
Solution Formulas for Differential Sylvester and
Lyapunov Equations

Maximilian Behr Peter Benner Jan Heiland

November 21, 2018

Abstract

The differential Sylvester equation and its symmetric version, the differential Lyapunov equation,
appear in different fields of applied mathematics like control theory, system theory, and model
order reduction. The few available straight-forward numerical approaches if applied to large-
scale systems come with prohibitively large storage requirements. This shortage motivates
us to summarize and explore existing solution formulas for these equations. We develop a
unifying approach based on the spectral theorem for normal operators like the Sylvester operator
S(X) = AX +XB and derive a formula for its norm using an induced operator norm based on
the spectrum of A and B. In view of numerical approximations, we propose an algorithm that
identifies a suitable Krylov subspace using Taylor series and use a projection to approximate the
solution. Numerical results for large-scale differential Lyapunov equations are presented in the
last sections.

Contents
1. Introduction 2

2. Preliminaries 3

3. Spectral Decomposition of the Sylvester Operator 4

4. Variation of Constants 7

5. Solution as Taylor Series 7

6. Feasible Numerical Solution Approaches 9

7. Numerical Results 12
7.1. Setup . 12
7.2. Projection Approach . 12
7.3. Computational Time . 15
7.4. Comparison with Backward Differentiation Formulas 16

8. Conclusions 17

A. Numerical Results Projection Approach 18
A.1. Results for the Differential Lyapunov Equation . 18
A.2. Results for the Transposed Differential Lyapunov Equation 22

1

ar
X

iv
:1

81
1.

08
32

7v
1

 [
m

at
h.

N
A

]
 2

0
N

ov
 2

01
8

B. Backward Differentiation Formulas 25
B.1. Results for the Differential Lyapunov Equation . 26
B.2. Results for the Transposed Differential Lyapunov Equation 27

1. Introduction
For coefficient matrices A ∈ Cn×n and B ∈ Cm×m, an inhomogeneity C ∈ Cn×m, and an initial
value D ∈ Cn×m, we consider the differential matrix equation

Ẋ(t) = AX(t) +X(t)B + C,

X(t0) = D,
(1)

and provide formulas for the solution X with X(t) ∈ Cn×m. Equation (1) is commonly known as
differential Sylvester equation (as opposed to the algebraic Sylvester equation AX +BX + C = 0).
In the symmetric case that B = AT , equation (1) and its algebraic counterpart is called differential
(algebraic) Lyapunov equation. In what follows, we will occasionally abbreviate Sylvester or
Lyapunov equations by SLE.
In particular the differential Lyapunov equation is a useful tool for stability analysis and controller
design for linear time-varying systems [2]. Equilibrium points of the differential Lyapunov equation,
namely solutions of the algebraic Lyapunov equation, are used to construct quadratic Lyapunov
functions for asymptotically stable linear time-invariant systems [33, Thm. 7.4.7]. The controllability
and observability problem for linear time-varying systems is strongly connected to the solution of
the differential Lyapunov equation [9, Ch. 13-14], [19, Ch. 3-4]. Other important applications lie
in model order reduction [3] or in optimal control of linear time-invariant systems on finite time
horizons [30]. Despite its importance, there have been but a few efforts to solve the differential
Sylvester / Lyapunov or Riccati equation numerically, see [6,7,16,21,25,26,31,36]. These algorithms
are usually based on applying a time discretization and solving the resulting algebraic equations.
Thus, even if the algebraic SLE are solved efficiently, the storage needed for the discrete solution
at the time instances makes these direct approaches infeasible for large scale settings. Recently,
Krylov subspace based methods were proposed in [12–14,24].
In an attempt to overcome this shortage, we revisit known solution formulas, develop alternative
solution representations, and discuss their suitability for numerical approximations. We start with
deriving a spectral decomposition for the Sylvester operator S which allows functional calculus.
We obtain formulas for the operator norm ‖S‖ as well as for S−1 and eS . This recovers previously
known solution formulas. It will turn out that, in terms of efficiency, this solution representation is
not well suited for approximation in general but, in special cases, allows for the construction or
computation of exact solutions.
As a step towards efficient solution approximation, we use Taylor series expansions to identify
suitable Krylov subspaces. For the differential Lyapunov equation with stable coefficient matrices
and symmetric low-rank factored inhomogeneity, it is well-known that the solution of the algebraic
Lyapunov equation spans a Krylov subspace under these assumptions. We split the solution of the
differential Lyapunov equation in a constant and time dependent part, where the constant part is
the solution of an algebraic Lyapunov equation. We approximate the time dependent part using
the subspace spanned by the solution of the algebraic Lyapunov equation. The resulting algorithm
overcomes the essential problems with storage consumption. Numerical results are presented in the
Section 7 and Appendices A and B.

2

2. Preliminaries
In this section, we introduce the considered equations and the Sylvester operator, set the notation,
and recall basic results.
The spectrum of a matrix A ∈ Cn×n is denoted by Λ(A). Generally, the spectrum is a subset
of C. A matrix is called stable if its spectrum is contained in the left open half plane C−. The
Frobenius inner product on Cn×m is given by 〈A,B〉F :=

n∑
i=1

m∑
j=1

Ai,jBi,j . The Hadamard product

is A � B = (Ai,j ·Bi,j) i=1,...,n
j=1,...,m

∈ Cn×m for A,B ∈ Cn×m. The Hermitian transpose, transpose,

conjugate are denoted by AH , A, AT , respectively. Further, we will refer to the Kronecker delta:

δij =
{

1 if i = j,

0 if i 6= j
and the Kronecker product: A⊗B = (Ai,j ·B) i=1,...,n

j=1,...,m
. The identity matrix in

Cd×d is denoted by Ed,d.
For further reference we start with recalling a general well known result on the solution which
applies to the more general case of the SLE (where the coefficient matrices may depend on time):
Theorem 2.1 (Existence and Uniqueness of Solutions, [1, Thm. 1.1.1., Thm. 1.1.3., Thm. 1.1.5]).
Let I ⊆ R an open interval with t0 ∈ I, A ∈ C(I,Cn×n), B ∈ C(I,Cm×m), C ∈ C(I,Cn×m) and
D ∈ Cn×m. The differential Sylvester equation

Ẋ(t) = A(t)X(t) +X(t)B(t) + C(t),
X(t0) = D,

has the unique solution X(t) = ΦA(t, t0)DΦBH (t, t0)H +
t∫
t0

ΦA(t, s)C(s)ΦBH (t, s)Hds.

ΦA(t, t0) and ΦBH (t, t0) are the unique state-transition matrices with respect to t0 ∈ I defined by

Φ̇A(t, t0) := ∂

∂t
ΦA(t, t0) = A(t)ΦA(t, t0),

ΦA(t0, t0) = En,n.

Φ̇BH (t, t0) := ∂

∂t
ΦBH (t, t0) = B(t)HΦBH (t, t0),

ΦBH (t0, t0) = Em,m.

The specification to the autonomous case with constant coefficients is straight forward by simply
replacing the state transition matrices with the matrix exponentials.
Theorem 2.2.
Let I ⊆ R an open interval with t0 ∈ I, A ∈ Cn×n, B ∈ Cm×m, C ∈ C(I,Cn×m) and D ∈ Cm×n.
The differential Sylvester equation

Ẋ(t) = AX(t) +X(t)B + C(t),
X(t0) = D,

has the unique solution

X(t) = eA(t−t0)DeB(t−t0) +
t∫

t0

eA(t−s)C(s)eB(t−s)ds. (2)

Next, we state basic properties of the Sylvester operator, which, for given A ∈ Cn×n and B ∈ Cm×m,

3

is defined through its action on an X ∈ Cn×m:

S(X) = AX +XB. (3)

The Sylvester operator S has been thoroughly studied in [10,22, 23, 35]. Among others, it has been
shown that the eigenvalues and eigenvectors of the Sylvester operator S can be expressed in terms
of the eigenvalues and eigenvectors of A and B, cf. [1, Rem. 1.1.2.], [3, Ch. 6.1.1], [20].
In view of rewriting the solution formula (2), we state the following lemma:
Lemma 2.1 (Sylvester Operator S).
For the Sylvester operator S : Cn×m → Cn×m and its partial realizations H,V : Cn×m → Cn×m,
H(X) = AX and V(X) = XB, it holds that:

• S = H+ V and HV = VH,

• etS = etHetV for all t ∈ R,

for any A ∈ Cn×n and B ∈ Cm×m.

Proof. The first claim can be confirmed by direct computations. The second claim is a standard
result for commuting linear operators.

By Lemma 2.1, formula (2) rewrites as

X(t) = etADetB +
t∫

t0

e(t−s)AC(s)e(t−s)Bds = e(t−t0)He(t−t0)V(D) +
t∫

t0

e(t−s)He(t−s)V(C(s))ds

= e(t−t0)S(D) +
t∫

t0

e(t−s)S(C(s))ds. (4)

3. Spectral Decomposition of the Sylvester Operator
In this section we show that the Sylvester operator S, as defined in (3), is a normal operator if A and
B are diagonalizable and if a suitably chosen inner product on a Hilbert space is considered. The
inner product depends on the decomposition of A and B. Nevertheless, this approach will enable us
to apply the spectral theorem and to derive a solution formula for the differential and algebraic SLE.
This resembles the formulas of [11, Ch. 4.1.1], [18], [34]. Those results were obtained by inserting
the spectral decomposition into the SLE and by applying suitable algebraic manipulations and using
the unrolled Kronecker representation of the SLE. Our strategy is to decompose the operator S
first and then using functional calculus to obtain formulas for eS and S−1. The eigenspaces of S
can be constructed from the eigenspaces of A and B. The choice of the inner product ensures that
the eigenvectors are orthonormal and S becomes a normal operator.
Lemma 3.1 (Inner product for S).
Let A ∈ Cn×n, B ∈ Cm×m be diagonalizable and C,D ∈ Cn×m. Furthermore let A = UDAU

−1 and
BH = V DBHV

−1 be the spectral decompositions of A and BH with U ∈ Cn×n, V ∈ Cm×m, DA

and DBH diagonal matrices containing the eigenvalues α1, . . . , αn and β1, . . . , βm of A and BH . It
holds:

(i) 〈X,Y 〉U,V := 〈U−1XV −H , U−1Y V −H〉F is an inner product on Cn×m.

(ii) (uivjH) i=1,...,n
j=1,...,m

is an orthonormal basis of Cn×m with respect to 〈·, ·〉U,V .

4

(iii) The adjoint operator S∗ : Cn×m → Cn×m with respect to 〈·, ·〉U,V
is S∗(X) = UDAU

−1X +XV −HDBHV
H .

(iv) S is a normal operator with respect to 〈·, ·〉U,V .

Proof. Note that 〈·, ·〉U,V defines an inner product since

〈uivHj , ukvHl 〉U,V = 〈U−1uiv
H
j V

−H , U−1ukv
H
l V

−H〉F = 〈eieHj , ekeHl 〉F = δi,kδj,l.

The matrices uivHj ∈ Cn×m are orthogonal with respect to 〈·, ·〉U,V and therefore linearly independent.
Because dim(Cn×m) = n ·m, the tuple (uivHj) i=1,...,n

j=1,...,m
is an orthonormal basis of Cn×m.

The following two computations show that S commutes with its adjoint S∗.
Let X,Y ∈ Cn×m.

〈S(X), Y 〉U,V = 〈AX +XB,Y 〉U,V = 〈AX,Y 〉U,V + 〈XB,Y 〉U,V
= 〈U−1AXV −H , U−1Y V −H〉F + 〈U−1XBV −H , U−1Y V −H〉F
= 〈DAU

−1XV −H , U−1Y V −H〉F + 〈U−1XV −HDBH , U
−1Y V −H〉F

= 〈U−1XV −H , DAU
−1Y V −H + U−1Y V −HDBH 〉F

= 〈U−1XV −H , U−1
(
UDAU

−1Y + Y V −HDBHV
H
)
V −H〉F

= 〈X,
(
UDAU

−1Y + Y V −HDBHV
H
)
〉U,V

= 〈X,S∗(Y)〉U,V .

Therefore, the adjoint of S is S∗(X) = UDAU
−1X +XV −HDBHV

H . Moreover,

SS∗(X) = S(UDAU
−1X +XV −HDBHV

H) = S(UDAU
−1X) + S(XV −HDBHV

H)
= UDADAU

−1X + UDAU
−1XV −HDBHV

H

+ UDAU
−1XV −HDBHV

H +XV −HDBHDBHV
H

= UDADAU
−1X + UDAU

−1XV −HDBHV
H

+ UDAU
−1XV −HDBHV

H +XV −HDBHDBHV
H

= S∗(UDAU
−1X) + S∗(XV −HDBHV

H) = S∗S(X).

This means S and S∗ commute and, therefore, by definition, S is normal.

Now that we have an inner product on a Hilbert space for which S is normal, the second step is to
compute the spectral decomposition of S. The spectral decomposition allows functional calculus
and we get a formula for S−1 and etS . Since for normal operators, the operator norm is its spectral
radius, we directly get a formula for the induced operator norm of S. We mention that in the case
that A and B are unitarly diagonalizable, there is no need to exchange the inner product as one
can take the Frobenius inner product 〈·, ·〉F .
Lemma 3.2 (Spectral Decomposition of S).
Let the assumptions of Lemma 3.1 hold. Then it holds:

(i) S(X) =
n∑
i=1

m∑
j=1

(αi + βj)〈X,uivHj 〉U,V uivHj = U

(
(αi + βj) i=1,...,n

j=1,...,m
� U−1XV −H

)
V H .

(ii) ‖S‖ = max
X∈Cn×m\{0}

‖S(X)‖U,V
‖X‖U,V = max

i,j
|αi + βj |, where ‖X‖U,V =

√
〈X,X〉U,V .

5

(iii) S−1(X) = U

((
1

αi+βj

)
i=1,...,n
j=1,...,m

� U−1XV −H
)
V H and

etS(X) = U

((
et(αi+βj)

)
i=1,...,n
j=1,...,m

� U−1XV −H
)
V H .

Proof.

(i) From AU = UDA and BHV = V DBH , we deduce S(ukvHl) = Aukv
H
l +ukvHl B = (αk+βl)ukvHl .

Representing S(X) ∈ Cn×m as well as X ∈ Cn×m as a Fourier series and exploiting linearity
of S and 〈·, ·〉U,V yields

S(X) =
n∑
i=1

m∑
j=1
〈S(X), uivHj 〉U,V uivHj =

n∑
i=1

m∑
j=1
〈S(

n∑
k=1

m∑
l=1
〈X,ukvHl 〉U,V ukvHl), uiuHj 〉U,V uivHj

=
n∑

i,k=1

m∑
j,l=1
〈X,ukvHl 〉U,V 〈S(ukvHl), uivHj 〉U,V uivHj

=
n∑

i,k=1

m∑
j,l=1

(αk + βl)〈X,ukvHl 〉U,V 〈ukvHl , uivHj 〉U,V uivHj

=
n∑
i=1

m∑
j=1

(αi + βj)〈X,uivHj 〉U,V uivHj = U
(
(αi + βj)〈X,uivHj 〉U,V

)
i=1,...,n
j=1,...,m

V H

= U

(
(αi + βj) i=1,...,n

j=1,...,m
�
(
〈U−1XV −H , eieHj 〉F

)
i=1,...,n
j=1,...,m

)
V H

= U

(
(αi + βj) i=1,...,n

j=1,...,m
� U−1XV −H

)
V H .

(ii) The claim about the norm follows from a direct application of the fundamental functional
analytical result on compact normal operators, see, e.g., [37, Thm. VI.3.2].

(iii) With the spectral decomposition of S one can resort to functional calculus, cf. [32, Cor. 9.3.38], [37,
Kor. IX.3.8], and obtain the formula for S−1 under the additional assumption that αi +βj 6= 0.

Using the spectral decomposition and functional calculus we find that, under the assumptions of
Lemma 3.1, the solution of the differential Sylvester equation

Ẋ(t) = AX(t) +X(t)B + C = S(X(t)) + C,

X(0) = D,

has the form

X(t) = etS(D) +
t∫

0

e(t−s)S(C)ds

= U

((
et(αi+βj)

)
i=1,...,n
j=1,...,m

� U−1DV −H
)
V H +

t∫
0

U

((
e(t−s)(αi+βj)

)
i=1,...,n
j=1,...,m

� U−1CV −H
)
V Hds

6

= U

(et(αi+βj)) i=1,...,n
j=1,...,m

� U−1DV −H +

 t∫
0

e(t−s)(αi+βj)ds

i=1,...,n
j=1,...,m

� U−1CV −H

V H ,

(5)

with the involved scalar integrals given explicitly as:

t∫
0

e(t−s)(αi+βj)ds =

 et(αi+βj)−1
αi+βj if αi + βj 6= 0,

t if αi + βj = 0
.

4. Variation of Constants
The application of the variation of constants formula leads to yet another solution formula for the
SLE (1).
Lemma 4.1 (Variations of Constants, [9, Ch. 13]).
Let A ∈ Cn×n, B ∈ Cm×m, C ∈ Cm×n, D ∈ Cm×n with Λ(A)∩Λ(−B) = ∅. The differential Sylvester
equation

Ẋ(t) = AX(t) +X(t)B + C = S(X(t)) + C,

X(0) = D,

has the solution
X(t) = etS(D) + S−1(−C)− etSS−1(−C). (6)

Proof. Because of Λ(A) ∩ Λ(−B) = ∅, the inverse S−1 exists and we can rewrite the solution
formula (4) as

X(t) = etS(D) +
t∫

0

e(t−s)S(C)ds = etS(D) +
[
−S−1e(t−s)S(C)

]s=t
s=0

= etS(D) + S−1(−C)− S−1etS(−C)

and confirm that X(0) = D + S−1(−C)− S−1(−C) = D.

From formula (6), we find that the solution can be written as the solution of the algebraic Sylvester
equation and a time dependent part. We will make use of this fact in the numerical scheme that we
propose in Section 6.

5. Solution as Taylor Series
In this section we use Taylor series to derive a solution formula. From this we can read off suitable
Krylov subspaces for our projection approach in the next section.
Lemma 5.1 (Taylor Series Solution Formula).
Let A ∈ Cn×n, B ∈ Cm×m, C ∈ Cm×n, D ∈ Cm×n. The differential Sylvester equation

Ẋ(t) = AX(t) +X(t)B + C = S(X(t)) + C,

X(0) = D,

7

has the unique solution

X(t) = D +
∞∑
k=1

tk

k! (S
k(D) + Sk−1(C)). (7)

Proof.

||D||+
∞∑
k=1
|| t

k

k! (S
k(D) + Sk−1(C))|| ≤ ||D||+

∞∑
k=1

|t|k
k! (||Sk(D)||+ ||Sk−1(C)||)

≤ ||D||+
∞∑
k=1

|t|k
k! (||S||k||D||+ ||S||k−1||C||)

= ||D||e|t|||S|| + ||C||
∞∑
k=0

|t|k+1

(k + 1)! ||S||
k

≤ ||D||e|t|||S|| + |t|||C||e|t|||S||.

The series converges absolutely and since (Cn×m, || · ||) is a Banach space, the series converges for
every t ∈ R. Therefore its radius of convergence is infinity, X is continuously differentiable and can
be differentiated term-wise. Since, furthermore,

X(0) = D

and

Ẋ(t) =
∞∑
k=1

tk−1

(k − 1)!(S
k(D) + Sk−1(C))

=
∞∑
k=0

tk

k! (S
k+1(D) + Sk(C)) = S(D) +

∞∑
k=1

tk

k! (S
k+1(D) + Sk(C)) + C

= S(D +
∞∑
k=1

tk

k! (S
k(D) + Sk−1(C))) + C = S(X(t)) + C,

X(t) is the unique solution.

If we assume that D and C are given in factored form, then we can exploit this to rewrite the
truncated series in a closed form of a matrix product.
Remark 5.1.
Let D = D1DH

2 and C = C1CH2 with D1 ∈ Cn×d, D2 ∈ Cm×d, C1 ∈ Cn×c and C2 ∈ Cm×c. Then,
having truncated the two parts of the series (7) after m1 and m2 summands, respectively, we can
rewrite the solution approximation as

Xm1,m2(t) =
m1∑
k=0

tk

k!S
k(D) +

m2∑
k=1

tk

k!S
k−1(C)

=
m1∑
k=0

tk

k!S
k(D1D

H
2) +

m2∑
k=1

tk

k!S
k−1(C1C

H
2)

=
m1∑
k=0

tk

k! (H+ V)k(D1D
H
2) +

m2∑
k=1

tk

k! (H+ V)k−1(C1C
H
2)

=
m1∑
k=0

k∑
i=0

tk

k!

(
k

i

)
Hk−iV i(D1D

H
2) +

m2∑
k=1

k−1∑
i=0

tk

k!

(
k − 1
i

)
Hk−1−iV i(C1C

H
2)

8

=
m1∑
k=0

k∑
i=0

tk

k!

(
k

i

)
Ak−iD1D

H
2 B

i +
m2∑
k=1

k−1∑
i=0

tk

k!

(
k − 1
i

)
Ak−1−iC1C

H
2 B

i,

with the explicit representation of the sums

m1∑
k=0

k∑
i=0

tk

k!

(
k

i

)
Ak−iD1D

H
2 B

i =

[
D1, AD1, . . . , Am1D1

]

t0

0!
(0

0
)

t1

1!
(1

1
)

t2

2!
(2

2
) · · · tm1

m1!
(m1
m1

)
t1

1!
(1

0
)

. .
.

. .
.

. .
. 0

t2

2!
(2

0
)

. .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
. 0

tm1
m1!
(m1

0
)

0 · · · 0 0

⊗ Ed,d

DH

2
DH

2 B
...

DH
2 B

m1

and
m2∑
k=1

k−1∑
i=0

tk

k!

(
k − 1
i

)
Ak−1−iC1C

H
2 B

i =

[
C1, AC1, . . . , Am2−1C1

]

t1

1!
(0

0
)

t2

2!
(1

1
)

t3

3!
(2

2
) · · · tm2

m2!
(m2−1
m2−1

)
t2

2!
(1

0
)

. .
.

. .
.

. .
. 0

t3

3!
(2

0
)

. .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
. 0

tm2
m2!
(m2−1

0
)

0 · · · 0 0

⊗ Ec,c

CH2
CH2 B
...

CH2 B
m2−1

 .

6. Feasible Numerical Solution Approaches
In this section, we briefly note that, for various reasons, all presented solution representations are
not feasible for a straight-forward numerical approximation, in particular in a large-scale sparse
setting.
A common reason is that none of the formulas supports a sparse representation of the solutions
such that exorbitant amounts of memory will be required.
Limitations in memory will doubly affect the solution representation through the spectral decompo-
sition (5) since also the basis matrices U and V are generically dense matrices. Apart from that,
the computation of a spectral decomposition is typically computationally expensive and can be ill
conditioned. Nonetheless, the spectral decomposition formula is useful to construct exact solutions
for given coefficients with known spectral decompositions.
Another issue is the unfeasible computation of the full matrix exponential in all variants (2), (4),
and (6) of the variation of constants formula. A possible remedy is the approximation the action of
the matrix exponential on a low-rank matrix in a Krylov subspace.
The approach to the solution via a Taylor series (see Section 5) seems best suited for the large-scale
case since, at least in the symmetric case, the formulas provided in Remark 5.1 allow for a solution
representation in factored form with the original coefficients. One problem here is that the truncated
Taylor series only leads to good approximations locally around the point of expansion.
We will, however, exploit and combine certain parts of the solution representations to propose an
algorithm for fast and memory efficient solution approximations.
We consider the stable, linear time-invariant case, i.e. we assume that A ∈ Rn×n, B ∈ Rn×p, and

9

Λ(A) ⊆ C−. We consider the differential Lyapunov equation

Ẋ(t) = ATX(t) +X(t)A+BBT , (8a)
X(0) = 0. (8b)

By Lemma 4.1, we have that the solution splits into a constant part and a time dependent part.
From Remark 5.1, we infer that the solution is contained in a Krylov subspace. We combine both
observations in the following numerical solution approach:
1. Factors of the time constant Part as Krylov space basis With A stable, the associated
algebraic Lyapunov ATX +XA+BBT = 0 has a unique symmetric positive semi-definite solution
X∞ that can be written in factored form X∞ = Z∞ZT∞, with Z∞ ∈ Rn×q and rank(Z∞) = q ≤ n.
Moreover, since A is stable, it holds (see [9, Ch. 13]) that

range(Z∞) = range(X∞) = range
([
B,ATB, . . . , (AT)n−1

B
])
.

2. Factors of the time dependent part evolve in the same Krylov space With X(t) =
X∞ + X̃(t), we obtain that

˙̃X(t) = AT X̃(t) + X̃(t)A,
X̃(0) = −X∞,

where X̃(t) is given by X̃(t) = −etATX∞etA = −etATZ∞ZT∞etA =: −Z̃(t)Z̃(t)T .
3. Orthogonalize the basis and compute the time dependent factors By means of the
singular value decomposition of Z∞, we obtain an orthogonal matricesQ∞ and V∞ with range(Q∞) =
range(Z∞), with Z∞ = Q∞S∞V T

∞, and with Q∞ ∈ Rn×q, S∞ ∈ Rq×q, V∞ ∈ Rq×q. Like Z∞, the
columns of Q∞ span an AT invariant subspace and with QT∞Q∞ = Eq,q it holds that

ATQ∞ = Q∞QT∞A
TQ∞,

etA
T
Q∞ = Q∞etQ

T
∞A

TQ∞ ,

from which we confer that

Z̃(t)Z̃(t)T =
(
etA

T
Z∞

) (
etA

T
Z∞

)T
=
(
etA

T
Q∞S∞

) (
etA

T
Q∞S∞

)T
=
(
Q∞etQ

T
∞A

TQ∞S∞
) (
Q∞etQ

T
∞A

TQ∞S∞
)T
.

We define z(t) = etQ
T
∞A

TQ∞S∞ ∈ Rq×q and find that z can be obtained by solving

ż(t) = QT∞A
TQ∞z(t) (9a)

z(0) = S∞, (9b)

which is a matrix valued ODE that can be solved column-wise or by computing the matrix exponential
etQ

T
∞A

TQ∞ .
The solution of the differential Lyapunov equation is, thus, given byX(t) = Z∞ZT∞−Q∞z(t)z(t)TQT∞.

Remark 6.1.
The differential equation for z is of size q × q, which can be much smaller than n, if the solution of
the algebraic Lyapunov equation X∞ = Z∞ZT∞ has low-rank. Moreover, the orthogonalization of the
basis allows for the detection of the numerical rank and for a compression of Z∞ through truncating

10

singular values that are smaller than a certain threshold.
We further note that, with minor adjustments, all arguments also hold for the generalized differential
Lyapunov equation

MT Ẋ(t)M = ATX(t)M +MTX(t)A+BBT ,

X(0) = 0,

with M ∈ Rn×n nonsingular that can accommodate, e.g., a mass matrix from a finite element
discretization.
In summary, the proposed approach reads as written down in Algorithm 1.

Algorithm 1 Projection approach for generalized differential Lyapunov equations
Input: M,A ∈ Rn×n with Λ(AM−1) ⊆ C− and B ∈ Rn×p.
Output: X(t) = Z∞ZT∞ −Q∞z(t)z(t)TQT∞ that approximates the solution to

MT Ẋ(t)M = ATX(t)M +MTX(t)A+BBT , X(0) = 0.

1: % Solve Lyapunov equation:
2: ATX∞M +MTX∞A = −BBT for X∞ ≈ Z∞ZT∞ and Z∞ ∈ Rn×q.

3: % Compute singular value decomposition:
4: [Q∞, S∞,∼] = svd(Z∞, 0).

5: % Set tolerance to largest singular value times machine epsilon:
6: tol = εmachine · S∞(1, 1).

7: % Truncate all singular values smaller than tolerance and get truncated low-rank factor:
8: idx = diag(S∞) ≥ tol.
9: S∞ ← S∞(idx, idx).

10: Q∞ ← Q∞(:, idx).
11: Z∞ ← Q∞S∞.

12: % Compute projected system and solve:
13: if M is symmetric positive definite then
14: MF = QT∞M

TQ∞.
15: AF = QT∞A

TQ∞.
16: else
17: MF = E.
18: AF = QT∞M

−TATQ∞.
19: end if

20: for k=1,. . . , cols (S∞) do
21: Solve: MF ż(:, k)(t) = AF z(:, k)(t), z(:, k)(0) = S∞(:, k).
22: end for

11

7. Numerical Results
7.1. Setup
To quantify and illustrate the performance of Algorithm 1, we consider differential Lyapunov
equations that are used to define optimal controls for a finite element discretization of a heat
equation; see [8] for the model description. Namely, we solve the differential Lyapunov equations:

MẊ(t)MT = AX(t)MT +MX(t)AT +BBT , X(0) = 0. (DLE–1)

MT Ẋ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0. (DLE–2)

that are defined through matrices M , A ∈ Rn×n that are symmetric, M is positive definite
and A stable, B ∈ Rn×7 and C ∈ R6×n. For computing the error, we precomputed the spectral
decomposition of (A,M) and constructed the exact solution by means of the formula from Lemma 3.2.
The memory consuming computation of the spectral decomposition was done on a compute server
with 4 × Xeon® CPU E7–8837 @ 2.67GHz with 8 cores and 1 TB Ram and MATLAB® 2015b. All
other computations were carried out on a machine with 2 × Xeon® CPU E5–2640 v3 @ 2.60GHz with
8 Cores and 64 GB Ram and MATLAB 2017a. We have used the low-rank ADI iteration implemented
in MEX-M.E.S.S. [4] to solve the algebraic Lyapunov equations; as required for Algorithm 1 (Step
2).
We solve the resulting projected ODE system column-wise using MATLAB ODE solvers ode45,
ode23, ode113, ode15s, ode23s, ode23t and ode23tb, with the parameters for the odeset function
set as follows:

• RelTol: 1 · 10−9

• AbsTol: 1 · 10−10

• Stats: off

• NormControl: off

• BDF: on

• Jacobian: AF
• JPattern: logical (AF)

• Mass: MF

• MassSingular: no

• MStateDependence: none

As the time interval, we considered [0, 4500].

7.2. Projection Approach
The initial step of Algorithm 1 requires the solutions to the associated algebraic Lyapunov equations.
For this task we call MEX-M.E.S.S. that iteratively computes the solutions up to the following
absolute and relative residuals

||AZ∞ZT∞MT +MZ∞ZT∞A
T +BBT ||2 or ||ATZ∞ZT∞M +MTZ∞ZT∞A+ CTC||2.

and

||AZ∞ZT∞MT +MZ∞ZT∞A
T +BBT ||2

||BBT ||2
or ||A

TZ∞ZT∞M +MTZ∞ZT∞A+ CTC||2
||CTC||2

.

The achieved values for the different test setups as well as the number of columns of the corresponding
Z∞ after truncation (see Step 7 of Algorithm 1), that define the dimension of the reduced model for
the time dependent part, are listed in Tables 1 and 2.

12

size size of z(t) absolute residual relative residual
1357 261× 261 3.413488 · 10−25 7.748357 · 10−12

5177 302× 302 1.037846 · 10−25 4.728703 · 10−12

20209 376× 376 6.053185 · 10−26 5.525974 · 10−12

Table 1: Residuals for AXMT +MXAT +BBT = 0.

size size of z(t) absolute residual relative residual
1357 230× 230 1.011843 · 10−10 8.432027 · 10−12

5177 259× 259 5.595100 · 10−11 4.662583 · 10−12

20209 310× 310 4.382439 · 10−11 4.382439 · 10−12

Table 2: Residuals for ATXM +MTXA+ CTC = 0.

We report the absolute and relative errors

||X(t)−Xref (t)||2 and ||X(t)−Xref (t)||2
||Xref (t)||2

,

where X is the numerical solution obtained from Algorithm 1 with various ODE solvers and where
the reference solution Xref was obtained from spectral decomposition of (A,M).
We plot the numerical errors and ||Xref (t)||2 on the initial short time interval [0, 10], where most
of the evolution is happening, and on the full time interval [0, 4500] in Appendix A, Figures 4–7,
10–13, 16–19, 22–25, 28–31 and 34–37.
In view of the performance of the different ODE solvers, we can interprete the presented numbers
and plots as follows: the solver ode15s, which is a stiff solver of variable order, performs best in
time and accuracy. Due to the stiffness, the error is oscillating for the solvers ode45, ode23, ode113.
Note that the discrete Laplacian that is encoded in the coefficient matrix A becomes stiffer with a
finer space discretization, i.e. for larger n. Accordingly, the computational times for the non-stiff
solvers grow with n at a higher rate than the stiff solvers; see Figure 2.
The solution of (DLE–2) itself is large in norm what makes the relative error stagnate around the
prescribed tolerance and the absolute error comparatively large; see the plots in Appendix A.2.
Particularly, the non-stiff solvers (and ode15s) achieve this error level and the oscillations due to
stiffness are dominated by the approximation error. This might be the reason, why for (DLE–2),
despite the fact that the coefficient matrices are still stiff, the non-stiff solvers perform better than
the stiff solvers (except ode15s). Nonetheless, again the computation times for the non-stiff solver
grow at a higher rate with the increasing stiffness that comes with increasing n; see Figure 2.
Because X(t)→ 0 for t↘ 0, the plots for the relative error spread out for small times.
Except ode15s, there is no general rule which solver performs better in terms of computational
time; see Figure 2. The timings may change, when different relative and absolute error tolerances
are used in the MATLAB odeset function.
Finally, we want to make the following remark: instead of integrating the projected ODE (9)
which is linear with constant coefficients of moderate dimension, one may consider using the Schur-
Parlett [17, Ch. 10] algorithm to compute the matrix exponential. The initialization efforts of the
Schur-Parlett algorithm will pay off, if the matrix exponential has to be evaluated for many different
values of t. Also, asymptotically, the storage requirements for z(t) will be lifted, since the matrix
exponential for a given t can be computed on demand. Nonetheless, we used the ODE approach,
which we think is more efficient because of the sophisticated MATLAB ODE solver implementations
that come, e.g, with step size selection methods integrated.
The code of the implementation with the precomputed spectral decompositions needed to construct

13

the exact solution is available as mentioned in Figure 1.

Code and Data Availability
The source code of the implementations used to compute the presented results is available from:

doi:10.5281/zenodo.1484327
https://gitlab.mpi-magdeburg.mpg.de/behr/diff lyap eqn solution formulas release

under the GPLv2+ license and is authored by Maximilian Behr.

Figure 1: Link to code and data.

14

https://doi.org/10.5281/zenodo.1484327
https://gitlab.mpi-magdeburg.mpg.de/behr/diff_lyap_eqn_solution_formulas_release

7.3. Computational Time

1357 202095177
100

101

102

103

104

5 · 100

5 · 101

5 · 102

5 · 103

5 · 104

Size n
MẊ(t)MT = AX(t)MT + MX(t)AT + BBT ,

X(0) = 0,
t ∈ [0, 4500].

C
om

pu
ta

tio
na

lT
im

e
in

Se
co

nd
s

1357 202095177
100

101

102

103

104

5 · 100

5 · 101

5 · 102

5 · 103

5 · 104

Size n
MT Ẋ(t)M = AT X(t)M + MT X(t)A + CT C,

X(0) = 0,
t ∈ [0, 4500].

C
om

pu
ta

tio
na

lT
im

e
in

Se
co

nd
s

ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

Figure 2: Timings of the different MATLAB ODE solvers for the solution of the projected time-
dependent factors as defined in Equation (9).

2−4 2−6 2−8
100

101

102

103

104

5 · 100

5 · 101

5 · 102

5 · 103

5 · 104

Step Size h
MẊ(t)MT = AX(t)MT + MX(t)AT + BBT ,

X(0) = 0,
t ∈ [0, 100] and n = 1357.

C
om

pu
ta

tio
na

lT
im

e
in

Se
co

nd
s

2−4 2−6 2−8
100

101

102

103

104

5 · 100

5 · 101

5 · 102

5 · 103

5 · 104

Step Size h
MT Ẋ(t)M = AT X(t)M + MT X(t)A + CT C,

X(0) = 0,
t ∈ [0, 100] and n = 1357.

C
om

pu
ta

tio
na

lT
im

e
in

Se
co

nd
s

BDF1 BDF2 BDF3 BDF4 BDF5 BDF6

Figure 3: Timings of the different BDF/ADI solvers.

15

7.4. Comparison with Backward Differentiation Formulas
To benchmark our method, we have run comparison tests with the MATLAB implementation of
the Backward Differentiation Formulas / Alternating Direction Implicit (BDF/ADI) scheme as
developed in [29] (see also the Appendix B for a short summary of the algorithm). The numerical
experiments were conducted on the same machine, with the same MATLAB version and the same
model as described in Section 7.1.
In contrast to the Algorithm 1 that needs to solve only a single algebraic Lyapunov equation for the
initialization, the BDF/ADI approach solves a Lyapunov equation in every time step. Moreover,
the numerical solution is stored in LDLT -format, i.e., in terms of the factors of X(tk) ≈ LkDkL

T
k

and Lk ∈ Rn×lk , which grow at least linearly with the size of n and the number of time steps. For
this reason, we had to restrict our numerical experiments with BDF/ADI to the interval [0, 100]
and consider only the model of the smallest size n = 1357. As for the test of our Algorithm 1
in Appendix A, for computing the error, we used an exact solution Xref based on the spectral
decomposition of (A,M).
We have compared various BDF methods that we abbreviated as BDF1, BDF2, BDF3, BDF4, BDF5
and BDF6, where the number denotes the order s of the method. We used the constant time step
sizes τk := h ∈ {2−4, 2−6, 2−8} for our computations. In Appendices B.1 and B.2, we plot the
relative and absolute errors compared to the solution obtained by the spectral decomposition,
c.f. Figures 40–45 and 46–51. . For comparison, we also plot the error of the numerical solution
obtained by Algorithm 1 and the MATLAB ODE solver ode15s. We list the computational times
for performing the BDF/ADI method based computations in Section 7.3.
As the actual solution X converges towards the solution of the algebraic Lyapunov equation, also
the numerical errors show a decay towards a certain error level. Decreasing the step size lowers
this level accordingly. This effect is visible only for methods of lower order (s ≤ 2). For higher
orders, the error level stagnates and the error rather shows oscillations, which are likely due to
errors in the solution of the Lyapunov equations. Since all BDF methods are stiff solvers, there are
no oscillations of higher frequency to observe. The error levels are comparable to the level reached
by our approach with ode15s.
The computational timings for the BDF/ADI solvers are nearly the same for same step sizes; cf.
Figure 3. Accordingly, the higher order methods clearly outperform the low-order methods.
As for the comparison to our approach, we note that the reported timings were for the longer
time-interval [0, 4500]. However, since the transient behavior of the solution is confined to a short
initial phase and since the ODE solvers have a step size control, a restriction to a shorter interval
would not change the timings by much.
For the test case with (DLE–1), the BDF/ADI schemes achieved the same accuracy as our approach
already with the coarsest step size; see Figures 40–45. Thus, we compare the timings in the left
most columns in Figure 2 (n = 1357) and Figure 3 (h = 2−4) to conclude that our approach with
the best performing ODE solver is about 25 times faster.
As for the test case with (DLE–2), the BDF/ADI schemes reached the same accuracy only for the
finest chosen step size; see Figures 46–51. Thus, comparing the right most column in Figure 3
(h = 2−8) to the left column in the right plot of Figure 2 (n = 1357), we find that our Algorithm 1,
again, is faster by a factor of 30.
To conclude the comparison, we add the following remarks. With the costs of solving Lyapunov
equations, apart from the increased memory requirements, the BDF/ADI scheme will also become
significantly more costly for larger system sizes. As opposed to our Algorithm 1 however, the
BDF/ADI scheme also applies for the time varying case as well as for nonzero initial conditions.
Moreover, as ode15s in fact uses the BDF formulas but with variable order s and variable time
step, one may consider integrating similar error control mechanisms in the BDF/ADI approach to
improve performance.

16

8. Conclusions
We presented several solution formulas for the differential Sylvester and Lyapunov equations. For the
autonomous stable differential Lyapunov equation, we proposed a numerical algorithm that combined
certain aspects derived from the solution representations. The main feature of the algorithm is
the projection of the time dependent part onto a suitable subspace of lower dimension. Only this
makes the numerical solution feasible in terms of memory requirements. As for the computational
time, the projected system can be directly solved with optimized ODE solvers like the ode-suite
in MATLAB. Moreover, its structure allows for column-wise computation of the factors and, thus,
for straight-forward parallelization.
We illustrated the performance of the algorithm in an example that was derived from a finite-element
discretization of a heat equation. The achieved accuracy is fully satisfactory. The greatest benefit,
also in contrast to existing numerical schemes, is the low memory requirement.
The possible extension to the unstable or unsymmetric as well as to the non-autonomous case is not
straightforward since the space in which the solution evolves has not been found to span a suitable
invariant Krylov subspace and is possibly of high dimension. Moreover, the solution of AX = C
(which is the special case of AX +XB = C with B = 0) is unlikely to span an A-invariant subspace
at all, meaning that the span of the solution of the algebraic Sylvester equation is not suited for
the differential equation. Thus, for the general case, a different ansatz is needed. The same is true
for time-dependent coefficients or non-zero initial conditions. Here, a remedy might be structured
approaches for the case that time dependence comes, e.g., from a low-rank update.
In the unstable case, apart from the fact that the algebraic Lyapunov equation may not have a
unique solution, there can be modes that grow exponentially in time. For this case it may be worth
investigating whether a projector that identifies the stable part of the underlying mathematical
model can be efficiently incorporated in the proposed solution approach.

17

A. Numerical Results Projection Approach
A.1. Results for the Differential Lyapunov Equation

n = 1357 and MẊ(t)MT = AX(t)MT +MX(t)AT +BBT , X(0) = 0.

0 1,000 2,000 3,000 4,00010−9

10−8

10−7

10−6

10−5

10−4

t ∈ [0, 4500]

re
l.

2-
no

rm
er

ro
r

Figure 4: Relative 2-norm error of the approx-
imation.

0 1,000 2,000 3,000 4,00010−13

10−12

10−11

10−10

10−9

t ∈ [0, 4500]
ab

s.
2-

no
rm

er
ro

r
Figure 5: Absolute 2-norm error of the ap-

proximation.

0 2 4 6 8 1010−9

10−8

10−7

10−6

10−5

10−4

t ∈ [0, 10]

re
l.

2-
no

rm
er

ro
r

Figure 6: Relative 2-norm error of the approx-
imation.

0 2 4 6 8 1010−13

10−12

10−11

10−10

10−9

t ∈ [0, 10]

ab
s.

2-
no

rm
er

ro
r

Figure 7: Absolute 2-norm error of the ap-
proximation.

ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

18

0 1,000 2,000 3,000 4,00010−6
10−5.5

10−5
10−4.5

10−4
10−3.5

10−3
10−2.5

10−2

t ∈ [0, 4500]

2-
no

rm
so

lu
tio

n

Figure 8: 2-norm of the reference solution.

0 2 4 6 8 1010−6
10−5.5

10−5
10−4.5

10−4
10−3.5

10−3
10−2.5

10−2

t ∈ [0, 10]

2-
no

rm
so

lu
tio

n

Figure 9: 2-norm of the reference solution.

19

n = 5177 and MẊ(t)MT = AX(t)MT +MX(t)AT +BBT , X(0) = 0.

0 1,000 2,000 3,000 4,00010−9

10−8

10−7

10−6

10−5

10−4

t ∈ [0, 4500]

re
l.

2-
no

rm
er

ro
r

Figure 10: Relative 2-norm error of the ap-
proximation.

0 1,000 2,000 3,000 4,00010−13

10−12

10−11

10−10

10−9

t ∈ [0, 4500]

ab
s.

2-
no

rm
er

ro
r

Figure 11: Absolute 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−9

10−8

10−7

10−6

10−5

10−4

t ∈ [0, 10]

re
l.

2-
no

rm
er

ro
r

Figure 12: Relative 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−13

10−12

10−11

10−10

10−9

t ∈ [0, 10]

ab
s.

2-
no

rm
er

ro
r

Figure 13: Absolute 2-norm error of the ap-
proximation.

ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

0 1,000 2,000 3,000 4,00010−6
10−5.5

10−5
10−4.5

10−4
10−3.5

10−3
10−2.5

10−2

t ∈ [0, 4500]

2-
no

rm
so

lu
tio

n

Figure 14: 2-norm of the reference solution.

0 2 4 6 8 1010−6
10−5.5

10−5
10−4.5

10−4
10−3.5

10−3
10−2.5

10−2

t ∈ [0, 10]

2-
no

rm
so

lu
tio

n

Figure 15: 2-norm of the reference solution.

20

n = 20209 and MẊ(t)MT = AX(t)MT +MX(t)AT +BBT , X(0) = 0.

0 1,000 2,000 3,000 4,00010−9

10−8

10−7

10−6

10−5

10−4

t ∈ [0, 4500]

re
l.

2-
no

rm
er

ro
r

Figure 16: Relative 2-norm error of the ap-
proximation.

0 1,000 2,000 3,000 4,00010−13

10−12

10−11

10−10

10−9

t ∈ [0, 4500]

ab
s.

2-
no

rm
er

ro
r

Figure 17: Absolute 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−9

10−8

10−7

10−6

10−5

10−4

t ∈ [0, 10]

re
l.

2-
no

rm
er

ro
r

Figure 18: Relative 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−13

10−12

10−11

10−10

10−9

t ∈ [0, 10]

ab
s.

2-
no

rm
er

ro
r

Figure 19: Absolute 2-norm error of the ap-
proximation.

ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

0 1,000 2,000 3,000 4,00010−6
10−5.5

10−5
10−4.5

10−4
10−3.5

10−3
10−2.5

10−2

t ∈ [0, 4500]

2-
no

rm
so

lu
tio

n

Figure 20: 2-norm of the reference solution.

0 2 4 6 8 1010−6
10−5.5

10−5
10−4.5

10−4
10−3.5

10−3
10−2.5

10−2

t ∈ [0, 10]

2-
no

rm
so

lu
tio

n

Figure 21: 2-norm of the reference solution.

21

A.2. Results for the Transposed Differential Lyapunov Equation
n = 1357 and MT Ẋ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0.

0 1,000 2,000 3,000 4,00010−13

10−12

10−11

10−10

10−9

10−8

t ∈ [0, 4500]

re
l.

2-
no

rm
er

ro
r

Figure 22: Relative 2-norm error of the ap-
proximation.

0 1,000 2,000 3,000 4,00010−3

10−2

10−1

100

101

102

t ∈ [0, 4500]

ab
s.

2-
no

rm
er

ro
r

Figure 23: Absolute 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−13

10−12

10−11

10−10

10−9

10−8

t ∈ [0, 10]

re
l.

2-
no

rm
er

ro
r

Figure 24: Relative 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−3

10−2

10−1

100

101

102

t ∈ [0, 10]

ab
s.

2-
no

rm
er

ro
r

Figure 25: Absolute 2-norm error of the ap-
proximation.

ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

0 1,000 2,000 3,000 4,000108
108.5

109
109.5
1010

1010.5
1011

1011.5

t ∈ [0, 4500]

2-
no

rm
so

lu
tio

n

Figure 26: 2-norm of the reference solution.

0 2 4 6 8 10108
108.5

109
109.5
1010

1010.5
1011

1011.5

t ∈ [0, 10]

2-
no

rm
so

lu
tio

n

Figure 27: 2-norm of the reference solution.

22

n = 5177 and MT Ẋ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0.

0 1,000 2,000 3,000 4,00010−13

10−12

10−11

10−10

10−9

10−8

t ∈ [0, 4500]

re
l.

2-
no

rm
er

ro
r

Figure 28: Relative 2-norm error of the ap-
proximation.

0 1,000 2,000 3,000 4,00010−3

10−2

10−1

100

101

102

t ∈ [0, 4500]

ab
s.

2-
no

rm
er

ro
r

Figure 29: Absolute 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−13

10−12

10−11

10−10

10−9

10−8

t ∈ [0, 10]

re
l.

2-
no

rm
er

ro
r

Figure 30: Relative 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−3

10−2

10−1

100

101

102

t ∈ [0, 10]

ab
s.

2-
no

rm
er

ro
r

Figure 31: Absolute 2-norm error of the ap-
proximation.

ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

0 1,000 2,000 3,000 4,000108
108.5

109
109.5
1010

1010.5
1011

1011.5

t ∈ [0, 4500]

2-
no

rm
so

lu
tio

n

Figure 32: 2-norm of the reference solution.

0 2 4 6 8 10108
108.5

109
109.5
1010

1010.5
1011

1011.5

t ∈ [0, 10]

2-
no

rm
so

lu
tio

n

Figure 33: 2-norm of the reference solution.

23

n = 20209 and MT Ẋ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0.

0 1,000 2,000 3,000 4,00010−13

10−12

10−11

10−10

10−9

10−8

t ∈ [0, 4500]

re
l.

2-
no

rm
er

ro
r

Figure 34: Relative 2-norm error of the ap-
proximation.

0 1,000 2,000 3,000 4,00010−3

10−2

10−1

100

101

102

t ∈ [0, 4500]

ab
s.

2-
no

rm
er

ro
r

Figure 35: Absolute 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−13

10−12

10−11

10−10

10−9

10−8

t ∈ [0, 10]

re
l.

2-
no

rm
er

ro
r

Figure 36: Relative 2-norm error of the ap-
proximation.

0 2 4 6 8 1010−3

10−2

10−1

100

101

102

t ∈ [0, 10]

ab
s.

2-
no

rm
er

ro
r

Figure 37: Absolute 2-norm error of the ap-
proximation.

ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

0 1,000 2,000 3,000 4,000108
108.5

109
109.5
1010

1010.5
1011

1011.5

t ∈ [0, 4500]

2-
no

rm
so

lu
tio

n

Figure 38: 2-norm of the reference solution.

0 2 4 6 8 10108
108.5

109
109.5
1010

1010.5
1011

1011.5

t ∈ [0, 10]

2-
no

rm
so

lu
tio

n

Figure 39: 2-norm of the reference solution.

24

B. Backward Differentiation Formulas
We consider Backward Differentiation Formulas (BDF) for differential Lyapunov equations [27, 28].
Let 0 = t0 < t1 < · · · < tN = T be a decomposition of the interval [0, T]. We define the step size
τk = tk − tk−1 for k = 1, . . . , N .
The s-step BDF method applied to the DLE 8 is given by

s∑
j=0

αjXk−j = τkβ
(
ATXk +XkA+BBT

)
,

where αj and β are coefficients of the BDF method and can be found in [15]. The parameter s is
the order of the BDF method. We recall that for s > 6, the method is not numerical stable, and for
s = 1, the BDF method coincides with the implicit Euler method. A minor rearrangement shows
that the current iterate Xk can be obtained as the solution of the algebraic Lyapunov equation(

τkβA−
α0
2 En,n

)T
Xk +Xk

(
τkβA−

α0
2 En,n

)
= −τkβBBT +

s∑
j=1

αjXk−j . (10)

Since for s ≥ 2, certain coefficients αj , j ≥ 1 are positive, the algebraic Lyapunov equation (10)
has a symmetric but possibly indefinite right-hand side, which makes the standard ADI method
infeasible. For this reason a LDLT -decomposition for the numerical solution is proposed and suitable
modifications of the ADI method have been developed; [5, 26]: Assume that Xi ≈ LiDiL

T
i for

i = 0, . . . , k − 1, Li ∈ Rn×li , Di ∈ Rli×li and li � n, then the right hand side can be factored as

−τkβBBT +
s∑
j=1

αjXk−j ≈ −GkSkGTk ,

Gk =
[
B,Lk−1, . . . , Lk−s

]
,

Sk =

τkβEp,p

−α1Dk−1
. . .

−αsDk−s

 .

Now the LDLT -type ADI method can be used to determine Xk ≈ LkDkL
T
k . The BDF/ADI methods

can also be extended to generalized differential Lyapunov equations in a similar way [28].

25

B.1. Results for the Differential Lyapunov Equation
n = 1357 and MẊ(t)MT = AX(t)MT +MX(t)AT +BBT , X(0) = 0.

0 20 40 60 80 10010−10

10−8

10−6

10−4

10−2

t ∈ [0, 100], h = 2−4

re
l.

2-
no

rm
er

ro
r

Figure 40: Relative 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−18

10−16

10−14

10−12

10−10

10−8

10−6

t ∈ [0, 100], h = 2−4

ab
s.

2-
no

rm
er

ro
r

Figure 41: Absolute 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−10

10−8

10−6

10−4

10−2

t ∈ [0, 100], h = 2−6

re
l.

2-
no

rm
er

ro
r

Figure 42: Relative 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−18

10−16

10−14

10−12

10−10

10−8

10−6

t ∈ [0, 100], h = 2−6

ab
s.

2-
no

rm
er

ro
r

Figure 43: Absolute 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−10

10−8

10−6

10−4

10−2

t ∈ [0, 100], h = 2−8

re
l.

2-
no

rm
er

ro
r

Figure 44: Relative 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−18

10−16

10−14

10−12

10−10

10−8

10−6

t ∈ [0, 100], h = 2−8

ab
s.

2-
no

rm
er

ro
r

Figure 45: Absolute 2-norm error of the
BDF/ADI approximation.

ode15s BDF1 BDF2 BDF3 BDF4 BDF5 BDF6

26

B.2. Results for the Transposed Differential Lyapunov Equation
n = 1357 and MT Ẋ(t)M = ATX(t)M +MTX(t)A+ CTC, X(0) = 0.

0 20 40 60 80 10010−12

10−10

10−8

10−6

10−4

10−2

t ∈ [0, 100], h = 2−4

re
l.

2-
no

rm
er

ro
r

Figure 46: Relative 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−6
10−4
10−2

100
102
104
106
108

t ∈ [0, 100], h = 2−4

ab
s.

2-
no

rm
er

ro
r

Figure 47: Absolute 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−12

10−10

10−8

10−6

10−4

10−2

t ∈ [0, 100], h = 2−6

re
l.

2-
no

rm
er

ro
r

Figure 48: Relative 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−6
10−4
10−2

100
102
104
106
108

t ∈ [0, 100], h = 2−6

ab
s.

2-
no

rm
er

ro
r

Figure 49: Absolute 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−12

10−10

10−8

10−6

10−4

10−2

t ∈ [0, 100], h = 2−8

re
l.

2-
no

rm
er

ro
r

Figure 50: Relative 2-norm error of the
BDF/ADI approximation.

0 20 40 60 80 10010−6
10−4
10−2

100
102
104
106
108

t ∈ [0, 100], h = 2−8

ab
s.

2-
no

rm
er

ro
r

Figure 51: Absolute 2-norm error of the
BDF/ADI approximation.

ode15s BDF1 BDF2 BDF3 BDF4 BDF5 BDF6

27

References
[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank. Matrix Riccati Equations in Control

and Systems Theory. Birkhäuser, Basel, Switzerland, 2003.

[2] F. Amato, R. Ambrosino, M. Ariola, C. Cosentino, and G. De Tommasi. Finite-time stability
and control, volume 453 of Lecture Notes in Control and Inform. Sci. Springer, London, 2014.

[3] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems, volume 6 of Adv. Des.
Control. SIAM Publications, Philadelphia, PA, 2005.

[4] P. Benner, M. Köhler, and J. Saak. M.E.S.S. – the matrix equations sparse solvers library.
https://www.mpi-magdeburg.mpg.de/projects/mess.

[5] P. Benner, R.-C. Li, and N. Truhar. On the ADI method for Sylvester equations. J. Comput.
Appl. Math., 233(4):1035–1045, Dec. 2009.

[6] P. Benner and H. Mena. BDF methods for large-scale differential Riccati equations. In
B. De Moor, B. Motmans, J. Willems, P. Van Dooren, and V. Blondel, editors, Proc. 16th Intl.
Symp. Mathematical Theory of Network and Systems, MTNS 2004, 2004.

[7] P. Benner and H. Mena. Rosenbrock methods for solving Riccati differential equations. IEEE
Trans. Autom. Control, 58(11):2950–2957, 2013.

[8] P. Benner and J. Saak. A semi-discretized heat transfer model for optimal cooling of steel
profiles. In P. Benner, V. Mehrmann, and D. Sorensen, editors, Dimension Reduction of Large-
Scale Systems, volume 45 of Lect. Notes Comput. Sci. Eng., pages 353–356. Springer-Verlag,
Berlin/Heidelberg, Germany, 2005.

[9] R. A. Brocket. Finite Dimensional Linear Systems. Wiley, New York, 1970.

[10] R. Byers and S. Nash. On the singular “vectors” of the Lyapunov operator. SIAM J. Algebraic
Discrete Methods, 8(1):59–66, 1987.

[11] Z. Gajić and M. Qureshi. Lyapunov Matrix Equation in System Stability and Control. Math.
in Science and Engineering. Academic Press, San Diego, CA, 1995.

[12] Y. Güldoǧan, M. Hached, K. Jbilou, and M. Kurulay. Low rank approximate solutions to
large-scale differential matrix Riccati equations. Technical Report arXiv:1612.00499v2, arXiv,
Apr. 2017. math.NA.

[13] M. Hached and K. Jbilou. Numerical solutions to large-scale differential Lyapunov matrix
equations. Numer. Algorithms, Dec. 2017. Springer online first.

[14] M. Hached and K. Jbilou. Approximate solutions to large nonsymmetric differential Riccati
problems. Technical Report arXiv:1801.01291v1, arXiv, Jan. 2018. math.NA.

[15] E. Hairer and G. Wanner. Solving ordinary differential equations. I. Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 1987.

[16] J. Heiland. Decoupling and Optimization of Differential-Algebraic Equations with Application
in Flow Control. Dissertation, TU Berlin, 2014.

28

https://www.mpi-magdeburg.mpg.de/projects/mess

[17] N. J. Higham. Functions of matrices: Theory and computation. Applied Mathematics. SIAM
Publications, Philadelphia, PA, 2008.

[18] A. Jameson. Solution of the equation AX + XB = C by inversion of an M ×M or N ×N
matrix. SIAM J. Appl. Math., 16:1020–1023, 1968.

[19] H. W. Knobloch and H. Kwakernaak. Lineare Kontrolltheorie. Springer-Verlag, Berlin, 1985.
In German.

[20] L. Kohaupt. Solution of the matrix eigenvalue problem V A+A∗V = µV with applications to
the study of free linear dynamical systems. J. Comput. Appl. Math., 213(1):142–165, 2008.

[21] M. Köhler, N. Lang, and J. Saak. Solving differential matrix equations using Parareal. Proc.
Appl. Math. Mech., 16(1):847–848, 2016.

[22] M. Konstantinov, V. Mehrmann, and P. Petkov. On properties of Sylvester and Lyapunov
operators. Linear Algebra Appl., 312(1-3):35–71, 2000.

[23] M. M. Konstantinov, D. W. Gu, V. Mehrmann, and P. H. Petkov. Perturbation Theory for
Matrix Equations, volume 9 of Stud. Comput. Math. Elsevier, Amsterdam, 1st edition edition,
May 2003.

[24] A. Koskela and H. Mena. A structure preserving Krylov subspace method for large scale
differential Riccati equations. e-print arXiv:1705.07507, arXiv, May 2017. math.NA.

[25] N. Lang. Numerical Methods for Large-Scale Linear Time-Varying Control Systems and related
Differential Matrix Equations. Dissertation, Technische Universität Chemnitz, Germany, June
2017.

[26] N. Lang, H. Mena, and J. Saak. On the benefits of the LDLT factorization for large-scale
differential matrix equation solvers. Linear Algebra Appl., 480:44–71, 2015.

[27] N. Lang, J. Saak, and T. Stykel. Towards practical implementations of balanced truncation for
LTV systems. IFAC-PapersOnLine, 48(1):7–8, 2015.

[28] N. Lang, J. Saak, and T. Stykel. Balanced truncation model reduction for linear time-varying
systems. Math. Comput. Model. Dyn. Syst., 22(4):267–281, 2016.

[29] N. Lang, J. Saak, and T. Stykel. LTV-BT for MATLAB. https://doi.org/10.5281/zenodo.
834953, 2017.

[30] A. Locatelli. Optimal Control: An Introduction. Birkhäuser, Basel, Switzerland, 2001.

[31] H. Mena. Numerical Solution of Differential Riccati Equations Arising in Optimal Control of
Partial Differential Equations. Dissertation, Escuela Politécnica Nacional, Ecuador, July 2007.

[32] T. W. Palmer. Banach algebras and the general theory of ∗-algebras. Vol. 2, volume 79 of
Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
2001. ∗-algebras.

[33] J. W. Polderman and J. C. Willems. Introduction to Mathematical Systems Theory, volume 26
of Texts in Applied Mathematics. Springer New York, 1998.

[34] H. Rome. A direct solution to the linear variance equation of a time-invariant linear system.
IEEE Trans. Autom. Control, 14(5):592–593, 1969.

29

https://doi.org/10.5281/zenodo.834953
https://doi.org/10.5281/zenodo.834953

[35] G. W. Stewart. Matrix algorithms. Vol. II. SIAM Publications, Philadelphia, PA, 2001.
Eigensystems.

[36] T. Stillfjord. Low-rank second-order splitting of large-scale differential Riccati equations. IEEE
Trans. Autom. Control, 60(10):2791–2796, 2015.

[37] D. Werner. Funktionalanalysis. Springer-Verlag, Berlin, extended edition, 2000.

30

	1 Introduction
	2 Preliminaries
	3 Spectral Decomposition of the Sylvester Operator
	4 Variation of Constants
	5 Solution as Taylor Series
	6 Feasible Numerical Solution Approaches
	7 Numerical Results
	7.1 Setup
	7.2 Projection Approach
	7.3 Computational Time
	7.4 Comparison with Backward Differentiation Formulas

	8 Conclusions
	A Numerical Results Projection Approach
	A.1 Results for the Differential Lyapunov Equation
	A.2 Results for the Transposed Differential Lyapunov Equation

	B Backward Differentiation Formulas
	B.1 Results for the Differential Lyapunov Equation
	B.2 Results for the Transposed Differential Lyapunov Equation

