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Recent paleogenomic studies have shown that migrations of
Western steppe herders (WSH) beginning in the Eneolithic (ca.
3300-2700 BCE) profoundly transformed the genes and cultures of
Europe and central Asia. Compared with Europe, however, the
eastern extent of this WSH expansion is not well defined. Here
we present genomic and proteomic data from 22 directly dated
Late Bronze Age burials putatively associated with early pastoral-
ism in northern Mongolia (ca. 1380-975 BCE). Genome-wide anal-
ysis reveals that they are largely descended from a population
represented by Early Bronze Age hunter-gatherers in the Baikal
region, with only a limited contribution (~7%) of WSH ancestry.
At the same time, however, mass spectrometry analysis of dental
calculus provides direct protein evidence of bovine, sheep, and
goat milk consumption in seven of nine individuals. No individuals
showed molecular evidence of lactase persistence, and only one
individual exhibited evidence of >10% WSH ancestry, despite the
presence of WSH populations in the nearby Altai-Sayan region for
more than a millennium. Unlike the spread of Neolithic farming in
Europe and the expansion of Bronze Age pastoralism on the West-
ern steppe, our results indicate that ruminant dairy pastoralism
was adopted on the Eastern steppe by local hunter-gatherers
through a process of cultural transmission and minimal genetic
exchange with outside groups.

paleogenomics | LC-MS/MS | dental calculus | p-lactoglobulin | a-S1-casein

rchaeogenetic studies provide evidence that the Eurasian
Eneolithic-Bronze Age transition was associated with major
genetic turnovers by migrations of peoples from the Pontic-
Caspian steppe both in Europe and in central Asia (1-5). The
migration of these Western steppe herders (WSH), with the
Yamnaya horizon (ca. 3300-2700 BCE) as their earliest repre-
sentative, contributed not only to the European Corded Ware
culture (ca. 2500-2200 BCE) but also to steppe cultures located
between the Caspian Sea and the Altai-Sayan mountain region,
such as the Afanasievo (ca. 3300-2500 BCE) and later Sintashta
(2100-1800 BCE) and Andronovo (1800-1300 BCE) cultures.
Although burials typologically linked to the Afanasievo culture
have been occasionally reported in Mongolia (6), the genetic
profile of Eastern steppe populations, as well as the timing and
nature of WSH population expansion and the rise of dairy pas-
toralism in Mongolia, remain unclear.
The remarkable demographic success of WSH populations has
been linked to mobile pastoralism with dairying (7), a system that
efficiently converts cellulose-rich wild grasses into protein- and
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fat-rich dairy products. Dairy foods provide a rich source of
nutrients and fresh water, and function as an adaptive sub-
sistence strategy in cold, dry steppe environments where most
crop cultivation is highly challenging. Dairy pastoralism became
widely practiced in the eastern Eurasian steppe, the homeland
from which subsequent historical nomadic dairying empires, such
as the Xiongnu (ca. 200 BCE to 100 CE) and the Mongols (ca.
1200-1400 CE) expanded; however, it is not fully understood
when, where, and how this subsistence strategy developed. At
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Botai, in central Kazakhstan, evidence for Eneolithic dairying
has been reported through the presence of ruminant and equine
dairy lipids in ceramic residues as early as 3500 BCE (8, 9). In the
Altai and Tarim basin, where WSH populations have left strong
genetic footprints (1, 3, 10, 11), archaeological evidence supports
the presence of dairy products by the early second Millennium
BCE and later (8, 12, 13). In the Eastern steppe, however, no
direct observations of dairy consumption have been made for a
comparable time period, despite the fact that skeletal remains of
domestic livestock (such as sheep, goats, cattle, and horses) have
been found at Mongolian ritual sites and in midden contexts as
early as the 14th century BCE (14-17). In the absence of direct
evidence for Bronze Age milk production or consumption on the
Eastern steppe, it remains unclear whether these animals are
merely ritual in nature or signify a major shift in dietary ecology
toward dairy pastoralism, and whether their appearance is con-
nected to possible WSH migrations onto the Eastern steppe.
To understand the population history and context of dairy
pastoralism in the eastern Eurasian steppe, we applied genomic
and proteomic analyses to individuals buried in Late Bronze Age
(LBA) burial mounds associated with the Deer Stone-Khirigsuur
Complex (DSKC) in northern Mongolia (SI Appendix, Figs. S1—
S3 and Table S1). To date, DSKC sites contain the clearest and
most direct evidence for animal pastoralism in the Eastern
steppe before ca. 1200 BCE (18). Focusing on six distinct burial
clusters in Arbulag soum, Khovsgol aimag, Mongolia (Fig. 1 and
SI Appendix, Figs. S1-S3), we produced genome-wide sequencing
data targeting ~1.2M single nucleotide polymorphisms (SNPs)
for 22 DSKC-associated individuals directly dated to ca. 1380-
975 calibrated BCE (SI Appendix, Fig. S4 and Table S2), as
well as sequenced whole genomes for two individuals (>3x
coverage). Nine of the individuals in this group yielded suffi-
cient dental calculus for proteomic analysis, and we tested
these deposits for the presence of milk proteins using liquid
chromatography-tandem mass spectrometry (LC-MS/MS). Over-
all, our results find that DSKC subsistence strategy included
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dairying of Western domesticated ruminants, but that there was
minimal gene flow between analyzed DSKC populations and
WSH groups during the LBA. Thus, in contrast to patterns ob-
served in western Europe where, for example, the arrival of WSH
is associated with population replacement and continental-level
genetic turnover (5), contact between WSH and Eastern steppe
populations is characterized by transcultural transmission of dairy
pastoralism in the near absence of demic diffusion.

Results

Ancient DNA Sequencing and Quality Assessment. We built and se-
quenced uracil-DNA-glycosylase-half (19), double-indexed Illu-
mina libraries for genomic DNA extracted from teeth or femora
from DSKC-associated burials in Khovsgol, Mongolia. Twenty of
22 libraries exhibited good human DNA preservation, with a
mean host endogenous content of 14.9% (range 0.2-70.0%); two
libraries yielded very little human DNA (<0.05%) and were
excluded from further analysis (SI Appendix, Table S2). Libraries
were then enriched for 1.2 million variable sites in the human
genome (1240K) using in-solution hybridization (2, 3). All indi-
viduals (12 males, 8 females) showed characteristic patterns of
chemical modifications typical of ancient DNA (SI Appendix,
Fig. S5), and 18 individuals yielded both low estimates of modern
DNA contamination (<1% mitochondrial and nuclear contami-
nation) and sufficient genome coverage for subsequent analysis
(0.11x to 4.87x mean coverage for target sites) (SI Appendix,
Table S3). No close relative pairs were identified among the
ancient individuals (SI Appendix, Fig. S6). Two individuals with
high endogenous content on screening (ARS008, 70.0%;
ARSO026, 47.6%) were deeply sequenced to obtain whole ge-
nomes (~3.3%x coverage) (SI Appendix, Table S3). We intersected
our ancient data with a published world-wide set of ancient and
contemporary individuals (Dataset S1) whose genotypes are
determined for 593,124 autosomal SNPs on the Affymetrix
HumanOrigins 1 array (20).
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Fig. 1. Map of the Eurasian steppes. (A) Distribution of the Western (brown) and Eastern (green) steppes and the locations of ancient (red) and modern
(black) populations discussed in the text. Population codes are provided in the Dataset S1. A box indicates the location of the LBA burial mounds surveyed in
the Arbulag soum of Khoévsgél aimag. (B) Enhanced view of LBA burial mounds (white circles) and burial clusters selected for excavation (boxes a—f) with the
number of analyzed individuals in parentheses (S/ Appendix, Table S1). (C) Photograph of burial 2009-52 containing the remains of ARS026, a genetic outlier

with Western steppe ancestry.
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Characterization of the Genetic Profile of the Khovsgol Gene Pool. To
characterize the genetic profile of DSKC-associated LBA
Khovsgol individuals (Khovsgols), we performed principal com-
ponent analysis (PCA) of Eurasian populations (SI Appendix,
Fig. S7). PCl separates eastern and western Eurasian pop-
ulations, with central and north Eurasian populations falling in
an intermediate position (SI Appendix, Fig. S7). PC2 separates
eastern Eurasian populations along a north-south cline, with
northern Siberian Nganasans and the Ami and Atayal from
Taiwan forming the northern and southern end points, re-
spectively. Most LBA Khovsgols are projected on top of modern
Tuvinians or Altaians, who reside in neighboring regions. In
comparison with other ancient individuals, they are also close to
but slightly displaced from temporally earlier Neolithic and Early
Bronze Age (EBA) populations from the Shamanka II cemetry
(Shamanka_EN and Shamanka EBA, respectively) from the
Lake Baikal region (S1 Appendix, Fig. S7) (4, 21). However, when
Native Americans are added to PC calculation, we observe that
LBA Khovsgols are displaced from modern neighbors toward
Native Americans along PC2, occupying a space not overlapping
with any contemporary population (Fig. 24 and SI Appendix, Fig.
S8). Such an upward shift on PC2 is also observed in the ancient
Baikal populations from the Neolithic to EBA and in the Bronze
Age individuals from the Altai associated with Okunevo and
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Karasuk cultures (1). These observations are consistent with
LBA Khovsgols and other ancient Siberians sharing more an-
cestry with Native American-related gene pools than modern
populations in the region do.

Notably, two individuals fall on the PC space markedly sepa-
rated from the others: ARS017 is placed close to ancient and
modern northeast Asians, such as early Neolithic individuals
from the Devil’s Gate archaeological site (22) and present-day
Nivhs from the Russian far east, while ARS026 falls midway
between the main cluster and western Eurasians (Fig. 24). Ge-
netic clustering with ADMIXTURE (23) further supports these
patterns (Fig. 2B and SI Appendix, Fig. S9). We quantified the
genetic heterogeneity between Khovsgodl individuals by calcu-
lating f, symmetry statistics (24) in the form of f,(chimpanzee,
outgroup; Khovsgol;, Khovsgol,) for all pairs against 18 out-
groups representative of world-wide ancestries (S Appendix, Fig.
S10). As expected, the two outliers did not form a clade with the
rest of individuals and therefore we treated each individual
separately in subsequent analyses. For the remaining 16 individ-
uals, 14 were merged into a single main cluster based on their
minimal genetic heterogeneity. The other two individuals
(ARS009 and ARS015) were excluded from this cluster because
they broke symmetry with four and two individuals (maximum
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Fig. 2. The genetic profile of LBA Khovsgél individuals summarized by PCA and ADMIXTURE. (A) Khovsgol (Kvs, ARS017, and ARS026) and other ancient
individuals (colored symbols) are projected onto the top PCs of modern Eurasian and Native American individuals. Contemporary individuals are marked by
gray circles. Mean coordinates for each of the contemporary populations are marked by three-letter codes and by colors assigned to the associated geo-
graphic regions. Population codes are provided in Dataset S1 and S/ Appendix, Fig. S8. (B) ADMIXTURE results for Khévsgol and other ancient individuals with
K values 9 and 17. In K = 17, the Khovsgols main cluster is mainly modeled as a mixture of components most enriched in modern northeast Asians (e.g., Nivh)

and ancient Siberians (e.g., AG3, Botai, and Okunevo).
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Fig. 3. The genetic affinity of the Khovsgdl clusters measured by outgroup-f; and -f; statistics. (A) The top 20 populations sharing the highest amount of
genetic drift with the Khovsgdl main cluster measured by f3(Mbuti; Khovsgol, X). (B) The top 15 populations with the most extra affinity with each of the
three Khovsgdl clusters in contrast to Tuvinian (for the main cluster) or to the main cluster (for the two outliers), measured by f,(Mbuti, X; Tuvinian/Khovsgél,
Khovsgol/ARS017/ARS026). Ancient and contemporary groups are marked by squares and circles, respectively. Darker shades represent a larger f, statistic.
Population codes are provided in Dataset S1; see also S/ Appendix, Figs. S11-514 for further details.

|Z| = 3.9 and 4.7 SE), respectively, and were also slightly dis-
placed from the others in our PCA (Fig. 24).

Next, we quantified the genetic affinity between our Khovsgol
clusters and world-wide populations by calculating outgroup-f;
statistics with Central African Mbuti as an outgroup (25). For the
main cluster, top signals were observed with earlier ancient
populations from the Baikal region, such as the early Neolithic
and EBA individuals from the Shamanka II cemetry (4), fol-
lowed by present-day Siberian and northeast Asian populations,
such as Negidals from the Amur River basin and Nganasans
from the Taimyr peninsula (Fig. 34 and SI Appendix, Fig. S11 A
and B). As expected based on their nonoverlapping positions on
PCA, however, Khovsgols do not form a cluster with these high-
affinity groups, as shown by f; symmetry tests in the form of
f+«(Mbuti, X; Siberian, Khovsgols). Interestingly, Upper Paleo-
lithic Siberians from nearby Afontova Gora and Mal’ta archae-
ological sites (AG3 and MA-1, respectively) (25, 26) have the
highest extra affinity with the main cluster compared with other
groups, including the eastern outlier ARS017, the early Neolithic
Shamanka_EN, and present-day Nganasans and Tuvinians (Z >
6.7 SE for AG3) (red shades in Fig. 3B and SI Appendix, Fig. S11
C and D). This extra affinity with so-called “Ancient North
Eurasian” (ANE) ancestry (27) may explain their attraction to-
ward Native Americans in PCA, because Native Americans are
known to have high proportion of ANE ancestry (20, 25). Main-
cluster Khovsgol individuals mostly belong to Siberian mito-
chondrial (A, B, C, D, and G) and Y (all Qla but one Nlcla)
haplogroups (SI Appendix, Table S4).

Source of ANE Ancestry in the LBA Khévsgdl Population. Previous
studies show a close genetic relationship between WSH pop-
ulations and ANE ancestry, as Yamnaya and Afanasievo are
modeled as a roughly equal mixture of early Holocene Iranian/
Caucasus ancestry (IRC) and Mesolithic Eastern European
hunter-gatherers, the latter of which derive a large fraction of
their ancestry from ANE (20, 28). It is therefore important to
pinpoint the source of ANE-related ancestry in the Khovsgol
gene pool: that is, whether it derives from a pre-Bronze Age
ANE population (such as the one represented by AG3) or from a
Bronze Age WSH population that has both ANE and IRC an-
cestry. To test these competing hypotheses, we systematically
compared various admixture models of the main cluster using
the qpAdm program (20). Ancient Baikal populations were
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chosen as a proxy based on both their spatiotemporal and genetic
similarities with the Khovsgol main cluster (Figs. 2 and 3). When
the early Neolithic Shamanka_EN is used as a proxy, we find that
Baikal+ANE provides a better fit to the main cluster than
Baikal+WSH, although no two-way admixture model provides a
sufficient fit (P > 0.05) (SI Appendix, Table S5). Adding a WSH
population as the third source results in a sufficient three-way
mixture model of Baikal+ANE+WSH with a small WSH con-
tribution to the main cluster (e.g., P = 0.180 for Shamanka EN+
AG3+Sintashta with 3.7 + 2.0% contribution from Sintashta)
(Fig. 4 and SI Appendix, Table S6).

Using the temporally intermediate EBA population
Shamanka EBA, we can narrow down the time for the introduction

A B C
= O

- 0.6

0.4

0.2

- 0.0

Shamanka EBA Khovsgdl (2-mix) Khovsgdl (3-mix)

[ Shamanka_EN [0 Shamanka_EBA [0 AG3 [l Sintashta

Fig. 4. Admixture modeling of Altai populations and the Khdvsgol main
cluster using qpAdm. For the archaeological populations, (A) Shamanka_EBA
and (B and C) Khovsgol, each colored block represents the proportion of
ancestry derived from a corresponding ancestry source in the legend. Error
bars show 1 SE. (A) Shamanka_EBA is modeled as a mixture of Shamanka_EN
and AG3. The Khovsgdl main cluster is modeled as (B) a two-way admixture
of Shamanka_EBA+Sintashta and (C) a three-way admixture Shamanka_EN+
AG3+Sintashta. Details of the admixture models are provided in S/ Appen-
dix, Tables S5 and S6.
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of WSH ancestry into the main cluster. Shamanka_EBA is modeled
well as a two-way mixture of Shamanka EN and ANE (P =
0.158 for Shamanka_EN+AG3) (Fig. 4) but not as a mixture of
Shamanka EN and WSH (P < 2.91 x 10~*) (SI Appendix, Table
S5), suggesting no detectable WSH contribution through the early
Bronze Age. Similar results are obtained for other Late Neolithic
and EBA populations from the Baikal region (S Appendix, Table
S5). In contrast, the Khovsgdl main cluster is modeled well by
Shamanka EBA+WSH but not by Shamanka EBA+ANE (P >
0.073 and P < 0.038, respectively) (SI Appendix, Table S5). A three-
way model of Shamanka EBA+ANE+WSH confirms this by
providing the ANE contribution around zero (SI Appendix, Table
S6). The amount of WSH contribution remains small (e.g., 6.4 +
1.0% from Sintashta) (Fig. 4 and SI Appendix, Table S5). Assuming
that the early Neolithic populations of the Khovsgol region re-
sembled those of the nearby Baikal region, we conclude that the
Khovsgol main cluster obtained ~11% of their ancestry from an
ANE source during the Neolithic period and a much smaller
contribution of WSH ancestry (4-7%) beginning in the early
Bronze Age.

Admixture Testing of Genetic Outliers. Using the same approach,
we obtained reasonable admixture models for the two outliers,
ARS017 and ARS026. The eastern outlier ARS017, a female,
shows an extra affinity with early Neolithic individuals from the
Russian far east (Devil’s Gate) (22) and in general with con-
temporary East Asians (e.g., Han Chinese) compared with the
Khovsgol main cluster (Fig. 3B and SI Appendix, Fig. S12).
ARSO017 is also similar to Shamanka_EN in showing no signifi-
cant difference in qpAdm (SI Appendix, Fig. S12 and Table S7).
Using contemporary East Asian proxies, ARS017 is modeled as a
mixture of predominantly Ulchi and a minor component (6.1
9.4%) that fits most ancient western Eurasian groups (P =
0.064-0.863) (SI Appendix, Table S7). This minor Western
component may result from ANE ancestry; however, given the
minimal western Eurasian contribution, we do not have suffi-
cient power to accurately characterize this individual’s western
Eurasian ancestry.

The Western outlier ARS026, a male dating to the end of the
radiocarbon series, has the highest outgroup-f; with the main
LBA Khovsgol cluster, with extra affinity toward Middle Bronze
Age (MBA) individuals from the Sintashta culture (Fig. 3B and
SI Appendix, Fig. S13) (1). DNA recovered from this individual
exhibited expected aDNA damage patterns (SI Appendix, Fig.
S5) but was otherwise excellently preserved with >47% endog-
enous content and very low estimated contamination (1% mi-
tochondrial; 0.01% nuclear). ARS026 is well modeled as a two-
way mixture of Shamanka_EBA and Sintashta (P = 0.307; 48.6 +
2.0% from Sintashta) (SI Appendix, Table S7). Similar to
ARSO026, contemporaneous LBA Karasuk individuals from the
Altai (1400-900 BCE) (1, 29) also exhibit a strong extra genetic
affinity with individuals associated with the earlier Sintashta and
Andronovo cultures (SI Appendix, Fig. S14). Although two-
way admixture models do not fit (P < 0.045) (SI Appendix, Table
S8), the Karasuk can be modeled as a three-way mixture of
Shamanka_EBA/Khovsgol and AG3 and Sintashta, suggesting
an eastern Eurasian source with slightly higher ANE ancestry
than those used in our modeling (P > 0.186) (S Appendix, Table
S8). Like ARS026, admixture coefficients for the Karasuk sug-
gest that MBA/LBA groups like the Sintashta or Srubnaya are a
more likely source of their WSH ancestry than the EBA groups,
like the Yamnaya or Afanasievo. Notably, Karasuk individuals
are extremely heterogeneous in their genetic composition, with
the genetically easternmost Eurasian individual nearly over-
lapping with the EBA Baikal groups (Fig. 24 and SI Appendir,
Figs. S7 and S8). Earlier groups, such as the Afanasievo, Sin-
tashta, and Andronovo, are mostly derived from WSH ances-
tries, and this may suggest that admixture in the Altai-Sayan
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region only began during the LBA following a long separation
since the Eneolithic. Although ARS026 exhibits substantial
WSH ancestry, strontium isotopic values obtained from his
M3 enamel resemble local fauna and fall within the range of the
main Khovsgol cluster (SI Appendix, Fig. S15 and Table S9);
however, because the enamel this individual also exhibited ele-
vated manganese levels, postmortem trace element alteration
from soil could not be excluded.

Dairy Subsistence and Lactase Persistence. Contemporary Mongolia
has a dairy- and meat-based subsistence economy, and to more
precisely understand the role of dairy products in the diets of
present-day mobile pastoralists in Khovsgol aimag, we conducted
a detailed nutritional investigation of summer and winter diets.
We find that dairy-based foods contribute a mean of 35% total
dietary energy, 36-40% total carbohydrate, 24-31% total pro-
tein, and 39-40% total fat to rural summer diets in Khovsgol
aimag, with liquid milk and dairy product consumption of 216—
283 and 172-198 g/d, respectively (SI Appendix, Table S10 and
Dataset S2).

Despite the importance of dairying today, its origins in Mon-
golia are poorly understood. Given the limited WSH ancestry of
the main Khovsgol cluster, we sought to determine if dairy
pastoralism was practiced by this putatively pastoralist LBA
population by testing for the presence of milk proteins (30) in the
dental calculus of these individuals. We extracted proteins from
12 dental calculus samples representing 9 individuals (SI Ap-
pendix, Table S11) and analyzed tryptic peptides using LC-MS/
MS (31). Observed modifications included deamidation (N, Q)
and oxidation (P, M) (SI Appendix, Table S12). All protein
identifications were supported by a minimum of two peptides
across the dataset, and only peptides with an E value <
0.001 were assigned; the estimated peptide false-discovery rate
(FDR) across the full dataset was 1.0%, and protein FDR was
4.6%. Milk proteins were detected in seven of the nine individ-
uals analyzed (SI Appendix, Table S13 and Dataset S3), con-
firming that dairy foods were consumed as early as 1456 BCE
(1606-1298 BCE, 95% probability of the earliest directly dated
individual) (SI Appendix, Fig. S4 and Table S2). Specifically, we
detected the milk whey protein p-lactoglobulin (Fig. 5 4 and B)
and the curd protein a-S1-casein, with peptides matching spe-
cifically to sheep (Ovis), goat (Capra), Caprinae, Bovinae, and a
subset of Bovidae (Ovis or Bovinae) (Fig. 5C, SI Appendix, Table
S13, and Dataset S3). These peptides exhibited asparagine and
glutamine deamidation, as expected for ancient proteins (32),
and the frequency and distribution of recovered p-lactoglobulin
(Fig. 5B) and a-S1-casein peptides closely matched that empirically
observed for modern bovine milk (33), thereby providing additional
protein identification support through appropriate proteotypic
behavior.

Given the evidence for dairy consumption by the LBA Khovsgol
population, we sought to determine if the dairy-adaptive -13910*T
(rs4988235) lactase persistence (LP) allele found today in Western
steppe (34) and European (35) populations was present among
LBA Khovsgols dairy herders, and we examined this position in our
SNP-enriched dataset. The -13910*T LP allele was not found in the
LBA Khovsgols (SI Appendix, Fig. S17 and Table S14), and addi-
tionally all observed flanking sequences in the lactase transcrip-
tional enhancer region contained only ancestral alleles.

Discussion

In this study, we find a clear genetic separation between WSH
populations and LBA Mongolians more than a millennium after
the arrival of WSH at the furthest edges of the Western steppe
and the earliest appearance of the WSH Afanasievo cultural
elements east of the Altai-Sayan mountain range. This genetic
separation between Western and Eastern steppe populations
appears to be maintained with very limited gene flow until the
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Fig. 5. Presence of ruminant p-lactoglobulin and a-S1-casein milk protein in
LBA Khovsgol dental calculus. (A) B- and Y-ion series for one of the most
frequently observed B-lactoglobulin peptides, TPEVD(D/N/K)EALEKFDK,
which contains a genus-specific polymorphic residue: D, Bos; N, Ovis; K,
Capra. See S| Appendix, Fig. S16 for peptide and fragment ion error distri-
bution graphs. (B) Alignment of observed peptides to the 178 amino acid
B-lactoglobulin protein, with peptide taxonomic source indicated by color.
Trypsin cut sites are indicated by gray ticks. The position and empirically
determined observation frequency of BLG peptides for bovine milk are
shown as a heatmap scaled from least observed peptides (light gray) to most
frequently observed peptides (dark red), as reported in the Bovine Pepti-
deAtlas (34). Inset displays a 3D model of the p-lactoglobulin protein with
observed peptide positions highlighted in black. (C) Taxonomically assigned
p-lactoglobulin (black) and a-S1-casein (gray) peptides presented as scaled
pie charts on a cladogram of Mongolian dairy domesticates. Bracketed
numbers represent the number of peptides assigned to each node. Ruminant
milk proteins were well supported, but no cervid, camelid, or equid milk
proteins were identified.

end of the LBA, when admixed populations, such as the Karasuk
(1200-800 BCE), first appear in the Altai (1) and we observe the
first individual with substantial WSH ancestry in the Khovsgol
population, ARS026, directly dated to 1130-900 BCE. Consistent
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with these observations, we find that the WSH ancestry in-
troduced during these admixture events is more consistent with
MBA and LBA steppe populations, such as the Sintashta (2100-
1800 BCE), than with earlier EBA populations, such as the
Afanasievo (3300-2500 BCE), who do not seem to have genet-
ically contributed to subsequent populations.

Despite the limited gene flow between the Western and
Eastern steppes, dairy pastoralism was nevertheless adopted by
local non-WSH populations on the Eastern steppe and estab-
lished as a subsistence strategy by 1300 BCE. Ruminant milk
proteins were identified in the dental calculus of most of the
tested LBA Khovsgol individuals, and all identified milk pro-
teins originated from ruminants, specifically the Western dairy
domesticates sheep, goat, and Bovinae. These findings suggest
that neighboring WSH populations directly or indirectly intro-
duced dairy pastoralism to local indigenous populations
through a process of cultural exchange. Further research on
other regional cultures in Mongolia, such as Chemurchek,
Hemsteg, and Ulaanzuukh, is needed to determine if this
pattern of cultural adoption observed among DSKC sites is
broadly shared across other Bronze Age cultures throughout the
Eastern steppe.

Bronze Age trade and cultural exchange are difficult to observe
on the Eastern steppe, where mobile lifestyles and ephemeral
habitation sites combine to make household archaeology highly
challenging. Burial mounds are typically the most conspicuous
features on the landscape, and thus much of Mongolian archae-
ology is dominated by mortuary archaeology. However, unlike
WSH, whose kurgans typically contain a range of grave goods,
many LBA mortuary traditions on the Eastern steppe did not
include grave goods of any kind other than ritually deposited
animal bones from horse, deer, and bovids. Given that Mongolian
archaeological collections are typically dominated by human re-
mains with limited occupational materials, the ability to re-
construct technological exchange, human—animal interaction, and
secondary product utilization through the analysis of proteins
preserved in dental calculus represents an important advance.

The 3,000-y legacy of dairy pastoralism in Mongolia poses
challenging questions to grand narratives of human adaptation
and natural selection (36). For example, despite evidence of
being under strong natural selection (36), LP was not detected
among LBA Khovsgols, and it remains rare (<5%) in contem-
porary Mongolia even though levels of fresh and fermented dairy
product consumption are high (35). Recent studies in Europe
and the Near East have found that dairying preceded LP in these
regions by at least 5,000 y, suggesting that LP may be irrelevant
to the origins and early history of dairying (36). As a non-LP
dairying society with a rich prehistory, Mongolia can serve as a
model for understanding how other adaptations, such as cultural
practices or microbiome alterations (37), may be involved in
enabling the adoption and long-term maintenance of a dairy-
based subsistence economy. Early herding groups in Mongolia
present a historical counter-example to Europe in which WSH
migrations resulted in cultural exchange rather than population
replacement, and dairying was maintained for millennia without
the introgression or selection of LP alleles.

Materials and Methods

Experimental Design. Based on an 850-km? archaeological survey of DSKC-
associated burial mounds in Arbulag soum, Khévsgol, Mongolia, we selected
22 burial mounds from 6 distinct burial mound groupings (A-F) for exca-
vation and analysis (Fig. 1 and S/ Appendix, sections 1 and 2 and Table S1).
Bone and tooth samples from 22 individuals (11 femora, 11 teeth) were
analyzed for ancient DNA, and 12 dental calculus samples from 9 individuals
were analyzed for ancient proteins (S/ Appendix, Table S2). Twenty-one in-
dividuals were successfully direct radiocarbon dated to ca. 1380-975 BCE (S/
Appendix, section 3 and Table S2).

Jeong et al.
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Ancient DNA Extraction, Library Construction, and Sequencing. DNA extraction
and library construction was performed in a dedicated clean room facility at
the Max Planck Institute for the Science of Human History in Jena, Germany
following previously published protocols (38), including partial uracil-DNA-
glycosylase treatment (19). Following screening, 20 samples with >0.1%
endogenous content were enriched for 1.2 million informative nuclear SNPs
(1240K) by in-solution hybridization (2, 3). Additionally, preenrichment li-
braries for two well-preserved samples (ARS008 and ARS026) were deep-
sequenced to generate ~3.3x genomes. All sequencing was performed
using single-end 75-bp (for screening and enriched libraries) or paired-end
50-bp (for whole-genome sequencing of two preenrichment libraries) se-
quencing on an lllumina HiSEq 4000 platform following the manufacturer’s
protocols (S/ Appendix, section 4).

DNA Sequence Data Filtering and Quality Assessment. DNA sequences were
processed using the EAGER v1.92.50 pipeline (39). Adapter-trimmed
reads >30 bp were aligned to the human reference genome using BWA
aln/samse v0.7.12 (40) with the nondefault parameter “-n 0.01,” and PCR
duplicates were removed using dedup v0.12.2 (39). The first and last three
bases of each read were masked using the trimbam function in bamUtils
v1.0.13 (41). For each target SNP, a single high-quality base (Phred-scaled
quality score >30) from a high-quality read (Phred-scaled mapping quality
score >30) was randomly chosen from the 3-bp masked BAM file to produce
a pseudodiploid genotype for downstream population genetic analysis. DNA
damage was assessed using mapDamage v2.0.6 (42), and mitochondrial DNA
contamination was estimated using Schmutzi (43). For males, nuclear con-
tamination was estimated using ANGSD v0.910 (44) (S/ Appendix, section 4).

Uniparental Haplogroup and Kinship Analysis. Mitochondrial haplogroups
were determined by generating a consensus sequence using the log2fasta
program in Schmutzi (43), followed by haplogroup assignment both by
HaploGrep2 (45) and HaploFind (46). The Y haplogroup was determined
using the yHaplo program (47). Genetic relatedness was estimated by cal-
culating pairwise mismatch rate of pseudodiploid genotypes (48) (SI Ap-
pendix, section 4).

Population Genetic Analysis. Khovsgol SNP data were merged with published
ancient genome-wide data for the 1240K panel (1, 3, 4, 20-22, 25-28, 49-59)
(Dataset S1). A comparative dataset of present-day individuals was compiled
from published datasets either genotyped on the Affymetrix Axiom Human
Origins 1 array (HumanOrigins) or sequenced to high-coverage in the Simons
Genome Diversity Project (20, 60-62) (SI Appendix, section 4). Intersecting
with SNPs present in the HumanOrigins array, we obtain data for
593,124 autosomal SNPs across world-wide populations. Population struc-
ture was investigated by PCA as implemented in the smartpca v13050 in the
Eigensoft v6.0.1 package (63) and by unsupervised genetic clustering using
ADMIXTURE v1.3.0 (23) (S/ Appendix, sections 4 and 5). The f; and f, statistics
were calculated using the qp3Pop (v400) and gpDstat (v711) programs in the
admixtools v3.0 package (24). For calculating the f, statistic, we added the
“fdmode: YES" option to the parameter file. For admixture modeling, we
used gpAdm v632 (20) in the admixtools v3.0 package (S/ Appendix, sections
4 and 5).

Strontium Isotope Analysis. Strontium isotopes (875r/%°sr) measured from
human and faunal tooth enamel (n = 16) and bone (n = 5) were analyzed at
the University of Georgia Center for Applied Isotope Studies (n = 17) and the
University of Florida Department of Geological Sciences (n = 4) using a
thermo-ionization mass spectrometer (S/ Appendix, section 6).

Dietary Analysis in Contemporary Khovsgol, Mongolia. Up to 6 d of weighed
diet records were collected from 40 subjects (n = 231 total person-days)
randomly sampled from the rural soum of Khatgal and the provincial cen-
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ter of Moéron in June 2012 and January 2013 by trained medical students
from the Mongolian National University of Medical Sciences and Ach Med-
ical Institute. Nutrient consumption was determined using a purpose-built
food composition table (64), which we appended with unpublished food
composition data from the Mongolian University of Science and Technology
and the Mongolian Public Health Institute, as well as published data from
the United States and Germany (65, 66) (S/ Appendix, section 7). Contem-
porary dietary data were collected under Harvard Institutional Review Board
Protocol #21002.

Protein Extraction, Digestion, and LC-MS/MS. Ancient protein analysis was
performed in a dedicated clean room facility at the Max Planck Institute for
the Science of Human History following recommended guidelines (32).
Dental calculus was decalcified in 0.5 M EDTA, and proteins were extracted
and trypsin-digested using a modified low-volume Filter-Aided Sample
Preparation protocol (67). The resulting peptides were analyzed by LC-MS/
MS using a Q-Exactive HF mass spectrometer (Thermo Scientific) coupled to
an ACQUITY UPLC M-Class system (Waters) at the Functional Genomics
Center Zurich, according to previously published specifications (25). Extrac-
tion blanks and injection blanks were processed and analyzed alongside
experimental samples (S/ Appendix, section 8).

Spectrum Analysis, Data Filtering, and Authentication. Raw spectra were
converted to Mascot generic files using MSConvert using the 100 most intense
peaks from each spectrum, and MS/MS ion database searching was performed
using Mascot software (v2.6; Matrix Science) with the databases SwissProt
(version 2017_07; 555,100 sequences) and a custom dairy database consisting
of 244 dairy livestock milk protein sequences obtained from the National
Center for Biotechnology Information GenBank. Before analysis, an error-
tolerant search was performed (S/ Appendix, Table S12) to identify com-
mon variable modifications (deamidation N, Q; oxidation M, P). Reversed
sequences for each entry in both databases were added to perform down-
stream FDR calculations in R. Peptide tolerance was set at 10 ppm, with an
MS/MS ion tolerance of 0.01 Da, and the data were filtered to only include
peptides with an E-value < 0.001 and proteins supported by a minimum of
two peptides (S/ Appendix, section 8). Peptides identified as matching milk
proteins were tested for taxonomic specificity using BLASTp against the
National Center for Biotechnology Information nr database and aligned to
protein sequences of known dairy livestock. Modeling of p-lactoglobulin
coverage was rendered using VMD v.1.9.4a7, and an additional level of
protein identification confirmation was performed by comparing the ob-
served ancient milk peptides to modern proteotypic peptides using the R
package ggplot2 (68) with published data for bovine p-lactoglobulin obtained
from the Peptide Atlas (33) (S/ Appendix, section 8).

Phenotype-Associated SNPs. Genotype likelihoods for phenotype-associated
SNPs were calculated using the UnifiedGenotyper program in the Genome
Analysis Toolkit v3.5 (69) (S/ Appendix, section 9).
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