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A theory for data interpretation is presented for a cylindrical Langmuir probe in plasma parallel to the 

magnetic field direction. The theory is tested in a linear low-temperature plasma device Aline, in a capacitive 

radio-frequency (RF) discharge. The probe is placed on a 3D manipulator and a position scan is performed. 

To exclude strong RF perturbations the probe is RF compensated. Using the theory electron densities are 

obtained from the current at the plasma potential, where no sheath is present. Results are calibrated by line-

integrated density measurements of a 26.5 GHz microwave interferometer. Reasonable agreement is observed 

for probe and interferometer measurements. Furthermore, preceding, more general probe theory is compared 

to the one developed in the current work and the application limits are discussed. 

 

I. INTRODUCTION 

Specific particle transport in the presence of magnetic 

field (B) changes the shape of a Langmuir probe IV curve 

such that the conventional methods of data interpretation 

become unsuitable1,2, especially for a parallel cylindrical 

probe. Very few attempts1,2,3 exist on providing a correct 

theory for density (n) evaluation with such probe. Of those 

the Laframboise and Rubinstein calculations2,3 are hardly 

applicable in practice1 and our previous theory1 contains 

simplifying assumptions that restrict validity limits. 

In this paper we develop an accurate theory describing 

electron collection by a cylindrical Langmuir probe biased 

to plasma potential (Vpl) (to avoid sheath) and oriented 

parallel to the magnetic field. This model is an 

advancement of our previous work1 and it gives an exact 

formula connecting plasma density and collected current at 

Vpl. Only the case of a parallel probe is considered, since 

for a probe at an arbitrary angle to B an exact analytical 

solution would be excessively complex. At the end the 

applicability limits of the approximate theory1 are revised. 

Application of the new theory to experimental data on 

Aline (A LINear Experiment3,4) allows us to draw spatial 

density profiles, as well as parameter scans. Results are 

validated with interferometry. A full scan of density as a 

function of B and the input power is performed for the first 

time on Aline in magnetized plasma. 

II. THEORY FOR A PROBE PARALLEL TO B 

The basic idea behind the model presented here is the 

same as in the previous work1: separation of different 

contributions to the collected current by dividing the 

electrons into groups according to their speed. The current 

for each contribution is calculated as a product of charge 𝑒, 

flux 𝛤 and collecting area 𝑆: 

𝐼𝑒 = 𝑒𝛤𝑆         (1) 

In contrast to the previous theory, we consider not 

only the flux to be dependent on the particle speed but the 

collecting area as well. 

We adapt the cylindrical coordinate system and 

examine the particle flux through a plane perpendicular to 

the probe axis (z axis). The collecting area 𝑆 in (1) is an 

area in this plane which a guiding center of a rotating 

particle should cross for a particle to be collected. Due to 

the rotational symmetry no dependency on the azimuth 𝜑 

is present. We divide all electrons into 4 fractions: 

1) 𝑣𝑟 ≤ 𝑣lim⁡𝑟, 𝑣𝑧 ≤ 𝑣lim⁡𝑧 

2) 𝑣𝑟 ≥ 𝑣lim⁡𝑟, 𝑣𝑧 ≤ 𝑣lim⁡𝑧 

3) 𝑣𝑟 ≤ 𝑣lim⁡𝑟, 𝑣𝑧 ≥ 𝑣lim⁡𝑧 

4) 𝑣𝑟 ≥ 𝑣lim⁡𝑟, 𝑣𝑧 ≥ 𝑣lim⁡𝑧 

where 𝑣lim⁡𝑟 =⁡
𝑒𝐵𝑟𝑝𝑟

𝑚
 is the speed of an electron with a 

Larmor radius equal to the probe radius 𝑟𝑐⁡ = 𝑟𝑝𝑟 and 

𝑣lim⁡𝑧 =⁡
𝑒𝐵𝐿𝑝𝑟

2𝜋𝑚
  is the speed of an electron that completes 

one full rotation ∆𝜑 = 2𝜋 during the same time as it 

travels the probe length 𝐿𝑝𝑟 in z direction (
2𝜋

𝜔𝑐
=

𝐿𝑝𝑟

𝑣lim⁡𝑧
, 

where 𝜔𝑐 = 𝑒𝐵 𝑚⁄  is the electron cyclotron frequency). 
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For experimental applications it would be correct to 

impose an upper limit for the radial speed as the value 

when the Larmor radius is equal to the vacuum chamber 

radius. This is a minor correction and we omit it for the 

current theoretical formulation. 

For each fraction of particles the current is calculated 

using the same formula, but with its own limits and its own 

collecting area (with Maxwellian velocity distribution): 

𝐼 = 𝑒𝑛 (
𝑚𝑒

2𝜋𝑘𝑇𝑒
)

3
2
∗ 

∫ ∫ ∫ 𝑆(𝑣𝑟 , 𝑣𝑧)𝑣𝑧𝑣𝑟𝑒𝑥𝑝 (−
𝑚𝑣2

2𝑘𝑇𝑒
) 𝑑𝑣𝑟𝑑𝜑𝑑𝑣𝑧

𝑣𝑟2
𝑣𝑟1

2𝜋

0

𝑣𝑧2
𝑣𝑧1

    (2) 

The assumptions and results for each of them are the 

following. 

1) These particles are “slow” in z direction; they 

complete a full 2𝜋 rotation before reaching the end of 

the probe.  If the perpendicular projection of a particle 

trajectory intersects the probe projection in at least one 

point (Fig.1a,b), a particle is for sure collected.  

 
FIG. 1. Limiting cases for a particle to be collected, a)&b) for 𝑟𝑐⁡ < 𝑟𝑝𝑟, 

c)&d) for 𝑟𝑐⁡ > 𝑟𝑝𝑟. A dark circle represents the probe projection, a bright 

dashed circle – electron trajectory projection. 

With ℎ being the distance between the probe center 

and the guiding center of a particle trajectory, the 

collecting area is found as: 

𝑆1 = 2𝜋 ∫ ℎ𝑑ℎ
𝑟𝑝𝑟+𝑟𝑐⁡
0

= 𝜋(𝑟𝑝𝑟 + 𝑟𝑐⁡)
2        (3) 

Then the integration of (2) gives: 

𝐼1 = 𝑒𝛤𝑒 (1 − 𝑒−
𝑣lim𝑧
2

𝑎 ) [1 − 4𝑒−
𝛽2

2 +
2

𝛽2
(1 −

𝑒−
𝛽2

2 ) +
√2𝜋

𝛽
erf (

𝛽

√2
)] 𝜋𝑟𝑝𝑟

2       (4) 

where 𝛽 =
𝑟𝑝𝑟

𝑟𝑐𝑒
=

𝑟𝑝𝑟𝑒𝐵

√𝑚𝑒𝑘𝑇𝑒
 is nondimensional magnetic field 

strength2 and 𝛤𝑒 = 𝑛 (
𝑘𝑇𝑒

2𝜋𝑚𝑒
)
1/2

is the random thermal flux. 

2) The same assumption is valid for the second fraction 

of electrons, except that the integration for ℎ is done 

in different limits (see Fig.1c and 1d): 

𝑆2 = 2𝜋 ∫ ℎ𝑑ℎ
𝑟𝑐⁡+𝑟𝑝𝑟
𝑟𝑐−𝑟𝑝𝑟

= 4𝜋𝑟𝑝𝑟𝑟𝑐⁡     (5) 

𝐼2 = 𝑒𝛤𝑒 (1 − 𝑒−
𝑣lim𝑧
2

𝑎 ) [4𝑒−
𝛽2

2 + 2
√2𝜋

𝛽
erfc (

𝛽

√2
)]𝜋𝑟𝑝𝑟

2  

(6) 

3) A particle that is “fast” in z direction might never 

touch the probe, because it does not complete a full 

turn on 𝐿𝑝𝑟. This case should be approached 

probabilistically. 

There are two sectors of the trajectory projection 

which correspond to the electron successful collection 

(Fig.2). If a particle is in the sector 2𝛼 that belongs to 

the intersection part, it hits the probe perpendicular 

surface. From the law of cosines, 

𝑎 = arccos (
𝑟𝑐
2+ℎ2−𝑟𝑝𝑟

2

2𝑟𝑐ℎ
). The corresponding 

probability is 𝑃⊥ =
2𝛼

2𝜋
. If a particle is in the sector 

𝛾 = 𝜔𝑐
𝐿𝑝𝑟

𝑣𝑧
, on the length 𝐿𝑝𝑟 in z direction it 

completes a part of a full turn that is enough to reach 

the probe. So, a particle hits the parallel probe surface 

with 𝑃∥ =
𝛾

2𝜋
. Instead of 𝑆 now we need to use the 

product of 𝑆 and the full probability 𝑃 = 𝑃⊥ + 𝑃∥: 

 
FIG. 2. Example of an intersection illustrating sectors 2𝛼 and ⁡𝛾. 

𝑆𝑃 = 2𝜋 ∫
2𝛼+𝛾

2𝜋
ℎ𝑑ℎ

ℎ2
ℎ1

= 𝑆𝑃⊥ + 2𝜋𝛾 ∫ ℎ𝑑ℎ
ℎ2
ℎ1

    (7) 

𝑆𝑃⊥ = ℎ2 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑟𝑐
2 + ℎ2 − 𝑟𝑝𝑟

2

2𝑟𝑐ℎ
)]

ℎ1

ℎ2

− 

1

2
√2ℎ2(𝑟𝑐

2 + 𝑟𝑝𝑟
2 ) − ℎ4 − (𝑟𝑐

2 − 𝑟𝑝𝑟
2 )

2
]
ℎ1

ℎ2

−

𝑟𝑝𝑟
2 𝑎𝑟𝑐𝑡𝑎𝑛(

𝑟𝑐
2−ℎ2+𝑟𝑝𝑟

2

√2ℎ2(𝑟𝑐
2+𝑟𝑝𝑟

2 )−ℎ4−(𝑟𝑐
2−𝑟𝑝𝑟

2 )
2
)]

ℎ1

ℎ2

⁡     (8) 

With the limits ℎ1 = 0 and ℎ2 = 𝑟𝑝𝑟 + 𝑟𝑐⁡we obtain: 

𝑆𝑃3 = 𝜋𝑟𝑝𝑟
2 +

𝜔𝑐𝐿𝑝𝑟

2𝜋𝑣𝑧
⁡𝜋(𝑟𝑝𝑟 + 𝑟𝑐⁡)

2     (9) 



   

𝐼3 = 𝑒𝛤𝑒 (𝑒
−
𝑣lim𝑧
2

𝑎 (1 − 𝑒−
𝛽2

2 )𝜋𝑟𝑝𝑟
2 + [1 − 4𝑒−

𝛽2

2 +

2

𝛽2
(1 − 𝑒−

𝛽2

2 ) +
√2𝜋

𝛽
erf (

𝛽

√2
)] ∗

√
𝜋

2

𝛽

2
erfc (

𝑣lim𝑧

√𝑎
) 𝑟𝑝𝑟𝐿𝑝𝑟)  (10) 

4) Likewise the previous calculation, but with other 

limits for ℎ, for the 4th fraction we get: 

𝑆𝑃4 = 2𝜋 ∫
2𝛼+𝛾

2𝜋
ℎ𝑑ℎ

𝑟𝑐⁡+𝑟𝑝𝑟
𝑟𝑐−𝑟𝑝𝑟

= 𝜋𝑟𝑝𝑟
2 +

𝜔𝑐𝐿𝑝𝑟

2𝜋𝑣𝑧
4𝜋𝑟𝑝𝑟𝑟𝑐⁡

       (11) 

𝐼4 = 𝑒𝛤𝑒 (𝑒
−
𝑣lim𝑧
2

𝑎 𝑒−
𝛽2

2 𝜋𝑟𝑝𝑟
2 + 2 [√

𝜋

2
2𝛽𝑒−

𝛽2

2 +

𝜋 erfc (
𝛽

√2
)] erfc (

𝑣lim⁡𝑧

√𝑎
) 𝑟𝑝𝑟𝐿𝑝𝑟)    (12) 

The second term in 𝐼4 has an additional factor of 2, to 

account for the particle collection from the opposite 

direction of z. It is not done for the first term, as well as for 

all other current contributions, because the flow of the 

electrons is limited at the back of the probe tip by the 

probe body and the manipulator. Only particles with big 

𝑟𝑐⁡and big 𝑣𝑧⁡are able to come from the back side. 

The effective collecting area1 is the full collected 

current divided by 𝑒𝛤𝑒: 

𝑆𝑒𝑓𝑓 =
𝐼1+𝐼2+𝐼3+𝐼4

𝑒𝛤𝑒
= (𝑒−

𝑣lim𝑧
2

𝑎 + [⁡1 − 𝑒−
𝑣lim𝑧
2

𝑎 ] ∗

[1 +
2

𝛽2
(1 − 𝑒−

𝛽2

2 ) +
√2𝜋

𝛽
(1 + erfc (

𝛽

√2
))])𝜋𝑟𝑝𝑟

2 +

[1 + erfc (
𝛽

√2
) +

1

√2𝜋𝛽
(
𝛽2

2
+ 2𝛽2𝑒−

𝛽2

2 + 1 − 𝑒−
𝛽2

2 )] ∗

erfc (
𝑣lim⁡𝑧

√𝑎
) 𝜋𝑟𝑝𝑟𝐿𝑝𝑟       (13) 

The expression is rather complicated but it is 

important to see here that for β → ∞ it converges to 

𝑆⊥ = 𝜋𝑟𝑝𝑟
2  and for β → 0 to 𝑆𝑝𝑟 ⁡= ⁡2⁡𝜋⁡𝑟𝑝𝑟𝐿𝑝𝑟 ⁡+ ⁡𝜋⁡𝑟𝑝𝑟

2 .  

III. APPLICATION TO EXPERIMENTAL DATA 

Theory validation has been performed using data from 

the linear plasma device Aline. The experimental 

conditions were the same as in our previous paper1: 25 

MHz capacitive  RF  discharge,  magnetic  fields  of 

0.0024−0.1 T, helium, 1Pa. We have performed a scan of a 

probe position in the direction perpendicular to B (x from -

33 mm to +33 mm) at a constant height y = 36 mm above 

the antenna and at z = 0 mm along B, i.e. directly above 

the antenna center. In this region densities are expected to 

be higher than at the position used before1. Only one 

cylindrical probe tip of rpr = 75 µm, Lpr = 1 cm was used 

and it was accurately aligned with B. 

IV curves analysis, namely plasma potential and 

electron temperature calculation, has been done using 

accurate techniques described in our previous work1. 

Densities obtained from the Langmuir probe are averaged 

along x and compared to line-integrated density measured 

by a 26.5 GHz microwave interferometer MWI 2650 from 

Miwitron which was chosen because it suits our density 

range (Fig. 3). Interferometer, used only as a supportive 

diagnostic for probe calibration, was installed specifically 

for these tests on a temporary mounting and mechanical 

shaking caused not high accuracy. The lowest possible 

interferometry signal to measure was ~1e16 m-3 in our 

experiments. Above this level errors reached ± 1e16 m-3. 

 
FIG. 3. Densities measured with Langmuir probe (dotted lines with circle 

markers) compared to interferometry (solid lines with cross markers) for 

different power levels. 

Possible sources of errors in the Langmuir probe 

results are: 

a) RF oscillation of the potential, leading to a shift in IV 

characteristics. They are eliminated by the 

compensation circuit of our probe. 

b) Inaccurate Vpl evaluation, leading to wrong current 

values. Using intersection method of Vpl calculation1 

we make sure that this issue is only present for very 

low B, less than 0.005 T in our experiments. 

c) Uncertainties in temperature estimation affecting 𝑛 

directly as 1/√𝑇, as well as through the effective area. 

This should not give significant deviations when 𝑇 is 

determined self-consistently1 with 𝑛. 

An additional uncertainty in the interferometer density 

values comes from the fact that the line-integrated signal is 

divided by a plasma length which is not exactly defined. 

For all points it was divided by 20 cm, which is fairly 

realistic for low plasma magnetization and overestimated 

(up to 2 times) for the higher B. The profile shape 

variation can be seen even on a small profile part that is 

accessible for the probe, nearly flat for the 0 T field and 

with a defined peak for greater field values (Fig. 4). 

The coupled power dependence on B was measured 

for different forwarded power (Fig. 5). The coupling is 

generally not affected by the probe presence. 

Now a 2D density profile can be constructed as a 

function of the coupled power and the magnetic field with 

both probe and interferometry measurements (Fig. 6). The 

discrepancies of the results are mostly within 20%, 

reaching 50% for few points of low interferometry signal.  



   

 
FIG. 4. Spatial density profiles for various B. 

FIG. 5. Variation of the coupled power for various forwarded power. 

 
FIG. 6. Density profiles obtained from the interferometry (black to orange 

color scale) and the Langmuir probe data (white to blue). 

IV. APPLICABILITY ANALYSIS 

An exact formula is undoubtedly preferable to an 

approximate theory. The equation (13), while being very 

complex, should be used instead of the inexact effective 

area formula1 when a probe parallel to B is considered. 

However, construction of similar analytical procedure for 

an arbitrary angle of inclination 𝜃 is an unjustifiably 

sophisticated task. Instead we conduct an analysis of the 

applicability of the approximate theory1. 

The simplicity of the resulting formula (17) in the 

previous work1 is achieved by neglecting the fact that the 

collecting areas depend on a particle speed. Moreover, no 

distinction for different speeds in z direction is drawn. 

Consequently, the effective area is not an exact expression 

but an approximation. Limits to its application can be set 

by revising separately the two terms of equation (11)1. 

1. The “non-magnetized” flux 𝛤𝑛−𝑚𝑎𝑔𝑛 defined by the 

condition of the radial speed to be bigger than 𝑣lim⁡𝑟 is 

said to be collected by the whole probe area 𝑆𝑝𝑟, which 

is an overestimation. In reality, an electron with 

𝑣𝑧 ≤ 𝑣lim⁡𝑧𝑐𝑜𝑠(𝜃) strikes a probe no later than one 

revolution of the cyclotron orbit: 𝐿𝑧 = 𝑣𝑧 ∗ 2𝜋/𝜔𝑐, so 

all such particles are collected by a smaller area 

2𝜋𝑟𝑝𝑟𝐿𝑧 + 𝜋⁡𝑟𝑝𝑟
2 . Only particles with 𝑣𝑧 bigger than 

𝑣lim⁡𝑧 are collected randomly along the whole probe 

length. For the equation (17) to be applicable they 

should constitute the majority of the velocity 

distribution. It is roughly true when the mean thermal 

velocity 𝑣̅ is bigger than 𝑣lim⁡𝑧𝑐𝑜𝑠(𝜃). 
The described overestimation seems to be significant 

for bigger magnetic fields and smaller 𝜃, when most of 

the electrons have 𝑣𝑧 smaller than the limit. However, 

for bigger magnetic fields the limitation 𝑣𝑟 ≥ 𝑣lim⁡𝑟 

leads to a small number of particles in 𝛤𝑛−𝑚𝑎𝑔𝑛, since 

𝑣lim⁡𝑟 is also quite big (depending on the temperature). 

Quantitatively the conditions for the first remark to be 

insignificant can be expressed as:  

[
𝑣̅ > 𝑣lim⁡𝑧𝑐𝑜𝑠(𝜃)⁡for⁡any⁡𝑟𝑝𝑟
𝑣̅ < 𝑣lim⁡𝑧𝑐𝑜𝑠(𝜃)⁡and⁡𝑣̅ < 𝑣lim⁡𝑟

    (14) 

2. The second limitation concerns the “magnetized” flux. 

If a center of the cyclotron rotation of an electron with 

𝑣𝑟 ≤ 𝑣lim⁡𝑟 lies outside the perpendicular probe 

projection but at a distance no longer than rce from it, 

the electron trajectory intersects the probe and such a 

particle is collected. However, it may be collected not 

only by the perpendicular surface as was assumed 

previously, but also by a part of the parallel surface 

proportional to its speed 𝑣𝑧. The “magnetized” flux is 

large only in strong magnetic fields. At the same time 

most of the electrons have speeds 𝑣𝑧 < 𝑣lim⁡𝑧𝑐𝑜𝑠(𝜃), 
so the additional area 2𝜋𝑟𝑝𝑟𝐿𝑧 is quite small. The 

second correction is always very small and negligible 

compared to the effect of the first correction. 

Finally, the criteria of the applicability of the 

approximate theory are those described by (14). When they 

are not satisfied, the effective area is overestimated up to 

the factor of 𝑆𝑝𝑟/𝑆⊥. A more precise overestimation value 

can hardly be provided. 

We can review the application to the experimental 

data carried out in the previous work1 for two cylindrical 

probe tips. For the smaller tip of rpr = 75 µm, Lpr = 1 cm, 

the equation (14) gives that 𝑆𝑒𝑓𝑓 is acceptable only for 



   

𝐵 < 0.0076⁡T and 𝐵 > 0.114⁡T at 𝜃 = 5°, which means 

that for nearly the whole range of B the resulting densities 

are underestimated.  The bigger probe (rpr = 0.5 mm, Lpr = 

1 cm) data gave larger span of reliable results: 𝐵 <
0.0076⁡T and 𝐵 > 0.017⁡T, so only a small part in 

between these two values resulted in overestimated 𝑆𝑒𝑓𝑓 

and underestimated 𝑛.  

We plot the equation (13) from this paper and (17) 

from the previous work1 for 𝜃 = 0° (Fig. 7 and 8) to check 

the results from the paragraph above and thus the validity 

of the assumptions (14). All curves are for a constant 

temperature of 5 eV. The boundaries of B are prolonged 

beyond the ones used in the experiment to see the upper 

threshold value where the two theories start to match.  

FIG. 7. Comparison of the approximate and exact theories for rpr = 75 

µm. The arrow indicates the intersection. 

FIG. 8. Comparison of the approximate and exact theories for rpr = 0.5 

mm. The arrow indicates the intersection. 
 

The lower threshold values are not observed. The 

values of the upper threshold in both cases are twice bigger 

than those obtained from (14). This can serve as a 

guidance to take the criteria for the approximate theory 

applicability as those in (14) but with a factor of 2 for 

𝑣̅ < 𝑣lim⁡𝑟. After some transformations they look like: 

 [
𝐵 <

2𝜋𝑚𝑒𝑣̅

𝑒𝐿𝑝𝑟𝑐𝑜𝑠(𝜃)
, for⁡any⁡𝑟𝑝𝑟

𝐵 >
2𝜋𝑚𝑒𝑣̅

𝑒𝐿𝑝𝑟𝑐𝑜𝑠(𝜃)
⁡and⁡𝐵 > 2

𝑚𝑒𝑣̅

𝑒𝑟𝑝𝑟

  (15) 

The second criterion should be quite correct for a 

broad range of parameters at  𝜃 = 0° and even more so for 

non-zero angle, since the overestimation of the area 

reduces with the angle. The first criterion might be 

applicable for some non-zero angles, but this question 

requires further investigations. 

The comparison above is done for 𝜃 = 0° but 𝜃 was 

around 5° in the experiments1, so the real overestimation 

of 𝑆𝑒𝑓𝑓 is somewhat lower than what we predict for a 

parallel probe. The experimental data (Fig.71) shows that 

the underestimation of 𝑛 for the small probe is maximum 

of the factor of 2 compared to the big probe. One of the 

reasons for that is the non-zero angle, but there might be 

other factors which affected the current collection. 

V. CONCLUSION 

An exact analytical solution is given for the electron 

current collected at Vpl by a cylindrical Langmuir probe 

oriented parallel to the magnetic field. All electrons are 

divided in 4 fractions according to their radial and parallel 

to B velocities. The effective collecting area is derived as 

the sum of the 4 current contributions divided by the 

electron charge and random thermal flux. 

The constructed theory for interpretation of a 

cylindrical Langmuir probe data allowed for the first time 

to obtain reliable density profiles in magnetized plasma on 

Aline. Results are obtained for a broad range of the 

magnetic fields as well as the coupled power levels. 

Interferometry measurements of line-integrated 

densities have been carried out for the same range of 

parameters. Values that are well above the noise level of 

1e16 m-3 match the densities obtained with the probe with 

up to 20% error. Possible causes of errors are listed. 

The preceding approximate theory1 for a cylindrical 

probe at an arbitrary angle is compared to the exact model 

for the parallel probe orientation and applicability criteria 

are formulated. The overestimation of the collecting area 

by the approximate theory seems big, but the experimental 

underestimation of density is only of the order of 2. 
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