

n))(y2 + µ2
m)

×
∏

k 6=m,n

(x− iµk)(y − iµk)(µm + µk)(µn + µk)

(x+ iµk), (y − iµk)(µm − µk)(µn − µk)
. (7.31)

From the plot of two point correlation function S2[ξ − η] calculated exactly using Cauchy

integration over poles gives the plot like figure [22] that we have plotted in this paper. The

two point correlation function is exactly behaving like total thermal Green’s function that

we have derived earlier. Nature of the plot shows that it increases linearly upto a certain

point and then saturate at a bound with very low oscillation tending to zero. It exactly

matches with our prediction of bound of SFF from GUE based RMT.

8 Conclusion

From our detailed discussion using GUE based RMT we have derived a strict saturation

bound on the two point SFF from GUE based RMT for both large N and finite N situa-

tions, which ultimately put stringent constraint on quantum chaos for randomly interacting

system described by a general polynomial potential function. Using this approach we find

that our predicted bound for quantum chaos from GUE based RMT is independent on

the choice of temperature, which further implies that the derived result is universal in

nature for GUE. Moreover, using the lower bound on the two point SFF from GUE based

RMT one can precisely comment on the minimal chaotic nature of a random system from

RMT set up. Also, this derived result can be further used to describe the out of equilib-

rium aspects in the context of primordial cosmology [10], specifically to quantify reheating

temperature and particle creation phenomena in early universe cosmology. Also, in the

context of quantum theory of black-hole [23–26] one can implement this result to explain

many explored physical informations. Also for non-linear effects in redshift space this can

be studied [27]. We have presented any computation for the bound on SFF from Gaussian

Orthogonal Ensemble from RMT yet in this paper. One can study this in detail in future.

Apart from that the role of integrability from RMT one can study in more detail for other

models explicitly.
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[12] E. Brézin, C. Itzykson, G. Parisi and J.B. Zuber, Planar Diagrams, Commun. Math. Phys.

59 (1978) 35 [INSPIRE].

[13] http://functions.wolfram.com/07.22.03.0001.01.

[14] Y. Kodama and V.U. Pierce, Combinatorics of dispersionless integrable systems and

universality in random matrix theory, Commun. Math. Phys. 292 (2009) 529

[arXiv:0811.0351] [INSPIRE].

[15] P. Deift, Some open problems in random matrix theory and the theory of integrable systems,

arXiv:0712.0849.

[16] A.Y. Maltsev and S.P. Novikov, Topological integrability, classical and quantum chaos, and

the theory of dynamical systems in the physics of condensed matter, Russ. Math. Surv. 74

(2019) 141.

[17] V. Constantoudis and N. Theodorakopoulos, Quantum signatures of chaos in integrable

systems, J. Phys. A 28 (1995) 5701.

[18] B. Bertini, P. Kos and T. Prosen, Exact Spectral Form Factor in a Minimal Model of

Many-Body Quantum Chaos, Phys. Rev. Lett. 121 (2018) 264101 [arXiv:1805.00931]

[INSPIRE].

[19] J. Yu, W.-Z. Pan and T.-W. Ng, Bifurcation and Chaos in the Generalized Korteweg-de Vries

Equation under a Harmonic Excitation, Int. J. Nonlinear Sci. Numer. Simul. 9 (2008) 37.

[20] M. Adler and P. van Moerbeke, Toda versus Pfaff lattice and related polynomials, Duke

Math. J. 112 (2002) 1.

[21] G. Biondini and Y. Kodama, On a family of solutions of the Kadomtsev-Petviashvili equation

which also satisfy the Toda lattice hierarchy, J. Phys. A 36 (2003) 10519.

[22] T.A. Sedrakyan, Toda lattice representation for random matrix model with logarithmic

confinement, Nucl. Phys. B 729 (2005) 526 [cond-mat/0506373] [INSPIRE].

[23] J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [Erratum JHEP

09 (2018) 002] [arXiv:1611.04650] [INSPIRE].

[24] P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random

subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

[25] Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096]

[INSPIRE].

[26] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[27] B. Pandey and S. Bharadwaj, Modeling non-linear effects in the redshift space two-point

correlation function and its implications for the pairwise velocity dispersion, Mon. Not. Roy.

Astron. Soc. 358 (2005) 939 [astro-ph/0403670] [INSPIRE].

– 29 –

https://doi.org/10.1140/epjc/s10052-019-6751-2
https://arxiv.org/abs/1809.02732
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.02732
https://doi.org/10.1088/1751-8121/aa7213
https://doi.org/10.1007/BF01614153
https://doi.org/10.1007/BF01614153
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,59,35%22
http://functions.wolfram.com/07.22.03.0001.01
https://doi.org/10.1007/s00220-009-0894-1
https://arxiv.org/abs/0811.0351
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,292,529%22
https://arxiv.org/abs/0712.0849
https://doi.org/10.1070/RM9859
https://doi.org/10.1070/RM9859
https://doi.org/10.1088/0305-4470/28/20/004
https://doi.org/10.1103/PhysRevLett.121.264101
https://arxiv.org/abs/1805.00931
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,121,264101%22
https://doi.org/10.1515/IJNSNS.2008.9.1.37
https://doi.org/10.1215/S0012-9074-02-11211-3
https://doi.org/10.1215/S0012-9074-02-11211-3
https://doi.org/10.1088/0305-4470/36/42/008
https://doi.org/10.1016/j.nuclphysb.2005.09.020
https://arxiv.org/abs/cond-mat/0506373
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B729,526%22
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP09(2018)002
https://doi.org/10.1007/JHEP09(2018)002
https://arxiv.org/abs/1611.04650
https://inspirehep.net/search?p=find+J+%22JHEP,1705,118%22
https://doi.org/10.1088/1126-6708/2007/09/120
https://arxiv.org/abs/0708.4025
https://inspirehep.net/search?p=find+J+%22JHEP,0709,120%22
https://doi.org/10.1088/1126-6708/2008/10/065
https://arxiv.org/abs/0808.2096
https://inspirehep.net/search?p=find+J+%22JHEP,0810,065%22
https://doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
https://inspirehep.net/search?p=find+J+%22JHEP,1403,067%22
https://doi.org/10.1111/j.1365-2966.2005.08835.x
https://doi.org/10.1111/j.1365-2966.2005.08835.x
https://arxiv.org/abs/astro-ph/0403670
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0403670

	Introduction
	Random Matrix Theory (RMT) redux: quantifying quantum chaos
	Out of time ordered correlation function (OTOC) from RMT
	Two point Spectral Form Factor (SFF) from thermal Green's function of RMT
	Bound on two point SFF from GUE based RMT
	Early time behaviour of two point SFF from GUE based RMT
	Integrablity from GUE based RMT: Toda Lattice model
	Conclusion

