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Abstract
One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible 
reactions between electrolyte and discharge product Li2O2 and/or intermediate LiO2. Among many solvents that are used as 
electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using 
near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 
battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it 
first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2 + MeCN mixture. We have dem-
onstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded 
to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest 
that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably 
the Coulombic efficiency of the battery.
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1  Introduction

Li–O2 batteries promise extraordinary high specific energy 
that makes them interesting for the next generation power 
technologies [1, 2]. Unfortunately, at the moment many 
obstacles hinder the development and practical applica-
tion of such type of batteries [3, 4]. One of such issues is 
poor cycle life associated with side reactions that involve 
the major discharge product lithium peroxide (Li2O2) and/
or discharge intermediate lithium superoxide (LiO2), elec-
trode materials [5–7] and electrolytes [8, 9]. As a result of 
side reactions, Coulombic efficiency of the battery drops 
down, and electrode surface is passivated by side products. 
Currently many research efforts are focused at studying the 
chemical stability of electrolyte components—both sol-
vents and salts—under Li–O2 battery operation conditions 
[10–12]. Reactions of the electrolytes with commercially 
available and synthesized in-house Li2O2 [13, 14] and KO2 
[15], which is used instead of unstable LiO2 [16], are also 
often investigated. Several publications report the theoreti-
cal simulations of electrolyte reactivity towards oxidation 
in Li–air batteries [17–19]. It was found that most of sol-
vents that have ever been used as Li–O2 battery electrolyte’s 
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component—alkyl carbonates [20, 21], ethers [22, 23], 
amides [24, 25], dimethylsulfoxide (DMSO) [14, 26]—are to 
a different extent unstable towards oxidation by LiO2 or/and 
Li2O2. At the same time, acetonitrile (MeCN) is considered 
to be among relatively stable solvents [8].

The commonly acknowledged reaction pathway of the 
electrolyte solvent degradation includes proton abstrac-
tion of α-CH2 group by strong nucleophile—superoxide 
anion (O2

−). It leads to oxidation [25] and, in addition, to 
polymerization [23] of the solvent molecules. Therefore, 
solvent tendency to oxidize is characterized by C–H disso-
ciation constant pKa, with the most stable molecules having 
the highest pKa [19, 27]. Khetan et al. also show that pKa 
value characterizes H-abstraction from solvent molecule at 
Li2O2 surface [28]. Due to the low pKa value MeCN might 
be unstable to some extent towards oxidation by LiO2 and 
Li2O2.

Value of pKa is not, however, the only factor comprehen-
sively describing the reactivity of the solvent with strong 
nucleophiles. Various functional groups can be also attacked 
by superoxide species. For instance, in case of DMSO 
O2

− attacks −S=O group thus yielding –SO2 [24]. As for 
MeCN, it is well-known that along with other nitriles of 
R-CN type it reacts with peroxide and superoxide anions 
in alkaline solutions yielding the corresponding amides 
RCONH2 [29]. It was also found that MeCN can undergo 
self-condensation in contact with KO2 containing KOH 
impurities, which results in 3-aminocrotonitrile [18]. Based 
on these data one can suppose MeCN can reveal certain 
reactivity towards both peroxides and superoxide in aprotic 
media also.

Unfortunately, it is difficult to experimentally trace pos-
sible chemical reactions of MeCN in Li–O2 battery. First 
reason is that metallic Li anode reacts with MeCN form-
ing lithium cyanide and, therefore, Li–O2 test cells should 
either comprise a solid electrolyte membrane, which isolates 
lithium electrode [30, 31], or employ another counter elec-
trode [32]. In addition, MeCN cannot be used as electrolyte 
for Li–air battery opened to the atmosphere because of its 
high volatility [19]. For these reasons, few works only have 
been devoted to the evaluation of MeCN chemical stability 
in Li–O2 batteries up to now. In some reports, ex situ X-ray 
photoelectron spectroscopy (XPS) showed that MeCN is 
stable both in contact with Li2O2 [33] and under Li–O2 bat-
tery operation conditions [10]. It is also supported by cyclic 
voltammetry results [19]. Theoretical modelling also pre-
dicts negligible reactivity and strong molecular adsorption 
of solvent at Li2O2 (1 0 1̄ 0) surface [34]. All in all, the data 
reported earlier imply that acetonitrile solutions are consid-
ered to be a good choice for Li–O2 batteries. Nevertheless, 
the data obtained by ex situ XPS often include certain arti-
facts related to surface contaminations and sample transfer. 
Direct in situ observations of products that can be formed 

during Li–O2 battery discharge in presence of MeCN are 
currently missing.

Here we employ near ambient pressure X-ray photoelec-
tron spectroscopy (NAP XPS) to characterize MeCN behav-
ior in Li–O2 battery. We designed a model electrochemical 
cell containing graphene electrode and Li-conductive solid 
electrolyte, while MeCN vapor was introduced in the gas 
phase. To trace the MeCN reactivity towards Li2O2 in situ 
we discharged the cell in O2 followed by exposure to MeCN 
vapor. To evaluate possible reactions of MeCN with LiO2 
the discharge was continued in O2 + MeCN mixture. We 
have demonstrated that in both cases MeCN is oxidized. 
This yields species that are weakly bonded to the surface and 
can be easily desorbed. That is why they cannot be detected 
by conventional ex situ XPS of clean Li2O2 and KO2 sur-
faces exposed to MeCN vapors. Our results suggest that the 
respective chemical process probably does not give rise to 
electrode passivation but can decrease considerably the Cou-
lombic efficiency of the battery.

2 � Experimental

2.1 � Preparation of Li2O2 and KO2 Layers and Their 
Exposure to MeCN Vapor

Thin layers of Li2O2 and KO2 free from contaminations were 
prepared by deposition of metallic Li or K on clean graphene 
substrate under oxygen (99.995% purity, Air liquid) pressure 
of 8 × 10−5 mbar in the preliminary baked preparation cham-
ber of photoelectron spectrometer (base pressure 1–2 × 10−9 
mbar) at Russian-German beamline at BESSY II (Hemholtz 
Zentrum Berlin). As a substrate, we used commercial sin-
gle layer graphene on Cu foil (Donghuk University, South 
Korea) grown by CVD [35]. It was preliminary heated at 
600 °C for 40 min to obtain clean surface; the cleanness was 
confirmed by the absence of O 1s signal in XPS and by the 
typical shape of C-K edge NEXAFS spectra. Layers were 
deposited from Li or K dispensers (SAES). The absence of 
carbon contaminations from the Li and K source was pre-
liminary checked by the deposition of same films on a clean 
WO3 surface and further recording C 1s spectra.

Further Li2O2 and KO2 layers were exposed to MeCN 
vapor with pressure of 1 mbar for 30 min. For this a vacuum-
compatible flask was filled with MeCN (anhydrous, 99.8%, 
Sigma-Aldrich) in an Ar-filled glovebox (M. Braun). The 
flask was attached to the preparation chamber without expo-
sure to air. The solvent in the flask was degassed by several 
freezing and evacuation cycles and then dosed to the cham-
ber through a leak valve.

C 1s, O 1s, N 1s and Li 1s core level spectra of the clean 
graphene, Li2O2 and KO2 films before and after their expo-
sure to MeCN were acquired using a SPECS Phoibos 150 
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electron energy analyzer at a photoelectron kinetic energy 
of 200 eV. Photon energy was calibrated using 2nd order 
reflection of the plane grating. All spectra were fitted by 
Gaussian/Lorentzian convolution functions using Unifit 
2014 software. Spectral background was optimized using a 
combination of Shirley and Tougaard functions simultane-
ously with spectral fitting.

2.2 � Photoemission Study of the All‑Solid‑State Li–
O2 Cells

Electrochemical cell for in situ XPS studies is shown in Fig. 
S1. It had a sandwiched structure with graphene working 
electrode, Li-conductive solid electrolyte and metallic Li 
counter electrode. Graphene was transferred from Cu foil 
onto a solid glass–ceramic NASICON-type electrolyte 
(Li1.5Al0.5Ge1.5(PO4)3) plate prepared in-house [36]. PMMA-
based graphene transfer technique described elsewhere [37] 
was used. The transfer procedure was performed twice to 
get double-layer graphene on solid electrolyte surface. Such 
double-layer graphene possesses sufficient electron conduc-
tivity and is thin enough to provide laterally uniform trans-
port of Li ions from solid electrolyte to the surface. After 
transfer electrode surface was cleaned from PMMA residues 
by washing in glacial acetic acid for 8 h.

The cells were assembled in an Ar-filled glovebox (M. 
Braun) by stacking the graphene/solid electrolyte plate and 
metallic lithium foil [5, 6]. After assembly the cells were 
transferred to the NAP XPS spectrometer of the ISISS beam-
line (HZB). The cells were discharged at either 1 mbar oxy-
gen or 2 mbar MeCN + O2 mixture (1:1 vol.). The discharge 
was carried out by applying constant current of 50 nA for 
various time periods. All electrochemical measurements 
were performed using SP-200 potentiostat/galvanostat (Bio-
Logic SAS Instruments).

Photoemission spectra for the graphene electrode surface 
were measured both during discharge and at open circuit 
after certain discharge periods. C 1s, O 1s, N 1s and Li 1s 
core level spectra were acquired at a photoelectron kinetic 
energy of 200 eV using a SPECS Phoibos 150 NAP elec-
tron energy analyzer. The spectra were treated as described 
above.

2.3 � DFT Modelling

Modelling of the MeCN + LiO2 and MeCN + Li2O2 reaction 
paths, i.e. saddle points and local minima, was performed 
within density functional theory (DFT) using the B3LYP 
hybrid functional and the 6-311G basis set. Geometry opti-
mization at local minimum points was carried out using 
the Berny algorithm, and at saddle points we applied the 
quadratic synchronous transit algorithm QST-2. Barriers 
were calculated within the framework of the transition state 

theory. To verify the transition state, a frequency analysis 
was performed. The variation of chemical shifts in XP-spec-
tra are calculated as a difference in electrostatic potential at 
centre of each atom of interest between reagent and reaction 
product [38].

3 � Results and Discussion

Earlier XPS studies of the commercial Li2O2 powder washed 
by MeCN revealed that unmodified MeCN molecules only 
adsorb at the surface [33], which allowed authors to suppose 
negligible reactivity of MeCN towards Li2O2. However, the 
reactivity of solid Li2O2 can be suppressed by common sur-
face contaminations, such as adventitious carbon, Li2CO3 
etc., observed in these experiments. In our experiments, we 
tried to provide cleaner conditions for the reactivity studies, 
i.e. we studied Li2O2 surface freshly prepared by Li depo-
sition under pure oxygen in spectroscopically clean cham-
ber. O 1s spectrum measured right after the deposition is 
presented in Fig. 1a. The deposited layer is mostly Li2O2 
(531.5 eV) with minor O 1s intensity related to lithium oxide 
(528.8 eV) [39]. Varying photon energy and the correspond-
ing electron kinetic energy from 200 to 50 eV we found 
that peroxide is located at the surface fully covering oxide 
(IMFP for Li2O2 at 200 eV is 9.2 Å and at 50 eV is 6.4 Å; 
details of calculation are given in Supplementary material 
file). It should be mentioned that we observe no static charg-
ing effect despite the poor electrical conductivity of Li2O2. 
We believe that no charging occurs as we prepare relatively 
thin layer of the deposit on well conductive substrate. There-
fore, precise and reliable interpretation of spectral features 
becomes possible. After exposure of the sample to MeCN 
vapors for 30  min followed by evacuation and spectra 
recording in UHV chamber, nitrogen was observed at the 
surface. N 1s spectrum in Fig. 1c can be treated as a single 
component positioned at 399.4 eV and can be assigned to 
the adsorbed MeCN molecules [40]. The estimated thick-
ness of the adsorbed layer is nearly to 1 monolayer. Since 
the surface is covered with MeCN molecules solely we can 
suppose that it does not react with fresh surface of Li2O2 
surface that is in line with previously reported results [33]. 
No remarkable decrease of Li2O2 layer thickness estimated 
from the corresponding spectra quantification was observed 
additionally supporting no noticeable reactivity between 
MeCN and Li2O2.

We further probed the reactivity of MeCN with super-
oxide species. Since LiO2 is unstable at room tempera-
ture we made further experiments with freshly prepared 
KO2 layer. After deposition of K in oxygen atmosphere 
the layer containing considerable amount of KO2 was 
obtained. The corresponding binding energy in O 1s spec-
trum in Fig. 1b is 533.8 eV. Other spectral features are 
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related to potassium peroxide and products of the known 
reaction between KO2 and graphene [39]. After exposure 
of the sample to MeCN vapor and further evacuation we 
found nitrogen at the surface, with N 1s being positioned 
at 400.2 eV.

We assigned this peak to acetonitrile molecularly 
adsorbed at the surface despite of the notable difference in 
its position with MeCN on Li2O2 as nitrogen chemical shift 
under monolayer coverage depends remarkably on the sub-
strate nature [41]. The tendency of MeCN to be adsorbed 
molecularly at Li2O2 is in line with previous calculations 
[34]. Although we did not observe significantly oxidized 
nitrogen after its contact with KO2, superoxide was consid-
erably consumed during the exposure in contrast to Li2O2 
(Fig. S2), but it can also arise from its general instability, as 
we observed in additional experiments.

As lithium superoxide may be much more reactive than 
KO2, we further performed in situ studies of Li–O2 cell to 
enable correct evaluation of the MeCN reactivity towards 
Li2O2 and LiO2.

For in situ NAP XPS studies we used electrochemical 
cell with solid electrolyte and graphene electrode, which 
is schematically shown in Fig. 2b. Graphene is suggested 
as the thinnest imaginable electrode, which possesses a 
high electronic conductivity and good mechanical proper-
ties. Moreover, its flat morphology provides effective ionic 
contact between the graphene and polished glass–ceramic 
electrolyte. C 1s spectrum for pristine graphene electrode 
is shown on Fig. 3a. It can be fitted with the dominating 
intensity of sp2 carbon (marked as C1) and certain contribu-
tion of β-sp2 (C2). Besides one can see unessential surface 
contamination by oxygenated groups (C3 and C4).

To probe MeCN reactivity with Li–O2 battery dis-
charge product Li2O2 (or other possible products) we firstly 

Fig. 1   O 1s photoemission spectra of graphene surface (hv = 727 eV, 
KE = 200  eV) after the deposition of Li (a) and K (b) at 
P(O2) = 8 × 10−5 mbar evidencing Li2O2 and KO2 formation corre-
spondingly. N 1s spectra (hv = 600 eV, KE = 200 eV) after exposure 
to MeCN for Li2O2 (c) and for KO2 (d) vapor (P = 1 mbar) Fig. 2   C 1s spectra of pristine graphene electrode surface obtained at 

hv = 485 eV (a), after galvanostatic discharge in 1 mbar O2 (c); after 
exposure to 1 mbar of MeCN (f); b schematic representation of elec-
trochemical cell for in situ NAP XPS studies; O 1s (d), hv = 727 eV 
(O1 component relates to oxygenated groups on graphene, O2 to 
Li2O2) and Li 1s, hv = 256  eV (e) before and after cell discharge 
under 1 mbar O2. g N 1s spectra after exposition of discharge prod-
ucts to MeCN vapor, hv = 600 eV
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discharged the cell in pure oxygen and further exposed it 
to MeCN + O2 gas mixture. Upon the discharge the surface 
concentration of lithium and oxygen significantly increased 
as it follows from O 1s and Li 1s spectra presented in 
Fig. 2d, e, correspondingly. During discharge LiO2 reacts 
with graphene and is spent rapidly generating a number of 
oxygen-containing species (C3–C8) including lithium car-
bonate (C8) [5]. According to O 1s spectrum in Fig. 2d no 
LiO2 remains just before MeCN exposure. After introducing 
MeCN vapors in the analysis chamber nitrogen appears at 
the surface. N 1s spectrum in Fig. 2g measured in the gas 
mixture has two components positioned at binding energy of 
401.9 eV (component N2) and 400.05 eV (component N1). 
N1 is related to MeCN [41], whereas the spectral feature N2 
corresponds to the higher positive charge at nitrogen atoms 
in reaction products. In C 1s spectrum in Fig. 2f new intense 
component appeared at binding energy of 288.8 eV that also 
have binding energy higher than that of pure MeCN also evi-
dencing for the formation of some byproducts at the surface.

Afterwards, to evaluate possible reactions of MeCN 
with intermediates such as LiO2 [5] we further discharged 
the cell under MeCN + O2 vapor. During discharge LiO2 is 
generated in the presence of MeCN. Again, we observed 
two coexisting peaks in N 1s spectra—one for MeCN 

(component N1) and another for its oxidation product 
(component N2), which is illustrated in Fig. 3a. At the 
same time, the spectral features C4 at 287.0 eV and C6 
at 288.8 eV in C 1s spectra in Fig. 3b increased upon 
discharge. We ascribe these peaks to MeCN and its oxida-
tion product, correspondingly. The chemical nature of the 
product is the same as for Li2O2.

All in all, observation of new spectral features in both N 
1s and C 1s makes us to believe that MeCN demonstrates 
certain reactivity towards Li–O2 cell discharge product 
Li2O2. The resulting side products can be detected, how-
ever, exclusively in presence of MeCN vapors during spec-
tral acquisition. Alternatively, the presence of oxygen in the 
spectroelectrochemical experiments may be the reason why 
we do not see the reaction products in the ex situ experi-
ments. Nevertheless, after chamber evacuation to pressure 
lower than 10−7 mbar the oxidation product desorbs as it 
clearly follows from spectra in Fig. 4, which illustrates the 
spectral changes upon evacuation of the cell after discharge 
in MeCN + O2 gas mixture. Under UHV conditions the 
major N 1s signal goes from MeCN (N1, 400 eV). This indi-
cates stronger MeCN adsorption at Li2O2 surface in compar-
ison with its oxidation product. For this reason, we observed 
molecularly adsorbed MeCN rather than reaction products at 
Li2O2 surface in our ex situ experiments described above. At 
the same time no significant loss of Li2O2 after the exposure 

Fig. 3   Evolution of N 1s (a) and C 1s (b) spectra for graphene cath-
ode during Li–O2 cell discharge in O2 + MeCN gas mixture (1:1), 
total pressure 2 mbar

Fig. 4   N 1s (a) and C 1s (b) spectra of graphene cathode after Li–O2 
cell discharge recorded in O2 + MeCN gas mixture (1:1) of total pres-
sure 2 mbar (top) and in UHV conditions (bottom)
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evidences low rate of the MeCN conversion under condi-
tions applied.

As the electrode surface is covered by carbon oxidation 
species they may also react with acetonitrile. However, the 
comparison of data obtained for cell with rather different 
concentration of these species allows us to conclude that 
MeCN does react with Li2O2. Spectra for this cell are shown 
in Fig. S4.

Notable reactivity of MeCN may have two consequences: 
(i) the electrode surface is most probably not passivated by 
this side reaction product, although this also depends on the 
product solubility in liquid MeCN (ii) Columbic efficiency 
can drop essentially if this reaction is fast enough since 
Li2O2 is spent during this process. Fortunately, at least under 
conditions of our ex situ experiments, the conversion rate is 
not high, and acetonitrile-based electrolytes are considered 
as promising aprotic media for oxygen reduction.

Now we are discussing the reliability of the above 
reported observations, as X-ray beam can essentially modify 
the sample [42], especially in case if oxygen is one of the 
components of gas mixture. To evaluate the contribution 
of possible beam effect during cell discharge in gas mix-
ture we registered the spectra at three different points of 
our electrode with different X-ray exposure time (Fig. S3). 
We found no correlation between N1 and N2 component 
intensities ratio and beam exposure time. Contrary, there is 
strong correlation between the N2/N1 ratio and the charge 
passed through the electrochemical cell. This imply that the 
appearance of N2 component in N 1s spectra is not due to 
the X-ray beam effect, supporting the hypothesis that MeCN 
does oxidize during battery discharge.

Summing up, after the discharge of Li–O2 cell in the 
presence of MeCN vapor we observed two features in N 
1s photoemission spectrum positioned at 400 eV (N2) and 
401.8 eV (N1), and in C 1s spectrum 287 eV (C4) and 
288.8 eV (C6). N2 and C4 are assigned to MeCN adsorbed 
at the surface. Typical binding energies for nitrogen-contain-
ing functional groups are collected in Table 1.

It is known that nitriles are oxidized to amides by H2O2 
in the presence of strong base (usually OH−) [29]. Com-
ponent C6 in C 1s spectra can be related to amide group, 
but N 1s binding energy for amide is close to initial MeCN 
− 400 eV. Therefore, amide group is probably present in 
the oxidation products but does not explain the appearance 
of N1 component. Typically, the binding energy value of 
401.8 eV is associated with quaternary amine or ammonia 
[47, 48]. However, the lack of available hydrogen atoms in 
our system (e.g., CH3– group in MeCN), makes the trans-
formation of –CN group to NH4

+ rather unlikely. Typically, 
the binding energy for N–O bonds is in the range from 400 
to 405.8 eV depending on compound [49–52], that fits well 
to our observations. However, the detailed knowledge of the 
oxidation products and reaction mechanism definitely needs 

additional study, for instance, via detailed in situ analysis of 
electrolyte composition.

To get further insight into MeCN reactivity and to get 
a hint on the nature of MeCN oxidation products we used 
DFT modelling for simplified system at a molecular level. In 
detail, LiO2, Li2O2 and MeCN were considered as molecules 
in vacuum. The proposed reaction path is illustrated in Fig. 5 
(the corresponding reaction scheme is shown in Fig. S5 of 
Supplementary material file). At the first step LiO2 reacts 
with MeCN by free-radical addition mechanism forming 
the radical A. It contains unpaired electron on nitrogen sp2 
orbital. The second step is the dimerization of two A species 
by free-radical addition mechanism. As a result, dilithium 
diacetylhydrazine-1,2-bis(olate) molecule B forms. It con-
tains N–N bond. We assume that the final product C (E)-
diacetyldiazene is formed by monomolecular elimination 
of Li2O2 molecule.

The comparison of experimental and calculated chemi-
cal shifts in Table 2 supposes that we detect intermediate 
species A at the surface of discharge products in operando 
conditions. Final product evidently desorbs under UHV. This 

Table 1   A summary of spectral features for various of nitrogen-con-
taining functional groups

Component Binding energy, eV References

C 1s N 1s

–CN 287.0 400.2 [41]
286.6 399.9 [43]

–C(O)–NH2 288.3 400 [44]
287.4 400.1 [45]
288.2 400.0 [46]

NH3 – 400 [47]
NR4

+ – 401.8 [48]
NH4

+ – 401.8 [47]
–N=O – 400 ± 0.5 [49]

– 403.7 [50]
–N+–O− – 402.5 [51]
–NO2 – 405.8 [52]

Fig. 5   Simulated reaction path for MeCN oxidation by LiO2
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is supported by the fact that the estimated vapor pressure of 
(E)-diacetyldiazene is 3.4 ± 0.4 mbar at RT [53].

According to the  calculations acetonitrile oxidation 
by  Li2O2 via similar route is unfavorable. We propose 
another reaction pathway illustrated in Fig. 6 (the corre-
sponding reaction scheme is shown in Fig. S6 of Supplemen-
tary material file). Here the barrier (TS3) is still five times 
higher than for oxidation by LiO2 (TS1). Product D turns 
out to be final oxidation product, with the further interac-
tion with superoxide or peroxide molecules being hindered 
sterically. This makes dimerization (like transformation from 
A to B) impossible since there is no unpaired electron at 
the nitrogen atom. Product D can transform to its isomer E 
that has lower formation energy due to decrease of electro-
static interaction energy between two lithium cations. This 
is achieved by their spatial separation through the transfer 
of one of the lithium atoms closer to oxygen and nitrogen.

4 � Conclusions

We elaborated the electrochemical cell, which contains the 
graphene electrode and Li-conductive solid electrolyte. Sol-
vent vapor was admitted in the gas phase. We have studied 
the reactivity of MeCN, which is suggested to be one of the 
most stable aprotic media for oxygen reduction. To trace 

its reactivity towards Li2O2, we discharged the cell in O2 
followed by exposure to MeCN vapor, while to evaluate 
possible reactions of MeCN with LiO2 the discharge was 
continued in O2 + MeCN mixture.

We demonstrated that in both cases MeCN becomes oxi-
dized yielding species that are weakly bonded to the surface 
and can be easily desorbed. It makes the detection of these 
species hardly possible by conventional ex situ XPS of clean 
Li2O2 and KO2 surfaces exposed to MeCN vapors. However, 
it may considerably decrease the Coulombic efficiency of 
the battery if the oxidation reaction rate is high. Neverthe-
less, our ex situ data evidence indirectly that, fortunately, it 
is not the case.
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