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Abstract

Camilla PELLEGRINI

Quantum Electrodynamical Time-Dependent Density

Functional Theory

Recently, the field of quantum electrodynamics (QED) has gained increas-

ing attention due to realizations of many-body physics with quantum mat-

ter and radiation. These include notable experiments in the areas of cavity

and circuit QED, quantum computing via photon mediated atom entangle-

ment, electromagnetically induced transparency, quantum plasmonics and

quantum simulators. The description of realistic coupled matter-photon sys-

tems requires combining electronic structure methods from material science

with the quantum optical treatment of radiation. In this work, we propose

a formally exact and computationally efficient approach, named quantum

electrodynamical time-dependent density functional theory (QED-TDDFT),

that generalizes successful TDDFT for ab initio calculations of many-electron

systems to quantum electromagnetic fields. In the first part of the thesis

we establish the formalism of QED-TDDFT. In the framework of QED we

prove that each observable is a unique functional of the matter polarization

and the electromagnetic vector potential. The Kohn-Sham system is con-

structed, which allows one to calculate the above basic variables by solving

self-consistent equations for noninteracting Dirac fermions and photons. By

taking the non-relativistic limit of QED-TDDFT, we derive a density func-

tional framework for the treatment of dynamical and magnetic corrections to

the Coulomb interaction in most condensed-matter problems. In the second
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part of the thesis we focus on applications of the theory. By neglecting mag-

netic effects, we derive an orbital exchange-correlation functional for apply-

ing QED-TDDFT to many-electron systems coupled to cavity photons. The

developed approximation is equivalent to the time-dependent optimized ef-

fective potential of standard TDDFT. The fundamental difference is that here

the electron-electron interaction is mediated by transverse photons and is

therefore non-local in time. First tests within the Rabi model of quantum

optics show a significant improvement over the classical Hartree approxima-

tion. Finally, we address the density functional treatment of the dipole-dipole

interaction between electronic spins in the weakly relativistic limit of QED.

Although small, this interaction is responsible for magnetic inhomogeneities

and domain formation in ferromagnetic systems. An accurate evaluation

of the dipolar energy is crucial for optimizing the magnetization setting in

domain wall operated devices for spintronic applications. The approximate

exchange-correlation functional here proposed is a quantum correction to the

magnetostatic energy currently evaluated within a phenomenological micro-

magnetic approach.
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Chapter 1

Introduction

Quantum electrodynamics (QED) [92, 93] has established the basic principles

of the interaction between electrons as due to the exchange of photons, i.e.,

the quanta of radiation. As a result, the bare electron is not a good phys-

ical picture, and one should think of this particle as surrounded by a pho-

ton cloud1. The electronic and electromagnetic fields are both quantized and

treated on equal footing. However, depending on the problem of interest,

approximations for either the electronic or the photonic degrees of freedom

are traditionally employed.

The quantization of the electromagnetic field is needed for the correct de-

scription of atomic radiation, with application to the laser. The interest in

quantum mechanics underlying the laser’s principles has brought to the de-

velopment of quantum optics [48, 94] as a research field into the light, rather

than into the matter. Within this approach the interaction of matter with the

quantized radiation field is almost always treated in the context of highly

simplified models, e.g., with two-level atoms for the laser. Quantum optical

studies concern quantum properties of light, such as photon anti-bunching,

two-photon interferometry and squeezed states of light. Remarkable results

are the demonstration of quantum entanglement and quantum logic gates.

1Mathematically, matter and photon field are inextricably linked in the Hilbert space, i.e.,
this can not be viewed as a simple tensor product of a space for the electrons and a Fock
space for the photons.
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These are the basis of quantum information theory [95], in which the pho-

tons play a major role as carriers of information, interacting with atoms at

the single-particle level.

On the other hand, in the description of interacting many-body systems,

spanning physics, chemistry and biology, matter and radiation are usually

decoupled by approximating the latter classically, i.e., the electromagnetic

field is determined independently through solution of the classical Maxwell

equations. Molecules, nanostructures and materials are described in first ap-

proximation by non-relativistic quantum mechanics for many-electron sys-

tems interacting via the Coulomb force. However, this theory ignores cor-

rections of order (v/c)2, i.e., the transverse part of the electron-electron in-

teraction, given by the Breit term [74] in the QED Hamiltonian. This term

introduces magnetic coupling (spin-orbit and spin-spin coupling), and retar-

dation effects (orbit-orbit coupling) in the interaction between two electrons.

Importantly, vacuum effects, responsible for the Lamb shift [84] and the re-

laxation of excited states, are also neglected. Despite the treatment of the

radiation field as a classical variable, one already encounters the problem of

how to deal with the (Coulomb) interaction of a large number of quantum

particles. The direct approach to the dynamical properties of the system is

solving the (non-relativistic) time-dependent Schrödinger equation for the

many-electron wave function Ψ({rσ} , t)

i~
∂Ψ({rσ} , t)

∂t
= Ĥ({rσ} , t)Ψ({rσ} , t), (Ψ({rσ} , t0) given)

(1.1)

where Ĥ is the Hamiltonian operator of the system and {rσ} = {r1σ1, r2σ2, . . . ,

rNσN} are the spatial and spin coordinates of theN electrons. The interaction

of radiation with matter is described by a minimal coupling Hamiltonian of
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the following form

Ĥ(t) =
N∑
i=1

{
1

2m

[
−i~∇i +

e

c
Aext(rit)

]2

+ vext(rit) + µBσi ·Bext(rit)

}
+ Ŵ .

(1.2)

Here,

Ŵ =
N∑

i<j=1

e2

|ri − rj|
(1.3)

is the (instantaneous and spin-independent) electron-electron interaction, while

vext(rt) and Aext(rt) are, respectively, the external (time-dependent) single-

particle scalar and vector potential associated with the classical electromag-

netic fields

Eext(rt) =
1

e
∇vext(rt)−

1

c

∂Aext(rt)

∂t
, (1.4)

Bext(rt) = ∇×Aext(rt). (1.5)

µB = e~/(2mc) is the Bohr magneton and σi is the vector of Pauli matrices,

which represents the spin operator of the electron i. The Hamiltonian of Eq.

(1.2) can be derived from the fully relativistic QED Hamiltonian, either by an

expansion in powers of 1/c, or by a Foldy-Wouthuysen transformation [52]

to the lowest order2.

The resulting time-dependent Schrödinger equation (1.1) is a partial dif-

ferential equation of 3N spatial variables, mutually coupled through the Cou-

lomb interaction, and N spin variables. Even disregarding the spin, if we use

M grid points for each coordinate, the effort of computing the wave func-

tion at each time step scales exponentially with N as M3N . Thus, apart from

very limited applications involving a few interacting electrons in low dimen-

sions, for which one can attempt to solve Eq. (1.1) exactly on a coarse grid,

(note that even for a small molecule it is often N > 100), approximations are

2The non-relativistic limit of the QED Hamiltonian is discussed in detail in Sec. 3.3.



4 Chapter 1. Introduction

unavoidable3. This problem has spawned a lot of interest into the question

whether one can calculate the observables of many-body systems by solving

a closed set of equations for reduced quantities, without the need of calculat-

ing Ψ explicitly.

A convenient solution to the many-body problem comes from density

functional approaches [12, 33, 58]. Time-dependent density functional the-

ory (TDDFT) [33, 58] is an exact reformulation of quantum mechanics for

non-relativistic electronic systems subject to time-dependent scalar external

potentials (i.e.,Aext(rt) = 0 in Eq. (1.2)), in terms of the time-dependent one-

particle density, instead of the many-body wave function Ψ(t). It is the non-

trivial extension of successful ground-state density functional theory (DFT)

for stationary systems [12], to the treatment of excited states and time-depen-

dent processes. The central theorem of TDDFT, formulated by Runge and

Gross [43], proves that all physical observables of a many-electron system,

which evolves from a given initial state, are unique functionals of the one-

body time-dependent density alone. Hence, instead of the complex many-

body wave function on configuration space, one only needs the simple one-

particle density (i.e., a function of three variables), to fully characterize the

electronic system. Further, the so-called Kohn-Sham (KS) construction [100]

allows one to calculate the density of the interacting many-electron system

as the density of an auxiliary system of non-interacting fermions in an ef-

fective one-body potential. The complexity of the original many-body prob-

lem, i.e., all quantum many-body effects of correlations and interactions, are

included in the unknown exchange-correlation (xc) part of the KS potential,

for which it is essential to find good approximations. This functional of the

3The number of required parameters is P = M3N . Call P̃ the maximum value feasible
with the best available computer hardware and software. The number of electrons which
can be treated is then Ñ = 1

3 log P̃ /logM . Let us optimistically take P̃ = 109 and M = 3.
This gives the shocking result Ñ = 6 (!). The exponential scaling of P is indeed a "wall",
which severely limits the value of Ñ [96].
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density determines, in turn, the properties of the electronic system of inter-

est. The KS construction makes (TD)DFT one of the most popular meth-

ods for ab-initio calculations. This is because the time to numerically solve

the self-consistent KS (single-particle non-interacting Schrödinger) equations

only scales as N2 − N3, which enables, at present, the quantum mechanical

treatment of several thousands of atoms [2].

In a two-step process, TDDFT has been extended to systems in external

magnetic fields. Time-dependent spin density functional theory (TDSDFT)

[12, 58] allows one to treat spin-polarized systems. Within this approach, the

electron coupling to an external time-dependent magnetic field is described

by a Zeeman term of the form vσext(rt) = vext(rt)±µBBz,ext(rt). The extension

of the formalism is valid for a fixed quantization axis of the spin (collinear-

ity), chosen for simplicity as the z-axis. In addition to the usual single-particle

density, spin density functional theory (SDFT) employs the z-component of

the ground-state magnetization density as a second functional variable. A

more general (non-collinear) scheme is available for the description of sys-

tems characterized by a local variation of the magnetization density. How-

ever, standard implementations of non-collinear SDFT assume that the xc

magnetic field is parallel to the magnetization (with no torque exerted on the

spin distribution). The best way to treat non-collinear spin configurations,

such as domain walls, is at present an open question [102].

To also account for the Lorentz force exerted on the electrons, Ghosh and

Dhara [97] reformulated the theory in terms of the current density, by extend-

ing the Runge-Gross proof to vector potentials. The use of the current formu-

lation (TDCDFT) is especially relevant for extended systems, since long range

effects can be included into the effective xc vector potential [98]. A density

functional description of the general Hamiltonian of Eq. (1.2) is given by the

spin-dependent extension of TDCDFT [99]. However, although the different

variants of (TD)DFT cover most of the traditional applications in physics and



6 Chapter 1. Introduction

chemistry, by construction these theories can not treat problems involving the

quantum nature of light.

In the last decades, cavity QED [109] has introduced the possibility of

coupling quantum light and matter in a controlled fashion, well into the

strong coupling regime. Quantum matter here may be, e.g., Rydberg atoms

or trapped ions. In a typical cavity QED experiment, the optical cavity is de-

signed in such a way that one mode of the quantized electromagnetic field is

almost resonant with the transition frequency of two atomic states. A simpli-

fied representation of this situation is given by the Rabi model [108], which

describes a two-level system arbitrarily coupled to a single photon mode via

the dipole interaction. Although the Rabi model is the simplest quantum

model of interacting light and matter, it does not correspond to a simple the-

oretical problem. Specifically, difficulties arise due to the fact that the radi-

ation mode is, by its nature, a continuous degree of freedom, and for this

reason the integrability of the model has been proved only recently [7].

In the last few years, remarkable advances have been made towards the

realization of condensed-matter physics with light [101]. A solid-state ver-

sion of cavity QED, which employs superconducting circuits, is a very active

field of research, and coupling an ensemble of atoms to quantized photon

fields is commonly achieved. First attempts to describe this quantum many-

body physics with light have led to Hamiltonians such as the Dicke model of

superradiance (cooperative spontaneous emission), where N two-level sys-

tems are coupled to one photon mode [107]. However, the validity of such ef-

fective Hamiltonians and their properties are questionable [45, 46, 62], due to

their difficult realizability in real physical systems. This new regime of light-

matter interaction is widely unexplored for, e.g., molecular physics and ma-

terial science [26], and novel emergent quantum phenomena, either in rela-

tion with strong light-matter coupling, or non-equilibrium quantum physics,

are expected. Possibilities like altering or strongly influencing the chemical
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reactions of a molecule by coupling it to cavity modes, or setting the matter

into non-equilibrium states with novel properties, e.g., light-induced super-

conductivity [72], arise. Further, dissipation and driving effects in matter

systems coupled to a continuous spectrum of quantized bosonic modes can

be studied by coupling an open cavity to a transmission line, which serves as

a photon bath. Placing into the cavity a qubit, (i.e., an artificial quantum two-

level system), already results in the rich many-body physics of quantum im-

purity models, such as the spin-boson Hamiltonian. In these conditions, an

oversimplified description of the matter system is no longer advisable. Fur-

ther, an approach that considers the quantum nature of the radiation field is

required. Qualitatively, besides the classical instantaneous Coulomb interac-

tion (among charges in free space), the cavity mediates a retarded interaction

between the electrons via the exchange of bounced photons.

Even though standard TDDFT is a practical method to handle quantum

(electronic) degrees of freedom, the classical treatment of the electromagnetic

field prevents the application of the theory to this new class of problems. In

the present work, we generalize TDDFT to the case where the electromag-

netic field is treated not as an external field, but as a quantized system with

its proper dynamics. We note that a density functional formulation of QED

can also be employed to describe the full variety of magnetic interactions in

condensed-matter systems. Since TDDFT is a fully self-consistent method,

such a generalization is also applicable to describe situations of resonance

(of particular interest in cavity QED) or strong coupling regime between

atoms and radiation. This nonperturbative theory is thus expected to de-

scribe novel, nonlinear phenomena in systems that are traditionally treated

by means of phenomenological (mean field) approaches.
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In chapter 3, we present the first formulation of the fully quantum many-

body problem of interacting electrons and photons in terms of a unified TDDFT-

like framework, that we call quantum electrodynamical time-dependent den-

sity functional theory (QED-TDDFT). Previous steps towards a combined

electron-photon functional description had been made in Refs. [39, 42] for rel-

ativistic condensed-matter systems, and in Ref. [55] for atoms and molecules

coupled to quantized photon modes of a cavity. Here, we propose a hierar-

chy of variants of QED-TDDFT, which covers most possible realizations of

condensed-matter physics with light. We show how, in this general frame-

work, TDDFT for atoms and molecules interacting with cavity photons can

be derived from relativistic TDDFT by means of successive approximations

(i.e., negligible magnetic density, constrained photonic modes and dipole ap-

proximation). For each version of the theory, we prove the corresponding

generalization of the one-to-one mapping theorem and construct the appro-

priate KS system.

In chapter 4, we develop the first approximation to the xc functional of

QED-(TD)DFT, making possible ab-initio calculations of non-relativistic many-

electrons systems coupled to quantized radiation modes. To achieve this

goal, we extend the widely used optimized effective potential (OEP) ap-

proach in electronic structure methods [104–106] to the (retarded) photon-

mediated electron-electron coupling. In the static limit, our OEP energy func-

tional reduces to the Lamb shift of the ground state energy. The new func-

tional is tested from low to high coupling regime in the Rabi model, through

comparison with the exact and mean field solutions.

As already mentioned, the weakly relativistic limit of QED, given by the

Breit Hamiltonian, accounts for several magnetic electron-electron interac-

tions besides the bare Coulomb force. In chapter 5, we focus on the density

functional treatment of the dipole-dipole coupling between electronic spin

magnetic moments. Despite being relativistically small, this interaction is
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long-ranged, and therefore leads, in competition with short-ranged exchange

forces, to the formation of magnetic domains. Recently, design and manip-

ulation of domain walls in ferromagnetic nanowires have attracted consid-

erable interest, due to their central role in novel high-performing spintronic

information technology, such as racetrack memories and domain wall op-

erated logic devices [110–113]. The magnetic modelling of these systems is

currently based on semiclassical micromagnetic simulations. Here, the to-

tal energy of the system is computed as a function of the classical magne-

tization vector M(x), defined as the mesoscopic average of the local mag-

netization density. In accordance with Maxwell equations for the magneto-

statics, the dipolar contribution to the micromagnetic energy takes the form

Ed = −1
2

∫
d3xµBHd ·M, where Hd is the demagnetizing field. Here, we pro-

pose a microscopic approach to inhomogeneous magnetic structures at the

nanoscale, by treating the dipole-dipole interaction as a pairwise interaction

within SDFT. Quantum corrections to the micromagnetic energy are given by

evaluating the exact exchange energy of the ferromagnetic electron gas with

dipolar interaction.

The relevant theoretical background is summarized in chapter 2. Final

remarks are given in chapter 6.
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Chapter 2

Theoretical background

In this chapter, we give some useful theoretical basis underlying our work.

In Sec. 2.1, we discuss as a starting point the basic ideas of ground-state DFT

[12] and introduce the key elements of the formalism, i.e., the Hohenberg-

Kohn (HK) theorem [103] and the KS construction [100]. In Sec. 2.2, we

consider the extension of the theory to the treatment of excitations and time-

dependent processes [33, 58]. Theoretical foundations of TDDFT are the

Runge-Gross (RG) theorem [43] and its extension to the KS system by van

Leeuwen [28, 59]. The main concepts and proof steps presented here will

be used in a more general context in chapter 3 to establish our QED-TDDFT.

Moving towards applications of the theory, the last section connects TDDFT

and many-body perturbation theory in the derivation of the exchange-only

TDOEP approximation to the exchange-correlation potential [104–106]. Our

extension of this method to the time dependent photon mediated electron-

electron interaction is the subject of chapter 4.

2.1 Density functional theory

In quantum mechanics, all information one can possibly have about a given

system, is contained in the system’s wave function Ψ. Here, we are exclu-

sively concerned with the electronic structure of atoms, molecules and solids.
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The nuclei enter the description of the system in the form of an external po-

tential vext(r) acting on the electrons. As a consequence, Ψ depends only on

the electronic coordinates1. In non-relativistic quantum mechanics, the wave

function of a N-electron system is obtained from the Schrödinger equation

[
N∑
i=1

(
− ~2

2m
∇2

i + vext(ri)

)
+

N∑
i<j=1

vee(ri, rj)

]
Ψ({rσ})=EΨ({rσ}), (2.1)

where

T̂ = − ~2

2m

N∑
i=1

∇2
i (2.2)

is the kinetic energy operator,

Ŵ =
N∑

i<j=1

vee(ri, rj) =
N∑

i<j=1

e2

|ri − rj|
(2.3)

is the electron-electron Coulomb interaction and

V̂ext =
N∑
i=1

vext(ri) (2.4)

describes the interaction of the electrons with the external sources. While

the form of T̂ and Ŵ is universal (i.e., it is the same for any non-relativistic

Coulomb system), the external potential depends on the system of interest,

and specifies it primarily as an atom, a molecule or a solid.

The fundamental idea underlying DFT is that for describing the ground-

state properties of a quantum many-electron system, the knowledge of the

many-body wave function is not required. In fact, the ground-state one-

particle density n0(r) already contains all necessary information and can

thus be considered as the basic variable. This was stated by Hohenberg and

Kohn [103], who showed that the full many-body ground state |Ψ0({rσ})〉 is

a unique functional of the density, i.e., |Ψ0〉 = |Ψ[n0]〉.
1This is the so-called Born-Oppenheimer approximation.



2.1. Density functional theory 13

Apparently, a given external potential vext(r) defines a unique mapping

vext → n0, where n0 is the corresponding ground-state density obtained from

the Schrödinger equation as

n0(r) = N
∑

σ,σ2,...,σN

∫
d3r2 · · ·

∫
d3rN |Ψ0(rσ, r2σ2, ....rNσN)|2. (2.5)

In addition, the HK theorem [103] states that the mapping from the external

potentials to the densities is injective. The proof of this statement makes

use of the variational principle to show that the ground states |Ψ0〉 and |Ψ′〉,

which correspond to the external potentials vext(r) and v′ext(r), can not give

rise to the same density n0(r), if vext(r) and v′ext(r) differ by more than a

constant. This defines the inverse mapping n0 → vext, and one can conclude

that the external potential is a unique functional of the density.

Since vext completely determines the Hamiltonian and, in turn, the ground-

state wave function, the ground-state expectation value of any observable Ô

is also a unique functional of the density, i.e.,

O[n0] = 〈Ψ[n0]|Ô |Ψ[n0]〉 . (2.6)

This is of particular interest if one considers the Hamiltonian operator Ĥ . The

ground-state energy

E[n0] = 〈Ψ[n0]|Ĥ |Ψ[n0]〉 (2.7)

has the variational property

E[n0] ≤ E[n′], (2.8)

where n0 is the ground-state density that corresponds to the potential vext,

and n′ is some other density. Eq. (2.8) states that the energy of the ground

state can be obtained by minimizing the total energy of the system E[n] with
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respect to the density; the correct density that minimizes E[n] is the ground-

state density n0. Due to its importance for practical applications, Eq. (2.8) is

often referred to as the second HK theorem [103].

The total energy of the electronic system can be expressed as

E[n] =

∫
d3r n(r)vext(r) + T [n] +W [n], (2.9)

where T and W are universal functionals (defined as expectation values of

the type 2.6), independent of vext(r). However, the explicit expressions for

T [n] and W [n] in terms of the density are not known. A convenient approxi-

mation scheme for the kinetic energy functional was proposed by Kohn and

Sham [100]. In order to single out many-body effects in Eq. (2.9), these au-

thors re-introduced into the theory a special kind of wave functions (single-

particle orbitals). The total energy functional E[n] is then separated as

E[n] =

∫
d3r n(r)vext(r) + Ts[{φi[n]}] +WH [n] + Exc[n], (2.10)

where

Ts[{φi[n]}] = − ~2

2m

∑
σ

N∑
i=1

∫
d3rφ∗i (rσ)∇2φi(rσ) (2.11)

is the kinetic energy of noninteracting particles with density n, expressed in

terms of the orbitals φi(rσ), and

WH [n] =
e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r − r′|
(2.12)

is the classical Hartree term representing the electrostatic interaction energy

of the charge density n. By construction, the unknown exchange-correlation

(xc) energy Exc = Ex + Ec contains the energy differences Tc = T − Ts and

W −WH , i.e., all many-body interaction contributions. Here, Ex denotes the

exchange energy (Fock term) due to the Pauli principle, while the index c
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indicates the correlation term.

In the next step, the problem of minimizing Eq. (2.10) is mapped onto

solving the Schrödinger equation for the auxiliary KS system of noninteract-

ing particles (
− ~2

2m
∇2 + vs[n](r)

)
φi(rσ) = εiφi(rσ), (2.13)

in the local potential

vs[n](r) = vext(r) + vH [n](r) + vxc[n](r), (2.14)

where we introduced the Hartree potential vH [n](r) ≡ ∂WH [n]/∂n(r) and

the xc potential vxc[n](r) ≡ ∂Exc[n]/∂n(r). The KS potential is defined by

the condition that the density of the (noninteracting) KS system equals the

density of the real interacting system, i.e.,

n(r) =
∑
σ

N∑
i=1

|φi(rσ)|2. (2.15)

As both the Hartree and xc potential depend on the density, Eq. (2.13-2.15)

have to be solved self-consistently.

The KS scheme assumes that one can always find a local potential vs[n](r)

with the property that the orbitals obtained from Eq. (2.13) reproduce the

given density of the interacting electron system. However, the validity of this

assumption, known as the "noninteracting v-representability", is not obvious,

and no general solution in DFT is known2. On the other hand, if such a

potential exists, by virtue of the HK theorem it is unique, up to a constant.

2It is known that in discretized systems each density is ensemble v-representable, i.e., a
local potential with a degenerate ground state can always be found.
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2.2 Time-dependent density functional theory

In the next step, we assume that the scalar external potential, which acts on

the (non-relativistic) many-electron system, is time-dependent. The evolu-

tion of the system is described by the time-dependent Schrödinger equation

i~
∂

∂t
Ψ({rσ}, t) = Ĥ({r} , t)Ψ({rσ, t}), (2.16)

where Ĥ(t) = T̂ + Ŵ + V̂ext(t). Since the quantum-mechanical treatment

of stationary and time-dependent systems differs in many aspects, it is not

straightforward to generalize the mathematical framework of DFT to the

time-dependent case [33, 58]. In particular, the total energy, which plays a

central role in the HK theorem, is not a conserved quantity in the presence

of time-dependent external fields, and thus there is no variational principle

that can be exploited.

The analogue of the HK theorem for time-dependent systems was for-

mulated by Runge and Gross [43] providing the foundations of TDDFT. The

proof is for physical scalar potentials, which are finite everywhere and vary

smoothly in time, so that they can be expanded into a Taylor series around the

initial time t = t0. Under these restrictions, the RG theorem states that there

is a one-to-one correspondence between the external time-dependent poten-

tial vext(r, t) and the electronic time-dependent one-body density n(r, t) for

a many-body system evolving from a given initial state Ψ0 = Ψ(t = t0). Of

course, for a given external potential vext(r, t) it is always possible, in princi-

ple, to solve the time-dependent Schrödinger equation with Ψ0 and calculate

the corresponding density n(r, t). What remains to be proved, in order to

demonstrate the one-to-one mapping, is that if two potentials vext(r, t) and

v′ext(r, t) differ by more than a trivial gauge transformation, i.e.,

vext(r, t)− v′ext(r, t) 6= Λ(t), (2.17)



2.2. Time-dependent density functional theory 17

then the corresponding densities n(r, t) and n′(r, t), which evolve from the

same initial state Ψ0, must be distinct. The addition of a purely time-depen-

dent function Λ(t) is excluded, since it only changes the phase of the wave

function, but not the density.

The RG proof consists of two steps. In the first step, by using the equation

of motion for the (paramagnetic) current density

i~
d

dt
jp(r, t) = 〈Ψ(t)|

[
ĵp(r), Ĥ(t)

]
|Ψ(t)〉 , (2.18)

it is shown that the potentials vext(r, t) and v′ext(r, t) lead to different current

densities jp(r, t) and j ′p(r, t). Here, jp(r, t) = 〈Ψ(t)|ĵp |Ψ(t)〉, where the cur-

rent density operator is defined as ĵp(r) = − i~
2m

∑N
i=1[∇iδ(r−ri)+δ(r−ri)∇i].

This result can be understood on physical grounds by considering that the

current density is proportional to the momentum density. Changes in the

momentum density are caused by the force density, which is proportional to

the gradient of the external potential. Eq. (2.17) implies that the gradients of

vext(r, t) and v′ext(r, t) differ, thus giving rise to different currents. In the sec-

ond step, the current is related to the density through the continuity equation

∂

∂t
n(r, t) = −∇ · jp(r, t), (2.19)

which allows one to show that densities associated to distinct currents also

differ. In conclusion, from the knowledge of the time-dependent density

alone, it is possible to uniquely determine the external potential, and hence,

for a given initial state, the many-body wave function. This, in turn, deter-

mines every observable of the system.

However, the RG theorem gives no prescription about how to actually cal-

culate the density. To overcome this problem, the idea of the KS construction

of static DFT is employed. One considers an auxiliary KS system of noninter-

acting electrons moving in an effective time-dependent one-body potential,
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which is such that the densities of the KS system and of the real interacting

system coincide. The main task is then to find good approximations for this

a priori unknown effective potential. The KS electrons satisfy the equations

i~
∂

∂t
φi(rσ, t) =

(
− ~2

2m
∇2 + vs(r, t)

)
φi(rσ, t), (2.20)

with the density

n(r, t) =
∑
σ

N∑
i=1

|φi(rσ, t)|2. (2.21)

As in ground state DFT, in order to construct useful approximations for the

effective KS potential, this is separated as

vs(r, t) = vext(r, t) + vH(r, t) + vxc(r, t), (2.22)

where the first term is the external potential, the second is the classical Hartree

potential

vH(r, t) = e2

∫
d3r′

n(r′, t)

|r − r′|
, (2.23)

and the third is the xc potential, the determination of which is the central

problem of TDDFT.

The existence of the KS potential in TDDFT was proved under well-defined

conditions by van Leeuwen [28, 59], who extended the RG theorem to differ-

ent interactions and initial states (the KS system corresponding to the non-

interacting case). An important restriction is that the density is assumed to

be time-analytic about the initial time, (note that the RG proof only requires

the potential to be time-analytic). Then, the noninteracting v-representability

proof shows that an effective local potential with the desired property actu-

ally exists if one can find a stationary wave function, which yields the ini-

tial density n(r, t0) and the initial time-derivative of the density, and is the

ground state of a noninteracting electron system. The proof was extended to
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TDCDFT by Vignale, who showed that currents from an interacting system

with some vector potential are also representable by a vector potential in a

noninteracting system [61].

2.2.1 Time-dependent optimized effective potential

In this section, we establish a connection between TDDFT and the non-equili-

brium Green’s functions formalism (NEGF) due to Keldysh. In particular, we

introduce an exact integral equation for the xc potential of TDDFT in terms of

the irreducible self-energy, namely, the time-dependent Sham-Schlüter equa-

tion [104]. This equation is used as a starting point to discuss the TDOEP

method in the exchange-only approximation [104–106].

We consider the situation in which the electronic system described by Eq.

(2.16) is driven out of equilibrium at time t = t0 by the external potential

Vext(t). As we have seen, in TDDFT the system is mapped onto an auxiliary

KS system with Hamiltonian Ĥs = T̂ + V̂s, where V̂s is the one-particle effec-

tive KS potential. We then split the interacting Hamiltonian as Ĥ = Ĥs + V̂ ,

where V̂ accounts for the difference between the exact Coulomb interaction

and the self-consistent Hartree-xc potential, and treat this reduced interac-

tion as a perturbation. One is usually interested in calculating the expecta-

tion value of some observable Ô at time t′ > t0. This can be expressed as

O(t′) = 〈Ψ0|ÔI(t
′) |Ψ0〉 , (2.24)

where |Ψ0〉 is the ground state of the interacting Hamiltonian Ĥ . We as-

sume that this is given by |Ψ0〉 = Ŝ(t′,−∞) |Φ0〉, where |Φ0〉 is the ground

state of the KS Hamiltonian Ĥs at time t = −∞. The Ŝ-matrix operator

Ŝ(t2, t1) = Texp
[
−i
∫ t2
t1
V̂ (t)dt

]
describes the evolution of the system due to

the interaction V̂ . In other words, we assume that the Coulomb interaction

is switched on adiabatically in the time interval (−∞, t0). This provides an
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Figure 2.1: The closed time contour C.

adiabatic connection between the stationary ground state of the noninteract-

ing KS system at t = −∞ and the wave function Ψ0 of the true interacting

electronic system at time t = t0. The KS operator in the Heisenberg repre-

sentation ÔI(t) = Ûs(t0, t)Ô(t)Ûs(t, t0) is defined in terms of the evolution

operator Ûs(t2, t1) = Texp
[
−i
∫ t2
t1
Ĥs(t)dt

]
.

Eq. (2.24) describes the evolution of the system from t = −∞, where the

initial (noninteracting) state is known, forward to t′, where the observable is

calculated, and then backward to t = −∞. In the equilibrium, the backward

evolution of the system can be disregarded. The argument is based on the

assumption that, by adiabatically switching off the interaction, the system

ends up at t = +∞ again in the ground state, up to a possible phase factor.

As a consequence, one only faces the description of the evolution along the

forward time axis. However, under the influence of the external potential

Vext(t), the system evolves to some unpredictable non-stationary state, which

depends, in general, on the switching-on procedure, as well as on the history

of the system. In such a non-equilibrium situation, thus, one can not get rid

of the backward time path and must consider the evolution of the system

along the two-branch Schwinger-Keldysh contour C of Fig. 2.1 [51]. Here,

the physical time t(τ) is parametrized by a pseudotime τ , in such a way that

while τ runs from −∞ to +∞, t runs from −∞ to t′ and back.
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All time-dependent functions are defined for time-arguments on the con-

tour. In particular, the one-particle NEGF is a function of two contour vari-

ables defined as

G(rτ, r′τ ′) ≡ −i < TCψ̂H(r, τ)ψ̂†H(r′, τ ′) >, (2.25)

where TC is the time ordering operator on the contour, and ψ̂†H , ψ̂H are cre-

ation and annihilation operators in the Heisenberg picture. Eq. (2.25) can be

written in the form

G(τ, τ ′) = θ(τ − τ ′)G>(τ, τ ′) + θ(τ ′ − τ)G<(τ, τ ′), (2.26)

where the function θ(τ − τ ′) is the theta function on the contour and G>,<

are greater and lesser Green’s functions respectively. The DFT and NEGF

formalisms are linked by the requirement that the former has to yield the

correct density given by the one-particle Green’s function of the latter, both

for the interacting and the KS system, i.e.,

n(r, τ) = −iG(rτ, rτ+) = −iGs(rτ, rτ
+). (2.27)

With this condition, from the Dyson-Schwinger equation and the equation

of motion for the KS Green’s function [51], one obtains the Sham-Schlüter

equation

∫
d2

∫
d3Gs(1, 2)Σ(2, 3)G(3, 1) =

∫
d2Gs(1, 2)[vs(2)−vext(2)]Gs(2, 1), (2.28)

where we used the compact notation 1 = (r1t1). Here, the self-energy Σ =

vH + Σxc includes all diagrams, except those involving the external potential

difference vext − vs. By setting G = Gs and Σ[G] = Σ[Gs] in Eq. (2.28), this

reduces to a linearized integral equation for the xc potential, i.e., the TDOEP
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equation

∫
d2

∫
d3Gs(1, 2)Σxc[Gs](2, 3)Gs(3, 1) =

∫
d2Gs(1, 2)vxc(2)Gs(2, 1). (2.29)

In the simplest approximation, Σxc is given by the exchange-only self-energy

of Fig. 2.2,

Σx(1, 2) = iG<
s (1, 2)vee(1, 2) = −

∑
j

njφj(1)φ∗j(2)vee(1, 2), (2.30)

where nj is the occupation number and φj are the KS orbitals. This approxi-

mation yields the exchange-only TDOEP equation. Since Σx is local in time,

only one-time integration has to be performed in Eq. (2.29) (in chapter 4 we

extend this method to the case of time-dependent Σx). By using the Langreth

rules for the convolution and the product of two functions in the Keldysh

space [51], one obtains from Eq. (2.29)

∫ t1

−∞
dt2

∫
d3r2

∫
d3r3

[
G<
s (1, 2)Σ̃(2, 3)G>

s (3, 1)−G>
s (1, 2)Σ̃(2, 3)G<

s (3, 1)
]

= 0,

(2.31)

where we introduced the notation Σ̃(1, 2) = Σx(r1t1, r2t1)−δ(r1−r2)vx(r1t1).

Then, the explicit form of the exchange-only TDOEP equation in terms of the

KS orbitals reads as [104–106]

i
∑
j

∑
k 6=j

nj

∫ t1

−∞
dt2

∫
d3r2[vx(2)− ux,j(2)]φj(1)φ∗j(2)φ∗k(1)φk(2) + c.c. = 0,

(2.32)

where

ux,j(1) = − 1

φ∗j(1)

∑
k

nk

∫
d2φ∗j(2)φk(2)φ∗k(1)vee(1, 2). (2.33)

In Eq. (2.32) the integral from−∞ to t0 accounts for the equilibrium condition

of the system at the initial time t = t0.

The TDOEP can be equivalently derived from an action formalism. Also
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Figure 2.2: Self-energy diagrams: (a) exchange diagram, and (b) second order
approximation.

in this case, the combination of the adiabatic connection with the Keldysh

method allows one to apply standard perturbation techniques and expand

the xc action functional in terms of the KS orbitals and the Coulomb interac-

tion.

Although the computational cost of the TDOEP (and other orbital de-

pendent functionals), is typically much higher than evaluating an explicit

parametrization in the density, this approach leads to sistematically more ac-

curate approximations to the xc potential. In fact, the link between TDDFT

and NEGF allows one to perturbatively construct meaningful approximate

functionals, by including the description of relevant physical processes in

the form of Feynman diagrams.
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Chapter 3

Foundations of QED-TDDFT

3.1 Introduction

In this chapter1 we give a comprehensive derivation of our QED-TDDFT as

a formally exact and numerically feasible approach, that generalizes TDDFT

to the electron-photon coupling. The KS construction of QED-TDDFT here

introduced, provides a practical scheme to perform ab-initio calculations of

quantum realistic many-particle systems and radiation, bridging the gap be-

tween condensed-matter theory and quantum optics. QED-TDDFT for non-

relativistic electronic systems coupled to photon modes of mesoscopic cav-

ities was formulated in Ref. [55]. Here, we develop a general framework

for the functional description of the electron-photon coupling in most pos-

sible systems of interest, ranging from the fully relativistic case, introduced

in Refs. [39, 42], to effective quantum-optical Hamiltonians. We point out

that by ignoring all photonic degrees of freedom, one recovers at each step

the corresponding standard formulations of TDDFT, extensively used by the

electronic structure community [33, 58].

In Sec. 3.2 we show how the dynamics of a relativistic electron-photon

system in the Coulomb gauge is uniquely determined by its initial state and

two reduced quantities, the matter polarization and the vector potential. These

1This chapter is part of the article "Quantum-electrodynamical density-functional theory:
Bridging quantum optics and electronic-structure theory" by M. Ruggenthaler, J. Flick, C.
Pellegrini, H. Appel, I. V. Tokatly and A. Rubio, published in Phys. Rev. A 90, 012508 (2014).
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basic variables can be calculated by solving two coupled, nonlinear evolu-

tion equations, without the need of evaluating the numerically infeasible

many-body wave function of the full interacting system. To find reliable

approximations to the implicit functionals, we present the appropriate KS

construction. In Sec. 3.3 we discuss the non-relativistic limit of QED-TDDFT.

This corresponds to the functional reformulation of the Pauli-Fierz Hamilto-

nian (see, e.g., Refs. [23, 25]), in which the functional variable for the mat-

ter system reduces to the electronic current density. By introducing further

approximations, i.e., by restricting the number of allowed photonic modes

and performing the dipole approximation, we recover TDDFT for localized

many-electron systems interacting with cavity photons [55]. In the limit of

only two sites and one mode, we deduce the appropriate effective theory for

the Rabi model. In Sec. 3.4, this model system is used to illustrate the basic

ideas of a density functional reformulation of QED in great detail, and for it

we present the exact KS potential.

3.2 Relativistic QED-TDDFT

Before starting the actual discussion on QED, we introduce the notation used

in this chapter. We employ the standard covariant notation x = (xµ) =

(ct, ~r) = (ct, rk) with Greek letters indicating four vectors, i.e., µ ∈ {0, 1, 2, 3},

and Roman letters indicating spatial vectors, i.e., k ∈ {1, 2, 3}. To lower (or

raise) the indices, i.e., going from contravariant to covariant vectors (or vice

versa), we adopt for the Minkwoski metric the convention

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


.
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Spatial vectors are denoted by a vector symbol and consist of contravari-

ant components, e.g., ~A ≡ Ak. Covariant components differ by a minus

sign, i.e., Ak = −Ak. Note that this distinction does not apply to the non-

relativistic case, where also Ak must be interpreted as contravariant. The

four gradient is indicated by ∂µ = ∂/∂xµ =
(

1
c
∂
∂t
, ~∇
)

. With these defini-

tions the divergence can be written as ∂kAk = ~∇ · ~A. Further, we note that

JkA
k = − ~J · ~A. With the help of the Levi-Civita symbol εijk the curl is ex-

pressed as εijk∂jAk ≡ −~∇× ~A, and the multiplication of Pauli matrices reads

as σkσl = (1/2)({σk, σl}+ [σk, σl]) = −gkl − iεklmσm.

For ordinary matter, relativistic effects are not dominant, but may be no-

ticeable. In large atoms (atomic number Z ≥ 50), these effects severely

change the innermost electrons, inducing appreciable modifications of the

overall electron density profile. Relativistic atoms, molecules and solids are

infinitely-many-body problems described within the quantum field theory

of QED. The canonical quantization of the photon field Aµ requires fixing a

gauge. Here, we choose the Coulomb gauge, as it reduces the independent

components of the photon field to the two transverse physical polarizations,

and singles out the classical Coulomb interaction. Since we want to con-

nect our QED-TDDFT to cavity QED, where Coulomb gauge photons are

usually employed, and condensed-matter theory, where the Coulomb inter-

action plays a dominant role, the Coulomb gauge is for the present purpose

the natural gauge to work in. The nuclei, along with possible external mag-

netic fields used to drive the electronic system, are described by the classical

external four potential aµext(x), which couples to the matter current. External

excitations of the photon field, possibly involved in radiation source prob-

lems, are allowed by couplingAµ to the classical external four current density

jµext(x).

In Sec. 3.2.1 we introduce the Coulomb-gauge QED Hamiltonian for the



28 Chapter 3. Foundations of QED-TDDFT

system of interest, briefly discuss the points concerning renormalization, pair

production, etc., and identify possible functional variables of the theory. In

Sec. 3.2.2 we prove the one-to-one mapping between the pair of internal vari-

ables, Dirac polarization and electromagnetic vector potential, and the pair

of external variables, external vector potential and external Dirac current. In

Sec. 3.2.3 we construct the appropriate KS system, which allows one to calcu-

late the aforementioned expectation values by solving self-consistent equa-

tions for noninteracting Dirac fermions and photons. We employ SI units

throughout, since in Sec. 3.3 we perform the non-relativistic limit, which is

most easily done by keeping the physical constants explicit. A detailed dis-

cussion of quantizing QED in the Coulomb gauge is given in appendix A.

3.2.1 Description of the system

The Coulomb-gauge QED Hamiltonian of the system takes in the Heisenberg

picture the following form

Ĥ(t) = ĤM + ĤE + ĤC(t) + Ĥint + Ĥext(t), (3.1)

where we indicate by t the explicit time dependence due to the external fields.

Here, the mass term is given by the free Dirac Hamiltonian

ĤM =

∫
d3r : ˆ̄ψ(x)

(
−i~c ~γ · ~∇+mc2

)
ψ̂(x) :, (3.2)

where ψ̂†(x) =
(
φ̂†(x) χ̂†(x)

)
denotes the fermion field operator, and we use

the Dirac representation for the vector of γk matrices (see appendix A). The

energy of the free photon field is expressed as

ĤE =
ε0
2

∫
d3r :

(
~̂E2(x) + c2 ~̂B2(x)

)
:, (3.3)
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where ~̂E and ~̂B are the transverse electric and magnetic field operators de-

fined as in appendix A in terms of the vector potential ~̂A. We point out that,

due to the Coulomb gauge condition ~∇ · ~A = 0, only the spatial components

of the Maxwell field Âk are dynamical variables subject to quantization. The

time componentA0 corresponds to the classical Coulomb potential generated

by the total charge density. The associated Coulomb energy can be written as

ĤC(t)=
1

2c2

∫ ∫
d3r d3r′

4πε0|~r − ~r′|

(
j0

ext(x
′)Ĵ0(x)+ : Ĵ0(x)Ĵ0(x′) :

)
, (3.4)

where j0
ext is the charge density of the external current source, and Ĵ0 is the

charge density of the Dirac field, i.e., the time component of the fermionic

four current

Ĵµ(x) = ec : ˆ̄ψ(x)γµψ̂(x) : . (3.5)

The coupling to the external sources is described by the term

Ĥext(t) =
1

c

∫
d3r

(
Ĵµ(x)aµext(x) + Âµ(x)jµext(x)

)
. (3.6)

Finally, the interaction between the quantized Dirac and Maxwell fields in

Coulomb gauge reads as

Ĥint = −1

c

∫
d3r ~̂J(x) · ~̂A(x). (3.7)

Divergent vacuum contributions of the homogeneous QED Hamiltonian (i.e.,

the interacting QED Hamiltonian without external fields) have been removed

by normal ordering (:...:) of the field operators. However, without further re-

finements, the above Hamiltonian is not well-defined since it gives rise to
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UV-divergences. These divergences occur in three subdiagrams of the per-

turbation expansion [22, 44, 63]: the fermion self-energy, the vacuum polar-

ization (the photon self-energy) and the vertex correction. Suitable regular-

ization procedures allow one to remove these infinities to each order in the

fine structure constant, e.g., by introducing frequency cutoffs in the plane-

wave expansions for the fermionic, as well as the bosonic field operators,

or by dimensional regularization [44]. Since we are interested exclusively

in condensed-matter systems, a physical highest cutoff would be at energies

that allow for pair creation. In this work, we thus restrict our considerations

to the case of a stable vacuum [12, 39, 42]. Such regularization procedures

make the Hamiltonian operator self-adjoint [53], but introduce a dependence

on the cutoff parameters which changes the theory at smallest and largest

length scales. In order to get rid of this dependence, renormalization schemes

are employed perturbatively, e.g., with the addition of counterterms to cancel

the singularities introduced in the subdiagrams by the cutoffs. All countert-

erms are defined by expectation values in the vacuum of the homogeneous

Hamiltonian [12, 44]. This allows one to compare Hamiltonians with dif-

ferent external potentials and currents. The effect of the counterterms is a

renormalization of the electron mass and field operator (from the fermion

self-energy), of the photon field operator (from the vacuum polarization) and

of the charge (from the vertex graph). The Ward-Takahashi identities [44] en-

sure that the QED Hamiltonian is renormalizable to all orders in perturbation

theory. In the following, we interpret Eq. (3.1) as the bare Hamiltonian ex-

pressed in terms of the renormalized quantities2.

The renormalized Hamiltonian of Eq. (3.1) is uniquely defined by the

choice of the external fields, which we denote by Ĥ(t) = Ĥ([aµext, j
µ
ext]; t).

2Note that an exhaustive discussion of renormalization is beyond the scope of the present
work. Nevertheless, the description of relativistic electron-photon systems requires a gen-
eral field-theoretical approach. If one wants to avoid the difficulties of renormalization, the
cutoffs must be kept.
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Given an initial state |Ψ0〉, the time evolution of the coupled matter-photon

system is governed by the equation

i~c∂0 |Ψ(t)〉 = Ĥ([aµext, j
µ
ext]; t) |Ψ(t)〉 . (3.8)

This equation determines the electron-photon wave function |Ψ(t)〉 as a func-

tional of the initial state |Ψ0〉 and the pair of external variables (aµext, j
µ
ext),

|Ψ(t)〉 = |Ψ([Ψ0, a
µ
ext, j

µ
ext]; t)〉. Accordingly, the expectation value of any arbi-

trary operator Ô is also a functional of the same variables, 〈Ψ(t)|Ô |Ψ(t)〉 =

O([Ψ0, a
µ
ext, j

µ
ext]; t). However, the numerically exact solution of Eq. (3.8) is not

feasible. Even removing the infinite degrees of freedom of the photon field

by employing the non-relativistic (Coulomb) approximation for the electron-

electron interaction, the resulting problem is far from trivial. As discussed

in the previous chapters, the starting point of any TDDFT-like approach is

to identify a small set of internal variables that also uniquely characterize

the many-body wave function. The formal proof that the wave function is a

unique functional of the new variables (for a given initial state) can be based

on their equations of motion.

In the next step, we determine possible functional variables for the electron-

photon wave function |Ψ([Ψ0, a
µ
ext, j

µ
ext]; t)〉 of Eq. (3.8) and derive their equa-

tions of motion. A change of variables requires a bijective mapping from the

allowed set (aµext, j
µ
ext) to some other set of variables, for a fixed initial state

|Ψ0〉. This new set is usually identified by employing arguments based on the

Legendre transformation [59] (for this reason the new functional variables are

often called conjugate variables). We apply this method to the QED action in-

tegral [39, 42]. This is readily evaluated from the Lagrangian of Eq. (A.1) as

Ã[Ψ0, a
ext
µ , jext

µ ] = −
∫
d4xLQED

= −B +
1

c

∫
d4x (jµextAµ + Jµa

µ
ext) . (3.9)
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Here, we used the notation
∫
d4x ≡

∫ T
0

dt
∫
d3r, where T is an arbitrary time,

and defined the internal action

B=

∫ T

0

dt〈Ψ(t)|i~c∂0−ĤM−ĤE−Ĥint(t)−ĤC(t)|Ψ(t)〉.

Apparently, for a fixed initial state, Eq. (3.9) is a Legendre transformation

from the pair of variables (aµext, j
µ
ext) to the conjugate pair (Jµ, Aµ)3. One might

note that if these were indeed conjugate variables connected via a standard

Legendre transformation, differentiating Eq. (3.9) with respect to aµext (jµext)

should give Jµ (Aµ). However, evaluating these functional derivatives as in

[60], we obtain the following results

δÃ
δaµext(x)

+ i~c〈Ψ(T )| δΨ(T )

δaµext(x)
〉 =

1

c
Jµ(x), (3.10)

δÃ
δjµext(x)

+ i~c〈Ψ(T )| δΨ(T )

δjµext(x)
〉 =

1

c
Aµ(x), (3.11)

which include non-trivial additional terms. As in non-relativistic TDDFT,

these terms appear due to the fact that variations of the external fields pro-

duce non-zero variations of the wave function at the arbitrary upper bound-

ary T (in contrast to direct variations of the wave function, which obey δΨ(T ) =

0) [59]. In other words, these boundary terms are needed to guarantee the

causality of Jµ and Aµ [60].

Thus, we see that a straightforward approach based on Eqs. (3.10) and

(3.11) to demonstrate a one-to-one correspondence between (aµext, j
µ
ext) and

(Jµ, Aµ) is not feasible [42]. We also observe that choosing the charge-current

density Jµ as a functional variable may lead to difficulties, since its internal

structure involves both electronic and positronic degrees of freedom. Jµ in

3One should not confuse these conjugate variables with the conjugate momenta that are
used in field theory to quantize the system. In Coulomb-gauge QED the pairs of conjugate
momenta are ( ~A, ψ) and (ε0 ~E, i~cψ†) [22]
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fact describes the net charge flow of negatively charged electrons and pos-

itively charged positrons [22]. Therefore, the expectation value of the four

current operator does not differ between the currents of, e.g., (N + 1) elec-

trons and N positrons, and of N electrons and (N − 1) positrons. However,

for the moment we follow the above identification scheme and derive the

equations of motion for Ĵµ and Âµ. Since
∫

d3r′ [Ĵµ(~r), Ĵ0(~r′)]f(~r′) = 0, where

f(~r′) is any test function, Ĵµ commutes with the Coulomb interaction Hamil-

tonian of Eq. (3.4). The corresponding equation of motion is then the same

as in the Lorentz gauge, given in Ref. [42]:

∂0Ĵ
k(x) = q̂kkin(x) + q̂kint(x) + n̂kl(x)aext

l (x), (3.12)

where

q̂kkin(x) =− ec ˆ̄ψ(x)
[
γkγ0

(
~γ · ~∇

)
+
(
~γ ·

←
∇
)
γ0γk

]
ψ̂(x)

+ i
e

~
mc2 ˆ̄ψ(x)

[
γ0γk − γkγ0

]
ψ̂(x),

n̂kl(x) = −2e2

~
εkljψ̂†(x)Σjψ̂(x),

q̂kint(x) = n̂kl(x)Âl(x).

Here, εklj is the Levi-Civita tensor and

Σk =

σk 0

0 σk

 .

The time component obeys ∂0Ĵ
0 = −~∇ · ~̂J , i.e., the total charge is conserved.
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We observe that a different equation for the four current operator can be ob-

tained by the Gordon decomposition [12] in the form of the evolution equa-

tion for the polarization

P̂ µ(x) = ec : ψ̂†(x)γµψ̂(x) : .

This reads as

∂0P̂
k(x) = Q̂k

kin(x) + Q̂k
int(x) +

2emc

i~
Ĵk(x) +

2e

i~c
P̂0(x)akext(x), (3.13)

where we used the definitions

Q̂k
kin(x) = ec ˆ̄ψ(x)

(
∂k −

←
∂
k
)
ψ̂(x) + iecεklj∂l

(
ˆ̄ψ(x)Σjψ̂(x)

)
,

Q̂k
int(x) =

2e

i~c
P̂0(x)Âk(x).

Specifically, the current and the polarization are the real and imaginary parts

of the same operator,

Ĵk(x) = 2<
{
ec : φ̂†(x)σkχ̂(x) :

}
,

P̂ k(x) = 2=
{
ec : φ̂†(x)σkχ̂(x) :

}
,

where φ̂ and χ̂ are the bigger and smaller components of the Dirac four

spinor.

In addition, the Heisenberg equation of motion for the photon field oper-

ator is obtained as

∂0Â
k(x) = −Êk(x). (3.14)
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Evaluating the second time derivative gives

�Âk(x)− ∂k∂0

(
1

c

∫
d3r′

j0
ext(x

′) + Ĵ0(x′)

4πε0|~r − ~r′|

)

= µ0c
(
jkext(x) + Ĵk(x)

)
, (3.15)

which is indeed the quantized version of the inhomogeneous Maxwell equa-

tions in Coulomb gauge.

3.2.2 One-to-one mapping

In this section we show that the polarization is better suited as a functional

variable for the matter system, and prove the one-to-one correspondence be-

tween the external (time-dependent) fields (aµext, j
µ
ext) and the internal vari-

ables (Pµ, Aµ), for the coupled matter-photon system evolving from the ini-

tial state |Ψ0〉. However, already here, we point out that both the approaches

(based on the current or on the polarization), lead to the same functional the-

ory in the non-relativistic limit.

A first restriction that we need to impose is fixing a specific gauge for the

external potential aµext. Since by construction external potentials that differ by

a gauge transformation, i.e., ãµext = aµext + ∂µΛ, lead to the same current den-

sity Jµ (and polarization Pµ)4, the desired one-to-one correspondence holds

only modulo this transformation. In principle, we thus consider a bijective

mapping between equivalence classes, and by fixing a gauge we choose a

unique representative of each class. As already mentioned, the same type of

non-uniqueness is also found in standard TDDFT (see Eq. (2.17)), where the

mapping between densities and scalar external potentials is unique up to a

4This can be seen by considering the commutator [Ĵµ;
∫
Ĵν∂

νΛ], which determines the
effect of a gauge transformation on the equation for Ĵµ (Eq. (3.12)). By partial integration,
application of the continuity equation and the fact that [Ĵµ; Ĵ0] ≡ 0, this term becomes zero
and therefore has no effect on the current. The same reasoning shows that also P̂µ is gauge
independent.
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purely time-dependent function Λ(t) [43]. For simplicity, here we impose the

temporal gauge condition [61]

a0
ext(x) = 0. (3.16)

In the following, any other gauge that keeps the initial state unchanged, i.e.,

for which the gauge function obeys Λ(0, ~r) = 0, is also allowed [61].

Also with respect to jµext, one has to choose a unique representative of

an equivalence class of external currents. This freedom corresponds to the

gauge freedom of the internal photon fieldAµ. Since we employ the Coulomb

gauge for Aµ, only the transverse component of the external current jkext =

∂kυext − εklj∂lΥ
ext
j couples to the quantized photon field, as it can be seen

from Eq. (3.15). Therefore, external currents that differ in their longitudinal

components lead to the same transverse electromagnetic field Ak. By fixing

j0
ext for all further considerations, we also choose a unique longitudinal com-

ponent υext of jkext by the continuity equation ∂0j
0
ext = ∆υext. Note that, as a

consequence, we also fix the classical Coulomb potential A0 by Eq. (A.4).

In order to prove the one-to-one correspondence

(akext, j
k
ext)

1:1↔ (Jk, Ak), (3.17)

for a fixed initial state |Ψ0〉, we need to show that if (akext, j
k
ext) 6= (ãkext, j̃

k
ext),

then necessarily (Jk, Ak) 6= (J̃k, Ãk). To do so we first note that each expecta-

tion value in Eqs. (3.12) and (3.15) is by construction a functional of (akext, j
k
ext)
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for a given initial state:

∂0J
k([amext, j

m
ext];x) = qkkin([amext, j

m
ext];x) + qkint([a

m
ext, j

m
ext];x)

+ nkl([amext, j
m
ext];x)aext

l (x), (3.18)

�Ak([amext, j
m
ext];x) + ∂k

(
1

c

∫
d3r′

~∇′ ·~jext(x
′) + ~∇′ · ~J([amext, j

m
ext];x

′)

4πε0|~r − ~r′|

)

= µ0c
(
jkext(x) + Jk([amext, j

m
ext];x)

)
. (3.19)

Now let us fix in the above equations (Jk, Ak)
5, i.e., we do not regard them

as functionals, but rather as functional variables. Then Eqs. (3.18) and (3.19)

read as equations of motion for the external variables (akext, j
k
ext), which pro-

duce the given internal pair (Jk, Ak), via propagation of the initial state |Ψ0〉:

∂0J
k(x) = qkkin([amext, j

m
ext];x) + qkint([a

m
ext, j

m
ext];x)

+ nkl([amext, j
m
ext];x)aext

l (x), (3.20)

�Ak(x) + ∂k

(
1

c

∫
d3r′

~∇′ ·~jext(x
′) + ~∇′ · ~J(x′)

4πε0|~r − ~r′|

)

= µ0c
(
jkext(x) + Jk(x)

)
. (3.21)

Here, (Jk, Ak) satisfy the initial conditions

J
(0)
k = 〈Ψ0|Ĵk|Ψ0〉, (3.22)

A
(0)
k = 〈Ψ0|Âk|Ψ0〉, A(1) = −〈Ψ0|Êk|Ψ0〉, (3.23)

where we used the definition

O(α) = ∂α0O(t)|t=0 . (3.24)

5Note that the freedom of the internal variable Jk is constrained since J0 is fixed by the
initial state, and the continuity equation holds for all times. As a consequence, the freedom
of the corresponding external variable akext is also restricted. Analogously, the freedom of
the external current jkext corresponds to the freedom of the internal field Ak as previously
explained.
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Therefore, the mapping (3.17) is bijective if Eqs. (3.20) and (3.21) allow for

one and only one solution (akext, j
k
ext).

We first note that for a given pair (Jk, Ak), Eq. (3.21) uniquely determines

the external current jkext. In fact, by defining the vector field

ζk(x)=�Ak(x)+∂k

(
1

c

∫
d3r′

~∇′ · ~J(x′)

4πε0|~r − ~r′|

)
−µ0cJ

k(x),

and using the Helmholtz decompositions for ~ζ = ~∇× ~Ξ and ~jext = −~∇υext +

~∇× ~Υext, (where υext is gauge-fixed6), it follows that

~Υext(x) =
1

µ0c
~Ξ(x). (3.25)

Thus, the original problem reduces to showing whether Eq. (3.20) determines

akext uniquely. The most general approach to answer this question rely on a

fixed-point scheme similar to [41]. Here, we follow the standard TD(C)DFT

proof based on the assumption of time-analyticity of the external potential

[43]. Assuming that akext(t) is time-analytic around the initial time t = 0, we

represent it by the Taylor series

akext(t) =
∞∑
α=0

a
k (α)
ext

α!
(ct)α. (3.26)

From Eq. (3.20), we then obtain the Taylor coefficients of the corresponding

current density as

J
(α+1)
k (~r) = q

(α)
kin,k(~r) + q

(α)
int,k(~r) (3.27)

+
α∑
β=0

(
α

β

)(
a
l (β)
ext (~r)

)(
n

(α−β)
kl (~r)

)
,

6Note that, instead of fixing j0ext, one can equivalently choose A0 for all times, to select a
unique jkext by the zero-component of the internal current J0 and Eq. (A.3).
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where q(α)
int,k(~r) = 〈Ψ0|n̂kl(~r)Âl(~r) |Ψ0〉(α) and nkl(α) are given by their respec-

tive Heisenberg equations evaluated at t = 0. Now, suppose that we have

two different external potentials ak(t)ext 6= ãk(t)ext. This implies that there is

a lowest order α for which

a
(α)
ext 6= ã

(α)
ext . (3.28)

For all orders β < α, the expansion coefficients of the corresponding current

densities satisfy

J (β+2) − J̃ (β+2) = 0. (3.29)

However, for β = α we find

~J (α+1)(~r)− ~̃J (α+1)(~r) (3.30)

= ~n(0)(~r)×
(
~a

(α)
ext(~r)− ~̃a

(α)
ext(~r)

)
,

where

~n(0)(~r) =
2e2

~
〈Ψ0|ψ̂†(~r)~Σψ̂(~r)|Ψ0〉.

If there was no curl operator on the r.h.s. of Eq. (3.30), we could conclude

that, infinitesimally later than t = 0, the difference between the two current

densities ~J(x) and ~̃J(x) becomes non-zero (provided that ~n(0) 6= 0), and that

we have a one-to-one correspondence. On the contrary, we see that the set

of allowed external potentials {~aext} should be restricted to those that are

perpendicular to ~n(0). This aspect was not taken into account in previous

works [39, 42], where the theorem was effectively proved for a smaller set of

potentials and currents.
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In order to avoid the problems with the current, in the following we con-

sider the polarization Pk as the basic variable for the relativistic condensed-

matter system. While the current describes the flow of the total charge of the

system, (which is conserved), the polarization depends on the actual number

of particles and anti-particles, (which is not conserved). Therefore, unlike Jk,

the polarization differs between the local currents produced by, e.g., N elec-

trons and (N − 1) positrons, and by (N + 1) electrons and N positrons. To

prove that for a given initial state |Ψ0〉 the one-to-one mapping

(akext, j
k
ext)

1:1↔ (Pk, Ak) (3.31)

actually holds, we need to show that for a given pair (Pk, Ak) the two coupled

equations

∂0
~P (x) = ~Qkin([akext, j

k
ext];x) + ~Qint([a

k
ext, j

k
ext];x) (3.32)

+
2emc

i~
~J([akext, j

k
ext];x) +

2e

i~c
P0([akext, j

k
ext];x)~aext(x),

� ~A(x)− µ0c
(
~jext(x) + ~J([akext, j

k
ext];x)

)
(3.33)

= ~∇

(
1

c

∫
d3r′

~∇′ ·~jext(x
′) + ~∇′ · ~J([akext, j

k
ext];x

′)

4πε0|~r − ~r′|

)
,

allow for a unique solution (akext, j
k
ext). Here, (Pk, Ak) obey the initial condi-

tions

P
(0)
k (~r) = 〈Ψ0|P̂k(~r)|Ψ0〉, (3.34)

A
(0)
k (~r) = 〈Ψ0|Âk(~r)|Ψ0〉, A(1)

k (~r) = −〈Ψ0|Êk(~r)|Ψ0〉. (3.35)

Assuming that both the external fields akext and jkext are Taylor-expandable

around t = 0, we find for the lowest order α on the one hand

~P (α+1)(~r)− ~̃P (α+1)(~r)=
2e

i~c
P

(0)
0 (~r)

(
~a

(α)
ext(~r)−~̃a

(α)
ext(~r)

)
6=0, (3.36)
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provided that P (0)
0 (~r) = 〈Ψ0|P̂0(~r)|Ψ0〉 6= 0, i.e., the total number of particles

and anti-particles is locally non-zero. On the other hand, we also have

~A(α+2)(~r)− ~̃A(α+2)(~r) (3.37)

= µ0c
(
~∇× ~Υ

(α)
ext(~r)− ~∇× ~̃Υ

(α)
ext(~r)

)
6= 0,

since all external currents have the same longitudinal component. Thus,

the mapping (3.31) is bijective, at least for time-analytic external sources

(akext, j
k
ext). It follows that, instead of solving the (numerically infeasible) in-

teracting QED problem for the wave function |Ψ(t)〉, one can in principle

determine the exact functional variables (Pk, Ak) from the coupled nonlinear

equations

∂0
~P (x) = ~Qkin([Pk, Ak];x) + ~Qint([Pk, Ak];x) (3.38)

+
2emc

i~
~J([Pk, Ak];x) +

2e

i~c
P0([Pk, Ak];x)~aext(x),

� ~A(x)− ~∇

(
1

c

∫
d3r′

~∇′ ·~jext(x
′) + ~∇′ · ~J([Pk, Ak];x

′)

4πε0|~r − ~r′|

)

= µ0c
(
~jext(x) + ~J([Pk, Ak];x)

)
, (3.39)

with the initial conditions (3.34) and (3.35). However, solving in practice

these equations requires approximations for the unknown functionals.

We point out that our QED-TDDFT in Coulomb gauge, which treats ex-

plicitly the electrostatic longitudinal interaction between charged fermions,

also describes all retardation effects due to the exchange of transverse pho-

tons. For instance, we can identify the Breit contribution [74] to the photon

field, due to the transverse Dirac current, as

ÂkBreit(x) =
1

c

∫
d3r′

Ĵk(~r′)

4πε0|~r − ~r′|

− 1

c

∫
d3r′

(rk − r′k)
4π|~r − ~r′|3

∫
d3r′′

Ĵ l(~r′′)(r′l − r′′l )
4πε0|~r′ − ~r′′|3

.
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This is derived by approximating the photon mediated interaction between

the electrons by the Green’s function of the D’Alambert operator �, where

the retardation is assumed to be negligible. Expressing the total photon field

as the sum of the Breit term and a remainder, i.e., Âk = ÂkBreit + Âkdiff , one can

explicitly identify the contributions of the Breit interaction to the basic QED-

TDDFT Eqs. (3.12), (3.13) and (3.15). By assuming ~Adiff ≈ 0 and ∂0
~ABreit ≈ 0,

the usual Breit Hamiltonian, (which also includes the current-current inter-

action),7 is obtained as [74]

ĤBreit =
1

4c2

∫
d3rd3r′

[
Ĵk(~r)Ĵ

k(~r′)

4πε0|~r − ~r′|

− Ĵ
k(~r)(rk − r′k)Ĵ l(~r′)(rl − r′l)

4πε0|~r − ~r′|3

]
. (3.40)

In the non-relativistic limit discussed in Sec. 3.3, the above Hamiltonian would

give rise to orbit-orbit, spin-orbit and spin-spin two-electron interactions.

However, since we treat the transverse field as a whole, these terms are im-

plicitly included into the coupled matter-photon Hamiltonian.

3.2.3 Time-Dependent Kohn-Sham Equations

In the previous section, we showed that the wave function of the relativis-

tic electron-photon system is a unique functional of the Dirac polarization Pk

and the electromagnetic vector potentialAk. However, the coupled equations

for these variables contain implicit functionals that need to be approximated.

As discussed, a practical scheme for constructing approximations is consid-

ering an auxiliary non-interacting KS system, which exactly reproduces the

polarization and vector potential of the true interacting system. The initial

7Here, we assume for simplicity that we do not have a transverse external current jkext.
The inclusion of general external currents is straightforward with the replacement Ĵk →
Ĵk + jkext.
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(factorized) KS state

|Φ0〉 = |M0〉 ⊗ |EM0〉

must obey the same initial conditions as the coupled QED problem (Eqs.

(3.34) and (3.35)). We also observe that the equations of motion (3.32) and

(3.33) for this non-interacting system subject to the effective external fields

(akeff , j
k
eff) read as

∂0
~P (x) = ~Qkin([akeff , j

k
eff ];x) +

2emc

i~
~J([akeff , j

k
eff ];x)

+
2e

i~c
P0([akeff , j

k
eff ];x)~aeff(x) (3.41)

� ~A(x)− ~∇

(
1

c

∫
d3r′

~∇′ ·~jeff(x′)

4πε0|~r − ~r′|

)

= µ0c~jeff(x). (3.42)

The one-to-one correspondence established in Sec. (3.2.2) also applies to the

KS system, implying the uniqueness of the pair (akeff , j
k
eff). However, the non-

interacting v-representability of the observables (Pk, Ak) must be proven.

That is, we need to show that a solution (akeff , j
k
eff) of Eqs. (3.41) and (3.42)

for a given pair (Pk, Ak) and initial state |Φ0〉 actually exists. The construction

of the unique external current jkeff relies on Eq. (3.25), since its derivation is

also valid for the case of a non-interacting system. Again, a general approach

to demonstrate the existence of a solution to Eq. (3.41) would employ a fixed-

point procedure [41]. For simplicity, we assume the Taylor expandability in

time of P k around t = 0 [28, 42, 61], and construct the Taylor coefficients of
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the effective potential akeff from Eq. (3.41) as follows

P
(0)
0 (~r)~a

(α)
eff (~r) =

i~c
2e

(
~P (α+1)(~r)− ~Q

(α)
kin(~r)

−2emc

i~
~J (α)(~r)

)
−

α−1∑
β=0

(
α

β

)(
~a

(β)
eff (~r)

)(
P

(α−β)
0 (~r)

)
.

Further, assuming that this series converges [28, 60], we have constructed the

pair of effective fields

(akeff [Φ0, Pk, Ak], j
k
eff [Ak]),

which reproduce in the KS system the functional variables (Pk, Ak) for a

given initial state |Φ0〉.

The above construction proves the existence of the mapping

(Pk, Ak)
|Φ0〉7→

(
akeff , j

k
eff

)
for a given pair (Pk, Ak). In order to actually predict these physical observ-

ables via the KS system (and thus solve Eqs. (3.38) and (3.39)), the auxiliary

system has to be connected to the true interacting system. We then consider

the composite mapping

(
akext, j

k
ext

) |Ψ0〉7→ (Pk, Ak)
|Φ0〉7→

(
akeff , j

k
eff

)
,

i.e., we use the fact that (Pk, Ak) are unique functionals of the initial state |Ψ0〉

and external fields (akext, j
k
ext) of the coupled QED system. The resulting ex-

pressions for the KS potential and current are found by matching Eqs. (3.38)

and (3.39) for the true interacting system, with Eqs. (3.41) and (3.42) for the



3.2. Relativistic QED-TDDFT 45

uncoupled auxiliary system. This leads to [42, 55]

P0([Φ0, Pk, Ak];x)~aKS(x) =
i~c
2e

(
~Qkin([Ψ0, Pk, Ak];x)

− ~Qkin([Φ0, Pk, Ak];x) + ~Qint([Ψ0, Pk, Ak];x)
)

+mc2
(
~J([Ψ0, Pk, Ak];x)− ~J([Φ0, Pk, Ak];x)

)
+ P0([Ψ0, Pk, Ak];x)~aext(x) (3.43)

~jKS(x) = ~jext(x) + ~J([Ψ0, Pk, Ak];x). (3.44)

Solving the interacting QED problem for the initial state |Ψ0〉 and external

fields (akext, j
k
ext), is thus formally equivalent to solving the non-interacting,

yet nonlinear problem for the initial state |Φ0〉 and effective KS fields (akKS, j
k
KS).

We point out [42] that in order to decouple the matter part from the pho-

ton field, the initial state of the KS system should be of product form, i.e.,

|Φ0〉 = |M0〉 ⊗ |EM0〉. If we further choose |M0〉 to be a single Slater determi-

nant of single particle spin-orbitals, we can actually map the whole problem

to solving effective Dirac and Maxwell equations with the above KS poten-

tial akKS and current jkKS. The mean field description of the interacting QED

system is obtained by using the following approximations for the KS fields

~aMF(x) = ~aext(x) + ~A(x), (3.45)

~jMF(x) = ~jext(x) + ~J(x). (3.46)

Since for simplicity we adopted the temporal gauge a0
ext = 0 for the external

potential, while imposing the Coulomb gauge condition on the photon field,

a gauge transformation is required to specify the mean field potential aµMF in

either one or the other gauge. A similar caveat holds for the external cur-

rent. The mean field approximation corresponds to a Maxwell-Schrödinger

description of the system, where the photon field is assumed to behave es-

sentially classically.



46 Chapter 3. Foundations of QED-TDDFT

3.3 Non-relativistic QED-TDDFT

While for the sake of generality we discussed in the previous section the

fully relativistic QED problem, for the majority of applications in condensed-

matter physics it appears reasonable to consider approximations in the low

energy regime, in particular below the electron-positron production thresh-

old. Nevertheless, we want to investigate the matter coupling to quantized

radiation fields. Most prominently these requirements are met in the context

of cavity QED. Here, boundary conditions for the quantized Maxwell field

at the walls of the cavity have to be taken into account. These additional

constraints restrict the available photonic modes that couple to the electronic

system. The starting point for the description of such quantum-optical situa-

tions are models of non-relativistic particles interacting with quantized elec-

tromagnetic fields, such as the Pauli-Fierz Hamiltonian [23, 25]. In the lowest

order of approximations, we find the simplest model system of coupled mat-

ter and photons, i.e., the tight binding model for the H+
2 molecule coupled

to one photon mode. This model, which will be discussed in Sec. 3.4, also

corresponds to the prime non-trivial example of quantum-optical problem,

i.e., the Rabi model.

We observe that since a field-theoretical treatment for the particles is not

needed, the non-relativistic approach avoids a lot of unpleasant problems

in connection with regularization and renormalization of QED. However,

infinities arise from the mistreatment of (relativistic) virtual photon states,

which couple to the non-relativistic electronic states of interest. One way to

deal with this problem is removing perturbatively all relativistic states from

the theory by cutting off all momentum integrations at p ∼ mc, where m

is the mass of the electron (and keep this physical cutoff). Depending on

the application, perturbative relativistic correction terms can be added to the

Hamiltonian in order to compensate for the effects of the cutoff. However,
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one would then need to introduce a new QED-TDDFT approach for every

type of non-relativistic matter-photon Hamiltonian. In this section, we as-

sume non-relativistic QED to be renormalizable, (i.e., we remove the cutoff

as usually done by taking the limit to infinity), and demonstrate how natu-

rally all lower lying QED-TDDFT reformulations are just approximations to

the fully relativistic QED-TDDFT presented in the previous section.

3.3.1 Equations of motion in the non-relativistic limit

Here, we derive the exact non-relativistic limit of the equations of motion for

the basic functional variables of QED-TDDFT. We start with the Heisenberg

equation for the Dirac field operator, which is given by

i~c∂0ψ̂(x)

=
[
αk
(
−i~c∂k + eÂtot

k (x)
)

+ γ0mc2 + eAtot
0 (x)

]
ψ̂(x)

+ e2

∫
d3r′

: ψ̂†(x′)ψ̂(x′) :

4πε0|~r − ~r′|
ψ̂(x), (3.47)

where we used the compact notation

Âktot(x) = Âk(x) + akext(x),

A0
tot(x) = a0

ext(x) +
1

c

∫
d3r′

j0
ext(x

′)

4πε0|~r − ~r′|
,

and αk = γ0γk. In Eq. (3.47) the electronic component φ̂ of the Dirac spinor is

mixed with the positronic component χ̂. Since at small energies only the elec-

tronic part of the Dirac field is relevant, one would like to find an equation

based solely on φ̂. Hence, we naturally aim at decoupling φ̂ from χ̂. A pos-

sible way is finding a unitary transformation of the Dirac Hamiltonian that

does this perturbatively. Since in non-relativistic processes the rest mass en-

ergy of the electrons is the dominant term, compared to their kinetic energy
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or the photon energy, a possible expansion parameter for such a perturba-

tive transformation is 1/(mc2). mc2 also represents the spectral gap between

the electronic and positronic degrees of freedom, which effectively decouples

the dynamics of particles and anti-particles at small enough energies. The

required unitary transformation is known as the Foldy-Wouthuysen trans-

formation [52], and is routinely used to generate the non-relativistic limit of

the Dirac equation to any desired order. Here, we employ an equivalent, but

simpler procedure. We first rewrite Eq. (3.47) as a function of φ̂ and χ̂, i.e.,

(
D̂(x)−mc2

)
φ̂(x) =~σ ·

(
−i~c~∇−e ~̂Atot(x)

)
χ̂(x), (3.48)(

D̂(x) +mc2
)
χ̂(x) =~σ ·

(
−i~c~∇−e ~̂Atot(x)

)
φ̂(x), (3.49)

where we defined the operator

D̂(x) =

(
i~c∂0 − eAtot

0 (x)− e2

∫
d3r′

: φ̂†(x′)φ̂(x′) + χ̂†(x′)χ̂(x′) :

4πε0|~r − ~r′|

)
. (3.50)

As the main contribution to the energy of the system stems from mc2, one

can substitute for the time derivative in Eq. (3.50) i~c∂0 ≈ mc2. Furthermore,

since c is large, terms of order c0 and lower can be ignored. Accordingly, we

find for the operator in Eq. (3.49)
(
D̂(x) +mc2

)
≈ 2mc2, which implies

χ̂(x) ≈ ~σ

2mc2
·
(
−i~c~∇− e ~̂Atot(x)

)
φ̂(x). (3.51)

The above equation indicates that χ̂ is of order v/c times φ̂, thus actually be-

ing the smaller component of the Dirac field. Using this expression to elimi-

nate χ̂ from Eq. (3.48), we obtain the equation of motion for the Pauli spinor

operator φ̂, which describes the dynamics of non-relativistic electrons in a
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quantized electromagnetic field. This equation is generated by the Pauli-

Fierz Hamiltonian

Ĥ(t) = ĤM + ĤE + ĤC −
1

c

∫
d3r ~̂J(x) · ~̂A(~r) (3.52)

+
1

c

∫
d3rĴ0(~r)

(
A0

tot(x)− e

2mc2
~̂A2

tot(~r)
)

− 1

c

∫
d3r
(
~̂J(x) · ~aext(x) + ~̂A(~r) ·~jext(x)

)
,

where ĤM is the non-relativistic kinetic energy of the electrons,

ĤM =

∫
d3rφ̂†(~r)

(
− ~2

2m
~∇2

)
φ̂(~r),

ĤE corresponds to the energy of the electromagnetic field (with a UV-regulator),

ĤC represents the electron-electron Coulomb interaction

ĤC =
e2

2

∫
d3r

∫
d3r′

φ̂†(~r)φ̂†(~r′)φ̂(~r′)φ̂(~r)

4πε0|~r − ~r′|
,

and Ĵk denotes the non-relativistic current operator

Ĵk(x) = 2ec<
{
φ̂†(~r)

~σ

2mc2
·
(
−i~c~∇− e ~̂Atot(x)

)
φ̂(~r)

}
= Ĵkp (~r)− εklj∂lM̂j(~r)−

e

mc2
Ĵ0(~r)Âktot(x). (3.53)

The latter is defined in terms of the paramagnetic current

Ĵkp (~r) =
e~

2mi

[(
∂kφ̂†(~r)

)
φ̂(~r)− φ̂†(~r)∂kφ̂(~r)

]
,

the magnetization density

M̂k(~r) =
e~
2m

φ̂†(~r)σkφ̂(~r),
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Figure 3.1: (a) Taking the NR limit of the classical QED Hamiltonian, and then
quantizing imposing the equal-time (anti)commutation relations (ETCR), leads to
the same (Pauli-Fierz) Hamiltonian as the opposite ordering. (b) Taking the NR limit
of the Dirac current, and then calculating the equation of motion (EOM), leads to the
same EOM as the opposite ordering.

and the charge density

Ĵ0(~r) = ecφ̂†(~r)φ̂(~r).

We note that, due to the non-relativistic limit, the current given by Eq. (3.53)

becomes explicitly time-dependent [51]. By construction this obeys the con-

tinuity equation ∂0Ĵ0(x) = −~∇ · ~̂J(x). Furthermore, we point out that the

result of the above formal derivation could be equivalently obtained by first

taking the non-relativistic limit of the classical Hamiltonian HQED(t), (con-

structed from the classical Lagrangian density of Eq. (A.1)), and then canon-

ically quantizing the Pauli field, as shown in Fig. 3.1 (a).

As it can be seen from the continuity equation, the non-relativistic QED

Hamiltonian commutes with the particle-number operator N̂ =
∫

d3rφ̂†(~r)φ̂(~r).

Accordingly, one does not need to employ a field-theoretical description for

the electrons, and all matter operators can be expressed in first-quantized

notation, while still being a many-particle problem. Nevertheless, infinities

arise due to the interaction of the non-relativistic particles with the quantized

Maxwell field [23, 25]. The electric charge is not renormalized, since vacuum

polarization corrections to the photon propagator involve virtual electron-

positron states, that are excluded from the non-relativistic theory (there is no
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vacuum polarization). However, the divergence in the electron self-energy

needs to be treated [23]. To first order in the coupling, the ground-state en-

ergy (for ~aext = ~jext = 0) diverges as

E0 ∼
2e

π
(Λ− ln(1 + Λ)) ,

where Λ is the UV-cutoff for the photon modes (this is the characteristic log-

arithmic dependence on Λ of Bethe’s formula for the Lamb shift [84]). By

subtracting the infinite self-energy of the ground-state, which amounts to

introducing a renormalized mass, the Pauli-Fierz Hamiltonian can be renor-

malized perturbatively. In the following, we assume that it can be renormal-

ized to each order in the fine structure constant, and interpret Eq. (3.52) as

the bare Hamiltonian expressed in terms of the renormalized mass.

The equation of motion for the current Ĵk can be either found by direct

calculation with the Pauli-Fierz Hamiltonian, or by taking the non-relativistic

limit of Eq. (3.12) (see appendix (B)). We explicitly checked both ways, as

schematically indicated in Fig. 3.1 (b). After some calculations we find

i∂0Ĵk(x) = q̂kp(x) + q̂kM(x) + q̂k0(x), (3.54)
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where, omitting spatial and temporal dependences,

q̂kp =− i
{
∂lT̂kl − Ŵk −

e

mc2
∂lÂ

l
totĴ

p
k −

e

mc2

(
∂kÂ

l
tot

)
Ĵp
k +

e

mc2

(
∂k∂lÂ

tot
m

)
εlmnM̂n

− e

mc2

[
∂k

(
1

2mc2
Â2

tot + Atot
0

)]
Ĵ0

}
,

q̂kM =− εklj∂l
{
− e~3

4m2
φ̂†
(←
∂
n←
∂nσ

j − σj∂n∂n
)
φ̂+

ie

mc2
∂nÂ

n
totM̂

j

− ie

2mc2

[(
∂jÂtot

n

)
−
(
∂njÂ

j
tot

)]
M̂n

}
,

q̂k0 =− 1

mc2

{(
i∂0Â

tot
k

)
Ĵ0 + Âtot

k

(
ie

mc2
∂lÂ

l
totĴ0 − i∂lĴp

l

)}
.

Here,

T̂kl =
e~2

2m2c

[(
∂kφ̂

†
)
∂lφ̂+

(
∂lφ̂
†
)
∂kφ̂−

1

2
∂k∂lφ̂

†φ̂

]

is the usual momentum-stress tensor and

Ŵk(~r) =
e3

mc

∫
d3r′ φ̂†(~r)

(
∂k
φ̂†(~r′)φ̂(~r′)

4πε0|~r − ~r′|

)
φ̂(~r)

is the interaction-stress force (i.e., the divergence of the interaction-stress ten-

sor) [51, 57, 58]. Starting with an uncoupled problem, one would find a sim-

ilar equation with the replacements ~̂Atot → ~aext and Ŵk → 0. Further, the

equation for the electromagnetic field does not change, except for the fact

that now the non-relativistic current has to be employed (see appendix B).
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In the last step, we take the non-relativistic limit of the equation of motion

for the polarization, i.e., Eq. (3.13). We find to order 1/(mc2)

i∂0P̂
k (3.55)

≈ 2emc

~
Ĵk − 2emc

~

(
Ĵkp − εklj∂lM̂j −

e

mc2
Ĵ0Â

k
tot

)
= 0,

which indicates that at this level of approximation the polarization does not

change in time.

3.3.2 QED-TDDFT for the Pauli-Fierz Hamiltonian

In this section, we discuss the basics of non-relativistic QED-TDDFT for the

Pauli-Fierz Hamiltonian. We show how the non-relativistic limit of the equa-

tion of motion for the polarization Pk (and, in turn, of the Gordon decom-

position), makes the electronic current Jk a unique functional of (akext, j
k
ext)

and the basic variable for the matter part in this limit. Analogously, the KS

construction for the Pauli-Fierz Hamiltonian is derived from its relativistic

counterpart given in Sec. 3.2.3.

We start by noting that since the non-relativistic polarization is a constant

of motion, the non-relativistic limit of Eq. (3.36) is zero, irrespective of the

difference between ~aext and ~̃aext (as in Sec. 3.2.2, we work in the temporal

gauge a0
ext = 0 for the external potential). However, by using Eq. (3.55), this

limit can be expressed in terms of the non-relativistic current as

~J (α)(~r)− ~̃J (α)(~r) = −J
(0)
0 (~r)

mc2

(
~a

(α)
ext(~r)− ~̃a

(α)
ext(~r)

)
6= 0, (3.56)

which is non-zero, provided that the density satisfies the condition J (0)
0 (~r) 6=
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0. Since the form of Eq. (3.37) does not change, we have proved the one-to-

one mapping

(akext, j
k
ext)

1:1↔ (Jk, Ak). (3.57)

Accordingly, the wave function of the non-relativistic QED system can be la-

belled by the internal pair (Jk, Ak). We observe in this regard that Jk has no

longer positronic degrees of freedom. Hence, the above conjugate variables

can be uniquely identified by applying the Legendre-transformation argu-

ments of Sec. 3.2.1 to the Pauli-Fierz Lagrangian. Indeed, these arguments

hold true for all further non-relativistic approximations.

Now in principle we can, instead of solving the Schrödinger equation for

the many-body electron-photon wave function, solve the coupled equations

for the functional variables (Jk, Ak)

i∂0
~J(x) = ~qp([Jk, Ak, a

k
ext];x) + ~qM([Jk, Ak, a

k
ext];x)

+ ~q0([Jk, Ak, a
k
ext];x), (3.58)

� ~A(x)− ~∇

(
1

c

∫
d3r′

~∇′ ·~jext(x
′) + ~∇′ · ~J(x′)

4πε0|~r − ~r′|

)

= µ0c
(
~jext(x) + ~J(x)

)
, (3.59)

for a given initial state |Ψ0〉 and external fields (akext, j
k
ext). The explicit func-

tional dependence on the external potential in the equation of motion for the

current is a consequence of the non-relativistic limit. The main advantage of

this limit is that in the Maxwell equation (3.59) there are no longer functionals

that need to be approximated.



3.3. Non-relativistic QED-TDDFT 55

In the next step, we take the non-relativistic limit of the KS scheme of

Eqs. (3.43) and (3.44), which leads to

J0([Φ0, Jn, An];x)akKS(x)

= J0([Ψ0, Jn, An];x)akext(x) + 〈ÂkĴ0〉([Ψ0, Jn, An];x)

+
mc

e

(
Jkp ([Φ0, Jn, An];x)− Jkp ([Ψ0, Jn, An];x)

)
+
mc

e
εklj∂l (Mj([Ψ0, Jn, An];x)−Mj([Φ0, Jn, An];x))

jkKS(x) = jkext(x) + Jk(x).

By imposing that the initial interacting and KS states fulfill

〈Ψ0|Ĵ0(~r)|Ψ0〉 = 〈Φ0|Ĵ0(~r)|Φ0〉,

(due to the continuity equations the physical and KS densities coincide also

at later times), we can define the Hxc potential as

~aKS[Ψ0,Φ0, Jk, Ak, a
k
ext] = ~aext + ~aHxc[Ψ0,Φ0, Jk, Ak],

where

akHxc(x) =
1

J0(x)

[
〈ÂkĴ0〉([Ψ0, Jn, An];x)

+
mc

e

(
Jkp ([Φ0, Jn, An];x)− Jkp ([Ψ0, Jn, An];x)

)
+
mc

e
εklj∂l (Mj([Ψ0, Jn, An];x)−Mj([Φ0, Jn, An];x))

]
.

Thus, given an initial state of the form |Φ0〉 = |M0〉 ⊗ |EM0〉, which is char-

acterized by the same current, potential and electric field (i.e., first time-

derivative of the potential) as |Ψ0〉, the problem reduces to solving the KS
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equations

i~c∂0 |M(t)〉 =

[
ĤM −

1

c

∫
d3r ~̂J(x) · ~aKS(x) (3.60)

− e

2mc3

∫
d3rĴ0(~r)~a2

KS(x)

]
|M(t)〉 ,

�Ak(x) + ∂k

(
1

c

∫
d3r′

~∇′ ·~jext(x
′) + ~∇′ · ~J(x′)

4πε0|~r − ~r′|

)

= µ0c
(
jkext(x) + Jk(x)

)
. (3.61)

If we assume that the initial state of the matter system |M0〉 is given in the

form of a Slater determinant of single-particle orbitals, one only needs to

solve single-orbital KS equations. The simplest approximate Hxc potential

corresponds to the non-relativistic limit of the mean field approximation of

Eq. (3.45), i.e.

~aHxc(x) = ~A(x).

Note that, again, without a further gauge transformation, also a scalar poten-

tial enters the KS Hamiltonian due to A0.

We point out that one could alternatively use Eq. (3.54) to show the one-

to-one correspondence between the external fields (akext, j
k
ext) and the non-

relativistic internal variables (Jk, Ak) [61]. However, besides being more in-

volved, also the connection to relativistic QED-TDDFT becomes less clear.

Nevertheless, for constructing approximations to the KS potential, Eq. (3.54)

seems better suited since it is more explicit.

3.3.3 QED-TDDFT for approximate non-relativistic theories

Here, we show how, by introducing further approximations for the matter

system or the photon field, one can derive a family of non-relativistic QED-

TDDFTs, that, in the lowest-order approximation, reduce to the functional
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description of the Rabi model of Sec. 3.4.

As already pointed out, in the non-relativistic case the initial guess for

the conjugate variables can be based on a Legendre transformation in the

Lagrangian of the problem. Thus, we can now derive all sorts of approximate

QED-TDDFTs by considering different conserved currents and restrictions

to the photonic degrees of freedom. Clearly, approximating the conserved

current Jk implies approximating the Pauli-Fierz Hamiltonian of Eq. (3.52)

accordingly. Thus, by assuming, e.g., a negligible magnetic density, so that

Ĵk(x) = Ĵp
k (~r)− 1

mc2
Ĵ0(~r)Âtot

k (x), (3.62)

the terms M̂l and q̂M
l also vanish in the Hamiltonian and the equation of mo-

tion (3.54). Since Eq. (3.56) is still valid, the one-to-one correspondence holds,

(akext, j
k
ext)

1:1↔ (Jk, Ak), (3.63)

as well as the coupled Eqs. (3.58) and (3.59). The KS current becomes accord-

ingly jkKS = jkext + Jk, where Jk is given by Eq. (3.62), and the Hxc potential

in this limit reduces to

J0(x)akHxc(x) = 〈ÂkĴ0〉([Ψ0, Jk, Ak];x)

+
mc

e

(
Jkp ([Φ0, Jk, Ak];x)− Jkp ([Ψ0, Jk, Ak];x)

)
.

On the other hand, we can also restrict the allowed photonic modes. For

instance, we can assume a perfect cubic cavity (zero-boundary conditions)

of length L8. Then, given the allowed wave vectors ~k~n = ~n(π/L), and the

corresponding dimensionless creation and annihilation operators, â†~n,λ and

8Actually also other boundaries are possible, but then the expansion in the eigenfunctions
of the Laplacian, in accordance with the Coulomb-gauge condition, becomes more involved.
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â~n,λ, we have

Âk(~r) =

√
~c2

ε0

∑
~n,λ

εk(~n, λ)√
2ωn

[
â~n,λ + â†~n,λ

]
S(~n · ~r),

where the mode function S is specified in Eq. (C.1). If we further restrict the

modes by introducing a square-summable regularization function fEM(~n)9,

e.g., fEM = 1 for |~n| < mcL/(2π~) (energies smaller than the rest-mass energy

of the electrons) and 0 otherwise, the resulting regularized field

Âk(~r) =

√
~c2

ε0

∑
~n,λ

fEM(~n)
εk(~n, λ)√

2ωn

[
â~n,λ + â†~n,λ

]
S(~n · ~r) (3.64)

makes the coupled Pauli-Fierz Hamiltonian self-adjoint, without the need of

any further renormalization procedure [25]. In the following we assume such

a restriction. This approximation is also directly reflected in the Hamiltonian

and the equation of motion for the potential Ak. Multiplying Eq. (3.59) from

the left by εk(~n, λ)S(~n · ~r) and integrating, we find the mode expansion

√
~c2

ε0
fEM(~n)

(
∂2

0 + ~k2
~n

)
q~n,λ(t)

= µ0c
(
jext
~n,λ(t) + J~n,λ(t)

)
, (3.65)

where we have used the definitions q̂~n,λ = (a~n,λ + â†~n,λ)/(
√

2ωn) and

jext
~n,λ(t) =

∫
d3r ~ε(~n, λ) ·~jext(x)S(~n · ~r).

The Coulomb contribution vanishes since we employ a partial integration

and the fact that ~ε(~n, λ) ·~n = 0. Of course, one can find the same equations by

a straightforward calculation of the Heisenberg equation of motion for the

Maxwell-field (3.64) with the corresponding Pauli-Fierz Hamiltonian (3.52).

9In the case of continuous frequencies one accordingly uses a square-integrable function.
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Due to the restriction to specific modes, the field Ak is restricted in its spatial

form, and therefore the photonic variable changes from Ak to the set of mode

expectation values

Ak(x)→ {A~n,λ(t)} .

This change in the basic variable is also reflected in the conjugate external

variable, which is given from Eq. (3.65) by

jext
~n,λ(t) =

fEM(~n)ε0√
~

(
∂2

0 + ~k2
~n

)
q~n,λ(t)− J~n,λ(t).

Thus, we accordingly find

jkext(x)→
{
jext
~n,λ(t)

}
,

and the pairs of conjugate variables become

(akext,
{
jext
~n,λ

}
)

1:1↔ (Jk, {A~n,λ}).

Hence, we need to solve the mode Eq. (3.65) together with the associated

equation of motion for the current. Correspondingly, also the KS scheme and

the mean field approximation for ~aHxc change to their mode equivalents.

If we then also employ the dipole-approximation e±i~kn·~r ≈ 1, i.e., we as-

sume that the spatial extension of our matter system is small compared to the

wavelengths of the allowed photonic modes10, we have

Âk =

√
~c2

L3ε0

∑
~n,λ

fEM(~n)
εk(~n, λ)√

2ωn

[
â~n,λ + â†~n,λ

]
. (3.66)

10This is, e.g., the case of atoms and molecules whose spatial dimensions are of the order
of a few Bohr radii.
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This only changes the definition of the effective current that couples to the

modes, i.e.,

jext
~n,λ(t) =

∫
d3r

L3/2
~ε(~n, λ) ·~jext(x),

but leaves the structure of the QED-TDDFT reformulation otherwise unchan-

ged. If we assume the magnetization density Ml to be negligible, we recover

from first principles QED-TDCDFT for many-electron systems coupled to

cavity photons presented in [55]. In this work, the situation of only scalar

external potentials, i.e., ~aext = 0 and a0
ext 6= 0, is considered as a further case.

In such a situation, the gauge freedom is only up to a spatial constant, which

is usually fixed by choosing a0
ext → 0 for |~r| → ∞. Since a0

ext couples to the

zero component of the current, the density Ĵ0, the conjugate pairs become

(a0
ext,
{
jext
~n,λ

}
)

1:1↔ (J0, {A~n,λ}).

To demonstrate this mapping, considering the first time derivative of Ĵ0 is

obviously not enough. Since this amounts to the continuity equation, no di-

rect connection between the two conjugate variables for the matter part of

the quantum system is found. Therefore, one has to evaluate the second time

derivative of Ĵ0 [55]. The derivation of the model Hamiltonian, which corre-

spond to this simplified physical situation, is presented in the next section.

3.4 QED-TDDFT of the Rabi model

In the following, we present a detailed derivation of the length-gauge Hamil-

tonian employed in [55] for the formulation of the electron-photon TDDFT.

For simplicity, we restrict our derivation to the case of one mode and one par-

ticle. The case of several modes and particles works analogously and leads

to the Hamiltonian (13) of Ref. [55].
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In terms of the photon coordinate q, the single-mode vector potential is

given by Eq. (3.66) as

~̂A = Cq~ε, (3.67)

where we defined C =

(
~c2

ε0L3

)1/2

and assumed fEM = 1. The corresponding

Hamiltonian in first quantized notation reads as

Ĥ(t) =
1

2m

(
i~~∇+

e

c
~̂A
)2

− ~
2

d2

dq2
+

~ω2

2
q2 (3.68)

+ ea0
ext(x)− 1

c
~jext(t) · ~̂A,

since at this level of approximation ~∇ · ~jext = 0, due to the expansion in

Coulomb-gauge eigenmodes. In Eq. (3.68) we have introduced the notation

~jext(t) =

∫
d3r

L3/2
~jext(x).

In the next step, we transform the Hamiltonian into its length gauge form

[13] by the unitary transformation

Û = exp

[
i

~

(
Ce
c
~ε · ~rq

)]
.

Performing then a canonical variable transformation, which exchanges the

photon coordinate and momentum, id/dq → p and q → −id/dp (while leav-

ing the commutation relations unchanged), we find

Ĥ(t) = − ~2

2m
~∇2 − ~

2

d2

dp2
+

~ω2

2

(
p− Ce

~c
~ε · ~r
ω

)2

+ ea0
ext(x) +

iC
cω
~ε ·~jext(t)

d

dp
. (3.69)
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Here, the linear in p-derivative term can be eliminated by the time-dependent

gauge transformation

Û(t) = exp

[
iC
~cω

(
jext(t)p−

C
2cω

∫ t

0

j2
ext(t

′)dt′
)]

,

where jext(t) = ~ε · ~jext(t) is the projection of the external current on the di-

rection of the photon polarization. Using the general transformation rule

H 7→ −i~Û †∂tÛ + Û †ĤÛ , we obtain

Ĥ(t) = − ~2

2m
~∇2 − ~

2

d2

dp2
+

~ω2

2

(
p− Ce

~c
~ε · ~r
ω

)2

+ ea0
ext(x)− C

ωc
p ∂tjext(t). (3.70)

Here, we see that the photonic variable p is shifted by the dipole moment e~r,

which indicates that p is actually proportional to the electric displacement D

(this point is discussed in detail in Sec. 4.2).

In the last step, we discretize the matter part of the problem and employ

a two-site approximation, such that

− ~2

2m
~∇2 → −T σ̂x,

e~ε · ~r → e~ε ·~lσ̂z ≡
c

ω
Ĵ0,

ea0
ext(x)→ ea0

ext(t)σ̂z,

where T is the kinetic (hopping) energy, ~l is the vector connecting the two

sites, Ĵ0 is the dipole moment operator, and a0
ext(t) corresponds to the po-

tential difference between the sites. To highlight the general structure of the
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matter-photon Hamiltonian, we also redefine the external current, the exter-

nal potential and the photon field as follows

∂tjext(t)→ ωc j̃0
ext(t),

ea0
ext(t)σ̂z → −

1

c
a0

ext(t)Ĵ
0,

ω

c
Cp→ D̂ =

√
~ω

2ε0L3
(â† + â).

Implementing the above redefinitions in Eq. (3.70), and neglecting irrelevant

constant terms, we arrive at the Hamiltonian

Ĥ(t) = −T σ̂x + ~ωâ†â− λ

k
Ĵ0D̂ − 1

c
a0

ext(t)Ĵ
0

− 1

k
j0

ext(t)D̂. (3.71)

Here, k = ω/c, and we have introduced an appropriate dimensionless strength

λ for the electron-photon coupling. We note that the same Hamiltonian could

be derived by assuming a gauge condition for the external vector potential

such that a0
ext = 0 and ~aext 6= 0. In that case, Eq. (3.68) would include terms of

the form ~aext · ~∇, ~a2
ext and mixed terms of internal and external vector poten-

tial. However, by going into the length gauge also for the external potential,

and performing the same steps as above, one would end up with the same

two-site one-mode Hamiltonian of Eq. (3.71). For clarity of presentation,

though, we have chosen to start from the scalar potential case.

The basic functional variables for the Hamiltonian of Eq. (3.71) are the

dipole moment J0 and the electric displacement D. The equations of motion

for these variables read as

(i∂0)2 Ĵ0 =
4T 2

~2c2
Ĵ0 − λ

k
n̂D̂ − n̂a0

ext(t), (3.72)

(i∂0)2 D̂ = k2D̂ − ω

ε0L3

(
λĴ0 + j0

ext(t)
)
, (3.73)
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where

n̂ =
4T (eωl)2

~2c4
σ̂x, (3.74)

and ε0 = 1/(µ0c
2). Here, Eq. (3.72) is the discretized version of ∂2

t n of stan-

dard TDDFT [15, 28] and Eq. (3.73) is the inhomogeneous Maxwell equation

for the displacement of a single mode. Solving the coupled problem starting

from |Ψ0〉 and subject to the external pair (a0
ext, j

0
ext) is formally equivalent

to solve the uncoupled non-linear problem with initial state |Φ0〉 and the KS

fields (a0
KS, j

0
KS)

i~c∂0 |M(t)〉 =

[
−T σ̂x −

1

c
Ĵ0a0

KS(t)

]
|M(t)〉 , (3.75)

(
∂2

0 + k2
)
D(t) =

ω

ε0L3
j0

KS(t). (3.76)

Here, (a0
KS, j

0
KS) are defined by the equations

n([Φ0, J
0, D]; t)a0

KS(t) =
λ

k
〈n̂D̂〉([Ψ0, J

0, D]; t) (3.77)

+ n([Ψ0, J
0, D]; t)a0

ext(t)

j0
KS(t) =λJ0(t) + j0

ext(t). (3.78)

As already pointed out for more general non-relativistic cases, also in Eq.

(3.76) we do not need any approximate functional and merely have to solve

the aforementioned Maxwell equation. However, especially when calculat-

ing non-trivial photonic expectation values, it might be useful to solve the

actual uncoupled photon problem, so to have a first approximation to the

photonic wave function. We also observe that in this discretized case the ex-

istence of the above KS construction can be proved by mapping the problem

onto a special nonlinear Schrödinger equation [14, 15, 56, 73].
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Figure 3.2: Exact results for the Rabi Hamiltonian of Eq. (3.79) in the weak cou-
pling regime. (a) Inversion σx(t), (b) density ∆n(t) and (c) exact KS potential vKS(t)
for the case of regular Rabi oscillations.

3.4.1 Numerical example

In this section we show numerical results for the simple electron-photon sys-

tem introduced above. We use the density-functional framework presented

in the previous sections and explicitly construct the corresponding exact KS

potentials. To illustrate our QED-TDDFT approach, we focus on two differ-

ent examples. The first example treats a setup in resonance, where regular

Rabi oscillations occur. The second example includes the photon field ini-

tially in a coherent state. For this case, we study collapses and revivals of

Rabi oscillations.

The Hamiltonian of Eq. (3.71) corresponds to the Rabi Hamiltonian [7, 19,

49, 50], which is heavily investigated in quantum optics. It has been studied

in the context of Rabi oscillations, field fluctuations, oscillation collapses, re-

vivals, coherences and entanglement (see Ref. [50] and references therein).

To directly see this connection, we divide Eq. (3.71) by I = n
(
eωl
c

) ( ~c2
2ε0L3ω

) 1
2
,

where n is an arbitrary dimensionless scaling factor. We therefore make

the Hamiltonian and the corresponding Schrödinger equation dimension-

less. Eq. (3.71) then takes the form of the Rabi Hamiltonian which is usually
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Figure 3.3: Exact potentials and densities (solid black line) compared to mean
field potentials and densities (dashed red line) for the case of regular Rabi oscilla-
tions in the weak coupling regime. (a) KS potential vKS(t) and (b) density ∆n(t). (c)
KS potential j0

KS(t) and (d) density D(t).

found in the literature

Ĥ(t) =− T

I
σ̂x +

~ω
I
â†â− λ

(
â+ â†

)
σ̂z (3.79)

− j0
ext(t)

(
â+ â†

)
− vext(t)σ̂z.

Here, we have transformed to the (dimensionless) external potential 1
n

(
~c2

2ε0L3ω

)− 1
2

a0
ext → vext and dipole moment 1

n

(
1
eωl

)
j0

ext → j0
ext. Further, we have trans-

formed to the (dimensionless) time variable I
~t → t. To perform numerical

calculations, we use for the free parameters the values T/I = 0.5, ~ω/I = 1

and λ = (0.01, 0.1) from the literature, while setting to zero the external fields,

j0
ext(t) = vext(t) = 0. This set of parameters describes a resonance situation
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Figure 3.4: Exact potentials and densities (solid black line) compared to mean
field potentials and densities (dashed red line) for the case of regular Rabi oscilla-
tions in the strong coupling regime. (a) KS potential vKS(t) and (b) density ∆n(t).
(c) KS potential j0

KS(t) and (d) density D(t).

(with no detuning between the transition energy of the atomic levels and the

frequency of the field mode). As discussed above, the basic densities for the

system are the dipole moment J0 and the displacement D. In this two-site

example J0 reduces to the on-site occupation difference ∆n = n1 − n2 (in

matrix notation σz).

If the rotating-wave approximation is applied to the Rabi Hamiltonian

of Eq. (3.79), one recovers the Jaynes-Cummings Hamiltonian, which is an-

alytically solvable. Such an approximation is only valid in conditions of

resonance and weak coupling regime (λ ≈ 0.01), while it breaks down in

the strong coupling regime (λ ≥ 0.1). Only recently, analytic results for the

Rabi model (without the rotating-wave approximation) have been published
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[7]. Here, we emphasize that our QED-TDDFT approach is exact and does

not rely on the rotating-wave approximation, thus allowing one to treat also

strong coupling situations.

In our first example we choose as initial state for both the interacting

electron-photon system and the uncoupled KS problem

|Ψ0〉 = |Φ0〉 = |1〉 ⊗ |0〉 ,

meaning that the electron initially populates site 1 and the field is in the vac-

uum state. Therefore, no photon is present in the field initially. In Fig. 3.2

we show the kinetic energy σx(t), the density ∆n(t) and the exact KS poten-

tial vKS(t) for the weak coupling case. σx for the model is also referred to

as the population inversion. The value σx = −1 corresponds to the electron

populating the ground state |g〉, while σx = 1 corresponds to the electron

populating the excited state |e〉. For our initial state |1〉 = (|g〉 + |e〉)/
√

2 we

have σx(0) = 0. In panel (a) we see regular Rabi oscillations of the population

inversion between 0 and 1. The density ∆n(t) in panel (b) undergoes fast os-

cillations at the driving frequency ω, superimposed on slow Rabi oscillations

of the envelope. These show typical neck-like features [17] at t ≈ 150 and

later points in time.

The exact KS potential in panel (c) is determined by a fixed-point con-

struction similar to [37]; as an input for the construction we use the exact

electron-photon density. As a check, we also compare to an analytic for-

mula for the KS potential [15, 29]. Such an explicit formula is only known

in a few cases, while the fixed-point construction is generally valid. How-

ever, for the present case both methods yield the same results. We emphasize

that the propagation of the uncoupled KS system with the exact KS potential

vKS(t) reproduces by construction the exact many-body density ∆n(t). How-

ever, using the KS propagation, the numerical effort required is drastically
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reduced.

In calculations of realistic systems the exact KS potential is not available

and one has to rely on approximations. In the present case, the simplest

approximation for vKS[Ψ0,Φ0,∆n,D] in Eq. (3.77) is straightforward if we as-

sume n[Φ0,∆n,D] ≈ n[Ψ0,∆n,D] and 〈n̂D̂〉 ≈ nD. Then, from Eq. (3.77) we

obtain the mean field approximation to the KS potential

vMF([D, vext]; t) = λD(t), (3.80)

which essentially corresponds to a Maxwell-Schrödinger approach, i.e., to

the classical treatment of the electromagnetic field. We note that for λ → 0

and λ → ∞, the mean field approximation becomes asymptotically exact.

In Fig. 3.3 and Fig. 3.4, we compare the exact densities and exact KS poten-

tials to the densities and potentials obtained from a self-consistent mean field

propagation. Already in the weak coupling limit in Fig. 3.3, one can notice

sizable differences between the exact and mean field results. The exact KS

potential vKS deviates from the mean field potential already at t = 0. This

leads to a frequency shift in the densities, with the mean field density oscil-

lating slower than the exact density. In the strong coupling regime shown in

Fig. 3.4, effects beyond the rotating-wave approximation appear. In the exact

KS potential of panel (a), we see a non regular feature at t = 30, which is not

captured by the mean field approximation. However, the mean field approx-

imation reproduces at least some dynamical features of the propagation.

For the second example, we start with the field initially in a coherent state.

For a single field mode, coherent states [20, 21] can be written as follows

|a〉 =
∞∑
n=0

fn(α) |n〉 , with fn(α) =
αn√
n!

exp

(
−1

2
|α|2
)
.
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Figure 3.5: Exact results for the Rabi Hamiltonian in the weak coupling limit.
(a) Inversion σx(t), (b) density ∆n(t) and (c) exact KS potential vKS(t) in the case of
coherent states (see panel 3 in Fig. 4 Ref. [50]).

In this example, we use as initial state for the propagation of the interacting

and KS system

|Ψ0〉 = |Φ0〉 = |g〉 ⊗ |α〉 .

Here, g is the ground state of the electronic Hamiltonian (|g〉 = (|1〉+|2〉)/
√

2),

while for the radiation field state we choose |α|2 = 〈â†â〉 = 4. This example

is in the spirit of the calculation of panel 3 in Ref. [50]. In Fig. 3.5 we obtain

a similar time evolution for the inversion σx(t). A Cummings collapse of

Rabi oscillations occurs at t = 250 followed by a quiescence up to t = 500.

After t = 500, we see a revival of Rabi oscillations. On the other hand, we

observe as in [35], that the density ∆n(t) rapidly changes during the interval

of quiescence. As before, we show in the lowest panel the corresponding

exact KS potential obtained via fixed-point iterations.

In Fig. 3.6 we compare the exact KS potentials and exact densities to the

results from the mean field propagation in the weak-coupling regime. Here,

we see that the mean field approximation performs rather poorly. For this

case the simple ansatz of Eq. (3.80) is not sufficient, and more sophisticated
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Figure 3.6: Exact densities and potentials (solid black line) compared to mean
field densities and potentials (dashed red line) in the case of regular Rabi oscillations
for coherent states. (a) KS potential vKS(t) and (b) density ∆n(t). (c) KS potential
j0
KS(t) and (d) density D(t).

approximations to the exact KS potential are necessary to reach a better agree-

ment [30, 32].

In summary, especially the coherent state example shows a clear need for

better approximations to the exact KS potential [55], which include xc contri-

butions. One promising possibility along these lines is provided by the OEP

method [33, 58, 71]. In the next chapter we develop such an approach and

show how for the present system the corresponding results improve quite

considerably over the mean field approximation.
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Chapter 4

QED Optimized Effective Potential

4.1 Introduction

In chapter 3 we discussed the advantages of non-relativistic QED for the

description of condensed-matter systems. One obtains the standard non-

relativistic quantum mechanical theory for the electrons, but with additional

terms, which correct for dynamical and magnetic interactions. We proposed

a reformulation of non-relativistic QED in terms of functional variables, that

(in principle) accounts exactly for both corrections. However, the application

of any TDDFT-like approach requires approximations to the xc functional.

In this chapter1 we construct such an approximation for the description

of time-nonlocal effects in the electron-electron interaction within an optical

cavity, (the theory of reference is then QED-TDDFT for electronic systems

coupled to cavity modes [76]). The choice of a quantum optical setting is

motivated by the fact that the cavity enhances the retardation in the inter-

electron potential, by introducing a longer time scale for the photon propa-

gation. In addition to the direct electrostatic Coulomb force among charges

in free space, one has to take into account a retarded electron-electron inter-

action, which is mediated by photons travelling to the mirrors of the cavity

and back. In other words, the photon propagator splits into two parts: a

1This chapter is part of the article "Optimized Effective Potential for Quantum Electrody-
namical Time-Dependent Density Functional Theory" by C. Pellegrini, J. Flick, I. V. Tokatly,
H. Appel and A. Rubio, published in Phys. Rev. Lett. 115, 093001 (2015).
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Coulomb part, which can be treated as instantaneous (when quantizing the

Maxwell equations, it corresponds to the classical limit of infinite photons),

and a fully retarded correction, which depends on the boundary conditions

for the Maxwell field in the cavity.

In Sec. 4.2 we introduce the Hamiltonian of a localized many-electron

system arbitrarily coupled to a set of discrete photon modes (this Hamilto-

nian corresponds to the many-body generalization of the Rabi Hamiltonian

discussed in Sec. 3.4). In Sec. 4.3 we construct the functional for the coupled

electron-photon system by extending the OEP approach of Sec. 2.2.1 to the

photon mediated electron-electron coupling. In Sec. 4.4 the new functional

is tested from the weak to the strong coupling regime in the Rabi model,

through comparison with the exact and classical solutions. We also address

the functional dependence on the initial many-body state, assumed to be ei-

ther a fully interacting or a factorizable state. In both cases, the electron-

photon OEP for the model performs well, providing a promising path for

describing complex strongly coupled matter-photon systems.

4.2 Stating the problem

Let us consider a localized system of N electrons at coordinates {ri}Ni=1, e.g.,

an atom, an ion or a molecule, interacting with M quantized electromagnetic

modes of a cavity with frequencies ωα. We denote by Ĥ0 = T̂ + V̂ee + V̂ext the

Hamiltonian of the electronic system with kinetic energy T̂ , Coulomb interac-

tion V̂ee, and generally time-dependent external potential V̂ext =
∑N

i=1 vext(ri t),

due to the nuclear attraction and any additional classical field applied to the



4.2. Stating the problem 75

electrons. Following the derivation of Sec. 3.4, the electric dipole Hamilto-

nian2 [76–78] of the coupled electron-photon system reads as

Ĥ = Ĥ0 +
1

2

∑
α

[
q̂2
α + ω2

α

(
p̂α −

λα
ωα

R̂
)2
]
. (4.1)

Here, the second term corresponds to the usual expression 1
8π

∫
dr (B̂

2
+Ê

2
) for

the energy of the transverse radiation field. The magnetic field B̂α =
√

4πq̂α

in the α mode is proportional to the photon canonical coordinate q̂α, while

the transverse electric field Êα =
√

4π(ωαp̂α − λαR̂) is related to the photon

momentum p̂α. This is expressed in terms of the electric displacement D̂α =
√

4πωαp̂α, which is the proper dynamical variable conjugated to the magnetic

field (as it can be deduced from the Maxwell equation ∂D/∂t = c∇ × B). In

addition, λα describes the polarization direction and normalized amplitude

of the Dα mode at the position of the electronic system with dipole moment

operator R̂ =
∑N

i=1 ri. We emphasize that, due to the canonical transforma-

tion to the length gauge, the Hamiltonian of Eq. 4.1 is properly expressed in

terms of the fields D and B, rather than E and B. The new electric variable

D mixes field and matter degrees of freedom, and properly describes the dy-

namics of transverse electromagnetic waves (photons). When quantizing the

electromagnetic field, photon creation and annihilation operators refer to the

quanta of D. Here, we define p̂α = −(âα + â†α)/
√

2ωα.

The photon-induced interaction Hamiltonian of Eq. (4.1) consists of two

terms: (i) the "cross term" ∼ p̂αR̂

V̂el-ph =
∑
α

√
ωα
2

(âα + â†α)

∫
d3r (λαr) n̂(r), (4.2)

where n̂(r) =
∑

i δ(r − ri) is the electron density operator, which describes

the displacement-dipole coupling, and (ii) the "squared term"
∑

α(λαR̂)2/2,

2The derivation can be generalized to the case of atom-field coupling beyond the dipole
approximation in straightforward manner.
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which represents the polarization energy of the electrons. Hence, the cou-

pling to the quantized radiation field gives rise to the additional photon-

mediated electron-electron interaction

Wee(1, 2) =
∑
α

(λαr1)(λαr2)Wα(t1, t2), (4.3)

Wα(t1, t2) = ω2
αDα(t1, t2) + δ(t1 − t2),

where we used the compact notation 1 = (r1t1). Here, the first term corre-

sponds to the photon displacement Dα propagator iDα(t1, t2)≡〈T {pα(t1)pα(t2)}〉

derived from Eq. (4.2). This describes the response of the electric displace-

ment D generated by the polarization, as it follows from the wave equa-

tion for D. However, this propagator does not correspond to the complete

physical interaction between the electrons. The important point is that D

in electrostatics can assume a non-zero value. In this regard, an illustrative

example is that of a ferroelectric material, whose polarization varies perpen-

dicularly to its direction. In this case, no forces are exerted on the charges,

but D equals the (finite) transverse polarization. On the contrary, the electric

force acting on the electrons (F = E) and the electric part of the energy (E2)

are determined by the electric field E. From the operational point of view

this is the real physical quantity. The second instantaneous term in Wee, due

to the polarization contribution in the Hamiltonian, accounts for this point.

It removes the instantaneous part of the Dα propagator (i.e., the static Dα

response generated by the transverse polarization), and brings it to the phys-

ical interaction given by the Eα propagator. This propagator follows from

the wave equation for the electric field, in which the source term is the sec-

ond time derivative of the polarization (∇2Ê − ∂2Ê/∂t2 = ∂2P̂ /∂t2). Then

Wee ∼ −
∑

α ω
2/(ω2 − ω2

α), which is proportional to the frequency, correctly

describes the physical interaction of accelerated electrons via transverse elec-

tromagnetic waves.
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As we have seen, the wave function of the total system Ψ({rj}, {pα}, t)

is a unique functional of the electron density n(rt) = 〈Ψ|n̂(r) |Ψ〉 and the

expectation values of the photon momenta pα(t) = 〈Ψ|p̂α |Ψ〉 [76]. The for-

mer can be calculated for a fictitious KS system of N noninteracting par-

ticles, whose orbitals {φj} satisfy the self-consistent equations i∂tφj(rt) =

[−∇2/2 + vs(rt)]φj(rt) with the potential vs = vext + vel
Hxc + vαeff. Here, we

assume [76] the separate description of the Coulomb interaction Vee and the

photon-mediated interaction Wee, by the standard TDDFT Hartree-xc term

vel
Hxc[n] and the effective potential vαeff[n, pα]. The latter is defined as vαeff =

vαMF + vαxc, where

vαMF(rt) =

∫
d1WR

ee(rt, r1t1)n(r1t1) (4.4)

is the mean-field contribution due to M classical electromagnetic modes,

whose expectation values pα obey the Ampere-Maxwell equation for the dis-

placement field. All the quantum many-body effects are embedded in the

unknown xc potential, which must be approximated. Assuming the treat-

ment of the electronic contribution vel
xc by standard TDDFT functionals (e.g.

x-only OEP or KLI [80], ALDA, GGA), we generalize the OEP approach to

construct approximations to the photonic contribution vαxc.

4.3 QED-TDOEP equation

We derive the TDOEP equation for the electron-photon system starting from

the linearized Sham-Schlüter equation on the Keldysh contour (Sec. 2.2.1)

[81]

∫
d2Gs(1, 2)vxc(2)Gs(2, 1) =

∫
d2

∫
d3Gs(1, 2)Σxc(2, 3)Gs(3, 1), (4.5)

where the electron self-energy Σxc contains the time non-local interactionWee

of Eq. (4.3). Eq. (4.5) allows one to perturbatively construct the local potential
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vxc that mimics the effects of the self-energy Σxc, in principle up to any desired

order in the coupling strength λα. Analogously to theGW approximation [82,

83] for electronic structure methods, we approximate the electron self-energy

by the exchange-like diagram

Σx(1, 2) = iGs(1, 2)Wee(2, 1), (4.6)

where we assume the photon propagator Wee to be free. Here, the quantum

nature of the electromagnetic field is accounted for by the dynamical part of

Σx, related to the photon displacement propagator Dα in Eq. (4.3). This part

describes the processes of emission and absorption of a photon. Neglecting

the above dynamical contribution to veff corresponds to the classical treat-

ment of the electromagnetic field.

Making use of the identities for the convolution of two Keldysh functions,

(a · b)≷ = a≷ · bA + aR · b≷, where a · b =
∫
dt a(t)b(t), and expressing retarded

(R) and advanced (A) Keldysh components in terms of greater (>) and lesser

(<) components [51], we work out the r.h.s. of Eq. (4.5)

[(G · Σxc) ·G]<

= θ(t− t2)
[
GR · Σ>

xc ·G< −GR · Σ<
xc ·G> +G> · ΣA

xc ·G< −G< · ΣA
xc ·G>

]
.

With the above result, Eq. (4.5) can be written in compact form as

i
∫ t

−∞
dt1G

R(t, t1)vxc(t1)G<(t1, t) + c.c.

= i
∫ t

−∞
dt1

∫ t1

−∞
dt2G

R(t, t1)[Σ>
xc(t1, t2)G<(t2, t)− Σ<

xc(t1, t2)G>(t2, t)] + c.c.,

(4.7)

where the integration over the spatial coordinates is implied. For computa-

tional convenience we consider Eq. (4.7) in the low temperature limit T→ 0.
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The electron-photon collision integral on the r.h.s. then accounts for the spon-

taneous photon emission of the excited electrons and the broadening in the

electronic levels. Here, the Keldysh components of the KS Green’s functions

are defined as usual [51]

G>(1, 2) = −i
∑
j

(1− fj)φj(r1, t1)φ∗j(r2, t2), (4.8)

G<(1, 2) = i
∑
j

fjφj(r1, t1)φ∗j(r2, t2), (4.9)

GR(1, 2) = −iθ(t1 − t2)
∑
j

φj(r1, t1)φ∗j(r2, t2), (4.10)

where fj is the fermion occupation number and {φj} are the KS orbitals. For

definiteness we assume that the external potential vext does not depend on

time for t < 0. Hence, the orbitals {φj} are solutions of the time-dependent

KS equations with the initial condition φj(rt) = φj(r)e−iεjt for −∞ < t ≤ 0.

Using Eq. (4.6) for the self-energy together with Eq. (4.3), lesser and greater

components of Σx are given as for the product of two Keldysh functions [51]

Σ≷x (1, 2) = i
∑
α

(λαr1)(λαr2)G≷(1, 2)W≶α (t1, t2), (4.11)

where

W≷α (t1, t2) = ω2
α

( −i
2ωα

)
e±iωα(t2−t1) ± δ(t1 − t2). (4.12)

Further employing Eqs. (4.8)-(4.12), Eq. (4.7) becomes

i
∑
i,j

∫ t

−∞
dt1[〈φi(t1)|vx(t1) |φj(t1)〉 fi − Sij(t1)]φ∗j(t)φi(t)

+ c.c. = 0, (4.13)
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where we defined

Sij(t1)=
∑
k,α

∫ t1

−∞
dt2 d

α
ik(t2)dαkj(t1)[(1− fi)fkW>

α (t1, t2)

− fi(1− fk)W<
α (t1, t2)].

Here, dαik(t) = λα〈φi(t)|r |φk(t)〉 are dipole matrix elements projected on the

coupling constant of the α-mode. In Eq. (4.13) the matrix elements of vx are

constructed from the matrix elements Sij of the self-energy. These include

combinations of occupied-unoccupied electronic states (i, k) with theEα pho-

ton propagator W≷α , which describe physical processes of excitation (anni-

hilation) of electron-hole pairs by photon absorption (emission). We note

that Eq. (4.13) can be alternatively derived via variational principle from the

Keldysh action functional, with the exchange part given by

Ax =

∫
C
d1

∫
C
d2 θ(z1 − z2)Σ>

x (1, 2)G<(2, 1)

=
∑
i,k,α

∫
C
dz1

∫
C
dz2 d

α
ik(z2)dαki(z1)(1− fi)fkθ(z1 − z2)

[
ω2
α

( −i
2ωα

)
eiωα(z2−z1) + δ(z1 − z2)

]
,

where z denotes the contour variable. Furthermore, the time-dependent

mean-field potential is evaluated from Eq. (4.4) as

vMF(rt)=−
∑
α

ωα(λαr)
∫ t

0

dt1 sin[ωα(t−t1)](λαR(t1))

−
∑
α

(λαr) [(λαR(0)) cos(ωαt)− (λαR(t))] , (4.14)

where R(t) =
∫
d3r rn(rt) is the expectation value of the dipole moment oper-

ator of the electronic system. In the special case of time-independent external



4.3. QED-TDOEP equation 81

-0.9

-0.7

-0.5

-0.3

∆
n

(a)
OEP
Exact
Classical

0.0 0.5 1.0 1.5 2.0 2.5
λ [a.u.]

-0.2

0

0.2

E
 [
a
.u
.]

(b)

Figure 4.1: Comparison of the OEP (red), exact (black) and classical (green) (a)
density ∆n and (b) energy E versus the coupling parameter λ in a.u.. Other param-
eters: ω = 1, vext = 0.2, T = 0.7.

potential, due to time-translational invariance, Eq. (4.7) reduces to

i
∫ +∞

−∞

dω

2π
GR(ω) vx G

<(ω) + c.c.

= i
∫ +∞

−∞

dω

2π
GR(ω)[Σ>

x (ω)G<(ω)− Σ<
x (ω)G>(ω)] + c.c.. (4.15)

Here, the Fourier transforms of the various Keldysh functions are given by

the following expressions

GR(r1, r2, ω) =
∑
j

φj(r1)φ∗j(r2)

ω − εj + iη
, (4.16)

G<(r1, r2, ω) = 2πi
∑
j

fjφj(r1)φ∗j(r2)δ(ω − εj), (4.17)

G>(r1, r2, ω) = −2πi
∑
j

(1− fj)φj(r1)φ∗j(r2)δ(ω − εj), (4.18)
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Σ<
x (r1, r2, ω) = −1

2

∑
j,α

(λαr1)(λαr2)

[
ωα

ω − εj + ωα + iη
− 1

]
fjφj(r1)φ∗j(r2),

(4.19)

Σ>
x (r1, r2, ω) =

1

2

∑
j,α

(λαr1)(λαr2)

[
ωα

ω − εj − ωα + iη
+ 1

]
(1− fj)φj(r1)φ∗j(r2).

(4.20)

Evaluating the frequency integration in Eq. (4.15) with Eqs. (4.16)-(4.20), we

obtain the stationary OEP equation for the equilibrium electron-photon sys-

tem ∑
i,j

[
〈φi|vx |φj〉
εi−εj− iη

fi − Sij
]
φ∗j(r)φi(r) + c.c. = 0, (4.21)

where

Sij =
∑
k,α

dαikd
α
kj(εi − εk − iη)

2(εi − εj − iη)

[ fi(1− fk)
εi − εk − ωα − iη

+
(1− fi)fk

εi − εk + ωα − iη

]
. (4.22)

Here, the limit η → 0 is assumed. Apparently, Eq. (4.22) describes virtual

processes of excitation of electron-hole pairs, supplemented with the virtual

emission of a photon. This equation can be variationally derived by employ-

ing the second-order correction to the ground-state energy

Ex = −1

2

∑
i,k,α

|dαik|2
{
ωα

(1− fi)fk
εi − εk + ωα

− (1− fi)fk
}
, (4.23)

which is the Lamb shift due to the virtual emission of photons [84]. The

second term in Eq. (4.23) comes from the counterterm
∑

α(λαR)2/2 in the

Hamiltonian and accounts for the free electron behavior in the high photon

energy limit ωα →∞.
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4.4 Numerical example

As a proof of principles, we now apply these results to the Rabi model intro-

duced in Sec. 3.4. The one electron choice here prevents from including the

extra error in approximating the standard TDDFT potential vel
xc, thus allowing

us to assess the accuracy of our approximation to the electron-photon poten-

tial vxc. We stress also here that by projecting the Hamiltonian in Eq. (4.1) onto

the 2x2 level space, the electronic kinetic energy gives the tunnelling ampli-

tude between the sites. Moreover, as the total occupation is fixed, the external

and photon fields couple to the on-site occupation difference ∆n = n1 − n2.

This plays the role of the TDDFT density for the model. The projected Hamil-

tonian reads as

Ĥ=−T σ̂x +

[√
ω

2
λ(â+â†)+vext(t)

]
σ̂z+ ω

(̂
a†â+

1

2

)
+
λ2

2
, (4.24)

where the electron-photon coupling strength is given by
√
ω/2λ.

We consider first the description of the system in equilibrium. The sum-

mation in Eq. (4.21) runs over the KS orbitals φ†g = (v̄ ū) and φ†e = (ū − v̄),

with related eigenvalues εg =−W and εe =W , where ū, v̄ =
√

(1± vs/W ) /2

and W =
√
v2

s + T 2. Explicitly, Eq. (4.21) gives

vx = −λ2 vs

W

[
ω(ω + 3W )

(ω + 2W )2
− 1

]
, (4.25)

where the second term corresponds to the classical contribution associated

with the first interaction term in Eq. (4.3). The total energy functional takes

the form

E[vs] = −T 〈σx〉+ vext ∆n+ Ex[vs] +
1

2
ω, (4.26)
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where ∆n = −vs/W and Eq. (4.23) reduces to

Ex =
λ2T 2

W (ω + 2W )
. (4.27)

The Lamb shift of Eq. (4.27) vanishes in the classical limit of coupling λ→∞,

as expected. In Fig. 4.1 we show the calculated OEP density ∆n and total

energy E as functions of the coupling strength λ, compared to the results

from the exact and classical treatment of the electromagnetic field. Here,

0.1 . λ . 1.4 and λ & 1.4 are respectively ultrastrong [85] and deep strong

coupling [86] values. The eigenvalue problem for the static Rabi Hamilto-

nian in Eq. (4.24) is solved by employing the exact diagonalization technique

[87, 88], after proper truncation of the Fock space. We observe that both the

OEP and the classical approximation reproduce qualitatively the electron’s

confinement on the excited level, as the shift in the energy levels increases

with the coupling strength, and recover the exact result in the limit λ → ∞.

In addition, our OEP scheme is by construction exact in the weak coupling

regime. For the densities ∆n shown in (a), we see excellent agreement be-

tween the OEP and the exact results up to λ = 0.7 and above λ = 2. In con-

trast, the classical approximation performs reliably only in the limits of very

small or very high interaction strength. Regarding the energies E shown in

(b), the improvement of the OEP with respect to the classical approach is ev-

ident. Here, the classical result is only asymptotically accurate and largely

underestimating in between. On the contrary, the OEP energy is close to the

exact values in the whole coupling range, with only small deviations around

λ = 1.3.
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Figure 4.2: Comparison of the (a) errors δ∆n in the TDOEP (black) and classi-
cal (blue) density ∆n and (b), (c) TDOEP (red), exact (black), and classical (green)
effective potential veff versus time t in a.u. for the configurations: (a, b) vext =
−0.2 sign(t), λ = 0.1 and (c) vext = 0, λ = 0.1θ(t). Other parameters: ω = 1, T = 0.7.

The TDOEP Eq. (4.13) for the Rabi model simplifies to

i
∫ t

−∞
dt1ṽx(t1)dge(t1)deg(t) + c.c.

= λ2ω

∫ t

−∞
dt1

∫ t1

−∞
dt2 c(t, t1) deg(t2)eiω(t2−t1) + c.c., (4.28)

where ṽx = vx(t) + λ2∆n(t) and c(t, t1) = dge(t)∆n(t1) − dge(t1)∆n(t). More-

over, the mean-field potential of Eq. (4.14) explicitly reads as

vMF(t)=− λ2ω

∫ t

0

dt1 sin[ω(t−t1)]∆n(t1)−λ2∆n cos(ωt)

+ λ2∆n(t).

Employing the numerical algorithm presented in [89], we solve Eq. (4.28)

self-consistently for t > 0, together with the time-dependent KS equation.

The former, which is a Volterra integral equation of the first kind, is eval-

uated using a midpoint integration scheme combined with the trapezoidal
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rule [90]. The latter is propagated with a predictor-corrector scheme us-

ing an exponential midpoint propagator [91]. In Fig. 4.2, we compare the

time-evolution of the calculated TDOEP density ∆n and effective potential

veff with the exact and classical results, approaching the ultrastrong cou-

pling regime in two different setups. In the first setting, we assume that

the electron-photon system, interacting with coupling constant λ = 0.1, is

driven out of equilibrium at t= 0 by a sudden switch in the external pertur-

bation vext(t) = −0.2 sign(t). In the second configuration, we choose a non-

interacting initial state with vext(t) = 0, while switching on at later times the

electron-photon coupling λ(t) = 0.1 θ(t). Here, we use as initial state for the

propagation |Ψ〉 = (1/2 |1〉 +
√

3/2 |2〉) ⊗ |0〉, where |1〉 and |2〉 are the ba-

sis vectors of the electron system, and |0〉 is the photon vacuum field. For

the chosen parameters, the corresponding densities in the two setups un-

dergo off-resonant Rabi oscillations with nearly identical relative behavior.

The errors δ∆n in the TDOEP and classical density are shown in (a) for the

sudden-switch example. The first is remarkably low in the entire coupling

range. The second is about 10% at t = 20 a.u. and increases up to 20% at

t = 40 a.u..The quantum contribution to the TDOEP is given by the r.h.s.

of Eq. (4.28) and its role in the Rabi oscillations is essentially quantified by

the error in the classical density. Significant is also the improvement of the

TDOEP approach against the classical approximation in the effective poten-

tial (it should be noted that, unlike the density, this doesn’t correspond to a

physical observable). As we can see in (b) for the sudden-switch case, and

in (c) for the noninteracting initial configuration, the TDOEP result is very

accurate up to t = 20 a.u.. At later times, small deviations appear, especially

in (c), where the potential shows a more complex dynamics. Nevertheless,

the improvement with respect to the classical result is still evident.

In conclusion, we have showed that the (TD)OEP for the off-resonant Rabi
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model gives accurate stationary properties (dynamics) far beyond the weak-

coupling regime, clearly improving over the classical treatment of the elec-

tromagnetic field. The computational workload of calculating the x-potential

for many-body electron-photon systems from Eq. (4.13) can be reduced by

developing the corresponding KLI approximation [80]. We point out that

formally Eq. (4.1) is a version of the Caldeira-Leggett model [120]. Therefore,

we also obtained an approximate xc functional for open quantum systems

coupled to the Caldeira-Leggett bath of harmonic oscillators. Already at the

zero level of approximation (Eq. (4.14)) we recover the friction contribution

to the dissipation [76].
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Chapter 5

Exchange energy functional for the

spin-spin interaction

5.1 Introduction

Atomistic modelling, with parameters from ab-initio spin density functional

theory (SDFT), has been successfully applied to magnetic nanomaterials for

describing complex phenomena such as surface anisotropy, ultrafast laser-

induced spin dynamics, exchange bias and spin torque [114]. At present the

only source of magnetic coupling in SDFT is the exchange interaction, which

originates from the Pauli exclusion principle and favors spin alignment. In

this chapter1, we propose a full quantum microscopic approach to highly

inhomogeneous magnetic structures by treating the dipole-dipole coupling

as a pairwise interaction within SDFT.

The interaction between the spin magnetic dipole moments of two elec-

trons is a second order term in the 1/c expansion of the QED Hamiltonian

[116]. It arises from the non-relativistic limit of the Breit Hamiltonian of Eq.

1This chapter is part of the article "Exact exchange energy of the ferromagnetic electron
gas with dipolar interactions" by C. Pellegrini, T. Müller, J. K. Dewhurst and E. K.U. Gross,
to be published.
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(3.40) as

Ĥdip =
µ2
B

2

∫
d3x

∫
d3x′ m̂i(x)δ⊥ij(x− x′)m̂j(x′), (5.1a)

δ⊥ij(x− x′) = dij(x− x′)− 8π

3
δijδ

3(x− x′). (5.1b)

Here, δ⊥ denotes the transverse delta function and m̂(x) = ψ̂†(x)σψ̂(x) is

the magnetization density operator, expressed in terms of the Pauli bispinor

ψ̂(x) and the vector of Pauli σ matrices. Repeated indices are to be summed

over. Eq. (5.1a) is the sum of two contributions. The first contribution comes

from the dipole-dipole interaction tensor dij of Eq. (5.1b), which is defined as

dij(x− x′) ≡− ∂2

∂xi∂x′j

1

|x− x′|
− 4π

3
δijδ

3(x− x′)

=
1

r3
(δij − 3r̂ir̂j), (5.2)

where r = x − x′ and r̂ denotes the unit vector along r. Eq. (5.2) is as-

sumed to be valid for r 6= 0. Physically, it describes the interaction between

the magnetization density at x and the dipolar field created by the mag-

netization distribution at all the other points x′ 6= x. The contact term δij

here, ensures that the diagonal elements of dij satisfy the Laplace equation

−∆(1/|x− x′|) = 4πδ3(x− x′) for the scalar potential generated by the mag-

netic charge density in the ferromagnet. Equivalently, this term is required

because the dipolar magnetic field must have zero divergence. Its inclusion

in Eq. (5.2) makes the dipolar tensor dij traceless as well as symmetric. The

second contribution to Eq. (5.1a) comes from the second term in Eq. (5.1b)

and is a contact interaction, which depends on the magnetization density at

the same point.

In Sec. 5.2.1 we recover the micromagnetic dipolar energy as the Hartree

term of SDFT for the dipole-dipole interaction. In Sec. 5.2.2 we derive the
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first approximate exchange functional for calculations of magnetic inhomo-

geneities beyond the mean field micromagnetic approach. In Sec. 5.3 we

conclude with a remark on the functional treatment of the spin contact con-

tribution to the dipolar interaction.

5.2 Dipole-dipole functional

5.2.1 Hartree energy functional

The Hartree term is straightforward to write down. It is simply obtained by

replacing the magnetization density operator m̂(x) in the expression for the

dipole-dipole interaction with its expectation valuem(x)

Edip
H =

µ2
B

2

∫
d3x

∫
d3x′mi(x)dij(x− x′)mj(x′), (5.3)

where dij is given by Eq. (5.2). Eq. (5.3) represents the exact magnetostatic

energy, of which the dipolar micromagnetic energy is a mesoscopic approx-

imation (here m(x) is a microscopic quantity not to be confused with the

magnetization M (x) averaged over a mesoscopic volume of atomic cells).

We point out that at present only this mean field contribution to the dipo-

lar energy is implemented in actual calculations of inhomogeneous magnetic

structures. However, the Hartree treatment of a pairwise interaction is a very

crude approximation, (see, e.g., the case of the Coulomb interaction). In ad-

dition to completely neglecting quantum many-body effects, it is affected by

a self-interaction error. An improved estimate of the real interaction energy

is given by the Hartree-Fock approximation, which significantly lowers the

Hartree energy by inclusion of the exchange (Fock) term. In the next section

we go beyond the current mean field description by deriving an approximate

exchange energy functional for the dipole-dipole interaction.
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5.2.2 Exchange energy functional

The approximation to the exchange (x) energy functional most widely used

in SDFT is the local spin density approximation (LSDA) [12]. In the LSDA,

the x energy of a non-uniform magnetic system is given at each point by the

x energy of the homogeneous electron gas (HEG), with the same spin density

as the local density. Choosing a local coordinate system, with the z-axis along

the direction of the local spin, we evaluate the x energy density of the spin

polarised non-relativistic HEG with dipole-dipole interaction as

edipx (x) = −µ
2
B

2

∫
d3yραβ(r)σiναdij(r)σjβµρµν(−r), (5.4)

where ραβ(r) =
∫
d3kψ†kσ(xα)ψkσ(yβ) is the one-body density matrix with

spin orbitals ψkσ(xα) = (2π)−3/2eik·xδσα. After tracing over the spin in Eq.

(5.4), one obtains

edipx (x) = −µ
2
B

2

∫
d3y


kF

↑∫∫
+

kF
↓∫∫  d3k

(2π)3

d3k′

(2π)3
ei(k−k

′)·rdzz

+

kF
↑kF

↓∫∫
+

kF
↓kF

↑∫∫  d3k

(2π)3

d3k′

(2π)3
ei(k−k

′)·r(dxx+dyy)

 , (5.5)

where the spin polarisation is taken into account by different Fermi vectors

kF
↑,↓ for the different spin components along z. We observe that since the

uniform electron gas is spherically symmetric, the density matrix depends

only on the modulus of the distance, i.e., ρ(r) = ρ(r). Moreover, we can

replace in Eq. (5.5) for the diagonal components of the dipolar tensor dij (Eq.

(5.2)) r̂2
x (as well as r̂2

y and r̂2
z) by the average value 1/3 r̂2. It immediately

follows that the x energy density edipx is equal to zero. We thus conclude

that for the HEG, regardless of the spin polarization, the leading relativistic

correction to the energy due to the dipole-dipole interaction vanishes. This
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Figure 5.1: First order Feynman diagrams for the spin density response function
with magnetic dipole-dipole interaction.

is a general property, and the obtained result is not affected by employing a

fully relativistic description for the HEG.

We then proceed to derive nonlocal corrections to the LSDA for the dipole-

dipole x energy functional. Corrections to the standard LSDA in SDFT are

systematically constructed via the gradient expansion and the linear response

[12]. Here, we follow the second strategy, as it allows one to describe varia-

tions of the magnetizationm(x) also at small x. We thus consider the dipolar

HEG subject to a weak external perturbation in the form of the magnetic field

δV i
q (x) = eiq·xσi, which couples to the spin density ni. The wave vector q is

arbitrary. The dipole-dipole contribution to the x energy can be evaluated as

Edip
x = −1

2

∫
d3q

(2π)3
Kij
x (q)δn(q)iδn(−q)j, (5.6)

where δn(q)i is the induced spin density variation (from an actual calcula-

tion), and the x kernel is given by

Kij
x (q) ≡ ∂2Edip

x

∂ni (q) ∂nj (−q)
= gkl

(
χ−1
)
ik

(
χ−1
)
jl
. (5.7)

Here, we have used the chain rule to express Kij
x in terms of the response

function of the HEG χik = ∂ni/∂Vk and the linear response contribution to

the dipolar x energy functional gkl ≡ ∂2Edip
x /∂V k

q ∂V
l
−q. This is represented
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diagrammatically in Fig. (5.1). The vertex correction diagram a) has the ana-

lytic expression

glk(q, 0) =
1

β2

∑
n,m

∫
d3k

(2π)3

∫
d3k′

(2π)3
vijk−k′σ

i
αδG

0
δε(k, iεn)σlεη

×G0
ηγ(|k + q|, iεn)σjγβG

0
βζ(|k′ + q|, iε′m)σkζθG

0
θα(k′, iε′m), (5.8)

where vijk = 4πµ2
B/3(3k̂ik̂j − δij) is the Fourier transform of the dipolar in-

teraction in Eq. (5.2), and G0
αβ(k, iωn) = δαβ/(iωn − εk) is the unperturbed

Matsubara Green’s function for the paramagnetic electron gas. Summing

over the spin indices in Eq. (5.8) gives

Tr{σiσlσjσk} = 4δilδjk. (5.9)

From Eq. (5.9), since the system is isotropic, we observe that Eq. (5.8) takes

the form

gij(q, 0) = f(q)(3q̂iq̂j − δij), (5.10)

where f(q) denotes a function of the modulus of q and the angular depen-

dence of g on the indices of q is while the traceless symmetric interaction

tensor vijk−k′ . Performing the summation over the Matsubara frequencies and

spin indices we obtain for gzz (gxx = gyy = −1/2 gzz) the expression

gzz =8
4πµ2

B

3

∫
d3k

(2π)3

∫
d3k′

(2π)3

(
nk − nk+q

εk − εk+q

)
×
(
nk′ − nk′+q
εk′ − εk′+q

)
P2(cos θk−k′), (5.11)

where nk is the Fermi distribution function and P2(cos θk) = 1/2(3 cos2 θk−1)

is the Legendre polynomial of second order with cos θk = k̂ · q̂. The main

result of this chapter is the exact evaluation of Eq. (5.11) in terms of one

quadrature. Using the transformations k(′) → ±k(′) − q/2, we recast the
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∼ cos2 θk−k′ term in the form

I(q) =
e2

8π5~2c2q2

∫
d3k

∫
d3k′

nk−q/2nk′−q/2
(k · q)(k′ · q)

×

{[
q · (k + k′)

|k + k′|

]2

+

[
q · (k − k′)
|k − k′|

]2
}
, (5.12)

which looks structurally similar to the response function of the electron gas

with Coulomb interaction [117–119]. In evaluating Eq. (5.12) we generalize

the analytic derivation presented in [119] (see appendix D). The additional

term in Eq. (5.11) simply amounts to the square of the Lindhard function.

We obtain for gzz(q) the following expression

gzz(q) =
e2k2

F

16π3~2c2q2

{ 2

45q

(
7q5 − 15q4 + 30q3 − 20q2 − 144

)
ln |a|

+
2

45q

(
7q5 + 15q4 + 30q3 + 20q2 + 144

)
ln b

+
4

45
q2
(
7q2 + 60

)
ln

2

q
+

16

45

(
11q2 − 18

)
− 2

3
q

[
(2b)3 ln b

(
ln b+ ln

2

q

)
− (2a)3 ln |a|

(
ln |a|+ ln

2

q

)]
+ 8

∫ b

−a
dzz ln |z| [(a+ z)(b− z)W1(z)− (b+ z)(z − a)W2(z)]

− 4

3

(
q + ab ln

∣∣∣ b
a

∣∣∣)2 }
, (5.13)

where W1(z) = ln
∣∣∣z + a

z − b

∣∣∣ and W2(z) = ln
∣∣∣z − a
z + b

∣∣∣, with a = 1 − q/2 and b =

1+q/2 in units of the Fermi vector. The self-energy diagrams b) and c) in Fig.

(5.1) don’t contribute to the corrections to the dipolar x energy, as it can be

checked by evaluating the summation over the spin indices. In this regard

it is worth noting that diagram a) corresponds to the x energy diagram for a

ferromagnetic system with triplet Green’s functions, while both diagrams b)

and c) contain one singlet Green’s function. For completeness we show the
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Figure 5.2: gzz in a.u. as a function of q in units of kF .

expansions of gzz(q) for small and large q:

gzz(q) =


e2k2

F

1080π3~2c2

[
(127 + 60 log 2− 60 log q) q2

5
− 97q4

70
− 53q6

392
+ . . .

]
, q → 0

16e2k2
F

675π3~2c2

(
25

q4
+

11

q6
+ . . .

)
, q →∞.

(5.14)

The second derivative of the result has a logarithmic divergence at q = 0.

Due to the logarithmic factor, the dipolar linear response contribution to the

x energy dominates over the Coulomb-exchange in the limit q → 0. Since

the ratio between dipolar and exchange interaction energies is of the order of

10−3 to 10−4, the crossover to the exchange dominated regime takes place at

values of q which are exponentially small. However, the ground state proper-

ties of the system, such as the spin polarization, are determined by the q → 0

limit and thus by the dipolar interaction. Fig. 5.2 shows the analytic gzz per

electron. Using Eq. (5.7), one can calculate the dipolar x kernel via matrix

multiplication with the response function χ of the HEG. The simplest choice

is approximating χ by the Lindhard function χ0 of the non-interacting para-

magnetic electron gas, i.e., Kx(kF , q) = gχ−1
0 χ−1

0 . The resulting x kernel is

shown in Fig. 5.3 and reaches a constant value in the limit q → ∞. A more
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Figure 5.3: Kzz in a.u. as a function of q in units of kF .

sophisticated approach requires solving the Dyson’s equation to include in-

teracting effects into χ, so that Eq. (5.7) reads as

Kx (kF , q) = g

[(
1

1− (vq +Kx (kF , q))χ0

χ0

)−1
]2

. (5.15)

This expression can be solved algebraically forKx. However, as vq is bounded

and suppressed by a factor 1/c2, this is a very tiny correction. Additionally,

vq reintroduces an explicit directional dependence into the functional, which

makes its evaluation much more complicated.

5.3 Spin contact functional

For completeness we include the expressions of the magnetostatic and x en-

ergy functionals for the spin contact interaction defined in Eqs. (5.1a, 5.1b).

The spin contact interaction has the same form of the exchange interaction,

but is rescaled by the smaller factor µ2
B and is not localized. The magneto-

static term is easily obtained as

ESC
H = −4πµ2

B

3

∫
d3x m2 (x) , (5.16)
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while the LSDA for the x energy is given by

ESC
x = 2πµ2

B

∫
d3x

[
n2(x)− 1

3
m2(x)

]
, (5.17)

where n is the total density.
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Chapter 6

Conclusion and outlook

DFT is currently the most successful and widely used method to describe

the electronic structure of atoms, molecules and solids. Combining numeri-

cal efficiency and accuracy, it is a technique of choice for large-scale quantum

chemistry calculations. While static DFT allows one to calculate ground-state

properties, TDDFT makes excited-state information accessible to an ab initio

treatment, especially optical spectra and (time-resolved) pump-probe exper-

iments. The formalism of standard TDDFT, however, is restricted to matter

systems, while treating the electromagnetic field classically. Quantum effects

of retardation in the two-electron interaction, which become important, for

instance, in an optical cavity, or spin-dependent effects in electronic systems

with magnetic ordering are not accessible. In this thesis we have overcome

this limitation by developing a TDDFT framework for the fully interacting

quantum fields. By construction, our QED-TDDFT opens up to the exciting

possibility of transcribing QED into practical computational algorithms for

modelling complex systems.

In chapter 3 we have proven the RG and van Leeuwen theorems for QED-

TDDFT. The relativistic description of the electrons involves further difficul-

ties related to the field-theoretical framework of QED. Putting on solid basis

the RG theorem requires the renormalization program of QED to eliminate

UV-divergences to all orders of the theory. Suitable renormalization rules can

be deduced by assuming a stable vacuum (i.e., that the external field strength
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is below the Schwinger limit for electron-positron pair production). On the

other hand, since all electron-photon interaction effects are included in one

term of the QED Hamiltonian, relativistic QED-TDDFT is the proper starting

point for deriving more specific (approximate) functional theories. Here, we

have adopted the Coulomb gauge as it is advantageous for actual compu-

tations in condensed-matter problems. Generalizing previous formulations,

we have proven a one-to-one mapping between the pair of internal variables,

Dirac polarization and electromagnetic vector potential, and the pair of exter-

nal variables, external vector potential and external Dirac current. We have

then constructed a KS scheme, which yields the above expectation values

within an auxiliary system of noninteracting Dirac fermions and photons.

However, in atomic, molecular and condensed matter physics, the en-

ergies involved are usually moderate and non-relativistic QED can be as-

sumed to provide an adequate description. This approach has the advantage

of relying on non-relativistic quantum mechanics for the description of the

electrons, while accounting for QED effects below the electron-positron pro-

duction threshold. By taking the non-relativistic limit of QED-TDDFT, we

have obtained a density functional framework for the Pauli-Fierz Hamilto-

nian. The non-relativistic limit automatically makes the no-pair current the

basic variable for the matter system. An important advantage of the Pauli-

Fierz Hamiltonian is that of being a self-adjoint operator in the Hilbert space

(rather than just a formal power series). For instance, non-relativistic QED-

TDDFT is the proper framework for studying the relaxation of excited atoms

to the ground state.

By neglecting spin dependent effects, we have deduced TD(C)DFT for

many-electron systems interacting with quantized electromagnetic modes of

a cavity. Here, boundary conditions for the Maxwell field restrict the effec-

tive modes which couple to the matter system. We have focused on closed

systems within a perfect cubic cavity. It is straightforward but tedious to
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extend the formalism to an arbitrary shape of the cavity (one needs to ex-

pand the radiation field in the corresponding eigenfunctions of the cavity,

where the photon modes obey the Coulomb-gauge condition). By confin-

ing the radiation field within the cavity, the new internal variables for the

field become the expectation values of the allowed photonic modes. The ad-

vantages of formulating TDDFT for cavity QED in the dipole length gauge

have been discussed. First of all, the interaction between field and charges

is expressed in terms of the electric field, and not of the vector potential (as

for the case of the usual minimal-coupling representation). Since the electric

field is strictly causal, the photon mediated interaction between the electrons

is properly retarded, with the electromagnetic field propagating at the correct

speed, c. Also, the electronic system is described by the polarization (charge)

density, which properly accounts for QED in material media (e.g., for chem-

ical applications). In particular, the electric displacement is naturally intro-

duced as the momentum conjugated to the vector potential. We note that

the basic theorems of QED-TDDFT for discretized matter-photon systems

can be formally extended beyond Taylor-expandable fields by the nonlinear

Schrodinger equation approach [14]. Numerically constructing the exact KS

density and KS potential for the Rabi model, we have illustrated the capabil-

ity of this theory to exactly describe (in principle) the dynamics of coupled

matter-photon systems, and contrasted these exact fields with the mean-field

approximation. We have thus developed a potential tool for treating realis-

tic electronic systems in quantum optical settings. Further possible applica-

tions include, for instance, investigating the interplay of photons with nanos-

tructures in nanoplasmonics. However, as for any density functional theory,

practical applications of QED-TDDFT require reliable approximations to the

functionals.

In chapter 4, we have developed such a functional approximation by de-

riving the time non-local equation for the electron-photon TDOEP. In the



102 Chapter 6. Conclusion and outlook

static limit our OEP energy functional corresponds to the Lamb shift of the

ground state energy. This is the largest QED effect in atomic systems, mainly

due to the emission and reabsorption by a bound electron of a virtual pho-

ton. First tests of the new approximation have shown that it accurately re-

produces stationary and dynamical properties of the Rabi model far beyond

the weak coupling regime, with a net improvement over the classical treat-

ment of the electromagnetic field. Current developments include simplifying

the QED-TDOEP scheme along the lines of the TDKLI approximation. More-

over, possible extensions to open quantum systems are being investigated.

Specifically, we are considering the application of the new functional to the

description of dissipation effects in electronic systems coupled to a photon

bath with continuous spectral density.

After focusing on retardation effects, in chapter 5 we have addressed the

addition of magnetic effects to the non-relativistic Coulomb force. In par-

ticular, we have proposed a "density functionalization" of the dipole-dipole

interaction between electronic spins. This interaction is explicitly included

in the weakly relativistic limit of the QED Hamiltonian given by the Breit

term. Currently, only the mean field contribution to the dipolar energy is im-

plemented in micromagnetic calculations of inhomogeneous magnetic struc-

tures at the nanoscale. It can be easily seen that such a contribution corre-

sponds to the classical Hartree energy from a density functional treatment

of the dipole-dipole interaction. In addition, we have derived quantum cor-

rections by evaluating (analytically) the exact exchange energy (Fock term)

for the ferromagnetic electron gas with dipolar interactions, within the linear

response to a noncollinear magnetic field. As for the case of the Coulomb in-

teraction, the developed Hartree-Fock approximation is supposed to signifi-

cantly improve the estimate of the real dipolar energy. Future work includes

implementing and testing the new functional against experimental data.
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Appendix A

Quantum Electrodynamics in

Coulomb gauge

In this appendix we give a detailed derivation of QED in Coulomb gauge. We

start from the classical QED Lagrangian density with external fields aext
µ (x)

and jext
µ (x). This takes the following form [22]

LQED(x) = LM(x)− 1

c
Jµ(x)aext

µ (x) (A.1)

+ LE(x)− 1

c

(
Jµ(x) + jext

µ (x)
)
Aµ(x).

Here, the classical Lagrangian of the Dirac field is defined as

LM(x) = ψ̄(x)
(
i~cγµ∂u −mc2

)
ψ(x),

where

ψ(x) =

(
φ(x)

χ(x)

)
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is the Dirac spinor with the two-component spin functions φ(x) and χ(x).

The gamma matrices are given by

γi =

 0 σi

−σi 0

 , γ0 =

1 0

0 −1

 ,

where σi are the usual Pauli matrices, ψ̄ = ψ†γ0, and

Jµ(x) = ecψ̄(x)γµψ(x)

is the conserved (Noether) current. Further, we use the Minkowski metric

gµν) = (+,−,−,−) to raise and lower the indices. For the classical Maxwell

field one has

LE(x) = −ε0
4
F µν(x)Fµν(x), (A.2)

where Fµν(x) = ∂µAν(x)− ∂νAµ(x) is the electric field tensor and Aµ(x) is the

vector potential.

Now we employ the Coulomb gauge condition for the Maxwell field, i.e.,

~∇ · ~A(x) = 0. Then, it holds that

−∆A0(x) =
1

ε0c

(
J0(x) + j0

ext(x)
)
, (A.3)

where ∆ is the Laplacian. If we impose square-integrability on all of R31,

the Green’s function of the Laplacian becomes ∆−1 = −1/(4π|~r − ~r′|), and

therefore

A0(x) =
1

c

∫
d3r′

J0(x′) + j0
ext(x

′)

4πε0|~r − ~r′|
. (A.4)

1If we consider the situation of a finite volume, e.g., due to a perfect cavity, the boundary
conditions change. These different boundary conditions, in principle, change the Green’s
function of the Laplacian, and thus the instantaneous interaction. We ignore these deviations
from the Coulomb interaction in this work for simplicity.
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Since the zero component of the four potential Aµ(x) is given in terms of the

full current, it is not subject to quantization. The conjugate momenta of the

photon field (that need to be quantized) are the same as in the current-free

theory, and thus the usual canonical quantization procedure applies [22], i.e.

[
Âk(~r), ε0Êl(~r

′)
]

= −i~cδ⊥kl(~r − ~r′), (A.5)

where Êk is the electric field operator, δ⊥kl(~r − ~r′) = (δkl − ∂k∆−1∂l)δ
3(~r − ~r′)

is the transverse delta function and k, l are spatial coordinates only. Equiva-

lently, we can define these operators by their respective plane-wave expan-

sions

~̂A(~r)=

√
~c2

ε0

∫
d3k√

2ωk(2π)3

2∑
λ=1

~ε(~k, λ)
[
â~k,λe

i~k·~r+â†~k,λe
−i~k·~r

]
,

~̂E(~r)=

√
~
ε0

∫
d3k iωk√
2ωk(2π)3

2∑
λ=1

~ε(~k, λ)
[
â~k,λe

i~k·~r−â†~k,λe
−i~k·~r

]
,

where ωk = ck, ~ε(~k, λ) is the transverse polarization vector [22], and the anni-

hilation and creation operators obey

[
â~k′,λ′ , â

†
~k,λ

]
= δ3(~k − ~k′)δλλ′ .

If we further define the magnetic field operator by c ~̂B = ~∇× ~̂A, the Hamilto-

nian corresponding toLE is given in Eq. (3.3). Here, we used normal ordering

(i.e., rearrangement of the annihilation parts of the operators to the right), to

get rid of the infinite zero-point energy. Also, for the Dirac field, the cou-

pling does not change the conjugate momenta. Therefore, we can perform

the usual canonical quantization procedure for fermions, which leads to the

(equal-time) anti-commutation relations [22]

{ψ̂α(~r), ˆ̄ψβ(~r′)} = γ0
αβδ

3(~r − ~r′).
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The Hamiltonian corresponding to LM thus becomes the one of Eq. (3.2),

where we used ~r · ~y = −xkyk.

Using Eq. (A.4) it is straightforward to give the missing terms of the QED

Hamiltonian due to the coupling to the external fields, as well as due to the

coupling between the quantized fields.
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Appendix B

Non-relativistic equations of

motion

To find the non-relativistic limit of Eq. (3.12), we cannot straightaway apply

the decoupling to Eq. (3.51). In fact, since we have to apply the decoupling

consistently to the Hamiltonian, as well as to the current, we need to rewrite

the equation of motion. We start in the Heisenberg picture with

i∂0

[
ecψ̂†γ0γkψ̂

]
=

2emc2

~

[
χ̂†σkφ̂− φ̂†σkχ̂

]
− iec

[
φ̂†
(
σkσl∂l +

←
∂ lσ

lσk
)
φ̂+ χ̂†

(
σkσl∂l +

←
∂ lσ

lσk
)
χ̂
]

− 2ie2

~
εkljÂtot

l

[
φ̂†σjφ̂+ χ̂†σjχ̂

]
.

This leads, by using σlσk = −glk − iεlkjσj and ={φ̂†Âktotφ̂} ≡ 0, to

i~∂0Ĵ
k = 2=

{
−2emc2χ̂†σkφ̂+ e2Âtot

l

[
φ̂†σkσlφ̂− χ̂†σlσkχ̂

]
−ie~cχ̂†

←
∂ lσ

lσkχ̂− ie~cφ̂†σkσl∂lφ̂
}
.
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Adding and subtracting on the r.h.s. the term eφ̂†σk
(

i~c∂0 − D̂
)
χ̂ and em-

ploying Eq. (3.49), we find

i~∂0Ĵ
k = 2e=

{[
χ̂†
(
−i~c

←
∇+ e ~̂Atot

)
· ~σ − φ̂†eAtot

0

−φ̂†e2

∫
d3r′

: φ̂†(~r′)φ̂(x′)+χ̂†(x′)χ̂(x′) :

4πε0|~r − ~r′|
−mc2φ̂†

]
σkχ̂

+cφ̂†σki~c∂0χ̂
}
.

With the help of the definition [...] = [D̂ + mc2]−1, the above equation can be

rewritten as

i~∂0Ĵ
k = 2e=

{[
−φ̂†

(
i~c

←
∇− e ~̂Atot

)
· ~σ[...]†

(
i~c

←
∇− e ~̂Atot

)
· ~σ − φ̂†eAtot

0

−φ̂†e2

∫
d3r′

: φ̂†(x′)φ̂(x′)+χ̂†(x′)χ̂(x′) :

4πε0|~r − ~r′|
−mc2φ̂†

]
σk[...]~σ ·

(
−i~c~∇− e ~̂Atot

)
φ̂

+φ̂†σk
[
i~c∂0[...]~σ ·

(
−i~c~∇− e ~̂Atot

)]
φ̂+ φ̂†σk[...]~σ ·

(
−i~c~∇− e ~̂Atot

)
[
~σ ·
(
−i~c~∇− e ~̂Atot

)
[...]~σ ·

(
−i~c~∇− e ~̂Atot

)
+ eAtot

0

−e2

∫
d3r′

: φ̂†(x′)φ̂(x′)+χ̂†(x′)χ̂(x′) :

4πε0|~r − ~r′|
−mc2

]
φ̂

}
.

Now, if we employ the approximation [...] ≈ 1/2mc2 (also in the Coulomb

terms), we end up with

i~∂0Ĵ
k ≈ i~∂02ec<

{
φ̂†σk

~σ

2mc2
·
(
−i~c~∇− e ~̂Atot

)
φ̂

}
,

which is just the equation of motion for the non-relativistic current (3.53) with

the Pauli-Fierz Hamiltonian.

For the Maxwell field, the non-relativistic limit of Eq. (3.15) is straightfor-

ward with the help of Eq. (3.53). It is only important to see that this does

agree with the equation of motion for Âk due to the Pauli-Fierz Hamiltonian

(3.52). The main difference with respect to the fully relativistic derivation is
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that now we have a term of the form

e

2mc2

∫
d3r Ĵ0(x)

(
Âk(x) + akext(x)

)(
Âk(x) + aext

k (x)
)
.

This term does not change anything in the first order equation, ∂0Âk = −Êk.

In the second order, we find due to Eq. (A.5) that

∫
d3r′

[
Êk(x); Âl(x′)Âl(x

′)
]
Ĵ0(x′)

= 2
i~c
ε0
Âl(x)Ĵ0(x)− 2

i~c
ε0
∂k∆−1∂lÂl(x)Ĵ0(x)

and

2

∫
d3r′

[
Êk(x); Âl(x′)

]
aext
l (x′)Ĵ0(x′)

= 2
i~c
ε0
alext(x)Ĵ0(x)− 2

i~c
ε0
∂k∆−1∂laext

l (x)Ĵ0(x).

Now, with the definition for ∆−1 used in Eq. (A.4), we find that these com-

mutators lead to the terms

−∂k
1

c

∫
d3r′

~∇′ · ~̂Atot(x′) e
mc2

Ĵ0(x′)

4πε0|~r − ~r′|


+ µ0c

(
Âktot(x)

e

mc2
Ĵ0(x)

)

of the equation of motion for the Maxwell field in the non-relativistic limit.

The rest of the derivation follows analogously to the relativistic case.
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Appendix C

Mode expansion

If we restrict the allowed space for the photonic modes, we also need to im-

pose appropriate boundary conditions. Let us first start with a cubic cavity of

lengthLwith periodic boundary conditions. Given the allowed wave vectors

~kn = ~n(2π/L), and the corresponding dimensionless creation and annihila-

tion operators â†~n,λ, â~n,λ, which are connected to their continuous counterparts

by

lim
L→0

L3/2â~n,λ → â~k,λ,

we find that

Âk(~r) =

√
~c2

ε0L3

∑
~n,λ

εk(~n, λ)√
2ωn

[
â~n,λe

i~kn·~r + â†~n,λe
−i~kn·~r

]
.

Here, ωn = c|~n|(2π/L). If we change the conditions at the boundaries to zero-

boundary conditions, then the allowed wave vectors change to ~kn = ~n(π/L),

and the discrete operators obey

lim
L→0

(2L)3/2iâ†~n,λ → â†~k,λ.
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With the normalized mode functions

S(~n · ~r) =

(
2

L

)3/2 3∏
i=1

sin
(πni
L
ri

)
, (C.1)

the field operator reads as

Âk(~r) =

√
~c2

ε0

∑
~n,λ

εk(~n, λ)√
2ωn

[
â~n,λ + â†~n,λ

]
S(~n · ~r).

Here, ωn = c|~n|(π/L).
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Evaluation of I(q)

For convenience we evaluate Eq. (5.12) in cylindrical coordinates with the

polar axis along q, where all the wave vectors are measured in units of kF .

The integrations over the azimuthal and radial coordinates of k and k′ are

readily carried through obtaining

I(q) =
e2k2

F

16π3~2c2q2

3∑
i=0

Ji, (D.1)

where

J0 =− 2

∫∫ b

−a

dz dz′

z z′
[
(z2 + z′2)(λ+ λ′)(2 ln 2 + 1)

+z4 + 6z2z′2 + z′4
]
, (D.2)

J1 = 2

∫∫ b

−a

dz dz′

z z′

[
α2
√
R(z, z′) + β2|β|

]
, (D.3)

J2 =4

∫∫ b

−a

dz dz′

z z′
λ
[
α2 ln |2

√
R(z, z′) + λ′ − λ+ α2|

+β2 ln |2|β|+ λ′ − λ+ β2|
]
, (D.4)

J3 = −4

∫∫ b

−a

dz dz′

z z′
λ
[
β2 ln |β2|+ α2 ln |α2|

]
. (D.5)
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We adopt the same notation as in [119]. Here, a = 1 − q/2, b = 1 + q/2,

α = z+ z′, β = z−z′ and λ(′) = (a+z(′))(b−z(′)). The function R is defined as

R(z, z′) = C0(z)z′2 +B0(z)z′+A0(z), where A0 = z2, B0 = (2 + 2qz− q2)z and

C0 = 1 + 2qz. Evaluating J0 is straightforward and the resulting expression

is

J0 = −(2 + ln 2)8q2 − 2q

[
q2 ln 2− 4

3
(4 + 5 ln 2)

]
ln
∣∣∣a
b

∣∣∣. (D.6)

J1 can be rewritten in the following form

J1 = 4

∫∫ b

−a
dzdz′

(
α

z′

√
R(z, z′) +

β

z′
|β|
)

= 4

∫ b

−a
dz
(
J̄A1 (z) + J̄B1 (z)

)
, (D.7)

where J̄A1 (z) and J̄B1 (z) are evaluated to be [119]

J̄A1 (z) = 1 +
1

4
q2 +

5

2
qz +

(
2− ln

∣∣∣1− 4

q2

∣∣∣) z2 +
B0

4C0

(2z + q)

+
1

4C
3/2
0

z2
[
8− q4 + 4qz(6− q2) + 12q2z2

]
Y (z),

J̄B1 (z) = 2qz − 1− q2

4
− z2(3− 2 ln |z|+ ln |ab|),

with Y (z) = ln
∣∣∣√C0 + 1√
C0 − 1

∣∣∣. The remaining integration in Eq. (D.7) can also be

carried through obtaining

J1 =− 1

q2
− 1

9
+

44

3
q2 + 4

(
4

3
+ q2

)
ln
q

2
+

1

3

[
(q − 2)3 ln b− (q + 2)3 ln |a|

]
+

1

2q3

(
q2 − 1

)2
ln
∣∣∣q + 1

q − 1

∣∣∣+
3

4q3
η5 −

1

2q
η3 −

(
5

2q3
− 3

2q
+
q

4

)
η1

−
(

3

2q
− 2

q3
− q

2

)
η−1 +

(
1

2q
− 1

4q3
− q

4

)
η−3, (D.8)

where ηn = q
∫ b
−a dzC

n/2
0 Y (z). The explicit expressions for η±1,−3 are given in

[119], for η3,5 in appendix D.1. Next, we evaluate J23 = J2 + J3. This term is
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conveniently rewritten as

J23 =4

∫∫ b

−a
dzdz′

λ

z z′
(
α2 + β2

)
ln |4λ|

− 4

∫ b

−a
dz
λ

z

[
N̄1(z) + N̄2(z)

]
, (D.9)

where N̄1(z) and N̄2(z) are defined as follows:

N̄1(z) =

∫ b

−a
dz′

α2

z′
ln |α2 + λ′ − λ− 2

√
R(z, z′)|, (D.10)

N̄2(z) =

∫ z

−a
dz′

β2

z′
ln |2β(z − b)|+

∫ b

z

dz′
β2

z′
ln |2β(z + a)|. (D.11)

Eqs. (D.10) and (D.11) can be integrated by parts obtaining

N̄1(z) =

∫ b

−a

dz′

α

(
z2 ln |z′|+ 1

2
z′2 + 2zz′

)(
qz√
R(z, z′)

− 1

)

+

(
z2 ln

∣∣∣ b
a

∣∣∣+ q + 4z

)
ln |2λ| (D.12)

N̄2(z) =

(
z2 ln

∣∣∣ b
a

∣∣∣+ q − 4z

)
ln |2λ|+

(
3

2
z2 − ln |z|z2

)
×W1(z) +

∫ b

−a
dz′
(
z2 ln |z′|+ 1

2
z′2 − 2zz′

)
1

β
, (D.13)

where we have used the notation W1(z) = ln | z+a
z−b |. Subsequent substitution

of Eqs. (D.12) and (D.13) in Eq. (D.9) gives

J23 =4q

[
q +

(
ab+

2

3

)
ln
∣∣∣ b
a

∣∣∣] (2 ln 2 + 1)− 8

3
q ln

∣∣∣ b
a

∣∣∣
+ 6

∫ b

−a
dzλzW2(z)− 4 (qΦ1 + 2Φ2 + qΦ3 − Φ4) . (D.14)

Here, we have defined W2(z) = ln | z−a
z+b
|,

Φ1 =

∫ b

−a
dzλ

∫ b

−a
dz′
(

1

2
z′2 + 2zz′

)
1

α
√
R(z, z′)

, (D.15)
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Φ2 =

∫ b

−a
dzλz

∫ b

−a
dz′

z′

αβ
ln |z′|, (D.16)

Φ3 =

∫ b

−a
dzλ

∫ b

−a
dz′z2 ln |z′| 1

α
√
R(z, z′)

, (D.17)

Φ4 =

∫ b

−a
dzλzW1(z) ln |z|. (D.18)

By writing Φ1 as

Φ1 =
1

2

∫ b

−a
dzλ

∫ b

−a
dz′

1√
R(z, z′)

[
z′ + 3z

(
1− z

α

)]
, (D.19)

and performing the integrations over z′

∫ b

−a
dz′

z′√
R(z, z′)

=
1

C0

(2z + q)− B0

C
3/2
0

Y (z), (D.20)

∫ b

−a
dz′

1√
R(z, z′)

=
2√
C0

Y (z), (D.21)

∫ b

−a
dz′

1

α
√
R(z, z′)

= − 1

qz
W2(z), (D.22)

we get

Φ1 =
1

2

∫ b

−a
dz

λ√
C0

[
2z + q√
C0

+

(
6z − B0

C0

)
Y (z)

]
+

3

2q

∫ b

−a
dzλzW2(z). (D.23)

The last term in Eq. (D.23) cancels with the same contribution of opposite

sign in Eq. (D.14). The remaining integrals can be carried out as follows

1

2

∫ b

−a
dzλ

2z + q

C0

=
1

24q4

[
−6q + 16q3 + 6q5 − 3(q2 − 1)3 ln

∣∣∣q + 1

q − 1

∣∣∣] , (D.24)



Appendix D. Evaluation of I(q) 117

−1

2

∫ b

−a
dzλ

Y (z)

C
3/2
0

[B0 − 6zC0]=− 5

16q4
η5+

(
9

16q2
+

1

q4

)
η3−

(
3

16
− 1

16q2
+

9

8q4

)
η1

−
(
q2

16
− 3

8
+

13

16q2
− 1

2q4

)
η−1 +

(
3

16q2
− 1

16q4
− 3

16
+
q2

16

)
η−3.

(D.25)

We then write Eq. (D.16) as

Φ2
z ↔ z′

= −
∫ b

−a
dzz ln |z|

∫ b

−a
dz′

λ′z′

αβ
(D.26)

= −
∫ b

−a
dzz ln |z|

[
(b+ z)(a− z)

∫ b

−a
dz′

z′

αβ
+ (q + z)

∫ b

−a
dz′

z′

β
−
∫ b

−a
dz′

z′2

β

]
,

(D.27)

where each of the integrations in z′ can be performed

∫ b

−a
dz′

z′

αβ
=

1

2
(W1(z) +W2(z)) , (D.28)

∫ b

−a
dz′

z′

β
= −2 + zW1(z), (D.29)

∫ b

−a
dz′

z′2

β
=

1

2
[a(a− 2z)− b(b+ 2z)] + z2W1(z). (D.30)

Substituting Eqs. (D.28-D.30) in Eq. (D.27), and carrying through the ele-

mentary integrations over z, we obtain the following result for Φ2 in terms of

one quadrature

Φ2 = −1

2

∫ b

−a
dzz [λW1(z)− (b+ z)(z − a)W2(z)] ln |z|−1

2
q(q+a2 ln |a|−b2 ln |b|).

(D.31)
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We follow the same procedure for Φ3 given in Eq. (D.17)

Φ3
z ↔ z′

=

∫ b

−a
dz ln |z|

∫ b

−a
dz′

λ′z′2

α
√
R(z, z′)

=

∫ b

−a
dz ln |z|

[
(b+ z)(a− z)

∫ b

−a
dz′

z′2

α
√
R(z, z′)

+ (q + z)

∫ b

−a
dz′

z′2√
R(z, z′)

−
∫ b

−a
dz′

z′3√
R(z, z′)

]
. (D.32)

Here we have

∫ b

−a
dz′

z′2

α
√
R(z, z′)

=
1

C0

(2z + q)− 1

C
3/2
0

(B0 + 2zC0)Y (z)− z

q
W2(z), (D.33)∫ b

−a
dz′

z′2√
R(z, z′)

=

(
b

2C0

− 3B0

4C2
0

)√
R(z, b) +

(
a

2C0

+
3B0

4C2
0

)√
R(z,−a)

+
2√
C0

(
3B2

0

8C2
0

− A0

2C0

)
Y (z), (D.34)∫ b

−a
dz′

z′3√
R(z, z′)

=

(
b2

3C0

− 5B0b

12C2
0

+
5B2

0

8C3
0

− 2A0

3C2
0

)√
R(z, b)−

(
a2

3C0

+
5B0a

12C2
0

+
5B2

0

8C3
0

− 2A0

3C2
0

)√
R(z,−a)−

(
5B3

0

16C3
0

− 3A0B0

4C2
0

)
2√
C0

Y (z).

(D.35)

Substituting Eqs. (D.33-D.35) in Eq. (D.32), we obtain with some algebra

Φ3 = Φ̄1 + Φ̄2 + Φ̄3, (D.36)

where

Φ̄1 = −1

q

∫ b

−a
dz z ln |z|(b+ z)(a− z)W2(z), (D.37)

Φ̄2 =

∫ b

−a
dz
[
− 19

32q3
C2

0 +

(
139

96q3
− 9

32q

)
C0−

15

16q3
+

25

16q
− 5

32
q+

(
1

16q3
− 3

4q
+

17

32
q+

q3

32

)
C−1

0

+

(
− 1

16q
− 13

96q3
+

5q

32
+
q3

24

)
C−2

0 +

(
5

32q3
− 15

32q
+

15

32
q − 5

32
q3

)
C−3

0

]
ln |z|,

(D.38)
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Φ̄3 =

∫ b

−a
dz C

−7/2
0

[(
−4 + 2q2 − q4

4

)
z +

(
−16q +

11

2
q3 − q5

4

)
z2

+

(
8− 20q2 +

11

2
q4 − q6

8

)
z3 +

(
36q + 2q3 +

5

4
q5

)
z4

+

(
60q2 +

25

2
q4

)
z5 + 35q3z6

]
ln |z|Y (z). (D.39)

Evaluating Φ̄2 is elementary. Moreover, it can be shown [119] that Φ̄3 is equiv-

alent to

Φ̄3 =
1

8q

3∑
n=−3

γn
1

2n+ 1

[
(1 + q)2n+1 ln b ln

∣∣∣2b
q

∣∣∣− q̃2n+1 ln |a| ln
∣∣∣ q̃ + 1

q̃ − 1

∣∣∣+ Ωn

]
,

(D.40)

where

γ3 =
35

8q3
, γ2 = − 45

4q3
+

25

8q
, γ1 =

69

8q3
− 117

8q
+

5

8
q, γ0 = − 3

2q3
+

29

4q
+ 3q − q3

8
,

γ−1 = − 3

8q3
+

11

4q
− 7

4
q − q3

8
, γ−2 =

3

4q3
− 3

8q
− 3q3

8
, γ−3 = − 5

8q3
+

15

8q
− 15

8
q +

5q3

8
.

Here q̃ = |1 − q| and the explicit expressions for Ω0,±1 are given in [119], for

Ω±2,±3 in Appendix D.1.

D.1

η3 =
1

5

[
4q(2 + q2)− 2q(5 + 10q2 + q4) ln q − 2(1− 2q + 4q2 − 3q3 + q4)a ln |2a|

+ 2(1 + 2q + 4q2 + 3q3 + q4)b ln 2b
]
,

η5 =
1

7

[
4q

(
3 +

13

3
q2 + q4

)
− 2q(7 + 35q2 + 21q4 + q6) ln q − 2(1− 3q + 9q2 − 13q3

+ 11q4 − 5q5 + q6)a ln |2a|+ 2(1 + 3q + 9q2 + 13q3 + 11q4 + 5q5 + q6)b ln 2b
]
,

η−5 =
1

3

[ 4q

(q2 − 1)2
+ 2 ln

∣∣∣q + 1

q − 1

∣∣∣− (1 +
1

(1 + q)3

)
ln 2b+

(
1 +

1

(1− q)3

)
ln |2a|

+
2q(q2 + 3)

(q2 − 1)3
ln q
]
.
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Ω−3 = h0(q)− 2q

[∫ b

−a
dz
(
C−3

0 + C−2
0 + C−1

0

)
ln |z|

]
+ 2(η−3 + η−5),

Ω−2 = h0(q)− 2q

[∫ b

−a
dz
(
C−2

0 + C−1
0

)
ln |z|

]
+ 2η−3,

Ω2 = h0(q)− 1

30

[
q(416 + 108q2) + q(240 + 120q2) ln 2− q(60 + 300q + 80q2 + 75q3

+ (2b)(92− 16q + 38q2 + 21q3 + 12q4) ln 2b− (q̃ + 1)(137− 77q̃ + 47q̃2 − 27q̃3

+ 12q̃4) ln |q̃ + 1|+ 12q4) ln q + (q̃ − 1)(137 + 77q̃ + 47q̃2 + 27q̃3 + 12q̃4) ln |q̃ − 1|
]
,

Ω3 = h0(q) +
1

210

[
− q

(
4472 +

9028

3
q2 + 520q4

)
− q(2520 + 3640q2 + 840q4) ln 2

+ q(420 + 4410q + 1260q2 + 3675q3 + 924q4 + 490q5 + 60q6) ln q − 2b(704− 142q

+ 386q2 + 437q3 + 464q4 + 230q5 + 60q6) ln 2b+ (q̃ + 1)(1089− 669q̃ + 459q̃2

− 319q̃3 + 214q̃4 − 130q̃5 + 60q̃6) ln |q̃ + 1| − (q̃ − 1)(1089 + 669q̃ + 459q̃2

+ 319q̃3 + 214q̃4 + 130q̃5 + 60q̃6) ln |q̃ − 1|.
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Publications

• "Exact exchange energy of the ferromagnetic electron gas with dipolar

interactions", Camilla Pellegrini, Tristan Müller, John K. Dewhurst and

Eberhard K.U. Gross, (to be published);

• "Optimized Effective Potential for Quantum Electrodynamical Time-

Dependent Density Functional Theory", Camilla Pellegrini, Johannes

Flick, Ilya V. Tokatly, Heiko Appel and Angel Rubio, Phys. Rev. Lett.

115, 093001 (2015), Editor’s Suggestion;

• "Quantum-electrodynamical density-functional theory: Bridging quan-

tum optics and electronic-structure theory", Michael Ruggenthaler, Jo-

hannes Flick, Camilla Pellegrini, Heiko Appel, Ilya V. Tokatly and An-

gel Rubio, Phys. Rev. A 90, 012508 (2014), Editor’s Suggestion.
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