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Abstract
The differential Sylvester equation and its symmetric version, the differential Lya-
punov equation, appear in different fields of applied mathematics like control theory,
system theory, and model order reduction. The few available straight-forward numer-
ical approaches when applied to large-scale systems come with prohibitively large
storage requirements. This shortage motivates us to summarize and explore existing
solution formulas for these equations. We develop a unifying approach based on the
spectral theorem for normal operators like the Sylvester operator S(X) = AX + XB
and derive a formula for its norm using an induced operator norm based on the spec-
trum of A and B. In view of numerical approximations, we propose an algorithm
that identifies a suitable Krylov subspace using Taylor series and use a projection
to approximate the solution. Numerical results for large-scale differential Lyapunov
equations are presented in the last sections.

Keywords Differential Lyapunov equations · Differential Sylvester equations ·
Low-rank methods

Mathematics Subject Classification 15A24 · 65F60 · 65L05

B Maximilian Behr
behr@mpi-magdeburg.mpg.de

Peter Benner
benner@mpi-magdeburg.mpg.de

Jan Heiland
heiland@mpi-magdeburg.mpg.de; jan.heiland@ovgu.de

1 Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106
Magdeburg, Germany

2 Faculty of Mathematics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106
Magdeburg, Germany

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10092-019-0348-x&domain=pdf
http://orcid.org/0000-0001-8519-1632
http://orcid.org/0000-0003-3362-4103
http://orcid.org/0000-0003-0228-8522


   51 Page 2 of 33 M. Behr et al.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Spectral decomposition of the Sylvester operator . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Variation of constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Solution as Taylor series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Feasible numerical solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Derivation of algorithm 1 for generalized differential Lyapunov equations . . . . . . . . . . . . . . .
B Numerical results for the projection approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C Backward differentiation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

For coefficient matrices A ∈ C
n×n and B ∈ C

m×m , an inhomogeneity C ∈ C
n×m ,

and an initial value D ∈ C
n×m , we consider the differential matrix equation

Ẋ(t) = AX(t) + X(t)B + C,

X(t0) = D,
(1)

and provide formulas for the solution X with X(t) ∈ C
n×m . Equation (1) is commonly

known as differential Sylvester equation (as opposed to the algebraic Sylvester equa-
tion AX+BX+C = 0). In the symmetric casewhen B = AT , Eq. (1) and its algebraic
counterpart are called differential and algebraic Lyapunov equations, respectively. In
what follows, we will occasionally abbreviate Sylvester or Lyapunov equations by
SLE.

In particular the differential Lyapunov equation is a useful tool for stability analysis
and controller design for linear time-varying systems [2]. Equilibrium points of the
differential Lyapunov equation, namely solutions of the algebraic Lyapunov equation,
are used to construct quadratic Lyapunov functions for asymptotically stable linear
time-invariant systems [33, Thm. 7.4.7]. The controllability and observability problem
for linear time-varying systems is strongly connected to the solution of the differential
Lyapunov equation [9, Ch. 13–14], [19, Ch. 3–4]. Other important applications lie in
model order reduction [3] or in optimal control of linear time-invariant systems on
finite time horizons [30]. Despite its importance, there have been but a few efforts to
solve the differential Sylvester / Lyapunov orRiccati equation numerically, see [6,7,16,
21,25,26,31,36]. These algorithms are usually based on applying a time discretization
and solving the resulting algebraic equations. Thus, even if the algebraic SLE are
solved efficiently, the storage needed for the discrete solution at the time instances
makes these direct approaches infeasible for large scale settings. Recently, Krylov
subspace based methods were proposed in [12–14,24].

In an attempt to overcome this shortage, we revisit known solution formulas,
develop alternative solution representations, and discuss their suitability for numeri-
cal approximations. We start with deriving a spectral decomposition for the Sylvester
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operatorS which allows functional calculus.We obtain formulas for the operator norm
‖S‖ as well as for S−1 and eS . This recovers previously known solution formulas.
It will turn out that, in terms of efficiency, this solution representation is not well
suited for approximation in general but, in special cases, allows for the construction
or computation of exact solutions.

As a step towards efficient solution approximation, we use Taylor series expansions
to identify suitable Krylov subspaces. For the differential Lyapunov equation with
stable coefficient matrices and symmetric low-rank factored inhomogeneity, it is well-
known that the solution of the algebraic Lyapunov equation spans a Krylov subspace
under these assumptions. We split the solution of the differential Lyapunov equation
in a constant and time dependent part, where the constant part is the solution of
an algebraic Lyapunov equation. We approximate the time dependent part using the
subspace spanned by the solution of the algebraic Lyapunov equation. The resulting
algorithm overcomes the essential problems with storage consumption. Numerical
results are presented in Sect. 7 and “Appendices B and C”.

2 Preliminaries

In this section, we introduce the considered equations and the Sylvester operator, set
the notation, and recall basic results.

The spectrum of a matrix A ∈ C
n×n is denoted by Λ(A) ⊆ C. A matrix is called

stable if its spectrum is contained in the left open half plane C
−. The Frobenius

inner product on C
n×m is given by 〈A, B〉F :=

n∑

i=1

m∑

j=1
Ai, j Bi, j . The Hadamard

product is A � B = (
Ai, j · Bi, j

)
i=1,...,n
j=1,...,m

∈ C
n×m for A, B ∈ C

n×m . The Hermitian

transpose, transpose, conjugate are denoted by AH , AT , A, respectively. Further, we

will refer to the Kronecker delta: δi j =
{
1 if i = j,

0 if i �= j
and the Kronecker product:

A ⊗ B = (
Ai, j · B) i=1,...,n

j=1,...,m
. The identity matrix in C

d×d is denoted by Ed,d . For an

interval I ⊆ R the set of continuous matrix-valued functions with complex entries is
denoted by C(I ,Cn×m).

We start with awell known result on the solutions of differential Sylvester equations
which concerns a more general case of the SLE (where the coefficient matrices may
depend on time).

Theorem 1 (Existence and Uniqueness of Solutions, [1, Thm. 1.1.1., Thm. 1.1.3.,
Thm. 1.1.5]) Let I ⊆ R be an open interval with t0 ∈ I , A ∈ C(I ,Cn×n), B ∈
C(I ,Cm×m),C ∈ C(I ,Cn×m) and D ∈ C

n×m. The differential Sylvester equation

Ẋ(t) = A(t)X(t) + X(t)B(t) + C(t),

X(t0) = D,
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has the unique solution X(t) = ΦA(t, t0)DΦBH (t, t0)H +
t∫

t0
ΦA(t, s)C(s)ΦBH

(t, s)Hds.
Here ΦA(t, t0) and ΦBH (t, t0) are the unique state-transition matrices with respect
to t0 ∈ I defined by

Φ̇A(t, t0) := ∂

∂t
ΦA(t, t0) = A(t)ΦA(t, t0),

ΦA(t0, t0) = En,n .

Φ̇BH (t, t0) := ∂

∂t
ΦBH (t, t0) = B(t)HΦBH (t, t0),

ΦBH (t0, t0) = Em,m .

An application of Theorem 1 specifically to the autonomous case with constant
coefficients by simply replacing the state transition matrices with the matrix exponen-
tials yields the next result.

Theorem 2 Let I ⊆ R be an open interval with t0 ∈ I , A ∈ C
n×n, B ∈ C

m×m,C ∈
C(I ,Cn×m) and D ∈ C

m×n. The differential Sylvester equation

Ẋ(t) = AX(t) + X(t)B + C(t),

X(t0) = D,

has the unique solution

X(t) = eA(t−t0)DeB(t−t0) +
t∫

t0

eA(t−s)C(s)eB(t−s)ds. (2)

Next, we restate basic properties of the Sylvester operator S : Cn×m → C
n×m ,

which, for given A ∈ C
n×n and B ∈ C

m×m , is defined by

S(X) = AX + XB. (3)

The Sylvester operator S has been thoroughly studied in [10,22,23,35]. Among
others, it has been shown that the eigenvalues and eigenvectors of theSylvester operator
S can be expressed in terms of the eigenvalues and eigenvectors of A and B, cf. [1,
Rem. 1.1.2.], [3, Ch. 6.1.1], [20].

By exploiting the lemma presented next, it is possible to express the solution in (2)
in terms of the Sylvester operator.

Lemma 1 (Sylvester Operator S) For the Sylvester operator S : Cn×m → C
n×m and

its partial realizations H,V : Cn×m → C
n×m, H(X) = AX and V(X) = XB, it

holds that:

– S = H + V and HV = VH,
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– etS = etHetV for all t ∈ R,

for any A ∈ C
n×n and B ∈ C

m×m.

Proof The first claim can be confirmed by direct computations. The second claim is a
standard result for commuting linear operators. ��
By Lemma 1, formula (2) can be rewritten as

X(t) = e(t−t0)ADe(t−t0)B +
t∫

t0

e(t−s)AC(s)e(t−s)Bds = e(t−t0)He(t−t0)V (D)

+
t∫

t0

e(t−s)He(t−s)V (C(s))ds

= e(t−t0)S(D) +
t∫

t0

e(t−s)S(C(s))ds. (4)

3 Spectral decomposition of the Sylvester operator

In this section we show that the Sylvester operator S, as defined in (3), is a normal
operator if A and B are diagonalizable and if a suitably chosen inner product on a
Hilbert space is considered. The inner product depends on the decomposition of A
and B. Nevertheless, this approach will enable us to apply the spectral theorem and
to derive a solution formula for the differential and algebraic SLE. This resembles
the formulas of [11, Ch. 4.1.1], [18,34]. Those results were obtained by inserting the
spectral decomposition into the SLE and by applying suitable algebraic manipulations
and using the unrolled Kronecker representation of the SLE. Our strategy is to decom-
pose the operator S first and then using functional calculus to obtain formulas for eS
and S−1. The eigenspaces of S can be constructed from the eigenspaces of A and B.
The choice of the inner product ensures that the eigenvectors are orthonormal and S
becomes a normal operator.

Lemma 2 (Inner product for S) Let A ∈ C
n×n, B ∈ C

m×m be diagonalizable and
C, D ∈ C

n×m. Furthermore let A = UDAU−1 and BH = V DBH V−1 be the spectral
decompositions of A and BH with U , DA ∈ C

n×n, V , DBH ∈ C
m×m and DA and

DBH be diagonal matrices.
The following holds:

(i) 〈X ,Y 〉U ,V := 〈U−1XV−H ,U−1YV−H 〉F is an inner product on Cn×m.
(ii) (uiv j

H ) i=1,...,n
j=1,...,m

is an orthonormal basis of Cn×m with respect to 〈·, ·〉U ,V .

(iii) The adjoint operator S∗ : Cn×m → C
n×m with respect to 〈·, ·〉U ,V

is S∗(X) = UDAU−1X + XV−H DBH V H .
(iv) S is a normal operator with respect to 〈·, ·〉U ,V .
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Proof It is straightforward to see that 〈·, ·〉U ,V is an inner product on C
n×m . Because

of the identity

〈uivH
j , ukv

H
l 〉U ,V = 〈U−1uiv

H
j V

−H ,U−1ukv
H
l V−H 〉F = 〈ei eHj , eke

H
l 〉F = δi,kδ j,l ,

the matrices uivH
j ∈ C

n×m are orthogonal with respect to 〈·, ·〉U ,V and therefore lin-

early independent. As dim(Cn×m) = n ·m, the tuple (uivH
j ) i=1,...,n

j=1,...,m
is an orthonormal

basis of Cn×m .
Finally we show that, in this inner product, the adjoint of S is defined as S∗(X) =

UDAU−1X + XV−H DBH V H and that SS∗ = S∗S meaning that S is normal. In
fact, for X ,Y ∈ C

n×m ,

〈S(X), Y 〉U ,V = 〈AX + XB, Y 〉U ,V = 〈AX , Y 〉U ,V + 〈XB, Y 〉U ,V

= 〈U−1AXV−H ,U−1YV−H 〉F + 〈U−1XBV−H ,U−1YV−H 〉F
= 〈DAU

−1XV−H ,U−1YV−H 〉F + 〈U−1XV−H DBH ,U−1YV−H 〉F
= 〈U−1XV−H , DAU

−1YV−H +U−1YV−H DBH 〉F
= 〈U−1XV−H ,U−1

(
UDAU

−1Y + YV−H DBH V H
)
V−H 〉F

= 〈X ,
(
UDAU

−1Y + YV−H DBH V H
)
〉U ,V = 〈X ,S∗(Y )〉U ,V

and

SS∗(X) = S(UDAU
−1X + XV−H DBH V H ) = S(UDAU

−1X) + S(XV−H DBH V H )

= UDADAU
−1X +UDAU

−1XV−H DBH V H

+UDAU
−1XV−H DBH V H + XV−H DBH DBH V H

= UDADAU
−1X +UDAU

−1XV−H DBH V H

+UDAU
−1XV−H DBH V H + XV−H DBH DBH V H

= S∗(UDAU
−1X) + S∗(XV−H DBH V H ) = S∗S(X).

This means S and S∗ commute and, therefore, by definition, S is normal. ��
Now that we have an inner product on a Hilbert space for which S is normal, the

second step is to compute the spectral decomposition ofS. The spectral decomposition
allows functional calculus and we get a formula for S−1 and etS . Since for normal
operators, the operator norm is its spectral radius, we directly get a formula for the
induced operator norm ofS.We remark that in the case that A and B are unitarily diag-
onalizable Lemma 2 also holds when 〈·, ·〉U ,V is replaced by the standard Frobenius
inner product 〈·, ·〉F .
Lemma 3 (Spectral Decomposition ofS) Let the assumptions of Lemma 2 hold. More-
over let α1, . . . , αn ∈ C and β1, . . . , βm ∈ C be the diagonal entries of DA and DBH ,
respectively. Then we have
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(i) S(X) =
n∑

i=1

m∑

j=1
(αi + β j )〈X , uivH

j 〉U ,V uivH
j = U

(
(
αi + β j

)
i=1,...,n
j=1,...,m

�U−1

XV−H
)

V H ,

(ii) ‖S‖ = max
X∈Cn×m\{0}

‖S(X)‖U ,V
‖X‖U ,V

= max
i, j

|αi + β j |, where ‖X‖U ,V = √〈X , X〉U ,V ,

(iii) etS(X) = U

(
(
et(αi+β j )

)
i=1,...,n
j=1,...,m

�U−1XV−H
)

V H .

If in addition αi + β j �= 0 for i = 1, . . . , n and j = 1, . . . ,m, then S−1(X) =
U

(
(

1
αi+β j

)

i=1,...,n
j=1,...,m

�U−1XV−H

)

V H .

Proof

(i) From AU = UDA and BHV = V DBH , we deduce S(ukvH
l ) = AukvH

l +
ukvH

l B = (αk + βl)ukvH
l . Representing S(X) ∈ C

n×m as well as X ∈ C
n×m

with respect to the orthonormal basis
(
uivH

j

)
and exploiting linearity of S and

〈·, ·〉U ,V yield

S(X) =
n∑

i=1

m∑

j=1

〈S(X), uiv
H
j 〉U ,V uiv

H
j

=
n∑

i=1

m∑

j=1

〈S(

n∑

k=1

m∑

l=1

〈X , ukv
H
l 〉U ,V ukv

H
l ), uiu

H
j 〉U ,V uiv

H
j

=
n∑

i,k=1

m∑

j,l=1

〈X , ukv
H
l 〉U ,V 〈S(ukv

H
l ), uiv

H
j 〉U ,V uiv

H
j

=
n∑

i,k=1

m∑

j,l=1

(αk + βl)〈X , ukv
H
l 〉U ,V 〈ukvH

l , uiv
H
j 〉U ,V uiv

H
j

=
n∑

i=1

m∑

j=1

(αi + β j )〈X , uiv
H
j 〉U ,V uiv

H
j

= U
(
(αi + β j )〈X , uiv

H
j 〉U ,V

)

i=1,...,n
j=1,...,m

V H

= U

(
(
αi + β j

)
i=1,...,n
j=1,...,m

�
(
〈U−1XV−H , ei e

H
j 〉F

)

i=1,...,n
j=1,...,m

)

V H

= U

(
(
αi + β j

)
i=1,...,n
j=1,...,m

�U−1XV−H
)

V H .

(ii) The claim about the norm follows from a direct application of the fundamen-
tal functional analytical result on compact normal operators, see, e.g., [37,
Thm. VI.3.2].
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(iii) With the spectral decomposition of S one can resort to functional calculus, cf.
[32, Cor. 9.3.38], [37, Kor. IX.3.8], and obtain the formula for S−1 under the
additional assumption that αi + β j �= 0.

��
Using the spectral decomposition and functional calculus we find that, under the

assumptions of Lemma 2, the solution of the differential Sylvester equation

Ẋ(t) = AX(t) + X(t)B + C = S(X(t)) + C,

X(0) = D,

has the form

X(t) = etS(D) +
t∫

0

e(t−s)S(C)ds

= U

(
(
et(αi+β j )

)

i=1,...,n
j=1,...,m

�U−1DV−H

)

V H

+
t∫

0

U

(
(
e(t−s)(αi+β j )

)

i=1,...,n
j=1,...,m

�U−1CV−H

)

V Hds

= U

(
(
et(αi+β j )

)

i=1,...,n
j=1,...,m

�U−1DV−H

+
⎛

⎝

t∫

0

e(t−s)(αi+β j )ds

⎞

⎠

i=1,...,n
j=1,...,m

�U−1CV−H

⎞

⎟
⎟
⎠ V H , (5)

with the involved scalar integrals given explicitly as:

t∫

0

e(t−s)(αi+β j )ds =
{

et(αi+β j )−1
αi+β j

if αi + β j �= 0,

t if αi + β j = 0
.

4 Variation of constants

The application of the variation of constants formula leads to yet another solution
formula for the SLE (1).

Lemma 4 (Variations of Constants, [9, Ch. 13]) Let A ∈ C
n×n, B ∈ C

m×m,C ∈
C
m×n, D ∈ C

m×n with Λ(A) ∩ Λ(−B) = ∅. The differential Sylvester equation
Ẋ(t) = AX(t) + X(t)B + C = S(X(t)) + C,

X(0) = D,

123



Solution formulas for differential Sylvester and Lyapunov… Page 9 of 33    51 

has the solution

X(t) = etS(D) + S−1(−C) − etSS−1(−C). (6)

Proof Because of Λ(A) ∩ Λ(−B) = ∅, the inverse S−1 exists and we can rewrite the
solution formula (4) as

X(t) = etS(D) +
t∫

0

e(t−s)S(C)ds = etS(D) +
[
−S−1e(t−s)S(C)

]s=t

s=0

= etS(D) + S−1(−C) − S−1etS(−C)

and confirm that X(0) = D + S−1(−C) − S−1(−C) = D. ��
From formula (6), we find that the solution can be written as the solution of the

algebraic Sylvester equation and a time dependent part. We will make use of this fact
in the numerical scheme that we propose in Sect. 6.

5 Solution as Taylor series

In this section we use Taylor series to derive a solution formula. From this we can read
off suitable Krylov subspaces for our projection approach in the next section.

Lemma 5 (Taylor series solution formula) Let A ∈ C
n×n, B ∈ C

m×m,C ∈
C
m×n, D ∈ C

m×n. The differential Sylvester equation

Ẋ(t) = AX(t) + X(t)B + C = S(X(t)) + C,

X(0) = D,

has the unique solution

X(t) = D +
∞∑

k=1

tk

k! (S
k(D) + Sk−1(C)). (7)

Proof First observe that

||D|| +
∞∑

k=1

|| t
k

k! (S
k(D) + Sk−1(C))|| ≤ ||D|| +

∞∑

k=1

|t |k
k! (||Sk(D)|| + ||Sk−1(C)||)

≤ ||D|| +
∞∑

k=1

|t |k
k! (||S||k ||D|| + ||S||k−1||C ||)
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= ||D||e|t |||S|| + ||C ||
∞∑

k=0

|t |k+1

(k + 1)! ||S||k

≤ ||D||e|t |||S|| + |t |||C ||e|t |||S||.

The series converges absolutely and since (Cn×m, || · ||) is a Banach space, the series
converges for every t ∈ R. Therefore its radius of convergence is infinity, X is con-
tinuously differentiable and can be differentiated term-wise. Since, furthermore,

X(0) = D

and

Ẋ(t) =
∞∑

k=1

tk−1

(k − 1)! (S
k(D) + Sk−1(C))

=
∞∑

k=0

tk

k! (S
k+1(D) + Sk(C)) = S(D) +

∞∑

k=1

tk

k! (S
k+1(D) + Sk(C)) + C

= S(D +
∞∑

k=1

tk

k! (S
k(D) + Sk−1(C))) + C = S(X(t)) + C,

X(t) is the unique solution. ��

If we assume that D and C are given in factored form, then we can exploit this to
rewrite the truncated series in a closed form of a matrix product.

Remark 1 Let D = D1DH
2 and C = C1CH

2 with D1 ∈ C
n×d , D2 ∈ C

m×d ,C1 ∈
C
n×c and C2 ∈ C

m×c. Then, having truncated the two parts of the series (7) after m1
and m2 summands, respectively, we can rewrite the solution approximation as

Xm1,m2(t) =
m1∑

k=0

tk

k!S
k(D) +

m2∑

k=1

tk

k!S
k−1(C)

=
m1∑

k=0

tk

k!S
k(D1D

H
2 ) +

m2∑

k=1

tk

k!S
k−1(C1C

H
2 )

=
m1∑

k=0

tk

k! (H + V)k(D1D
H
2 ) +

m2∑

k=1

tk

k! (H + V)k−1(C1C
H
2 )

=
m1∑

k=0

k∑

i=0

tk

k!
(
k

i

)

Hk−iV i (D1D
H
2 ) +

m2∑

k=1

k−1∑

i=0

tk

k!
(
k − 1

i

)

Hk−1−iV i (C1C
H
2 )

=
m1∑

k=0

k∑

i=0

tk

k!
(
k

i

)

Ak−i D1D
H
2 Bi +

m2∑

k=1

k−1∑

i=0

tk

k!
(
k − 1

i

)

Ak−1−iC1C
H
2 Bi ,
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with the explicit representation of the sums

m1∑

k=0

k∑

i=0

tk

k!
(
k

i

)

Ak−i D1D
H
2 Bi

= [
D1, AD1, . . . , Am1D1

]

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

t0
0!
(0
0

) t1
1!
(1
1

) t2
2!
(2
2

) · · · tm1
m1!

(m1
m1

)

t1
1!
(1
0

)
. .

.
. .

.
. .

. 0
t2
2!
(2
0

)
. .

.
. .

.
. .

. ...
... . .

.
. .

.
. .

. 0
tm1

m1!
(m1
0

)
0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊗ Ed,d

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎣

DH
2

DH
2 B
...

DH
2 Bm1

⎤

⎥
⎥
⎦

and

m2∑

k=1

k−1∑

i=0

tk

k!
(
k − 1

i

)

Ak−1−i C1C
H
2 Bi

= [
C1, AC1, . . . , Am2−1C1

]

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

t1
1!
(0
0

) t2
2!
(1
1

) t3
3!
(2
2

) · · · tm2

m2 !
(m2−1
m2−1

)

t2
2!
(1
0

)
. .

.
. .

.
. .

. 0
t3
3!
(2
0

)
. .

.
. .

.
. .

. ...
... . .

.
. .

.
. .

. 0
tm2

m2 !
(m2−1

0

)
0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊗ Ec,c

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

CH
2

CH
2 B
...

CH
2 Bm2−1

⎤

⎥
⎥
⎥
⎦

.

(8)

6 Feasible numerical solution approaches

In this section, we briefly note that, for various reasons, all presented solution represen-
tations are not feasible for a straight-forward numerical approximation, in particular
in a large-scale sparse setting.

A common reason is that none of the formulas supports a sparse representation of
the solutions such that exorbitant amounts of memory will be required.

Limitations in memory will doubly affect the solution representation through the
spectral decomposition (5) since also the basis matrices U and V are generically
dense matrices. Apart from that, the computation of a spectral decomposition is typi-
cally computationally expensive and can be ill conditioned. Nonetheless, the spectral
decomposition formula is useful to construct exact solutions for given coefficients
with known spectral decompositions.

Another issue is the unfeasible computation of the full matrix exponential in all
variants (2), (4), and (6) of the variation of constants formula. A possible remedy is
the approximation of the action of the matrix exponential on a low-rank matrix in a
Krylov subspace.

The approach to the solution via a Taylor series (see Sect. 5) seems best suited
for the large-scale case since, at least in the symmetric case, the formulas provided
in Remark 1 allow for a solution representation in factored form with the original
coefficients. One problem here is that the truncated Taylor series only leads to good
approximations locally around the point of expansion.
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We will, however, exploit and combine certain parts of the solution representations
to propose an algorithm for fast and memory efficient solution approximations.

We consider the stable, linear time-invariant case, i.e. we assume that A ∈ R
n×n ,

B ∈ R
n×p, and Λ(A) ⊆ C

−. We consider the differential Lyapunov equation

Ẋ(t) = AT X(t) + X(t)A + BBT , (9a)

X(0) = 0. (9b)

By Lemma 4, we have that the solution splits into a constant part and a time
dependent part. From Remark 1, we infer that the solution is contained in a Krylov
subspace.Wecombinebothobservations in the followingnumerical solution approach:

1. Factors of the time constant part as Krylov space basis
With A stable, the associated algebraic Lyapunov AT X + X A + BBT = 0 has a
unique symmetric positive semi-definite solution X∞ that can be written in factored
form X∞ = Z∞ZT∞, with Z∞ ∈ R

n×q and rank(Z∞) = q ≤ n. Moreover, since A
is stable, it holds (see [9, Ch. 13]) that

range(Z∞) = range(X∞) = range
([

B, AT B, . . . , (AT )
n−1

B
])

.

2. Factors of the time dependent part evolve in the same Krylov space
With X(t) = X∞ + X̃(t), we obtain that

˙̃X(t) = AT X̃(t) + X̃(t)A,

X̃(0) = −X∞,

where X̃(t) is given by X̃(t) = −et A
T
X∞et A = −et A

T
Z∞ZT∞et A =: −Z̃(t)Z̃(t)T .

And since by (8) also X(t) evolves in the same Krylov space1, as does the difference
X̃(t) and, thus, Z̃(t).

3. Orthogonalize the basis and compute the time dependent factors
By means of a (reduced) Singular Value Decomposition of Z∞, we obtain orthogonal
matrices Q∞ ∈ R

n×q and V∞ ∈ R
q×q with range(Q∞) = range(Z∞) and Z∞ =

Q∞S∞V T∞, where S∞ ∈ R
q×q . Like Z∞, the columns of Q∞ span an AT invariant

subspace and with QT∞Q∞ = Eq,q it holds that

AT Q∞ = Q∞QT∞AT Q∞,

et A
T
Q∞ = Q∞etQ

T∞AT Q∞ ,

from which we deduce that

Z̃(t)Z̃(t)
T =

(
et A

T
Z∞

) (
et A

T
Z∞

)T =
(
et A

T
Q∞S∞

) (
et A

T
Q∞S∞

)T

=
(
Q∞etQ

T∞AT Q∞ S∞
) (

Q∞etQ
T∞AT Q∞ S∞

)T
.

1 In (8), replace A ← AT , B ← A and C ← B to account for the Lyapunov equation setting.
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We define z(t) = etQ
T∞AT Q∞ S∞ ∈ R

q×q and find that z can be obtained by solving

ż(t) = QT∞AT Q∞z(t) (10a)

z(0) = S∞, (10b)

which is a matrix valued ODE that can be solved column-wise or by computing the
matrix exponential etQ

T∞AT Q∞ .
The solution of the differential Lyapunov equation is, thus, given by X(t) =

Z∞ZT∞ − Q∞z(t)z(t)T QT∞.

Remark 2 The differential equation for z is of size q × q, which can be much smaller
than n, if the solution of the algebraic Lyapunov equation X∞ = Z∞ZT∞ has low-rank.
Moreover, the orthogonalization of the basis allows for the detection of the numerical
rank and for a compression of Z∞ through truncating singular values that are smaller
than a certain threshold.

We further note that, with minor adjustments, all arguments also hold for the gen-
eralized differential Lyapunov equation

MT Ẋ(t)M = AT X(t)M + MT X(t)A + BBT ,

X(0) = 0,

with M ∈ R
n×n nonsingular and AM−1 stable that can accommodate, e.g., a mass

matrix from a finite element discretization. We have included the derivation of the
relevant formulas, and an example that illustrates a fundamental difference when M
is symmetric positive definite in “Appendix A”.

In summary, the proposed approach reads as written down in Algorithm 1.

7 Numerical results

7.1 Setup

To quantify and illustrate the performance of Algorithm 1, we consider differential
Lyapunov equations that are used to define optimal controls for a finite element dis-
cretization of a heat equation; see [8] for the model description. Namely, we solve the
differential Lyapunov equations:

MẊ(t)MT = AX(t)MT + MX(t)AT + BBT , X(0) = 0. (DLE-1)

MT Ẋ(t)M = AT X(t)M + MT X(t)A + CTC, X(0) = 0. (DLE-2)

that are defined through matrices M , A ∈ R
n×n that are symmetric, M is positive

definite and A stable, B ∈ R
n×7 and C ∈ R

6×n . For computing the error, we pre-
computed the spectral decomposition of (A, M) and constructed the exact solution
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Algorithm 1 Projection approach for generalized differential Lyapunov equations

Input: M, A ∈ R
n×n with Λ(AM−1) ⊆ C− and B ∈ R

n×p .
Output: X(t) = Z∞ZT∞ − Q∞z(t)z(t)T QT∞ that approximates the solution to

MT Ẋ(t)M = AT X(t)M + MT X(t)A + BBT , X(0) = 0.

1: % Solve Lyapunov equation:
2: AT X∞M + MT X∞A = −BBT for X∞ ≈ Z∞ZT∞ and Z∞ ∈ R

n×q .

3: % Compute singular value decomposition:
4: [Q∞, S∞, ∼] = svd(Z∞, 0).

5: % Set tolerance to largest singular value times machine epsilon:
6: tol = εmachine · S∞(1, 1).

7: % Truncate all singular values smaller than tolerance and get truncated low-rank factor:
8: idx = diag(S∞) ≥ tol.
9: S∞ ← S∞(idx, idx).
10: Q∞ ← Q∞(:, idx).
11: Z∞ ← Q∞S∞.

12: % Compute projected system and solve:
13: if M is symmetric positive definite then
14: MF = QT∞MT Q∞.
15: AF = QT∞AT Q∞.
16: else
17: MF = E .
18: AF = QT∞M−T AT Q∞.
19: end if

20: for k=1,…, cols (S∞) do
21: Solve: MF ż(:, k)(t) = AF z(:, k)(t), z(:, k)(0) = S∞(:, k).
22: end for

by means of the formula from Eq. (5). The memory consuming computation of the
spectral decomposition was done on a compute server with 4 × Xeon® CPU E7-8837
@ 2.67 GHz with 8 cores and 1 TB Ram and MATLAB® 2015b. All other computa-
tions were carried out on a machine with 2 × Xeon® CPU E5-2640 v3 @ 2.60 GHz
with 8 Cores and 64 GB Ram and MATLAB 2017a. We have used the low-rank ADI
iteration implemented inMEX-M.E.S.S. [4] to solve the algebraic Lyapunov equations;
as required for Algorithm 1 (Step 2).

We solve the resulting projected ODE system column-wise using MATLAB ODE
solvers ode45, ode23, ode113, ode15s, ode23s, ode23t and ode23tb. The
solversode45,ode23,ode113 are nonstiff solvers,whereas the rest are stiff solvers.
We have used the following parameters for the odeset function:

– RelTol: 1 · 10−9

– AbsTol: 1 · 10−10

– Stats: off
– NormControl: off
– BDF: on
– Jacobian: AF

– JPattern: logical (AF )
– Mass: MF
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– MassSingular: no
– MStateDependence: none

As the time interval, we consider [0, 4500].

7.2 Projection approach

The initial step of Algorithm 1 requires the solutions to the associated algebraic Lya-
punov equations. For this task we call MEX-M.E.S.S. that iteratively computes the
solutions up to the following absolute and relative residuals

||AZ∞ZT∞MT + MZ∞ZT∞AT + BBT ||2 or ||AT Z∞ZT∞M + MT Z∞ZT∞A + CTC ||2.

and

||AZ∞ZT∞MT + MZ∞ZT∞AT + BBT ||2
||BBT ||2 or

||AT Z∞ZT∞M + MT Z∞ZT∞A + CTC ||2
||CTC ||2 .

The achieved values for the different test setups as well as the number of columns
of the corresponding Z∞ after truncation (see Step 7 of Algorithm 1), that define the
dimension of the reduced model for the time dependent part, are listed in Tables 1
and 2.

We report the absolute and relative errors

||X(t) − Xref (t)||2 and
||X(t) − Xref (t)||2

||Xref (t)||2 ,

where X is the numerical solution obtained fromAlgorithm1with variousODEsolvers
and where the reference solution Xref was obtained from the spectral decomposition

Table 1 Residuals for AXMT + MX AT + BBT = 0

Size Size of z(t) Absolute residual Relative residual

1357 261 × 261 3.413488 × 10−25 7.748357 × 10−12

5177 302 × 302 1.037846 × 10−25 4.728703 × 10−12

20209 376 × 376 6.053185 × 10−26 5.525974 × 10−12

Table 2 Residuals for AT XM + MT X A + CT C = 0

Size Size of z(t) Absolute residual Relative residual

1357 230 × 230 1.011843 × 10−10 8.432027 × 10−12

5177 259 × 259 5.595100 × 10−11 4.662583 × 10−12

20209 310 × 310 4.382439 × 10−11 4.382439 × 10−12
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of (A, M). The spectral decomposition of (A, M) is AV = MV D, where V contains
the eigenvectors and D has the corresponding eigenvalues of M−1A on the diagonal.
According to Eq. (5) the reference solution for (DLE-1) can be formed as

Xref (t) = V

⎛

⎜
⎜
⎝

⎛

⎝

t∫

0

e(t−s)
(
Di,i+Dj, j

)

ds

⎞

⎠

i=1,...,n
j=1,...,n

� (
V−1M−1B

) (
V−1M−1B

)H

⎞

⎟
⎟
⎠ V H .

As the matrices A and M are real symmetric and M is positive definite, the eigenprob-
lem for (A, M) is a generalized symmetric definite one. Therefore all eigenvalues are
real and the corresponding system of eigenvectors can be chosen real and orthogonal
with respect to M , that is V T MV = En,n . The representation of the reference solution
simplifies as follows

Xre f (t) = V

⎛

⎜
⎜
⎝

⎛

⎝

t∫

0

e(t−s)(Di,i+Dj, j)ds

⎞

⎠

i=1,...,n
j=1,...,n

�
(
V T B

) (
V T B

)T

⎞

⎟
⎟
⎠ V T .

Weplot the numerical errors and ||Xre f (t)||2 on the initial short time interval [0, 10],
where most of the evolution is happening, and on the full time interval [0, 4500] in
“Appendix B”, Figs. 4a–d, 5a–d, 6a–d, 7a–d, 8a–d and 9a–d.

In view of the performance of the different ODE solvers, we can interpret the pre-
sented numbers and plots as follows: the solver ode15s, which is a stiff solver of
variable order, performs best in time and accuracy. Due to the stiffness, the error is
oscillating for the solvers ode45, ode23, ode113. Note that the discrete Laplacian
that is encoded in the coefficient matrix A becomes stiffer with a finer space discretiza-
tion, i.e. for larger n. Accordingly, the computational times for the non-stiff solvers
grow with n at a higher rate than the stiff solvers; see Fig. 2.

The solution of (DLE-2) itself is large in norm which makes the relative error
stagnate around the prescribed tolerance and the absolute error comparatively large; see
the plots in “Appendix B.2”. Particularly, the non-stiff solvers (and ode15s) achieve
this error level and the oscillations as stiffness is dominated by the approximation
error. This might be the reason, why for (DLE-2), despite the fact that the coefficient
matrices are still stiff, the non-stiff solvers perform better than the stiff solvers (except
ode15s). Nonetheless, again the computation times for the non-stiff solver grow at
a higher rate with the increasing stiffness that comes with increasing n; see Fig. 2.

Because X(t) → 0 for t ↘ 0, the plots for the relative error spread out for small
times.

Except ode15s, there is no general rule which solver performs better in terms of
computational time; see Fig. 2. The timings may change, when different relative and
absolute error tolerances are used in the MATLAB odeset function.

Finally, we want to make the following remark: instead of integrating the projected
ODE (10) which is linear with constant coefficients of moderate dimension, one may
consider using the Schur–Parlett [17, Ch. 10] algorithm to compute the matrix expo-
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Fig. 1 Link to code and data

nential. The initialization efforts of the Schur–Parlett algorithm will pay off, if the
matrix exponential has to be evaluated for many different values of t . Also, asymp-
totically, the storage requirements for z(t) will be lifted, since the matrix exponential
for a given t can be computed on demand. Nonetheless, we used the ODE approach,
which we think is more efficient because of the sophisticated MATLAB ODE solver
implementations that come, e.g, with step size selection methods integrated.

The code of the implementation with the precomputed spectral decompositions
needed to construct the exact solution is available as mentioned in Fig. 1.

7.3 Computational time

7.4 Comparison with backward differentiation formulas

To benchmark our method, we have run comparison tests with the MATLAB imple-
mentation of the Backward Differentiation Formulas / Alternating Direction Implicit
(BDF/ADI) scheme as developed in [29] (see also the “Appendix C” for a short
summary of the algorithm). The numerical experiments were conducted on the same
machine,with the sameMATLABversion and the samemodel as described inSect. 7.1.

In contrast to the Algorithm 1 that needs to solve only a single algebraic Lyapunov
equation for the initialization, the BDF/ADI approach solves a Lyapunov equation
in every time step. Moreover, the numerical solution is stored in LDLT -format, i.e.,
in terms of the factors of X(tk) ≈ LkDkLT

k and Lk ∈ R
n×lk , which grow at least

linearly with the size of n and the number of time steps. For this reason, we had to
restrict our numerical experiments with BDF/ADI to the interval [0, 100] and consider
only the model of the smallest size n = 1357. As for the test of our Algorithm 1 in
“Appendix B”, for computing the error, we used an exact solution Xre f based on the
spectral decomposition of (A, M).

We have compared various BDF methods that we abbreviated as BDF1, BDF2,
BDF3, BDF4, BDF5 and BDF6, where the number denotes the order s of the method.
We used the constant time step sizes τk := h ∈ {2−4, 2−6, 2−8} for our computations.
In “Appendices C.1 and C.2”, we plot the relative and absolute errors compared to the
solution obtained by the spectral decomposition, c.f. Figs. 10a–f and 11a–f. For com-
parison, we also plot the error of the numerical solution obtained by Algorithm 1 and
the MATLAB ODE solver ode15s. We list the computational times for performing
the BDF/ADI method based computations in Sect. 7.3.

As the actual solution X converges towards the solution of the algebraic Lyapunov
equation, also the numerical errors show a decay towards a certain error level. Decreas-
ing the step size lowers this level accordingly. This effect is visible only for methods
of lower order (s ≤ 2). For higher orders, the error level stagnates and the error rather
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Fig. 2 Timings of the different MATLAB ODE solvers for the solution of the projected time-dependent
factors as defined in Eq. (10)

shows oscillations, which are likely due to errors in the solution of the Lyapunov
equations. Since all BDF methods are stiff solvers, there are no oscillations of higher
frequency to observe. The error levels are comparable to the level reached by our
approach with ode15s.

The computational timings for the BDF/ADI solvers are nearly the same for same
step sizes; cf. Fig. 3. Accordingly, the higher order methods clearly outperform the
low-order methods.

As for the comparison to our approach, we note that the reported timings were
for the longer time-interval [0, 4500]. However, since the transient behavior of the
solution is confined to a short initial phase and since the ODE solvers have a step size
control, a restriction to a shorter interval would not change the timings by much.

For the test case with (DLE-1), the BDF/ADI schemes achieved the same accuracy
as our approach already with the coarsest step size; see Fig. 10a–f. Thus, we compare
the timings in the left most columns in Fig. 2 (n = 1357) and Fig. 3 (h = 2−4) to
conclude that our approach with the best performing ODE solver is about 25 times
faster.

As for the test casewith (DLE-2), theBDF/ADI schemes reached the same accuracy
only for the finest chosen step size; see Fig. 11a–f. Thus, comparing the right most
column in Fig. 3 (h = 2−8) to the left column in the right plot of Fig. 2 (n = 1357),
we find that our Algorithm 1, again, is faster by a factor of 30.

To conclude the comparison, we add the following remarks. With the costs of solv-
ingLyapunov equations, apart from the increasedmemory requirements, theBDF/ADI
scheme will also become significantly more costly for larger system sizes. As opposed
to our Algorithm 1 however, the BDF/ADI scheme also applies for the time varying
case as well as for nonzero initial conditions. Moreover, as ode15s in fact uses the
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Fig. 3 Timings of the different BDF/ADI solvers

BDF formulas but with variable order s and variable time step, one may consider
integrating similar error control mechanisms in the BDF/ADI approach to improve
performance.

8 Conclusions

We presented several solution formulas for the differential Sylvester and Lyapunov
equations. For the autonomous stable differential Lyapunov equation, we proposed a
numerical algorithm that combined certain aspects derived from the solution represen-
tations. The main feature of the algorithm is the projection of the time dependent part
onto a suitable subspace of lower dimension. Only this makes the numerical solution
feasible in terms ofmemory requirements. As for the computational time, the projected
system can be directly solved with optimized ODE solvers like the ode-suite in
MATLAB. Moreover, its structure allows for column-wise computation of the factors
and, thus, for straight-forward parallelization.

We illustrated the performance of the algorithm in an example that was derived
from a finite-element discretization of a heat equation. The achieved accuracy is fully
satisfactory. The greatest benefit, also in contrast to existing numerical schemes, is the
low memory requirement.

The possible extension to the unstable or unsymmetric as well as to the non-
autonomous case is not straightforward since the space in which the solution evolves
has not been found to span a suitable invariant Krylov subspace and is possibly of
high dimension. Moreover, the solution of AX = C (which is the special case of
AX + XB = C with B = 0) is unlikely to span an A-invariant subspace at all,
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meaning that the span of the solution of the algebraic Sylvester equation is not suited
for the differential equation. Thus, for the general case, a different ansatz is needed.
The same is true for time-dependent coefficients or non-zero initial conditions. Here,
a remedy might be structured approaches for the case that time dependence comes,
e.g., from a low-rank update.

In the unstable case, apart from the fact that the algebraic Lyapunov equation may
not have a unique solution, there can be modes that grow exponentially in time. For
this case it may beworth investigating whether a projector that identifies the stable part
of the underlying mathematical model can be efficiently incorporated in the proposed
solution approach.
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A Derivation of algorithm 1 for generalized differential Lyapunov
equations

We consider the generalized differential Lyapunov equation

MT Ẋ(t)M = AT X(t)M + MT X(t)A + BBT , (12a)

X(0) = 0. (12b)

We assume that A, M ∈ R
n×n , B ∈ R

n×p, M is nonsingular and AM−1 is stable.
Let X∞ = Z∞ZT∞ be the unique symmetric positive semidefinite solution of the
generalized algebraic Lyapunov equation

0 = AT XM + MT X A + BBT . (13)

We insert the ansatz X(t) = X∞ + X̃(t) into Eq. (12) and deduce that X̃ fulfills

˙̃X(t) = (AM−1)
T
X̃(t) + X̃(t)(AM−1),

X̃(0) = −X∞.

Therefore we have that X̃(t) = −e(AM−1)
T
X∞e(AM−1). The solution X∞ of the gen-

eralized algebraic Lyapunov equation (13) satisfies the algebraic Lyapunov equation

0 = (AM−1)
T
X + X(AM−1) +

(
M−T B

) (
M−T B

)T
.
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By assumption AM−1 is stable and it follows (see [9, Ch. 13]) that

range(Z∞) = range(X∞)

= range

([

M−T B, (AM−1)
T
M−T B, . . . ,

(
(AM−1)

T
)n−1

M−T B

])

,

and range(Z∞) is a
(
AM−1

)T
invariant subspace. By using the reduced SVD we

obtain Z∞ = Q∞S∞V T∞ and as well as range(Z∞) = range(Q∞). Now we see that

X̃(t) = −e(AM−1)
T

X∞e(AM−1) = −
(

e(AM−1)
T

Z∞
)(

e(AM−1)
T

Z∞
)T

= −
(

e(AM−1)
T

Q∞S∞
)(

e(AM−1)
T

Q∞S∞
)T

=: Z̃(t)Z̃(t)T .

We use that range(Q∞) is an
(
AM−1

)T
invariant subspace and get

Z̃(t) = e(AM−1)
T

Q∞S∞ = Q∞eQ
T∞(AM−1)

T
Q∞ S∞ =: Q∞z(t). (14)

The function Z̃ satisfies the ordinary differential equations

MT ˙̃Z(t) = AT Z̃(t), (15a)

Z̃(0) = Z∞ = Q∞S∞. (15b)

and

˙̃Z(t) = M−T AT Z̃(t), (16a)

Z̃(0) = Z∞ = Q∞S∞. (16b)

If M is symmetric positive definite we make use of the Eqs. (14) and (15) and obtain
the ordinary differential equation

QT∞MT Q∞ ż(t) = QT∞AT Q∞z(t), (17a)

z(0) = S∞. (17b)

If M is not symmetric positive definite, Eqs. (14) and (16) leads to

ż(t) = QT∞M−T AT Q∞z(t), (18a)

z(0) = S∞. (18b)

It is necessary to distinguish between the cases, that M is symmetric positive definite
and M is nonsingular. If M is nonsingular, but not symmetric positive definite, the
matrix QT∞MT Q∞ might be singular and (17) may not have a unique solution. We
illustrate the situation by an example.
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Example 1 Let A =
[−1 0
0 1

]

, M =
[
1 0
0 −1

]

and B =
[
1
1

]

be. The unique solution of

the generalized Lyapunov equation (13) is given by

X∞ = 1

2

[
1 −1

−1 1

]

=
(

1√
2

[
1

−1

])(
1√
2

[
1

−1

])T

= Z∞ZT∞.

A reduced SVD of Z∞ is given by

Z∞ = 1√
2

[
1

−1

]

=
(

1√
2

[
1

−1

])
[
1
] [
1
]T = Q∞S∞V T∞.

System (17) reads now as

0 · ż(t) = QT∞MT Q∞ ż(t) = QT∞AQ∞z(t) = 0 · z(t),
z(0) = 1,

which is no ordinary differential equation and has multiple solutions. In contrast sys-
tem (18) is given by

ż(t) = QT∞M−T AT Q∞z(t) = −1 · z(t),
z(0) = 1.

The unique solution of the generalized differential Lyapunov equation (12) is given
by

X(t) =
(
1

2
− e−2t

2

)[
1 −1

−1 1

]

= 1

2

[
1 −1

−1 1

]

− e−2t

2

[
1 −1

−1 1

]

= Z∞ZT∞ − (Q∞z(t)) (Q∞z(t))T .

B Numerical results for the projection approach

B.1 Results for the differential Lyapunov equation

See Figs. 4, 5 and 6.
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(b)(a)

(c) (d)

(f)(e)

Fig. 4 a, c Relative 2-norm error of the approximation. b, d Absolute 2-norm error of the approximation.
e, f 2-norm of the reference solution
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(b)(a)

(c) (d)

(f)(e)

Fig. 5 a, c Relative 2-norm error of the approximation. b, d Absolute 2-norm error of the approximation.
e, f 2-norm of the reference solution
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(b)

(d)

(f)(e)

(c)

(a)

Fig. 6 a, c Relative 2-norm error of the approximation. b, d Absolute 2-norm error of the approximation.
e, f 2-norm of the reference solution

B.2 Results for the transposed differential Lyapunov equation

See Figs. 7, 8 and 9.
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(a) (b)

(d)(c)

(e) (f)

Fig. 7 a, c Relative 2-norm error of the approximation. b, d Absolute 2-norm error of the approximation.
e, f 2-norm of the reference solution
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(d)

(f)(e)

(c)

(a) (b)

Fig. 8 a, c Relative 2-norm error of the approximation. b, d Absolute 2-norm error of the approximation.
e, f 2-norm of the reference solution
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(d)

(b)(a)

(c)

(e) (f)

Fig. 9 a, c Relative 2-norm error of the approximation. b, d Absolute 2-norm error of the approximation.
e, f 2-norm of the reference solution

C Backward differentiation formulas

We consider Backward Differentiation Formulas (BDF) for differential Lyapunov
equations [27,28]. Let 0 = t0 < t1 < · · · < tN = T be a decomposition of the
interval [0, T ]. We define the step size τk = tk − tk−1 for k = 1, . . . , N .
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The s-step BDF method applied to the DLE 9 is given by

s∑

j=0

α j Xk− j = τkβ
(
AT Xk + Xk A + BBT

)
,

where α j and β are coefficients of the BDF method and can be found in [15]. The
parameter s is the order of the BDF method. We recall that for s > 6, the method is
not numerical stable, and for s = 1, the BDFmethod coincides with the implicit Euler
method. A minor rearrangement shows that the current iterate Xk can be obtained as
the solution of the algebraic Lyapunov equation

(
τkβA − α0

2
En,n

)T
Xk + Xk

(
τkβA − α0

2
En,n

)
= −τkβBBT +

s∑

j=1

α j Xk− j .

(19)

Since for s ≥ 2, certain coefficients α j , j ≥ 1 are positive, the algebraic Lyapunov
equation (19) has a symmetric but possibly indefinite right-hand side, which makes
the standard ADI method infeasible. For this reason a LDLT -decomposition for the
numerical solution is proposed and suitable modifications of the ADI method have
been developed; [5,26]: Assume that Xi ≈ Li Di LT

i for i = 0, . . . , k − 1, Li ∈
R
n×li , Di ∈ R

li×li and li � n, then the right hand side can be factored as

−τkβBBT +
s∑

j=1

α j Xk− j ≈ −GkSkG
T
k ,

Gk = [
B, Lk−1, . . . , Lk−s

]
,

Sk =

⎡

⎢
⎢
⎣

τkβEp,p

−α1Dk−1
. . .

−αs Dk−s

⎤

⎥
⎥
⎦ .

Now the LDLT -type ADI method can be used to determine Xk ≈ LkDkLT
k . The

BDF/ADI methods can also be extended to generalized differential Lyapunov equa-
tions in a similar way [28].

C.1 Results for the differential Lyapunov equation

See Fig. 10.
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(b)

(d)

(f)(e)

(c)

(a)

Fig. 10 a, c, e Relative 2-norm error of the BDF/ADI approximation. b, d, f Absolute 2-norm error of the
BDF/ADI approximation

C.2 Results for the transposed differential Lyapunov equation

See Fig. 11.
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(b)(a)

(c) (d)

(f)(e)

Fig. 11 a, c, e Relative 2-norm error of the BDF/ADI approximation. b, d, f Absolute 2-norm error of the
BDF/ADI approximation
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