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We construct the pure supergravity theory in five dimensions which after dimensional reduction gives SO(2) supergravity 
coupled to an SO(2) vector matter multiplet. 

Already some years ago, the pure extended SO(2) supergravity theory was constructed by different methods [ 1 ]. 
Also, the coupling of  this theory to SO(2) matter was found by application of  the Noether method [2] and by 
using U(1) invariance [3]. The subsequent discovery of  the auxiliary fields and a corresponding tensor calculus 
for N = 2 [4] made it possible to recover the results of  ref. [2] in a more systematic fashion. Similarly, the super- 
space approach should lead to a full understanding of  the coupling between matter and gravity [5]. However, al- 
though these methods, in principle, enable us to write down even more general models involving SO(2) multiplets, 
this has, to date, not been done, presumably because of  the large number of  auxiliary fields that have to be intro- 
duced [4]. 

In this paper we intend to construct an explicit lagrangian coupling SO(2) gravity to the SO(2) vector multiplet 
(which contains one vector, two Majorana spinors (= one Dirac spinor) and two scalars). Our method of  construc- 
tion is that of  Cremmer et al. [6]. We first derive the action and transformation laws in five dimensions and then 
dimensionally reduce [6] the theory to four dimensions, thereby obtaining the desired lagrangian. In many respects 
this theory can be used as a toy  model for SO(8) supergravity to gain familiarity with it. 

This method has the advantage of  being rather straightforward and we expect that our results can be rederived 
by use of  the above-mentioned methods and are analogous to ref. [3]. As in D = 11, the field content of  the five- 
dimensional theory turns out to be surprisingly simple: a fiinfbein, which upon dimensional reduction yields a 
vierbein e~, a vector B 5 and a scalar :~1 e$5 = exp P; a five-dimensional vector A M  subject to the gauge transforma- 
tion 

hA M = DM A , (1) 

which gives another four-dimensional vector A~ and a scalar A 5 ; and finally, a Dirac spinor ~M which is decom- 
posed into a Dirac gravitino ~ and an ordinary Dirac spinor ~5" It is easy to see that the physical degrees of  free- 
dom are just those of  one S0(2) gravity and one S0(2) vector multiplet. 

Our conventions are the same as in ref. [6]: as the metric, we take (+ . . . .  ), and by 

F A1 "'" A k  -- r [A1 "'" F Ak] (2) 

we denote the fully antisymmetrized product of  the 4 × 4 Dirac matrices FA1 ..... FAg. In particular, 

F5 = - F 5  = i75 = i75 (3) 

is anti-hermitean. Tangent space indices are from the beginning of  the alphabet while curved ones are from the 

~1 We use the notation 5 for the curved internal index and 5 for the flat one. 
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middle. 
The lagrangian we find reads 

£? = _1eR(60) - i i e [~M FMNP D N ((360 - ¢5)/2) ~p + t~p b N ((3 60 - ~ ) /2 )  F MNP t~M ] -- 1 eFMNFM N 

-- ~V~  ie ~M XMNPQ t~N(FpQ + FpQ) - ( 6 ~ ) - I e M N P Q  R FMNFpQA R . (4) 

The quartic terms have been absorbed into the supercovariant fields ¢2, F to be defined below. We have used the 
following definitions: 

D N t~p = O N ~p + ~ 60NAB t A B  t~p, 60MAB = 600MAB(e) + KMAB , (5) 

with the contorsion tensor 

t~MAB = - l  i~Q PQRMAB ~llR + ½i[(~MFB t~A -- ~A rB t~M) + (fJBPM~A -- fJA I~Mt~B) -- (fJMFA ~B -- ~BI'A ~M)I 
(6) 

The field strength tensor is 

FMN = OMA N - ONA M , (7) 

and we have also introduced the notation 

xMNPQ = I,MNPQ + gMPgNQ _ gMQgNP . (8) 

The lagrangian (4) is invariant under the following supersymmetry transformations: 

6eMA = --i~ F A ~M + i~M FA e ,  6 ffM = DM(6°) e -- DM(~ ) e + (4~/3) - l (PM PQ -- 46PF  Q) ef'pQ, 

(SA M = ½i~/3-(~ffM -- ~JMe). (9) 

We are using second order formalism throughout,  so 60MAB is obtained from its equation of motion. Its superco- 
variant extension is given by 

~MAB -- 60MAR + ½i~Q I-'QRMABt~R . (10) 

The supercovariant field strength is 
A ~ 1 ,  - -  

FMN - FMN + ~IN/~-(ffM ~N -- t~N ffM),  (1 1) 

and one readily verifies that 

5I~'AB = - - i ~  e [AMeB] N(~ DM ~N -- ON fJM e) , (l  2) 

where 0 M ~)N is defined analogously to 6~ M = OMe. To obtain the action and transformation laws we have mim- 
icked the procedure of  ref. [6] : the coefficients in the transformation rules, as well as the form of  the fJX~F inter- 
action, are determined by requiring the closure of  the algebra on the Bose fields and the cancellation of  ~ffF terms. 
To obtain a full cancellation of  all terms of  type ~ F  2 we are forced to add a term proportional to 

~MNPQR FMNFpQAR , (13) 

again in complete analogy with the eleven-dimensional theory [6]. The quartic terms are then fixed so as to repro- 
duce the supercovariant equation of motion 

FMNPO N (¢~) ~bp = 0 .  (14) 

This is a test of  consistency and involves the following Fierz rearrangement identity: 
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gR[NI'MPQ] ~N" ~pI'R ~Q = I(I'MNPQt~N " ~pt~ Q -  ~N" ~I/pI'MNPQ ~ Q) " (15) 

The next step in our construction is the dimensional reduction which allows us to make some contact with the 
real world and to identify the physical fields of  the model. In the simplest scheme, one assumes independence of 
the fifth coordinate and, again, our derivation is analogous to the one that has been carried out for the N = 8 the- 
ory by Cremmer and Julia [7]. 

Using the non-diagonal part of  local SO(1,4), we gauge away the field e~, so the fiinfbein assumes the form 

eMA = 0 e $ 5 = e x p P  ' eAM = 0 e s $ = e x p - P  ' 

where the scalar field has been written as exp P for later convenience. 
After the following redefinitions and Weyl rescalings [7] for the bosonic fields: 

1 a 1 e4u°~ = exp(~P) e u , e4,~u = e x p ( - ~ P )  %u , 

G4c~t35 = 2 exp(P)  e 4[~Ue 4t~]v Ou[ exp( -P)  Bv 5] , 
f A u = A u - B u S A  5 ,  A 5=eSSA $ ,  

F'uv: 20[uA'v] , F4uv=F'~u+Guv5A5 , Fc~t3=exp(P)F4c#3, (17) 

we obtain the reduced lagrangian 

_ 1 3 2 
12bosonic ~e4R4@o0) + ge4(04a, P ) + ~e4(G4a~5)  2 

- le4[exp(P)F4uvF4pog4UPgaV° + 2g4 $$ OuA$ DuA~ g4 uv] 

! ~  5c, 5A2~ A (18) -- (2X/~) -1 exp(P)  eu"P°(F4uvF4o o + F4u, GooSA5 -3,_,uv '-" po ~5J 5 • 

For the fermionic sector we need the following redefinitions: 

X4 = f f~esSexp(kP) ,  ~ = ~M%Mexp(--kP) ,  t~4 u = e4u°~(X4c,- ½r5TaX4) • (19) 

For instance, the last redefinition diagonalizes the kinetic term for the fermions which now takes the form 

I,' 3 -  3 -  + -  
--½ie4 [~4# ")'~vp D4v(C%) ff4p + ~4pD4v(c°0) 'Y# p ~4g + 2X4'Y~D4u(c°0)X4 + ~x4D4~')'uX4] • (20) 

The interaction terms arise from 

-~  ie ~M{I "MNP, I "AB } ~pWOAB -- ~x/~ie ~M XMNPQ ~NFpQ , (21) 

which leads to the reduced vector interaction 

• I 1 i ~  

~vPint = le4exp(gp)(_~x/~F4o~ fl + ~Go~) . [(t~4c~4/~ _ ½243,~V5 W4 ~ + ½t~4ars~,~×4) 
_½ e~78(~47P5 ff48 I =  1 - -  

- -  2X4')'8~4-r + 2~47~'6X4)1 • (22) 

The reduction of  the quartic terms is straightforward but tedious, and we have only checked that the spin 3/2 
quartic terms coincide with those of  pure S0(2) supergravity. 

We are now able to identify the S0(2) submultiplets. A non-trivial mixing, besides the one in (19) between spin 
3/2 and spin 1/2, only occurs for the vector fields where the two multiplets "overlap".  We find 

-~v~F4taz, + (2/e 4) 8.~v/SG4 uv ~uv(vector)  = 1 + ~uv(gravi ty)= 1 " - - - - - - - - -~  , ~F4u v ( 2 X / 3 / e 4 ) ~ ,  (23) 

where 
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(2/e4) 8~v/SG4a  ~_ a - 1 .  - 1 -  5 1 - 5 - 7~G4c,/3 + ~ 1 [ ( ~ 4 ~ 4 / 3  -- ~X4,Y/31" t~4~ + ~t~4c~]-' T#X4) 
1 - 1 -  8 1 -  8 

+ ~e~8(~471"5~48 -- ~X4T ~47+ ~4" / ' )  " X4)] • (24) 

A curious, although not unexpected, feature is that the identification (23) is possible on shell only  because it is 
only there that ~ v  and ~uv can be expressed as curls of vector fields. The duality transformation (23) automat- 
ically leads to the correct sign for the kinetic terms of the vector fields because 

1 2 1 2 + = + • -~F~t w ~ (G4ttv5) 2 (25) 

(This is also true for the N = 8 theory [7] .) 
The supersymmetry transformation rules become, after the reduction (dropping indices 4, so, e.g., e 4 = e, etc.) 

8eua = - i~ . ra t~g  + i~u 'yae + ~2a~eut~ , 

~at3 = compensating gauge rotation, 8A~ = -½ix/~ (eX - ~e) e x p ( - P ) ,  5P = - i(~P5X - ~(F5e),  

8× = ~ , u P  5 '  e-  D u P -  (x/3) -1 e x p ( - P )  ")'re" f )vA$ + (2V~) -1 exp(½P)P5 7 a~e "~a~ 

6t~ u = Due - ~"fPOTue" type + . . . .  (26) 

where 

hue= a.e- ½ i ( 7 p u r s ×  - 2rs6.), b.A3 = 3 . A ~  - ½ i x / ~ ( ~ g X  - 2 ~ u ) .  ( 2 7 )  

To get the right parity assignments we perform a further (chiral) redefinition: 

X -+ Fsx  • (28) 

Moreover, all factors of x/3-disappear if one rescales 

X ~ ( N / ~ ) - I x ,  P - + ( 2 / X / ~ ) P ,  (29) 

so as to obtain the canonical normalization of the corresponding kinetic terms. Splitting X into 2-1/2(X 1 + ix2) 
where ×1, X2 are Majorana spinors, we get, for instance, using (3) 

~,,iA -- l '~ ; t v  t ~ ~ uv - ieii (~tUeiO~e + i'[U75 e/OuA ~) + . . . ,  (30) 

which is just the expected transformation law [2,3]. It is not difficult to check that the truncations to the respec- 
tive SO(2) submultiplets are consistent. The above results are easily seen to agree with ref. [3]. 

A physically somewhat more interesting situation is obtained in a generalized dimensional reduction [8] if one 
retains a dependence on the fifth coordinate in the form exp(imxs). The supersymmetry is then spontaneously 
broken because 05 :/: 0 and the central charge [9] which is gauged by the A M field no longer vanishes but is rather 
proportional to the mass. This may in turn lead to antigravity [10] and we are presently investigating whether this 
interesting phenomenon indeed occurs for the model of this paper. 

We are grateful to J. Ellis for a critical reading of the manuscript, and to P. Fayet for discussions of our work. 

Note  added. B. de Wit informed us that the most general couplings o f N  = 2 supergravity have already been 
constructed, see e.g.M, de Roo, J.W. van Holten, B. de Wit and A. van Proeyen, Nucl. Phys. B173 (1980) 175. 
After our paper had been accepted, we also learnt of a paper by E. Cremmer, Supergravity in 5 dimensions, 
LPTENS 80/17 (August 1980), where all five-dimensional supergravities have been constructed and classified. 

92 



Volume 96B, number 1,2 PHYSICS LETTERS 20 October 1980 

References 

[1] S. Ferrara and P. van Nieuwenhuizen, Phys. Rev. Lett. 37 (1976) 1668; 
P.K. Townsend and P. van Nieuwenhuizen, Phys. Lett. 67B (1977) 439. 

[2] C.K. Zachos, Phys. Lett. 76B (1978) 329. 
[3] J.F. Luciani, Nucl. Phys. B132 (1978) 325. 
[4] A.S. Fradkin and M.A. Vasiliev, Nuovo Cimento Lett. 25 (1979) 79; Phys. Lett. 85B (1979) 47; 

B. de Wit and J.W. van Holten, Nucl. Phys. B155 (1979) 530; 
B. de Wit, J.W. van Holten and A. van Proeyen, Phys. Lett. 95B (1980) 51. 

[5] J. Wess, Constraints for supergravity, in: Supergravity, eds. D.Z. Freedman and P. van Nieuwenhuizen (~orth-Holland, 
Amsterdam, 1980); 
P. Breitenlohner and M. Sohnius, Nucl. Phys. B165 (1980) 483. 

[6] E. Cremmer, B. Julia and J. Scherk, Phys. Lett. 76B (1978) 409. 
[7] E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141. 
[8] E. Cremmer, J. Scherk and J. Schwarz, Phys. Lett. 84B (1979) 83. 
[9] M.F. Sohnius, Nucl. Phys. B136 (1978) 461. 

[ 10] J. Scherk, From supergravity to antigravity, in: Supergravity, eds. D.Z. Freedman and P. van Nieuwenhuizen (North-Holland 
Amsterdam, 1980). 

93 


