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I DFT calculations

In order to provide the theoretical frame work for intersubband transition in van der Waals

quantum wells, we calculated band structures and intersubband transition energies, using two

different density functional theory (DFT) approaches. The first approach employs the GPAW

code as part of the CAMPOS software, while the second approach uses the PWSCF ab initio

package of Quantum Espresso. Each of the two approaches is described in more detail in the

following sections. Both approaches yield qualitative and quantitative similar results for the

relevant values of our experiment.

I.1 DFT calculations using the GPAW code

We calculate few-layer TMD band structures and wave functions using ab initio density functi-

onal theory (DFT). All of the ab initio calculation in this work are performed with the GPAW

code (1). The GPAW code is available as part of the CAMPOS software: https://wiki.

fysik.dtu.dk/gpaw/. The band structures for the different flakes were calculated at the

DFT level with an LDA exchange correlation functional with a plane-wave basis set. More

specifically we used a cut off energy for the plane-wave basis of 500 eV and a 45x45 k-point

grid. For the squared wave-function representation in the out-of-plane direction we integrated

the |Ψ(x,y,z)|2 along the in-plane unit cell. We stress that the reported wave functions are all-

electron wave functions as they include the PAW corrections from the core electrons. As for

the geometry of the MoS2 and WSe2 we used the following values: aMoS2 = 3.184 Å and aWSe2

= 3.319 Å for the lattice parameters, dS-S = 3.127 Å and dSe-Se = 3.359 Å for the chalcogen-

chalcogen distance and dMoS2 = 6.293 Å and dWSe2 = 6.718 Å for the interlayer distances.

Figure S1 and Figure S2 show the obtained band structures for WSe2 and MoS2 flakes with

layer numbers N = 3-6. We observe that N-layer thick flakes show N subbands in the conduction
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Figure S1: DFT bandstructure calculations for WSe2 crystals with N = 3-6, with and without
SO coupling. Shown are the highest valence bands and lowest conduction bands between the Γ
and K point of the Brillouin zone.
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Figure S2: DFT bandstructure calculations for MoS2 crystals with N = 3-6, with and without
SO coupling. Shown are the highest valence bands and lowest conduction bands between the Γ
and K point of the Brillouin zone.

and valence band (spin-orbit (SO) coupling leads to an additional splitting of the conduction

bands for odd N). We see that for both, WSe2 and MoS2, the subband splitting mainly occurs

around the conduction band minimum (Λ point) and around the valence band maximum (Γ
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Figure S3: Out-of-plane electron wave functions for a 2H-WSe2 crystal with N = 5 at the Γ, Λ,
and K point of the Brillouin zone for the five lowest conduction bands.
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Figure S4: Out-of-plane hole wave functions for a 2H-WSe2 crystal with N = 5 at the Γ, Λ, and
K point of the Brillouin zone for the five highest valence bands.
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point). This is due to the fact that only around these points of the Brillouin zone, the wave

functions of different layers overlap so that charge carriers become mobile in the out-of-plane

direction (2). This becomes more evident when looking at the out-of-plane wave functions at

the Γ, Λ and K point of the Brillouin zone. The squared out-of-plane (in-plane integrated) wave

functions |Ψ(z)|2 for electrons in a 2H-WSe2 crystal with N = 5 are shown in Figure S3. We

observe that at the Λ point there is a finite probability of finding an electron between the layers.

This is in stark contrast to the Γ and in particular the K point, where the electrons are completely

confined within their respective layers and no coupling between the layers can be observed. This

explains why the electron subband splitting only occurs around the Λ point for the electrons.

A similar observation can be made for the out-of-plane wave functions of the holes, which are

shown in Figure S4 for WSe2 with N = 5. We find a very good coupling between the layers at

the Γ point of the Brillouin zone, while the holes are confined within their respective layers at

the Λ and K point, explaining the absence of a significant subband splitting at these points of

the Brillouin zone. The same behaviour of the out-of-plane wave functions can be found for

MoS2 and different N.

In order to determine the relevant intersubband transitions we evaluate the transition matrix

elements from the first to the j-th subband. We only consider transitions from the first subband

since it is the only subband that can be populated with electrons or holes by electrostatic doping.

The transition matrix element between the first and j-th subband is evaluated as 〈Ψ1| eiqz |Ψj〉

for q → 0 with Ψj being the wavefunction of the j-th subband and q being the momentum in z

direction. The calculated transition matrix elements are shown in Figure S5 for holes in WSe2

and electrons in MoS2 for N = 5 crystals. Other layer thicknesses show qualitative similar re-

sults. We see that transitions from the first to the third or fifth subband have a transition matrix

element close to zero meaning that these are forbidden transitions. This observation can be

explained by considering solutions to an infinite square well potential, where due to symmetry
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reasons only transitions between subbands of opposite parities are allowed. For the remaining

allowed transitions, the transition from the first to the second subband is about two orders of

magnitude stronger than the transition from the first to the fourth subband and is therefore the

only relevant transition that we consider in our experiments.
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Figure S5: Transition matrix elements (defined as 〈Ψ1| eiqz |Ψj〉, q → 0) for holes at the Γ point
for a WSe2 crystal and electrons at the Λ for a MoS2 crystal with N = 5. Only transitions from
the first subband are shown since it is the subband that can be populated in our experiment by
using electrostatic doping.

I.2 DFT calculations using the PWSCF ab initio package

The band structures of few layer 2H–stacked TMDs were obtained using density function the-

ory (DFT). The DFT calculations were performed using a plane–wave basis within the local

density approximation (LDA), with the PWSCF ab initio package of Quantum Espresso (3).

We considered the Perdew–Zunger exchange correlation scheme, with fully–relativistic norm–

conserving pseudopotentials, including non–collinear corrections. The cutoff energy in the

plane–wave expansion was set to 60 Ry, and the Brillouin zone sampling of electronic states

was approximated using a Monkhorst–Pack uniform k–grid of 24 × 24 × 1 for all structures.
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Figure S6: DFT band structure calculations for WSe2 crystals with N = 2–7 layers. Shown are
the highest valence subbands and lowest conduction subbands between the Γ and K points of
the Brillouin zone.

We adopted a Methfessel-Paxton smearing of 0.005 Ry and set the total energy convergence to

less than 10−6 eV in all calculations. Spin–orbit coupling was included in all electronic band

structure calculations. To eliminate spurious interactions between adjacent supercells, a 20 Å

vacuum buffer space was inserted in the out-of-plane direction. The interlayer separations is

taken to be the experimental values, with dWSe2 = 6.477 Å (4).

Fig. S6 shows the obtained band structures for WSe2 flakes with N = 2 − 7 layers. The

valence and conduction band edges are found at the Γ and Λ points, respectively, showing split-

ting into multiple subbands. This is due to the orbital compositions of the respective monolayer

bands. The valance band at the Γ–point is dominated by the metal dz2 orbital and the conduction

band at the Λ–point contains both chalcogen pz and metal dz2 orbitals (5), resulting in the strong
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interlayer coupling and splitting of the bands into multiple subbands and the transition from a

monolayer direct gap (K−K) to a multilayer indirect gap (Γ−Λ). At the Γ–point valence sub-

bands we find N subbands for N layers, with each subband being spin degenerate due to time

reversal symmetry. At the Λ–point conduction subbands, the combination of the 2H–stacking

and spin–orbit coupling result in an alternating subband structure for even and odd number of

layers. For evenN , spatial inversion symmetry results inN spin–degenerate subbands, whereas

for odd N , the lack of spatial inversion symmetry results in 2N spin–polarized subbands.

A complementary description of the subband structures can be obtained from the limit of

many layers (N� 1). We consider the bulk dispersion near the valence band edge, found at the

Γ–point with kz = 0 (Fig. S7), given by

ε(kz,k) = − h̄2k2
z

2mv,z

−
h̄2k2

xy

2mxy

(1 + ζk2
z), (1)

where kz is the out–of–plane wave vector and kxy is the in–plane wave vector. The dispersion

parameters are: the effective mass in the z–direction mv,z = 1.08m0, the in–plane effective

mass mxy = 0.70m0, both given in terms of the free electron mass m0 and were obtained by

fitting the bulk dispersions Fig. S7, and ζ = −5.45 Å
2, is a parameter related to the non–

linearity of the in–plane dispersion.

For a finite size crystal we have the following generalized boundary conditions at the top

and bottom layers for the electronic wave function ψ(z), along the z–direction in the crystal,

[±νd∂zψ(z) + ψ(z)]z=±L/2 = 0, (2)

where d is the interlayer distance, L is the crystal size, ν is a dimensionless parameter of order

1, and the ± correspond to the top and bottom layers, respectively (see Fig. S8). The physical

origin of the parameter ν in the boundary condition is to allow the node of the wave function to
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Figure S7: DFT calucaltion for bulk WSe2 showing a In–plane dispersion (black points) and b
out–of–plane dispersion along Γ−A (black lines). The solid blue line shows the fitted in–plane
and out–of–plane fittings for the effective mass near the Γ–point.

be shifted away from the centre of the layer, taking into account the band’s orbitals extension in

the z–direction. In particular, the condition ψ(δ) = 0 for small δ translates following expansion

to ψ(0) + δ∂zψ(0) = 0, which is the form of the boundary condition.

.

.

.

Figure S8: General boundary conditions on the top and bottom layers for a second order diffe-
rential equation for finite size crystal with N layers, interlayer distance d, and total size L.

The general solution to the one–dimensional, time–independent Schrödinger equation in the

crystal is given by travelling waves,

ψ(z) = veikzz + ue−ikzz. (3)
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Inserting Eq. 3 into the generalized boundary conditions in Eq. 2 and solving for kz we get,

1 = e2i[Lkz+2 arctan(νdkz)]. (4)

This gives the quantization condition for kz in the finite size crystal,

Lkz + 2 arctan(νdkz) = πj. (5)

For the top most subbands with large number of layers we have kz ∼ 1/L� 1/d, such that we

can approximate the second term as arctan(x) ∼ x, finally giving the quantization relation for

kz,

kz =
πj

d(N + 2ν)
. (6)

Inserting Eq. 6 into the bulk dispersion Eq. 1, gives the description of the valence edge subbands

energies and dispersions,

Ej|N(k) =
h̄2

2mz

π2j2

d2(N + 2ν)2
+
h̄2k2

xy

2mxy

[
1 +

ζπ2j2

d2(N + 2ν)2

]
. (7)

Using Eq. 7 we obtain the intersubband transition energies at the Γ–point. In particular, we

obtain the formula for the main intersubband transition given in the main text,

E1|N − E2|N =
3π2h̄2

2mzd2(N + 2ν)2
. (8)

The subband in–plane dispersions are described by the second term in Eq. 7, with the subband

effective masses as a function of number of layers given by,

m−1
j|N = m−1

xy

[
1 +

ζπ2j2

d2(N + 2ν)2

]
. (9)

In Fig. S9a,b we show the transition energies and effective masses near the valence subbands
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Figure S9: a, Transition energies from the first subband to next few subbands as a function of
number of layers. The 1|N → 2|N was fitted to Eq. 8, giving ν = 7× 10−3. The formula was
then used to plot the solid line for the 1|N → 3|N transition. b, Subbands effective masses as
a function of number of layers obtained from DFT (Black dots) for the first two subbands, and
the fitting to the model Eq. 9 (solid black lines).

edge as a function of number of layers obtained form the DFT calculations, and the fittings to

the model Eqs. 8, 9. The good agreement between the model and DFT data strongly support the

validity of our theoretical analysis.

II Line shape of intersubband absorption

In this section we obtain the line shape resulting from the intersubband absorption of out–of–

plane polarized light. The subband states wave functions and in–plane dispersions which are

necessary in order to obtain the optical matrix elements and absorption rates, are taken from the

k·p-tight binding model developed in (6).

The optical matrix element is given by the out–of–plane dipole moment dz = e〈2|z|1〉, given

by the matrix element of the z coordinate operator between the two subband states. In particular,
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focusing on p–doped 2H–stacked TMDs, the main intersubband transition is between the first

and second (1→ 2) top most valence subbands having opposite parities under spatial (even N )

or mirror reflection (odd N ) symmetry operations, while the 1 → 3 transition is forbidden due

to the same parity of the subband states.

The valence band intersubband absorption line shape is obtained using Fermi’s Golden rule,

τ−1(h̄ω) =
2π

h̄
gs|Ez(h̄ω)dz|2

∑
k

f(k)δ(E2(k)− E1(k)− h̄ω), (10)

where Ez(h̄ω) is the out–of–plane electric field component of the incoming light of energy h̄ω,

gs = 2 is the spin degeneracy, f(k) is the carrier distribution function, taken to be the Boltzmann

distribution for lightly p-doped sample at room temperature. The delta function ensures energy

conservation for the transition between the two subbands with parabolic dispersions with given

effective masses, Ej(k) = Ej(0) − h̄2k2
xy

2mj
. For the valence subbands in 4–layers WSe2, we

obtain for the effective masses m1 = 0.76m0,m2 = 1.14m0 given in terms of the free electron

mass, and E2(0)− E1(0) = 154 meV for the intersubband energy spacing.

We use a constant value for the optical matrix element dz, dependent only on the number of

layers N . We have evaluated the dependence of dz on in–plane momentum within the frame-

work of the quantum well model discussed in Section I.2 and found a variation of less than 5%

within all relevant momentum ranges, determined by temperature, the Fermi momentum, and

the tip curvature (see Section II.1 below). This justifies our approximation.

The resulting line shape is then given by the analytical form,

I(h̄ω) ∝ 4πµh̄ωnh
m1kBT

|dz|2e
− µ
m1kBT

(E2−E1−h̄ω)
Θ(E2 − E1 − h̄ω), (11)

where kB is the Boltzmann constant, nh is the carrier density, 1/µ = 1/m1 − 1/m2, and the

Heaviside function restricts the photon energies to be smaller than the intersubband energy
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spacing, due to the subband dispersions. The different subband effective masses result in a

thermally broadened absorption line shape with broadening given by

Γ ≈
(

1− m1

m2

)
max{εF , kBT log 2}, (12)

where εF is the Fermi energy. At room temperature and for low doping levels this results in a

broadening of Γ = 5.9 meV for 4–layer WSe2.

II.1 Line broadening due to tip curvature

The effect of the tip on the allowed intersubband transitions and the resulting line shape is

modelled using the Fourier transform of the z–component of the tip’s electric field, which is

coupled to the intersubband transitions (7). The tip form factor is given in terms of the wave

vector ξ as,

ρtip(ξ) =
1

12πξ4
0

ξ2e−ξ/ξ0 , (13)

where ξ0 = π
atip

, with atip the tip radius. The nominal tip radius of the AFM tips used in

the experiment is atip < 10 nm. However, a SEM image (Figure S10a) of a typical tip used

in our experiments shows atip ≈ 12 nm, which we use for our calculations. We note that

smaller features can occur due to smaller Pt grains at the AFM tip apex and smaller atip leads

to both a larger line width broadening and blue-shift. The presence of the tip relaxes the crystal

momentum conservation allowing for non-vertical optical transitions. In the presence of the tip,

Eq. 10 giving the absorption line shape, is modified as follows,

τ−1(h̄ω) =
2π

h̄
gs|Ez(h̄ω)dz|2

∑
ξ,k

ρtip(ξ)f(k)δ(E2(k + ξ)− E1(k)− h̄ω). (14)

The resulting line shape shown in the main text is obtained by numerical integration.
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Figure S10: a, SEM image of an AFM tip as used in our experiments. Image provided by
NanoWorld AG. b, Calculated line shapes at different temperatures. The blue lines also takes
into account the tip coupling with atip = 12 nm.

II.2 Line broadening due to intersubband electron-phonon relaxation

Intersubband relaxation through optical phonons results in broadening of the absorption line

shapes, governing the line width at low temperatures. The phonon broadening is introduced by

replacing the delta function in Eq. 10 by a Lorentizan,

L(h̄ω) =
1

π

γ

(E2(k)− E1(k)− h̄ω)2 + γ2
, (15)

with γ the phonon-induced broadening.

We consider the contribution of three optical phonon modes taken to have a constant dis-

persion, homopolar HP (A′1), longitudinal LO (E ′), and out of plane ZO (A′′2), with the cor-

responding irreducible representations of D3h point group given in parenthesis. The detailed

derivation of the multilayer electron–phonon couplings is given in (8).

To model the multilayer phonon modes, we approximate the phonons in each layer to be

degenerate and independent, allowing to form linear combinations of the phonons in each layer,

forming N modes for a given phonon type (HP, LO and ZO), with N the number of layers. The
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carrier in a given subband state has components on all layers, such that the intersubband phonon

scattering matrix element is given by the coupling of the carriers component on each layer with

the phonons in all layers,

Mµ,ν(q) =
1√
N

∑
n

gµ(q)fν(n)c∗1,n(q)c2,n(0). (16)

The summation is taken over the number of layers N , gµ(q) is the carrier-phonon coupling

for the given phonon mode µ with wave vector q, cj,n(k) is the amplitude of the carrier wave

function in subband j with wave vector k on layer n, and fν(n) is the phase of the given

multilayer phonon mode on layer n, (ν = 1, .., N ). The broadening is given by γ = h̄/τ , with

the total scattering rate given by Fermis golden rule,

τ−1 =
m1

h̄2

∑
µ,ν

|Mµ,ν(q∗)|2Θ(E2 − E1 − h̄ωµ)[1 + n(h̄ωµ)];

q∗ =

√
2m1

h̄2 (E2 − E1 − h̄ωµ).

(17)

Here the summation is over the three phonon modes µ = HP, LO and ZO, with h̄ωµ the pho-

non energy and n(h̄ωµ) = 1
eh̄ωµ/kBT−1

, is the phonon occupation given by the Bose-Einstein

distribution. The summation over ν corresponds to the N multilayer phonon modes for a given

phonon µ, with electorn–phonon matrix element Mµ,ν(q), and the Heaviside function restricts

the phonon induced intersubband relaxation such that the phonon energy must be smaller than

the intersubband energy spacing. The energy conservation in the scattering process sets the

emitted phonon wave vector to be q∗.

The carrier–phonon coupling for the HP phonon mode is modelled through the phonon

induced deformation potential, D = 2.2eV/Å for Γ–point holes in monolayer WSe2 (9). The

LO phonon mode coupling is modelled through the phonon induced electrostatic potential due

to the polar nature of the material and the in-plane Born effective charge Z = −1.08 for WSe2
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(8), similarly the ZO phonon coupling is modelled through the phonon induced out-of-plane

dipole, with the out of plane Born effective charge, Zz = −0.12 for WSe2 (10). The resulting

broadening of γ = 0.66 meV quoted in the main text is obtained by summing the contribution

of the HP, LO and ZO phonons in 4–layer WSe2.

III Thin film inversion model

In order to extract εWSe2 from the measured s-SNOM data we use a thin-film inversion model

as described by Govyadinov and co-workers (11). The model expands the general tip-sample

interaction into a Born series for the special case of a thin-film sample (WSe2) on top of an

infinitely thick substrate (HfO2). For our analysis we limit ourselves to zeroth and first order

terms. The Born series expansion allows us to decouple the optical signals from WSe2 and

HfO2, and to expand the effective polarizability of the AFM tip above the WSe2–HfO2 system

into a Taylor series

αeff =
∞∑
k=0

αkβ
k
WSe2

, (18)

where βWSe2 =
εWSe2−1

εWSe2+1
is the quasistatic reflection coefficient at the surface with the bulk

permittivity εWSe2 , and αk are the expansion coefficients, which are independent of εWSe2 but

depend on the thickness of the WSe2 sample. We can now calculate the normalized opti-

cal s–SNOM signal at the n-th harmonic – ηn – by taking the Fourier transform defined as

F̂n[X(t)] =
∫
X(t)einΩtdt, with Ω the tip frequency and normalizing it to the reference ef-

fective polarizability of the AFM tip above the HfO2 substrate

ηn =
∞∑
k=0

βkWSe2

F̂n[αk]

F̂n[αeff,HfO2 ]
. (19)

By truncating this expansion at a particular order K (for our analysis we use K = 21), βWSe2

and ηn are related by a simple polynomial equation and therefore εWSe2 can be computed from
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Figure S11: a, Simulation of the absolute value of the optical signal |sn| for different thicknesses
of a WSe2 flake ontop of a HfO2 substrate. Shown are the demodulation orders n = 2,3,4. We
use a thin-film inversion model (11) employing a tip frequency Ω = 250 kHz and oscillation
amplitude A = 75 nm, values that are typically used in experiment. The used permittivities are
εHfO2 = 2.8 and εWSe2 = 7.3. Crosses indicate the experimental values, obtained on the flake
shown in Figure 2 of the main text at Eph = 165 meV. Error bars indicate the root mean square
in the analysed areas of the flake. b, Simulated change in the phase of the optical signal ∆ϕn
as a function of Im(εWSe2) for a 4-layer thick WSe2 flake on top of HfO2 at Eph = 165 meV.
c, ∆ϕn for different tapping amplitudes and demodulation orders measured on a 5-layer thick
WSe2 flake on top of a SiO2 substrate at Eph = 117 meV. d, The obtained Im(εWSe2) from the
data in c using the thin-film inversion model.

the measured optical signal.

In order to verify this model we first simulate the expected optical signal of a WSe2 flake

with varying thicknesses on top of an infinitely thick HfO2 substrate and compare the simu-

lations to our measurements. We employ simulation parameters that we typically use in our
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experiments, namely an AFM tip oscillation amplitude A = 75 nm and tip frequency Ω = 250

kHz. Input parameters are εWSe2 and the permittivity of the underlying HfO2, εHfO2 ≈ 2.8 at

Eph = 165 meV (12). Since WSe2 has a highly anisotropic permittivity with an in-plane com-

ponent εWSe2,xy = 12.7 and an out-of-plane component εWSe2,z = 4.2 (13) we use an effective

permittivity εWSe2 =
√
εWSe2,xy × εWSe2,z = 7.3 for all our simulations. The absolute value of the

optical signal |sn| normalized to the signal on HfO2 is shown in Figure S11a for demodulation

order n = 2,3,4. We observe a monotonic, sublinear increase with thickness for all demodula-

tion orders. This effect comes from the change in the dielectric environment experienced by the

the near-field around the AFM tip. In first approximation, |sn| corresponds to the quasi-static

reflection coefficient, which is larger for WSe2 than HfO2. We find a good agreement between

the simluated optical signal and the s-SNOM measurements on the sample presented in Figure

2 of the main text, confirming the validity of the thin-film inversion model for our samples.

Next, we model how absorption in WSe2 and therefore a change in Im(εWSe2) is reflected in

the measured s-SNOM signal. For this we assume a 4-layer thick WSe2 flake on top of HfO2

at Eph = 165 meV. The change in phase of the optical signal ∆ϕn is plotted in Figure S11b.

We observe a linear increase with Im(εWSe2) for all demodulation orders. |sn| does not depend

significantly on Re(εWSe2) (not shown). Therefore, for a given layer thickness, ∆ϕn provides a

direct measure of the absorption for all relevant absorption values of this experiment.

Finally, we verify that the reconstruction of Im(εWSe2) from the optical signal using the thin-

film inversion model is independent of any used measurement parameters. To do so we measure

one of our samples for different tapping amplitudes and record different demodulation orders

n = 2,3,4 (Figure S11c). First, we observe a distinctively larger ∆ϕn for higher demodulation

orders n. Second, we observe a slight decrease of ∆ϕn with tapping amplitude, especially for

higher n. These features should not appear in the obtained Im(εWSe2), as they do not represent

any physical properties of the probed WSe2 flake. Indeed, after the inversion using the thin-film
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model (Figure S11d) we see that Im(εWSe2) shows no more dependence on the used tapping

amplitude. We also observe that the difference between different demodulation orders reduces

drastically, although it does not vanish completely.

IV Doping modulation

We modulate the doping of the TMD flake by modulating the applied backgate voltage VBG

between the Si wafer and the TMD flake across a substrate oxide. In order to monitor the doping

of the TMD flake we constantly apply a small bias voltage Vbias ≈ 0.02 V between two contacts

evaporated on the TMD flake and monitor the flowing current. For the WSe2 flake presented in

the main text we observe a field effect transistor effect with exponentially increasing current for

negative VBG, as is typical for a p-doped semiconductor (Figure S12a). This demonstrates that

VBG indeed dopes the WSe2 flake. During all the modulation measurements presented in the

main text we also recorded the current flowing between the two contacts. Figure S12b shows a

time trace of the measured current during the xy scan presented in Figure 2d of the main text,

where VBG was modulated between -5 and 0 V. We clearly see that the doping of the flake is

modulated between p-doping and depletion. We use this measured current as a reference to

determine when the flake was p-doped. The recorded signal shows discrete points since each

pixel of the s–SNOM measurement has a finite integration time, which was set to 19.7 ms for

the data shown. We define an upper and lower bound for the measured current - typically 28 and

3 nA - and points that lie in between these two boundaries are discarded from the measurement

since one part of them was recorded when the flake was p-doped and the other part when it was

charge neutral.
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Figure S12: a Measured current for the WSe2 flake presented in the main text with Vbias = 0.02
V as a function of VBG. b Measured current during the xy scan presented in Figure 2d of the
main text on the same WSe2 flake as presented in a. VBG was modulated between -5 and 0 V.
The integration time per pixel was set to 19.7 ms.

V Drude model

In our s–SNOM experiment we measure the complex permittivity of the sample at Eph = h̄ω,

with h̄ being the reduced Planck constant and ω the light angular frequency. However, the

complex permittivity of any material that contains free charge carriers varies with ω. This can

be seen by looking at the complex conductivity σ(ω) derived from the Drude model:

σ(ω) =
D

1/τ − iω
, (20)

with the Drude weight D = n3De
2

mxy
, where n3D is the material’s charge carrier density (in units

1/m3), mxy its in-plane effective mass, and e the electron charge. The scattering time τ is

given as τ = µmxy
e

, with µ the charge carrier mobility. The Drude component of the material’s

(complex) relative permittivity εDrude is related to σ(ω) as

εDrude(ω) = i
σ(ω)

ε0ω
, (21)
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Figure S13: a, Obtained Im(εWSe2) as a function of Eph for N = 1 (yellow) and N = 6 (grey).
The observed behavior can be well described by fitting a Drude model (dashed lines). The data
is taken from the main text (Figure 3a), where N = 1 is not shown. b, Change in Re(εWSe2) for
the same data as in a. Dashed lines show the Drude fit.

with the vacuum permittivity ε0.

layer
fitted data

D in τ in n2D in µ in
numbers 1015 S/sm fs 1011 cm−2 cm2/Vs

N = 1
Re(εWSe2) 6±1 11±6 8.8+1.2

−1.5 30±16

Im(εWSe2) 5.3±1.2 10+4
−3 7.8±1.8 28+10

−9

N = 6
Re(εWSe2) 1.0±0.3 9±7 11+4

−3 20±15

Im(εWSe2) 0.5±0.1 7±4 5.6±1.4 15+8
−9

Table S1: Parameters obtained from the Drude fit to the data in Figure S13

We can now fit εDrude(ω) to the data presented in Figure 3a of the main text for all N that

do not show a resonance due to intersubband transitions. In the investigated range of Eph these

are the N = 1 (not shown in the main text) and N = 6 areas of the WSe2 flake. Im(εWSe2) and

Re(εWSe2) together with the Drude fits are shown in Figure S13a and b. Each fit contains two

free fitting parameters, D and τ , whose obtained values are listed in Table S1. We now assume

an effective in–plane hole masses of mxy,N=1 = 0.64 m0 (14) for N = 1 (at the K point of the
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Brillouin zone) and mxy,N=6 = 0.82 m0 (15) for N = 6 (at the Γ point). Furthermore, we can

assume that VBG induces a constant sheet carrier density n2D so that n3D = n2D/Nd, where d

is the thickness of a single WSe2 layer. This allows us to express D and τ in terms of the hole

mobility µ and sheet carrier density n2D. The obtained values are given in Table S1 with their

corresponding 90% confidence values from the fit. We find hole mobilities that are consistent

with previously reported values (16) and sheet carrier densities that agree well with capacitance

measurements performed on a separate device, yielding n2D = 9x1011 cm−2. This confirms that

we can accurately model the Drude response of our device.

In order to account for the Drude contributions in the layer numbers that additionally show

intersubband absorbtion (N = 4 and N = 5), we use the same fitting parameters as obtained

from the fit to the N = 6 data and the relationship n3D = n2D/Nd. In this way we can extend

the N = 6 fit to the N = 4 and N = 5 data without introducing any new fitting parameters.

VI Spatial variances

The spatial resolution of our experiment of ≈20 nm allows us to investigate spatial variances

of the absorption, which could be an indication of substrate-induced disorder or disorder within

the TMD flake. However, within the signal to noise ratio of our experiment we cannot observe

significant spatial variances of the optical signal for the investigated ranges ofEph (Figure S14).

We furthermore do not observe correlations in the spatial absorption for differentEph, indicating

that any observed spatial variances can be attributed to noise.

VII Tip-induced doping

It has been reported previously that scanning a charged AFM tip over a 2D electron gas locally

influences its charge carrier density (17, 18). For the data shown in Figure 4b and c of the main
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Figure S14: a, b, Line traces of ∆ϕ3 measured for Eph = 117 meV (a) and Eph = 167 meV (b).
The resonant layers are N = 5 in a and N = 4 in b

.

text, we used this effect in order to locally dope the 2D material quantum well and enhance

its intersubband absorption. We apply a constant voltage Vtip to the 2D crystal, which locally

induces charge carriers (holes for Vtip > 0 and electrons for Vtip < 0) due to the coupling with

the grounded, metallic AFM tip. We can furthermore apply a backgate voltage VBG, globally

controlling the charge carrier density. In order to estimate the magnitude of the tip-induced do-

ping we perform s-SNOM measurements on a separate graphene flake exfoliated on a Si/SiO2

substrate and make use of the fact that the optical signal s4 measures the local complex per-

mittivity underneath the tip. At the graphene charge neutrality point the imaginary part of the

permittivity and therefore Im(s4) has a minimum, while Re(s4) has a maximum. We now vary

VBG and record s4 for different voltages Vtip applied to the graphene flake. For Vtip = 0 (Figure

S15a) we see that the charge neutrality point of graphene is at about VBG = 10 V, indicating

that the graphene flake is slightly hole doped. For Vtip = -1.5 V the local charge neutrality point

of graphene shifts to negative VBG, indicating that the graphene flake becomes locally electron

doped due to the interaction with the AFM tip. We repeat this measurement for various Vtip and

find that Vtip influences the local charge carrier density of graphene as Vtip ≈ -20 VBG.
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Figure S15: a, b, Measured complex optical signal s4 corresponding to the local complex con-
ductivity of graphene underneath the AFM tip for Vtip = 0 V (a) and Vtip = -1.5 V (b). c, d
Minimum of Im(s4) (c) and maximum of Re(s4) (d) obtained from measurements as in a and b
for different Vtip. The dashed lines are linear fits to the data, whose slope indicate the needed
VBG in order to compensate for the effect of Vtip.

VIII Calculation of the absorption

In order to calculate the 2D sheet absorption α2D from the obtained relative permittivity εWSe2

we first calculate the complex refractive index

N =
√
εWSe2 .
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Its imaginary part Im(N ) = κ is related to the attenuation coefficient µ as

µ = 4πκ/λ,

with λ the illumination wavelength. Using the Beer-Lambert law we then obtain for small

absorption

α2D = 1− e−µd ≈ µd.

IX Measurements on a MoS2 flake

Intersubband transitions are not limited to WSe2 but can be observed in any semiconducting

2D material. To demonstrate this, we performed measurements on a MoS2 flake, exfoliated

on a Si/SiO2 substrate. The flake consists of several terraces with layer numbers N = 2, 3, 5,

7 and larger, which we identify by a combination of optical contrast and AFM measurements

(Figure S16a). In order to observe intersubband transitions we perform two scans over the same

region, one with VBG = -50 V and the other one with VBG = +50 V, and record the optical

signal at Eph = 117 meV. Since MoS2 is intrinsically n-doped, VBG = -50 V shifts the doping

towards charge neutrality, while VBG = +50 V increases the electron doping. We now subtract

the two scans and look at the difference in phase of the fourth harmonic of the tip frequency,

∆ϕ4, which is proportional to the absorption that is induced by increasing electron doping

(Figure S16b). We clearly observe enhanced absorption in the N = 5 area of the flake, which

we attribute to intersubband transitions and is consistent with our theoretical calculations (from

band structure calculations we obtain Esub = 113 meV and Esub = 119 meV for the two

different spin polarizations, respectively). In order to support this observation we study the

doping dependence of the observed resonance. We perform several line scans for different VBG

and average the obtained ∆ϕ4 for each layer number. Due to Drude absorption we observe an

25



ca

0 5
x (μm)

10 15

y 
(μ

m
)

0

4

2

Δ
φ

4 
(°

)

0

0.5

1.5

1

y 
(μ

m
)

0

4

2

he
ig

ht
 (

n
m

)

0

10

20

N=2N=3N=5N=7

b

Δ
φ

4 
- 

D
ru

de
 c

or
re

ct
ed

 (
°)

0

1

0.5

-50 0

VBG (V)
5025-25

N = 5

Figure S16: a, AFM image of a terraced MoS2 flake exfoliated on a Si/SiO2 substrate. Layer
numbers are indicated for clarity. b, ∆ϕ4, which is proportional to the absorption with increa-
sing electron density, measured at Eph = 117 meV on the same area of the flake as in a. ∆ϕ4

was obtained by taking the difference of two scans, one at VBG = -50 V (charge neutral) and
another one at VBG = +50 V (electron doped). c, Intersubband absorption (Drude corrected
∆ϕ4) as a function of VBG. The absorption increases linearly with n2D, which is agreement
with calculations for a perfect, infinitely deep quantum well.

increase for all N . In order to isolate the contribution due to intersubband transitions, we look

at the difference in ∆ϕ4 for N = 5 and its neighbouring layers (Figure S16c). Effectively, this

corresponds to a Drude correction as explained in Section V. In the Drude corrected data we

observe a linear increase with VBG beyond some threshold voltage of about VBG = -25 V, which

we attribute to the point where we start populating the conduction band with electrons. The

linear increase with VBG and therefore n2D is in agreement with theoretical calculations for a

perfect, infinitely deep quantum well.
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