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Abstract

In the last years, nanoplasmonics has become an important research field in the realm of
light-matter interactions due to the wide range of applications. Driven by the interaction
of electromagnetic radiation on nanostructures, resonant excitations of the so-called sur-
face plasmons at the frequencies of electronic excitations in matter, leads to an enhanced
of the local electric field.

Motivated by this phenomenon, in this thesis, we have modeled different linear and non-
linear interaction processes between electromagnetic radiation and low-dimensional nanos-
tructures to simulate particular physical phenomena based on nanoplasmonics. Depend-
ing on the length scale of the system to be modeled, we have used different techniques,
ranging from classical to atomistic ab-initio methods.

Specifically, we have performed: (i) DDA and finite element method calculations to ana-
lyze the plasmonic behaviour of recently synthesized (by a collaborative research group)
non-stoichiometric heavily-doped semiconductor nanocrystals (Cu2-xS, and WO3-x); (ii)
fully atomistic ab-initio simulations on metal cluster dimers to analyze the anisotropy
effects of the plasmonic response of this nanostructures, including the electric field en-
hancement and the photoinduced current, as well as the influence of a one-atom junction
between the two atomic conformations; (iii) and finally, motivated by a collaboration with
another experimental research group we have modeled laser ablation processes in low-
dimensional nanostructures, driven by intense and ultrashort laser pulses (in the plasmon
resonance regime). Through these simulations, we have analyzed if Coulomb Explosion
or electrostatic ablation is the mechanism of material removal in the early stage of the
gentle ablation regime.
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Chapter 1

Introduction

Everything we know as ordinary matter is made up of atoms. Hence the capability to

manipulate matter at the atomic and molecular level, to create nanodevices with new

or improved properties and functions due to their small sizes is highly desirable. This is

precisely the goal of the nanoscience and nanotechnology and the reason of their increasing

attention in the last decades [1].

In this context, the nanophotonics understood as the interaction of light with matter

at the nanoscale has become a topic of rapidly increasing scientific interest and techno-

logical relevance, engaging many disciplines [2]. Even more, light-matter interactions at

the nanoscale define the linear and non-linear optical properties of metallic nanostruc-

tures and hence are fundamental to understand and to control nanoscale localization of

light at length scales far below the diffraction limit in the form of surface plasmon (SP)

excitations [3].

These SP excitations can take various forms, ranging from surface plasmon polaritons,

freely propagating excitations of electron density waves along the surface of a conductor,

to localized surface plasmon resonances (LSPR), localized resonant electron oscillations

on metal nanoparticles [4]. The amplitude of these resonant oscillations can overcome the

excitation amplitude by orders of magnitude, leading to a substantial enhancement of the

electromagnetic field (EF) [5].
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This fascinating phenomenon has motivated research and development of plasmonic nanopar-

ticles tailored for a broad range of applications spanning from biomedicine to solar en-

ergy technology [6]. More specifically, between the different applications, it is possible

to find cancer and photothermal therapy [7, 8], biological labels [9], biosensing [10–12],

light-harvesting in photovoltaics [13–15], nanocatalysis [16], optical filters [17], enhanced

optical transmission through subwavelength apertures [18], light guiding and manipula-

tion at the nanoscale [19], different surface enhanced imaging techniques [20–23], and even

computer science [24] among many others.

LSPRs typically arise in noble metals like gold and silver nanostructures. These materials

present attractive and unique optical properties due to they LSPRs as they are stable

under a wide range of conditions and have a high charge carrier density [25] resulting in

enhanced and geometrically tunable absorption and scattering resonances.

However, LSPRs are not limited to these metallic nanostructures and can also be achieved

in other materials like copper [26], aluminium [27], heavily doped semiconductors [28] and

metal oxides [29–32], chalcogenides [33], and even in graphene [34].

An advantage of using heavily doped semiconductors for nanoplasmonics is that their

free carrier concentrations can be dynamically controlled by adjusting certain parameters

as doping, temperature, pressure, stoichiometry, and phase transitions. This ability to

manipulate the free carrier concentration of these nanostructures, allows not only the

engineering of LSPRs but also active control within working devices, providing additional

means of tuning the optical properties not readily available in metals [30,35,36].

However, despite their stoichiometric and undoped structure, it has been recently shown

that anisotropic copper sulfide (CuS) nanocrystals, selectively trapped in the covellite

phase, can exhibit intense and size-tunable LSPR at near-infrared (NIR) wavelengths [37].

On the side of nonstoichiometric cooper chalcogenides nanocrystals (Cu2−xX, with X = S,

Se, Te), these are convenient model systems for assessing the emergence of LSPR due to

self-doping, as cation deficiency can be adjusted not only by selecting crystal phase and

composition in the preparation stage [29,30,38–41], but also by performing post-synthesis
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red-ox and cation-exchange reactions [37].

Thus, control over the structure and the stoichiometry, provides a useful tool for achieving

dynamic and even reversible LSPR tunability through manipulation of the free hole carrier

density, something hard-to-reach in noble metal nanoparticles, in which LSPR response is

permanently locked in once geometric parameters (size and shape) have been engineered.

Nonstoichiometric Cu2−xX nanocrystals have already been proposed to be practically ex-

ploitable in several previousl mentioned applications like biomedical imaging, photother-

mal cancer therapy, energy conversion and storage, and sensing [28–30, 38, 42]. However,

full realization of their technological potential is still in development stage, then a deep

understanding of the detailed physical origin of LSPR on this structures is necessary to

increase the flexibility with which LSPR may be deliberately manipulated by rational

material design.

In this context, and motivated by recently synthesized mixed-phase nonstoichiometric

copper chalcogenides nanocrystas Cu2−xS by a collaborating research group, in chapter 3,

we have performed classical simulations, within the frame of the discrete dipole approxi-

mation (DDA), in order to model and analize theoretically the plasmonic character as well

as the carrier density of these nanostructures by reproducing their experimental extinction

spectra.

As stated before, LSPRs, can also be achieved in transition metal oxides (TMO) nanos-

tructures [31]. In particular, TMOs nanocrystals are interesting candidates to host LSPRs

because they exhibit fascinating properties arising from the unique character of the outer-

d valence electrons [43]. Tungsten oxide nanocrystals are a system of particular interest

for the study of tunable plasmon resonances in nanoparticles, as tungsten oxide is sta-

ble under a wide range of conditions and has a band gap of 2.6 eV, which is ideal for

absorption of visible light.

In the case of WO3−δ, a variety of oxygen-deficient stoichiometries can be obtained, leading

to some contradictory results, ranging from WO2.72 (W18O49) nanowires which appear to

be semiconducting on the basis of electrical transport and photoluminescence studies [44,
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45], to W02.8 (W5O14) nanowires which appear to be metallic on the basis of XPS and

electrical transport measurements [46]. It has been also recently shown that nanoscale

WO2.83 (W24O68) nanorods support strong LSPRs and that these LSPRs account for a

strong absorption feature ranging from the red edge of the visible to the NIR region [36].

Considering the above, and with the extra motivation of recently synthesized nonstoi-

chiometric WO3−δ nanocrystals of hemitubular morphology by a collaborating research

group, in chapter 4, we have performed classical and semiclassical calculations, within the

frame of the DDA and finite element method with the aim of sheed light on the unique

structural-optical properties, of these novel nanostructures, which experimentally show

tunable NIR to mid-IR plasmon resonances, essentially dependent on their aspect ratio.

As mentioned above, the recent advances in the fabrication and characterization of nan-

odevices have opened the possibility of tailoring plasmonic modes and, as a consequence,

the response of nanosystems to external radiation [47–49]. From these advancements, a

number of applications have been realized and/or proposed over the last few years, in-

cluding optoelectronic hybrid devices [50,51], optical nanoantennas [52], optical traps [53],

nano-sensors [54–56], and broad-band light harvesting devices [57], among many others.

Many properties of these nanodevices can be well understood in terms of classical op-

tics [4]. However, if one of the characteristic lengths of the system reaches the subnano-

metric scale, quantum effects emerge in the optical response [48,58], as has been observed

over the last few years in a series of breakthrough experiments [59–63]. In this regime, the

theoretical treatment of the electromagnetic response must include the inhomogeneities

of valence-electron densities and of photoinduced currents between the constituents of the

device. Although there are some recent theoretical attempts aimed at incorporating such

effects into the realm of classical optics [64,65], in principle, the quantum behavior of both

ground- state and light-induced densities should be explicitly treated to obtain reliable

theoretical predictions.

A prototypical case is a system made up of two metallic nanoparticles with subnanomet-

ric separation. In this metallic nanodimer, the establishment of a photoinduced electric
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current between the particles changes the plasmonic modes of the system [66–68]. The

main trends [69, 70] can be explained by describing the nanoparticles with the spher-

ical jellium model in which the atomic structure is neglected, and by evaluating the

optical response using the quantum mechanical time-dependent density functional the-

ory (TDDFT) [71–74]. The latter provides the necessary accuracy when describing both

the inhomogeneity of the electron density and the inherent nonlocality of the electro-

magnetic response. Thus, the combination of the jellium model and the TDDFT-based

quantum treatment of light-matter interactions defines what is now considered to be

state of the art in theoretical nanoplasmonics. Consequently, this approach has been

applied to analyze the tunable response properties of nanorods [75], plasmonic cavities

formed by nanowires [76–79], nanomatryushkas [80], and more recently, the optical prop-

erties of doped semiconductor nanocrystals [81]. Furthermore, the predictions of the jel-

lium/TDDFT method can also be used to assess [76, 78] the capabilities of sophisticated

refinements of classical optics [64, 65, 82–90], whose range of applicabilities is certainly

broader because the numerical implementation of fully quantum methods is limited to

systems containing up to thousands of atoms.

The widespread use of the jellium model when analyzing simple sp systems can be easily

justified on the basis of the collective character of the plasmonic response. Moreover,

the dynamical screening due to d electrons in noble-metal nanostructures can be mim-

icked by a dielectric background with an appropriate dielectric function [91]. Then, the

atomic structure can be safely neglected in nanostructures made up of weakly interacting

compact elements. However, this is not a valid approximation in systems like hybrid

nanoclusters [92], where the chemical composition of the nanoparticle is essential to un-

derstanding its optical properties. As mentioned previously, the electromagnetic response

of a nanodimer is greatly affected by the induced current between the particles. Therefore,

in chapter 6, by using atomistic TDDFT we study how the relative orientation of theese

nanodimers, leading to different atomic arrangements around the dimer junction, have to

be taken into account to quantify the actual role played by the anisotropy of the atomic

structure in the establishment of induced photocurrents and to determine those regimes
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in which its description is relevant.

Additionally, in chapter 7 we show how the influence of a one-atom junction between the

two atomic cluster modify their absorption spectra, leading (or not) to the establishment

of a photoinduced electric current between the particles. Even more, depending on the

magnetic nature of the atom bridging the system, we studied the possibility of a spin-

dependent contribution to the absorption spectra, and then to the optical properties of the

dimer, which could have tremendous implications on the development of optoelectronic

devices.

One of the most determinant ingredients in the recent advences in nanophotonics is the

rapid development, and the increasing availability of intense and ultrashort laser systems

over the last years, which has opened up a wide range of new applications in industry,

material science, medicine, and even in the arts. One important physical effect in light-

matter interaction driven by these intense and ultrashort laser pulses, is the capacity to

couple large amounts of energy into the target on a femtosecond time scale, leading to a

growing interest in material removal or laser ablation induced by intense and ultrashort

lasers pulses, which can be used for the deposition of thin films, the creation of new

materials, for micromachining, and even for picture restoration and cleaning [93,94].

Regarding the time scales, femtosecond laser ablation has the important advantage in such

applications compared with standard ablation using nanosecond pulses because there is

little or no secondary effects like mechanical or thermal damage on the target being

ablated, i.e., neither collateral damage due to shock waves, nor heat conduction/difussion

are produced in the material. [94–102].

Along with the great interest in the material removal induced by intense femtosecond lasers

pulses, several experimental and theoretical studies has been published on the topic, some

of them including different analytical models wich fits reasonably well the experimental

results of ultrashort laser ablation processes [103–107], and a thorough knowledge of the

short-pulse laser interaction with the target material is being reached rapidly. However,

many fundamental questions remain concerning the physical origin of the material removal
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process by femtosecond laser irradiation [108].

On of this questions is what is the physical mechanism of ion removal from a surface

illuminated by a femtosecond laser pulse in the so-called gentle ablation regime. Some

authors argue that the electrons that are removed from the material by the laser pulse,

pull ions from the surface. That is called electrostatic ablation [104, 105, 109]. However

there are even more studies stating that electrons quickly fly away, and the ions are

pushed out of the material by the excessive leftover positive charge [110–119] . That is

the Coulomb explosion (CE) mechanism. Then in chapter 5 we present some results based

on simulations of laser ablation processes of low-dimensional structures, with the goal of

sheed light on the controversy about the mechanism of ablation in the genle ablation

regime.

Last but not least, all the basics corresponding to the theoretical background and the

comptutational details necessary to develop the work of this thesis is presented in chap-

ter 2. Sumarizing, through the following chapters we have modeled different nanoplasmonic-

related systems, going from classical to atomistic ab initio methods. In chapter8 we

present the final conclusions of the work as well as the perspectives.
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Chapter 2

Theoretical & Computational

Background

2.1 Introduction

Localized surface plasmons (LSPs) are collective and non-propagating oscillations (excita-

tions) of conduction electrons around the surface of a metallic object that arise as a result

of a resonant coupling with an external incident electromagnetic (EM) field [4,20,120,121].

Such strong induced charge oscillations are driven by the force exerted by the (oscillating)

incident field, whereas the restoring force depends very sensitively on electron-electron in-

teractions and on the curvature of the surface, leading to the emergence of resonance

modes (localized surface plasmon resonance), and consequently to a field amplification

(enhancement) and concentration in subwavelength regions, both inside, as well as in

the near-field region outside the object, which is the basis of plasmon-enhanced spectro-

scopies [54, 122].

In many cases of interest, the plasmonic properties of a nanostructure can be theoret-

ically characterized just by solving the classical Maxwell’s equations with appropriate

boundary conditions. In these cases, the electromagnetic response of the nanostructure

can be successfully described by a local permittivity ε(ω). That point, together with the
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conceptual simplicity of this local-optics approximation, in adition to the existence of a

number of efficient numerical implementations [120, 123, 124] explains its widespread use

in theoretical classical plasmonics.

For nanodevices where the separation between metallic constituents [125,126] and/or their

radii of curvature is smaller than a few nanometers [127], the local-optics approximation

breaks down and the intrinsic spatially nonlocal nature of the optical response has to

be incorporated into the classical theory, either by using simplified hydrodynamic mod-

els [128, 129] or by defining space-dependent dielectric functions in the metal-dielectric

interfaces [130]. Even if such a nonlocality is included in a very crude manner, many defi-

ciencies of the standard local-optics approximation are remedied. However, the unrealistic

sharp boundaries between a metallic object and the surrounding dielectric medium are

still kept. That is, classical nonlocal optics neglect the inhomogeneity of the electron den-

sity at the surface of a metal (the so-called electron-density spill-out). As a consequence,

features like size-dependent shifts of the main LSP of isolated small nanoparticles [91] are

beyond the scope of classical nonlocal theories1

On the other hand, recent experiments on the optical properties of two metallic nanopar-

ticles at subnanometric separation have pointed out a discrepancy from the predictions

of both local- and nonlocal-optics [60–63, 131–133]. In this regime the optical response

is affected by the overlap of electron densities of the two nanoparticles and by the es-

tablishment of a photoinduced tunnel current between them [65, 69, 70]. The latter can

be treated, even in the realm of local optics, by including effective dielectric media in

what are called quantum-corrected classical methods [65], but the lack of electron density

spill-out is a drawback. For such systems, classical methods appear as inapplicable, which

has contributed to the emergence of the field of quantum nanoplasmonics [58]. As a con-

sequence, methods like time-dependent density functional theory (TDDFT) [71], hitherto

restricted to condensed matter physics and quantum chemistry, are gaining more and

more importance in the field of plasmonics.

1In many practical applications the above-mentioned, and other limitations are not relevant, so non-
local optics can be consider as state of the art in classical plasmonics.
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Then, this chapter is devoted to define the theoretical framework in which this work is

based, and the computational tools used and implemented. It is divided in two main

secctions, the first one is the correspondig to the classical approach, where we shall briefly

describe the basis of scatterig theory in the framework of classical EM theory through the

Maxwell equations and linear optics, being able to describe some idealized models (which

will be done in Chapters X and Y to analize the absorption spectra of real samples).

The second part of this chapter is about ab-initio methods, here we briefly present the

theoretical foundations of TDDFT, and some of its capabilities, required to analyze, the

optical absorption of simple model systems (which will be done in Chapters Z). Finally,

we will briefly mention some implemented features in the Octopus code, in which the

ab-initio calculations were performed (This features were used in Chapters Z and W).

2.2 Classical approach

Matter is composed of a large number of discrete elementary electric charges. If matter

is illuminated by an oscillating EM field, their electric charges are excited and set into

an oscillatory motion at the same frequency of electric field of the incidend wave. This

oscillatory motion of the electric charges is an acccelerated motion, and accelerated charges

radiate electromagnetic energy. This phenomenon is called scattering due to radiation is

scattered by the electric charges, and in general, gives rise to light with a polarization

state different from that of the incident beam2. Aditionally, the electric charges may

transform part of the incident electromagnetic energy into other forms such as heat, a

process called absorption.

However, even at the subnanometer lenght scale, the number of elementary charges form-

ing a nanoparticle is extremely large, and solving the scattering problem directly, for

each charge is impracticable. Fortunately, the same problem can be treated by using

the concepts of macroscopic electromagnetics, which treat the large collection of charges

2Although the oscillatory motion of the electric charges is at the same frequency of electric field of
the incidend wave, the scattered light could not have the same frequency as the incident light.
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as a macroscopic body with a specific distribution of the refractive index. So, begin

with the basic equations governing the electromagnetic response of matter, the so-called

macroscopic Maxwell’s equations.

2.2.1 Macroscopic Maxwell equations

Let us consider a target illuminated by an electromagnetic wave represented by the fields

Einc and Hinc. At the surface of the target the wave is partially refracted (E and H) and

partially reflected (Esca, Hsca). These fields E and H must satisfy the Maxwell’s equations

as well as the vector wave equation, thus we take as a starting point the Maxwell’s

equations for macroscopic electromagnetic fields, that describe the large-scale behaviour

of matter without having to consider atomic scale details at interior points in matter,

which in SI units may be written in the following form

∇ ·D(r, t) = ρext(r, t) (2.1)

∇× E(r, t) = − ∂

∂t
B(r, t) (2.2)

∇ ·B(r, t) = 0 (2.3)

∇×H(r, t) =
∂

∂t
D(r, t) + Jext(r, t) (2.4)

where E(r, t) is the electric field, D(r, t) is the electric displacement or electric flux density,

B(r, t) is the magnetic induction or magnetic flux density and H(r, t) is the magnetic field.

These equations connect the four mentioned fields with the external charge ρext(r, t) and

current density Jext(r, t). The relationship between the flux density fields D and B with

the electric and magnetic fields E andH are given by introducing the electric and magnetic

polarization fields P and M ,

D(r, t) = ε0E(r, t) + P (r, t) , (2.5)

B(r, t) = µ0H(r, t) + µ0M(r, t) , (2.6)
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where ε0 and µ0 are the electric permittivity and the and magnetic permeability of free

space respectively. Since we are dealing with nonmagnetic media, we do not need to

consider the magnetic response represented by M , limiting our description to electric

polarization effects. The electric polarization field P describes the electric dipole moment

per unit volume inside the material, caused by the alignment of microscopic dipoles with

the electric field. It is related to the internal charge density via ∇ · P = −ρ. Charge

conservation (∇ · J = −∂ρ/∂t) further requires that the internal charge and current

densities are linked via3

J =
∂P

∂t
. (2.7)

Inserting Eq. (2.5) into Eq. (2.1), leads to

∇ · E =
ρtot
ε0

. (2.8)

Now, assuming an homogeneous and isotropic medium and approximating its response to

be linear, Eq. (2.5) and Eq. (2.6) can be written as

D = ε0εE , (2.9)

B = µ0µH , (2.10)

where ε is the dielectric constant or relative permittivity and µ = 1 is the relative per-

mittivity of the nonmgnetic medium. The linear relationship between D and E given by

Eq. (2.9) is often also implicitly defined by using the macroscopic electric susceptibility

3We distinguish between external (ρext, Jext) and internal (ρ, J) charge and current densities, so that
in total ρtot = ρext + ρ and Jtot = Jext + J .
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χ, which describes the linear relationship between P and E via4

P = ε0χE . (2.11)

where ε = 1 + χ can be obtained inserting Eq. (2.5) and Eq. (2.11) into Eq. (2.9).

Finally, the internal current density J caused by the electric field E, can be defined via

the conductivity σ by

J = σE . (2.12)

Now, for the sake of simplification we restrict the considerations to only harmonic waves,

hence the time dependence of the fields can be separated with the ansatz

E = E(r)e−iωt , (2.13)

H = H(r)e−iωt . (2.14)

By using Eq. (2.13) and Eq. (2.14) in Eqs. (2.1) to (2.4) and assuming no static charges

(ρ = 0) we obtain

∇ · (εE) = 0 (2.15)

∇× E = iωµ0H (2.16)

∇ ·B = 0 (2.17)

∇×H = (−iεε0ω + σ)E (2.18)

Eq. (2.15) can be further simplified for isotropic and homogeneous matter, for which ε is

4In general, the fields P and E are not necessary parallel (anisotropic media) and can be described
by a series expansion of P in powers of E (nonlinear media), where susceptibilities χijk... are introduced
as constants in relation to E. Then, for each component i = x, y, z of P

Pi = ε0
∑
j

χijEj + ε0
∑
j

∑
k

χijkEjEk + ε0
∑
j

∑
k

∑
l

χijklEjEkEl + ...
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only a scalar, to

∇ · E = 0 . (2.19)

However, it is worth to note that this simplification is not always allowed. Nevertheless, an

approximate solution for scattering by an anisotropic target can be obtained by taking the

solution for each direction separately and averaging them accordingly5. In the following,

we assume for simplicity homogeneous and isotropic materials, for which Eq. (2.19) holds.

For solving these Maxwell equations simultaneously for E and H, Eqs. (2.16) and (2.18)

must be decoupled. This can be achieved by taking the curl of one equation and inserting

the result into the other one, resulting in the vector wave equation or Helmholtz equation

∇2Z − k2Z = 0 , (2.20)

where Z represents either E or H fields, and the wavenumber k satisfies the dispersion

relation

k2 =
ω2

c2

[
ε(ω) + i

σ(ω)

ωε0

]
, (2.21)

=
ω2

c2
n2(ω) , (2.22)

where n(ω) = n′(ω) + in′′(ω) is the complex refractive index. The term in parentheses in

Eq. (2.21) combines the permittivity ε (polarization) with the conductivity σ (absorption)

to give the complex dielectric function ε(ω) = ε′(ω)+ iε′′(ω). Eqs. (2.21) and (2.22) yields

to

n(ω) =
√
ε(ω) . (2.23)

5Se puede hacer referencia al caṕıtulo de los hemitubos de Davide.
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Therefore

ε′ = n′
2 − n′′2 , (2.24)

ε′′ = 2n′n′′ . (2.25)

By solving Eqs. (2.24) and (2.25) for n′ and n′′ we obtain

n′ =

√√
ε′2 + ε′′2 + ε′

2
, (2.26)

n′′ =

√√
ε′2 + ε′′2 − ε′

2
. (2.27)

The term n′′ is called the extinction coefficient and determines the optical absorption of

electromagnetic waves propagating through the medium. It is linked to the absorption

coefficient α of Beer’s law (describing the exponential attenuation of the intensity of a

beam propagating through the medium via I(x) = I0e
αx) by the relation

α(ω) =
2n′′(ω)ω

c
. (2.28)

Consequently, the imaginary part ε′′ of the complex dielectric function determines the

amount of absorption inside the medium. For |ε′| � |ε′′|, the real part n′ of the refractive

index n, quantifying the lowering of the phase velocity of the propagating waves due to

polarization of the material, is mainly determined by ε′. Examination of Eq. (2.21) thus

reveals that the real part of σ determines the amount of absorption, while the imaginary

part contributes to ε′ and therefore to the amount of polarization.

Finally, combining Eq. (2.2) with Eq. (2.4), and assuming no external stimuli, we obtain

the wave equation

∇×∇× E = −µ0
∂2D

∂t2
, (2.29)
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By Fourier transforming Eq. (2.29) to frequency domain we obtain

K(K · E)−K2E = −ε(K, ω)
ω2

c2
E . (2.30)

being c = 1/
√
ε0µ0 the speed of light in vacuum. For transverse waves, (K is perpendicular

to E), K · E = 0, and the generic dispersion relation is obtained from Eq. (2.30)

K2E = −ε(K, ω)
ω2

c2
E . (2.31)

But for longitudinal waves (K is parallel to E), Eq. (2.30) implies that ε(K, ω) = 0, mean-

ing that longitudinal collective oscillations can only occur at frequencies corresponding to

zeros of ε(ω)6.

These kind of longitudinal charge oscillations are referred to as plasmons due to the fact,

that they were first predicted and detected in plasmas [134].

The dielectric function ε(K, ω) describes the response of a system to an external electric

perturbation. It is itself determined by the electronic properties of the material, such

as intra- and interband transitions and collective excitations. In order to convey a rudi-

mentary understanding of the optical and electrical properties described by ε, we will

consider a few classical models: The Drude model, the Lorentz model, and the so-called

Drude-Lorentz model which is a combination of both Drude and Lorentz models. The

Drude model is useful for the understanding of free-electron gases, i.e. ideal metals. The

Lorentz model incorporates single particle excitations, e.g. interband transitions, and can

be used to study insulators and semiconductors, and can be regarded as an extension of

the Drude model.

6With some considerations, we could reach the same result with a different approach by expressing
the fields E and B in terms of a vector potential A(r, t) and a scalar potential φ(r, t)
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2.2.1.1 The Free-electron Gas and The Drude Model

In the following, the dielectric function will be derived for the simple case of an ideal

metal. In this case, the conduction electrons behave like free charged particles. In the

context of this classical model, the equation of motion for the conduction electrons with

mass m and charge −e in a field E is given by

m
∂2

∂t2
u(t) +mγ

∂

∂t
u(t) = −eE(t) , (2.32)

where γ represents the damping due to scattering in the electron gas and provides an

energy-loss mechanism. Assuming an harmonic time dependence E(t) = E0e
−iωt of the

driving field, a particular solution of this equation describing the oscillation of the electron

is u(t) = u0e
−iωt. The complex amplitude u(t) incorporates any phase shifts between

driving field and response via

u(t) =
eE(t)

m(γ2ω2 + iγω)
. (2.33)

The displaced electrons contribute to the macroscopic polarization P = −N e u(t), ex-

plicitly given by

P = − Ne2E(t)

m(ω2 + iγω)
. (2.34)

Using Eq. (2.34) in Eq. (2.9) yields to

D = ε0

(
1−

ω2
p

ω2 + iγω

)
E(t) , (2.35)

where ωp =
√
Ne2/ε0m, is the plasma frequency of the free electron gas. Therefore, the

complex dielectric function of the free electron gas is given by

ε(ω) = 1−
ω2
p

ω2 + iγω
, (2.36)
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where the real and imaginary parts are

ε′(ω) = 1−
ω2
p

ω2 + γ2
, (2.37)

ε′′(ω) =
ω2
pγ

ω(ω2 + γ2)
. (2.38)

As can be seen from Eq. (2.37), ε′(ω) vanishes at a frequency ω =
√
ω2
p − γ2. With

such a frequency dependent dielectric function, the solution of Maxwell’s equations can

be divided into three cases: (i) ε′ < 0, (ii) ε′ > 0, and (iii) ε′ = 0 when ω =
√
ω2
p − γ2. In

region (i), ε′ < 0, the solution to Maxwell’s equations are exponentially damped waves.

Thus, electromagnetic waves with a frequency below
√
ω2
p − γ2 can not exist within a free-

electron gas: from a light-optical point of view the material is not transparent. In region

(ii), ε′ > 0, the solutions are transverse plane waves (damped because of a nonvanishing

γ). As such, the electron gas becomes increasingly transparent for waves with frequencies

above
√
ω2
p − γ2. In region (iii), at exactly ω =

√
ω2
p − γ2, ε′, the real part of the dielectric

function ε(ω) vanishes. In this case, the solutions are associated with longitudinal electric

waves, i.e. plasmons. These longitudinal modes (usually) appear as pronounced peaks.

These modes are often referred to as volume plasmon or bulk plasmon. The classical Drude

model describes the dielectric function of real metals, where the conduction electrons can

be approximated as a free-electron gas relatively well. In the free-electron model, ε → 1

at ω � ωp. For the noble metals (e.g. Au, Ag, Cu), an extension to this model is needed

in the region ω > ωp (where the response is dominated by free s electrons), since the filled

d band close to the Fermi surface causes a highly polarized environment. This residual

polarization due to the positive background of the ion cores can be described by adding

the term P∞ = ε0(ε∞ − 1)E to (1.2a), where P now represents solely the polarization

(1.18) due to free electrons. This effect is therefore described by a dielectric constant ε∞

(usually 1 ≤ ε∞ ≤ 10), and we can write

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
. (2.39)
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2.2.1.2 The Lorentz Model

In metals, the optical response for photon energies below the threshold of transitions

between electronic bands, is described satisfactorily by the complex dielectric function of

the Drude model. However, for some of the noble metals, interband transitions, where

electrons from the filled band below the Fermi surface are excited to higher bands, already

start to occur for quite low energies (approximately 1 eV).

Then, despite the Drude model is sufficient describing the optical properties of metals,

noble metals are inadequately described at visible frequencies. This can be overcome

by adding an harmonic oscillator term mω2
Lu(t) to Eq. (2.32). By adding this term,

interband transitions are thus described using the classical picture of a bound electron

with resonance frequency ωL. This Lorentz discrete transition frequency ωL stands for

the allowed quantum energy of conduction electron transitions from occupied states to

unoccupied states (immediately outside of the conduction band).

Then, the equation of motion now reads

m
∂2

∂t2
u(t) +mγ

∂

∂t
u(t) +mω2

Lu(t) = −eE(t) . (2.40)

Following the same steps as for the derivation of the Drude dielectric function leads to

ε(ω) = 1− Ne2/mε0
(ω2 − ω2

L) + iγω
, (2.41)

= 1− fLω
2
L

(ω2 − ω2
L) + iγω

, (2.42)

where fL is a weighting factor, standing for the oscillator strengh of the transition, repre-

senting the probability of such an excitation. Then, the real and imaginary parts of the

Lorentz dielectric functions read

ε′(ω) = 1− ω2
L(ω2 − ω2

0)

(ω2 − ω2
0)2 + γ2ω2

, (2.43)

ε′′(ω) =
ω2
Lωγ

(ω2 − ω2
0)2 + γ2ω2

. (2.44)
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Again, as for the Drude model, the frequency dependent behavior can roughly be divided

into three regions: (i) ω � ωL, (ii) ω ≈ ωL, and (iii) ω � ωL. In region (i), ε′′ is very

small and hence there is almost no absorption. On the other hand, region (ii) exhibits

a strong absorption. And in region (iii), the binding energy of the electrons is much

smaller than the energy of the perturbation, then the electrons behave like a free electron

gas. Similar to the Drude model, ε′ vanishes at the frequency ω = ωL, suggesting that

plasmons can occur in non-metallic materials, since the condition for the occurrence of

a plasmon excitation (ε′ = 0) can still be fulfilled even if there bound electrons in the

medium.

It should be noted that depending on the target, many different resonant oscillators with

different frequency ωj may exist and then, the Lorentz dielectric function should be written

as sum over all individual resonators, then Eq. (2.42) should be writtes as

ε(ω) = 1−
∑
j

fjω
2
Lj

(ω2 − ω2
Lj) + iγjω

. (2.45)

2.2.1.3 The Drude-Lorentz Model

A medium, where both, free electrons and resonant oscillators in the form of interband

transitions are present, can be described as a combination of the Drude and the Lorentz

model. The first one describing the contribution of free electrons and the second one the

contribution of bound electrons by a single or several oscillators.

Again, allowing j different resonant oscillators with frequencies ωLj and Nj electrons the

dielectric function reads

ε(ω) = 1−
ω2
p

ω2 + iγω
−
∑
j

fjω
2
Lj

(ω2 − ω2
Lj) + iγjω

. (2.46)

Eq. (2.46) is the general form of the Drude-Lorentz dielectric function. However, in order

to perform numerical simulations it can be further simplified. Limiting the model to

only one (j = 1) resonant oscillator (interband transition of energy difference ~ωL), the
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dielectric function of Eq. (2.46) can be written as

ε(ω) = 1−
ω2
p

ω2 + iγω
− fLω

2
L

(ω2 − ω2
L) + iγLω

, (2.47)

where the subscript j of some of the parameters in Eq. (2.46) has been replaced by L to

avoid misunderstandings.

Finally, as in the case of the Drude model, the residual polarization due to the positive

background of the ion cores can be described by a dielectric constant ε∞, then Eq. (2.47)

reads

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
− fLω

2
L

(ω2 − ω2
L) + iγLω

. (2.48)

As we will see in chapters 3 and 4 the Drude-Lorentz dielectric function described by

Eq. (2.48) is qualitatively correct for the description of heavily doped semiconductor

nanostructures.

It is worth to note that both in the Drude model and in the Drude-Lorentz model, the

parameters, ωp and γD , are directly related to the averaged conduction electrons density,

ne , their effective mass, m∗, their Fermi velocity, vF , and their conductivity σ, through

the well-known expressions [20]:

ωp =

√
e2ne
ε0m∗

, (2.49)

γD = γbulk + γsurf '
nee

2

σm∗
+AvF

D
, (2.50)

where the surface scattering contribution to the damping, γsurf , is approximated in terms

of a characteristic length of the nanoparticle, D, and a geometry-dependent parameter

A ∼ ∞. Also, the number of carriers per molecular unit is Ncpm = neM/(ρNA), where

M is the molar mass, ρ is the mass density, and NA is Avogadro’s constant.
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2.2.2 Analitical and Numerical Methods

Exact solutions to Maxwell’s equations are known only for special geometries such as

spheres, spheroids, or infinite cylinders. For targets of arbitrary shapes, numerical imple-

mantations are needed such as the discrete-dipole approximation (DDA).

2.2.2.1 Scattering and Absorption of selected geometries

Localized surface plasmons are non-propagating excitations of the conduction electrons of

metallic nanostructures coupled to the electromagnetic field. These modes arise naturally

from the scattering problem of a small, sub-wavelength conductive nanoparticle in an

oscillating electromagnetic field. The curved surface of the particle excerts an effective

restoring force on the driven electrons, so that a resonance can arise, leading to field

amplification both inside and in the near-field zone outside the particle. This resonance

is called the localized surface plasmon or short localized plasmon resonance.

The interaction of a particle of size d with the electromagnetic field can be analyzed using

the simple quasi-static approximation provided that the particle is much smaller than the

wavelength of light in the surrounding medium. In this case, the phase of the harmonically

oscillating electromagnetic field is practically constant over the particle volume, so that

one can calculate the spatial field distribution by assuming the simplified problem of a

particle in an electrostatic field. The harmonic time dependence can then be added to

the solution once the field distributions are known. As we will show below, this lowest-

order approximation of the full scattering problem describes the optical properties of

nanoparticles of dimensions below 100 nm adequately for many purposes.

2.2.2.2 Spheres

We start with the most convenient geometry for an analytical treatment: a homogeneous,

isotropic sphere of radius a located at the origin in a uniform, static electric field E = E0ẑ
7.

7Se puede poner una figura.
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The surrounding medium is isotropic and non-absorbing with dielectric constant εm, and

the field lines are parallel to the z-direction at sufficient distance from the sphere. The

dielectric response of the sphere is further described by the dielectric function ε(ω). In

the electrostatic approach, we are interested in a solution of the Laplace equation for the

potential, ∇2Φ = 0, from which we will be able to calculate the electric field E = −∇Φ.

Due to the azimuthal symmetry of the problem, the general solution is of the form [135].

Φ(r, θ) =
∞∑
l=0

[
Alr

l +Blr
−(l+1)

]
Pl(cos θ) , (2.51)

where Pl(cos θ) are the Legendre Polynomials of order l, and θ is the angle between the

position vector r at a point “P” and the z-axis. Due to the requirement that the potentials

remain finite at the origin, and applying the appropiate boundary conditions the solution

for the potentials Φin inside and Φout outside the sphere, these can be written as

Φin = − 3εm
ε+ 2εm

E0r cos θ , (2.52)

Φout = −E0r cos θ +
ε− εm
ε+ 2εm

E0a
3 cos θ

r2
. (2.53)

It is worth to note that Φout describes the superposition of the applied field and that of a

dipole located at the particle center, then we can rewritte Φout by introducing the dipole

moment p as

Φout = −E0r cos θ +
p · r

4πε0εmr3
, (2.54)

with

p = 4πε0εma
3 ε− εm
ε+ 2εm

E0 . (2.55)

Therefore, we see that the applied field induces a dipole moment inside the sphere of

magnitude proportional to |E0|. Then, if we introduce the complex polarizability α of a

small sphere of sub-wavelength diameter in the electrostatic ap- proximation, defined via
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p = ε0εmαE0, we arrive at

α = 4πa3
ε− εm
ε+ 2εm

. (2.56)

We note that it shows the same functional form as the Clausius- Mossotti relation [135]. It

is apparent that the polarizability experiences a resonant enhancement under the condition

that |ε + 2εm| is a minimum, which for the case of small or slowly-varying Im[ε] around

the resonance simplifies to

Re[ε(ω)] = −2εm . (2.57)

This relationship is called the Fröhlich condition and the associated mode (in an oscillating

field) the dipole surface plasmon of the metal nanoparticle. For a sphere consisting of a

Drude metal with a dielectric function (1.20) located in air, the Fröhlich criterion is met

at the frequency ω0 = ωp/
√

3. Eq. (2.57) further expresses the strong dependence of

the resonance frequency on the dielectric environment: The resonance red-shifts as εm

is increased. Metal nanoparticles are thus ideal platforms for optical sensing of changes

in refractive index. We note that the magnitude of α at resonance is limited by the

incomplete vanishing of its denominator, due to Im[ε(ω)] 6= 0.

The distribution of the electric field E = −∇Φ can be evaluated from the potentials (2.52)

and (2.54) to

Ein =
3εm

ε+ 2εm
E0 , (2.58)

Eout = E0 +
3n(n · p)− p

4πε0εm

1

r3
. (2.59)

As expected, the resonance in α also implies a resonant enhancement of both the internal

and dipolar fields. Now, for small spheres with radius a� λ, its representation as an ideal

dipole is valid in the quasi-static regime, i.e. allowing for time-varying fields but neglecting

spatial retardation effects over the particle volume. Under plane-wave illumination with

E(r, t) = E0e
−iωt, the fields induce an oscillating dipole moment p(t) = ε0εmαE0e

−iωt,
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with α given by the electrostatic result of Eq. (2.56). The radiation of this dipole leads

to scattering of the plane wave by the sphere, which can be represented as radiation

by a point dipole. From the viewpoint of optics, it is much more interesting to note

that another consequence of the resonantly enhanced polarization α is a concomitant

enhancement in the efficiencywith which a metal nanoparticle scatters and absorbs light.

The corresponding cross sections for scattering and absorption Csca and Cabs can be

calculated via the Poynting vector [3] to

Csca =
k4

6π
|α|2 =

8π

3
k4a6

∣∣∣∣ ε− εmε+ 2εm

∣∣∣∣2 , (2.60)

Cabs = k Im[α] = 4πka3 Im

[
ε− εm
ε+ 2εm

]
. (2.61)

For small particles with a � λ, the efficiency of absorption, scaling with a3, dominates

over the scattering efficiency, which scales with a6. We point out that no explicit assump-

tions were made in our derivations so far that the sphere is indeed metallic. Eqs. (2.60)

and (2.61) whith the expressions for the cross sections, are thus valid also for dielectric

scatterers, and demonstrate a very important problem for practical purposes. Due to the

rapid scaling of Csca ∝ a6, it is very difficult to pick out small objects from a background

of larger scatterers. They also shows that indeed for metal nanoparticles both absorp-

tion and scattering (and thus extinction) are resonantly enhanced at the dipole particle

plasmon resonance, i.e. when the Frölich condition given by Eq. (2.57) is met [20]. For a

sphere of volume V and dielectric function ε = ε′ + iε′′ in the quasi-static limit, then the

explicit expression for the extinction cross section Cext = Cabs + Csca is

Cext = 9
ω

c
ε3/2m V

ε′′

[ε′ + 2εm]2 + ε′′2
. (2.62)

2.2.2.3 Ellipsoids

We now relax the assumption of a spherical nanoparticle shape. However, it has to be

pointed out that the basic physics of the localized surface plasmon resonance of a sub-

wavelength metallic nanostructure is well described by this special case. A slightly more
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general geometry amenable to analytical treatment in the electrostatic approximation is

that of an ellipsoid with semiaxes a1 ≤ a2 ≤ a3, specified by x2/a21 + y2/a22 + z2/a23 = 1.

A treatment of the scattering problem in ellipsoidal coordinates [3] leads to the following

expression for the polarizabilities αi along the principal axes (i = 1, 2, 3):

αi = 4π a1a2a3
ε− εm

3εm + 3Li(ε− εm)
, (2.63)

where Li is a geometrical factor given by

Li =
a1a2a3

2

∫ ∞
0

dq

(a2i + q)f(q)
, (2.64)

with f(q) =
√

(q + a21)(q + a22)(q + a23). The geometrical factors satisfy
∑
Li = 1, and

for a sphere Li = 1/3. An important special class of ellipsoids are spheroids. For prolate

spheroids, the two minor axes are equal (a2 = a3), while for oblate spheroids, the two ma-

jor axes are of same size (a1 = a2). An examination of Eq. (2.63) reveals that a spheroidal

metal nanoparticle exhibits two spectrally separated plasmon resonances, corresponding

to oscillations of its conduction electrons along the major or minor axis, respectively. The

resonance due to oscillations along the major axis can show a significant spectral red-shift

compared to the plasmon resonance of a sphere of the same volume. Thus, plasmon res-

onances can be lowered in frequency into the near-infrared region of the spectrum using

metallic nanoparticles with large aspect ratio. For a quantitative treatment, we note how-

ever that Eq. (2.63) is only strictly valid as long as the major axis is significantly smaller

than the excitation wavelength.

An equivalent approach can be obtained from the Mie-Gans Theory, where a first rough

estimation of the optical properties of an elongated nanoparticle can be made by neglecting

its detailed shape and by considering a prolate spheroid of aspect ratio R instead, then
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the LSPR absorbance A(ω) of a solution of prolate spheroids is given by

A(ω) ∝ ε3/2m

∑
j

(
1

P 2
j

)
ε2(

ε1 +
1− Pj
Pj

εm

)2

+ ε22

, (2.65)

where ωm is the dielectric constant of the medium, and Pj are the depolarization factors

for axes three axis (x, y, and x) of the spheroid. Assuming that axes x and y have the same

width for a prolate speroid. The depolarization factors, then, the absorptions for axial

and perpendicular incident E-field polarizations are respectively given by the well-known

expressions [3, 4]:

Az(ω) ∝ ωε3/2m

ε2(ω)

[Pzε1(ω) + ( 1− Pz)εm]2 + ε22(ω)
, (2.66)

A⊥(ω) ∝ ωε3/2m

ε2(ω)

[(1− Pz)ε1(ω) + (1 + Pz)εm]2 + ε22(ω)
, (2.67)

where Pz is given by

Pz =
1

R2
eff − 1

 Reff

2
√
R2
eff − 1

ln

Reff +
√
R2
eff − 1

Reff −
√
R2
eff − 1

− 1

 , (2.68)

where Reff is the aspect ratio of the spheroid (long axis divided by short axis).

The maxima of Eqs. 2.66 and 2.67 correspond to the frequencies of LSPRs for axial and

perpendicular E-field polarization respectively. In the limit of small loses, such frequencies

are well approximated by the zeroes of the first terms in the denominators in Eqs. 2.66

and 2.67. In addition, if we assume that ε∞ + Re[εL(ω)] weakly depends on ω in the

region where LSPs arise, the LSP frequencies for prolate spheroids are

ωLSP
ωp

'


(
ε̄b +

1− Pz
Pz

εm

)−1/2
(axial) ,(

ε̄b +
1 + Pz
1− Pz

εm

)−1/2
(perp)

(2.69)

ε̄b being a constant that accounts in an averaged manner for the contribution by ε̃∞ +
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Re[εL(ω)].

For a very elongated spheroid (Reff � 1) we have that Pz ' R−2eff ln (2Reff ), which is

very small. Therefore, the frequency of the axial LSP for elongated spheroids is ωz '

(Pz/εm)1/2ωP , regardless the non-Drude contributions to the dielectric response. This

behaviour also appears in the collective excitations of long coinage-metal nanorods [136,

137], although in this case the Lorentz-like excitations arise from occupied d-orbitals.

On the contrary, the ionic and bound-electron polarizability do always contribute to

the frequency of the perpendicular LSP, ω⊥. In particular, (ε̄b + 2εm)−1/2ωP ≤ ω⊥ <

(ε̄b + εm)−1/2ωp, and the more important the non-Drude contributions to ε(ω) are, the

narrower the frequency interval where ω⊥ lies in.

2.2.2.4 Arbitrary Geometries and Discrete Dipole Approximation (DDA)

The DDA, originally developed by Purcell and Pennypacker [138], is a general method

for computing scattering and absorption by a particle of arbitrary shape. It works by

considering the continuum-solid target as a finite array of polarizable point dipoles with

the spacing between them small compared to the wavelength. The points acquire dipole

moments in response to the local electric field. The dipoles of course interact with one

another via their electric fields [138,139], so the DDA is also sometimes referred to as the

coupled dipole approximation [140,141]

We may expect that, just as a continuum representation of a solid is appropriate on length

scales that are large compared with the interatomic spacing, an array of polarizable points

can accurately approximate the response of a continuum target on length scales that are

large compared with the interdipole separation. For a finite array of point dipoles the

scattering problem may be solved exactly, so the only approximation that is present in

the DDA is the replacement of the continuum target by an array of N-point dipoles.

The replacement requires specification of both the geometry (location rj of the dipoles

j = 1, ..., N) and the dipole polarizabilities αj.
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For monochromatic incident waves the self-consistent solution for the oscillating dipole

moments Pj may be found. From these Pj the absorption and scattering cross sections

are computed [139].

The electromagnetic scattering problem must be solved for the target array of point

dipoles (j = 1, ..., N) with polarizabilities αj, located at positions r. Each dipole has a

polarization Pj = αjEj, where Ej is the electric field at r that is due to the incident wave

Einc = E0e
ik·r−iωt plus the contribution of each of the other N − 1 dipoles

Ej = Einc,j −
∑
k 6=j

AjkPk , (2.70)

where −AjkPk is the electric field at rj due to the dipole Pk at location rk. Defining

Ajj = α−1j reduces the scattering problem to finding the polarizations Pj that satisfy a

system of 3N complex linear equations

N∑
k=1

AjkPk = Einc,j . (2.71)

Once Eq. (2.71) has been solved for the unknown polarizations Pj, the extinction and

absorption cross sections Cext and Cabs may be evaluated [139]:

Cext =
4πk

|E2
0 |

N∑
j=1

Im
[
E∗inc,j · Pj

]
, (2.72)

Cabs =
4πk

|E2
0 |

N∑
j=1

{
Im
[
Pj · (α−1)∗P ∗j

]
− 2

3
k3|Pj|2

}
. (2.73)

Then, the scattering cross section Csca = Cext − Cabs.

2.3 Ab-initio approach from TDDFT 8

Electron spill-out and tunneling are basic manifestations of quantum mechanics which, in

principle, can be only extracted from the many-electron wavefunction or approximations

8This section is based on Ref. [142].
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thereof. The rationale behind hydrodynamic models is the assumption that the quantum

motion of electrons can be addressed just by using density and velocity fields [143]. Note

that in standard classical nonlocal optics the induced electron density is indeed inhomoge-

neous but strictly confined into well-defined boundaries. Therefore, just by removing this

constraint we should have a clear improvement upon the present prescriptions of nonlocal

classical optics. The merit of this “self-consistent” hydrodynamic approximation (HA) is

not only the approximate inclusion of genuine quantum effects, but also the possibility of

solving Maxwell’s equations without imposing any boundary condition at metal-dielectric

interfaces. The electron-density varies smoothly over the whole space and both Maxwell’s

equations and the hydrodynamic equation of motion are solved simultaneously. Only

very recently a HA has been presented as a practical tool for the analysis of the optical

response from the perspective of classical plasmonics [64]. However, the very same hy-

drodynamic prescription is well-known in condensed-matter and cluster physics from a

long time [73, 143, 144]. For instance, the photoabsorption spectrum of metal nanopar-

ticles [145, 146], magnetoplasmon excitations [147], and even nonlinear ultrafast electron

dynamics [148] have been already analyzed under the HA.

The approach to the electron-light interaction in condensed matter physics is quite differ-

ent. Even if the EM field is considered as a classical entity, theoretical efforts are directed

towards the efficient but accurate solution of the quantum many-electron problem. Many-

body perturbation theory or time-dependent density functional theory (TDDFT) [71] are

the methods of choice in ab-initio condensed-matter physics [72], and the quantum plas-

mon is simply one of the plethora of the elementary excitation processes in many-body

systems. A plasmon in an extended system (bulk or surface) consists of a coherent con-

tinuous set of single-electron excitations [20, 73, 149, 150]. However, in a localized system

where the one-electron energy levels are discrete, the analysis of collective excitation must

be carried out with care. For example, whether a spectral peak in the absorption spec-

trum of a finite electron system can be labelled as a plasmon or not is still a matter of

debate [151–155]. In any case, the quantum picture of the plasmon always relies on its

microscopic description (a “bottom-up” procedure), whereas the classical pictures starts
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from the macroscopic outcome (the induced density), corresponding to a “top-down” ap-

proach. From this point of view, HA is an oversimplification of the electron dynamics

where single-electron transitions are neglected.

Among the quantum many-body theoretical methods, TDDFT has become the preferred

tool to evaluate optical properties in intermediate and large nanosystems (for a detailed

discussion on the foundations and applications of TDDFT see Refs. ( [72,74,156–158]). It

has the advantage of describing the correlated dynamics of electrons in terms of indepen-

dent particles. Therefore, the calculation of the time evolution of many-electron systems

is achievable because the complicated many-body features are contained in the so-called

exchange-correlation (XC) potential, vXC(r, t).

2.3.1 TDDFT

TDDFT is the formal extension of the Hohenberg-Kohn-Sham density functional theory

(DFT) [159, 160]. According to DFT, for an N -electron system under the action of an

external potential vext(r) we have the three following exact statements: i) The ground-

state electron density n0(r), unambiguously defines the many-electron ground state |Ψ0〉;

ii) There exists an energy functional E [n] whose minimum equals the ground-state energy

and its reached at n(r) = n0(r); iii) The minimization can be made by defining a fictitious

system of independent fermions, the so-called Kohn-Sham (KS) system, whose ground-

state density is also n0(r). In Hartree atomic-units (me = ~ = e = 1) the energy functional

is

E[n] = TS[n] +WH[n] + EXC[n] +

∫
vext(r)n(r) dr , (2.74)

where TS[n] is the kinetic energy of a fictitious KS system with density n(r), WH[n]

is the classical electron-electron interaction energy, EXC[n] is the so-called exchange-

correlation (XC) functional, and the last term in the right hand side of Eq. (2.74) is the

interaction energy with the external potential. As a consequence, the universal functional

EXC[n] contains all the quantum many-body corrections to the classical electron-electron

interaction energy and to the kinetic energy of the KS system. By imposing the variational

32



character of E[n], we arrive at the well-known set of self-consistent Kohn-Sham equations

for the ground state: (
t̂+ v̂ext + v̂XC + v̂H

)
|φn〉 = εn|φn〉 ; (2.75)

vXC(r) =
δEXC[n]

δn(r)

∣∣∣∣
n=n0

, vH(r) =

∫
n0(r1)

|r − r1|
dr1 (2.76)

n0(r) =
∑
σ

N∑
n=1

|φn(r, σ)|2 with ε1 ≤ ε2 ≤ .... , (2.77)

where t̂ is the one-electron kinetic-energy operator, |φn〉 are normalized one-electron states,

εn are their corresponding eigenenergies, and σ is the spin orientation. Hence, the effective

one-body potential v̂S = v̂ext + v̂XC + v̂H defines the fictitious KS system of N independent

fermions. The only unknown ingredient is the XC functional, and practical applications

rely on approximations to EXC[n]. The success and popularity of KS-DFT is due to the

accuracy obtained by using very simple functional forms of EXC[n], like the local-density

(LDA) or generalized-gradient (GGA) approximations [156]. Let us suppose that at t = 0

an external perturbation acts on the many-body ground-state |Ψ0〉, that is, for t ≥ 0

the external potential is vext(r, t) = vext(r) + δvext(r, t). For instance, δvext(r, t) can

be the scalar potential of an incident EM field in the quasi-static approximation (i.e.

neglecting retardation effects). The Runge-Gross theorem [71] states that, under very

general conditions, the dynamical evolution of the system is the direct time-dependent

extension of the ground-state KS equations. Namely, the static Schrödinger equation

given by Eq. (2.75) is replaced by its dynamical counterpart

(
t̂+ v̂ext(t) + v̂XC(t) + v̂H(t)

)
|φn(t)〉 = i

d

dt
|φn(t)〉 , (2.78)

with the initial conditions |φn(t = 0)〉 = |φn〉. Here, vH(r, t) is the classical Coulomb

potential generated by the density n(r, t), vXC(r, t) is the XC potential for n(r, t), and

the density itself is given by

n(r, t) =
∑
σ

N∑
n=1

|φn(r, σ; t)|2 . (2.79)
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However, the time-dependent XC potential is not the functional derivative of any other

functional, but actually a functional of all the electron densities at times t′ < t. Fortu-

nately, such memory effects can be safely neglected when studying the plasmonic response

of a nanosystem. This is the so-called adiabatic prescription of TDDFT, where vXC(~r, t)

is obtained from the density n(~r, t) at the same time t from

vXC(r, t) ' δEXC[n]

δn(r)

∣∣∣∣
n=n(r,t)

, (2.80)

EXC[n] being the XC energy functional used to evaluate the unperturbed ground-state

density. If, in addition, EXC[n] is formulated under the LDA or the GGA, we have

the so-called adiabatic- LDA (ALDA) or GGA approximations. In the limit of very

weak perturbations (linear response regime), the excitation rate due to an external time-

dependent perturbation δvext(r, ω)e−iωt is given by

w(ω) = −2 Im

[∫
δv∗ext(r, ω)δn(r, ω) dr

]
, (2.81)

where δn(r, ω)e−iωt = n(r, t) − n0(r) is the induced density by such a perturbation. In

this linear regime, the induced density can be written as

δn(r, ω) =

∫
χ(r, r1, ω)δvext(r1, ω) dr1 , (2.82)

χ(r, r1, ω) being the density-density response of the unperturbed many-electron ground

state |Ψ0〉 [161]. However, according to the Runge-Gross theorem, δn(r, ω)e−iωt is also

the induced density of the KS system but due to a perturbation δvS(r, ω)e−iωt which is

equal to the the external one plus the induced Coulomb and XC potentials. That is,

δn(r, ω) =

∫
χS(r, r1, ω)δvS(r1, ω) dr1 , (2.83)

where χS(r, r1, ω) is the linear response of the KS system of independent electrons, and

δvS(r, ω) = δvext(r, ω) +

∫
δn(r, ω)

|r − r1|
dr1 + δvXC(r, ω) . (2.84)
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The induced XC potential, δvXC(r, ω), is formally given by [162]

δvXC(r, ω) =

∫
KXC(r, r1, ω)δn(r1, ω)dr1 , (2.85)

where KXC(r, r1, ω) is the frequency representation of the so-called dynamical XC kernel

KXC(r, r1, t− t1) =
δvXC(r, t)

δn(r1, t1)
. (2.86)

On the other hand, the linear response function χS can be evaluated in terms of the

stationary orbitals φk(r, σ) with eigenenergies εk of the KS Hamiltonian ĥS = t̂ + v̂S as

follows:

χS(r1, r2, ω) =
∑
σ

N∑
n=1

φ∗n(r1, σ)G
(σ)
S (r1, r2, εn + ω)φn(r2, σ)

+
∑
σ

N∑
n=1

[
φ∗n(r1, σ)G

(σ)
S (r2, r1, εn − ω)φn(r2, σ)

]∗
(2.87)

G
(σ)
S (r1, r2,Ω) being the Green’s function

Ĝ
(σ)
S (r1, r2,Ω) =

∑
k

φk(r1, σ)φ∗k(r2, σ)

Ω− εk + i0+
. (2.88)

Finally, putting together Eqs. (2.82)–(2.85), we arrive at a linear equation for the induced

density which, in matrix notation, reads as

[1− χ̂S(ω)K̂HXC(ω)]δn(r, ω) = χ̂S(ω)δvext(r, ω) , (2.89)

where

KHXC(r1, r2, ω) =
1

|r2 − r1|
+KXC(r1, r2, ω) . (2.90)

Once δn(r, ω) has been obtained, the excitation rate is evaluated from Eq. (2.81) and the

energy absorption rate of the system is equal to ω w(ω).

The excitation rate given by Eq. (2.81) is singular when ω is equal to an excitation energy
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Ω of the many-body electron system, and from Eq. (2.89) we get that Ω must be a zero

of the operator 1 − χ̂S(ω)K̂HXC(ω). It also means that χ̂S(ω)K̂HXC(ω) has an eigenvalue

equal to one, which is the basis of TDDFT matrix formulations amenable for quantum

chemistry calculations [163, 164]. Also note that the limit K̂HXC(ω) → 0 (that is, in the

limit of independent-electron response) those zeros become the poles of χ̂S(ω). The latter

are, of course, the one-electron excitation energies εf − εi of the KS system.

We need approximations to KHXC(r1, r2, ω) for practical implementations of linear re-

sponse TDDFT. Under the adiabatic approximation given by Eq. (2.80), the memory

effects into the XC potential are neglected. In this case, KXC(r1, r2, ω) does not depend

on the frequency and is simply given by

KXC(r1, r2, ω) ' δvXC(r)

δn(r)

∣∣∣∣
n=n(r,t)

, (2.91)

and vXC(r) can be obtained, for instance, under the LDA. This linear-response ALDA had

been already proposed by Zangwill and Solven in 1980 to evaluate the photoabsorption

spectra of several rare-gas atoms [165]. The same recipe was applied in seminal works

by Eckardt [166] and Puska et al [167], to study the optical absorption properties of

spherical-jellium clusters.

The number of unoccupied KS states entering into the calculation of the Green function

given by Eq. (2.88) is, in general, a critical convergence parameter. However, the evalu-

ation of such an infinite sum can be circumvented for high-symmetry systems by solving

the Schrödinger-like equation satisfied by the Green function.

Focusing on nanoparticles with spherical symmetry, it is fairly easy to calculate and

analyze the optical absorption of simple sp-metal nanoparticles described by the spherical

jellium model [166–170]. In general, good agreements with experiments are obtained after

replacing the term i0+ of Eq. (2.88) by a finite contribution iη with η ∼ 0.1 eV aimed at

mimicking non-electronic decay channels (electron-phonon interaction, for instance) and

shape/size dispersion in experimental samples [20, 171, 172]. Moreover, the dynamical

screening by d electrons, which plays a prominent role in the optical absorption of noble-
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metal particles [91, 150, 173, 174], can be simulated in spherical-jellium calculations by a

dielectric background with an appropriate permittivity εb(ω) (see Eq. (2.36) [175]. Finally,

the combination of effective dielectric media and suitable confining potentials can be used

to get insights on the optical properties of doped semiconductor nanocrystals while keeping

the simplicity of the spherical jellium model [176]. The TDDFT evaluation of optical

absorption spectra of metal nanoparticles containing several thousands of conduction

electrons can also be addressed at an affordable computational cost as long as the spherical

symmetry is preserved [177–182]. This allows us, for instance, to compare the optical

absorption of isolated metal nanoparticles at different size-regimes. For each frequency

of the external E-field, Eext(r, t) = E0 exp(−iωt)ex [i.e. δvext(r, ω) = xE0] we evaluate

the induced density using Eq. (2.89). The dynamical polarizability is then given by the

induced electric dipole divided by the amplitude of the incident E-field:

α(ω) = − 1

E0

∫
xδn(r, ω)dr , (2.92)

whereas the photoabsorption cross-section is given by

σabs(ω) =
4πω

c
Im α(ω) . (2.93)

For low-symmetry systems, other possibilities exist to circumvent the explicit sum over

unoccopied states in the evaluation of the KS-system linear response. For instance, by

using the Sternheimer method it is possible to rewrite the response equations in frequency

domain in such a way that the explicit use of the virtual KS states is not needed [183].

Another prescription, which is what we follow from now on, is the explicit resolution of

the KS time-dependent Eqs. (2.78) [184]. For instance, if we apply at t = 0 a “kick”

perturbing potential δvext(r, t) = τ0v0(r)δ(t) the KS wavefunctions at t = 0+ will be

φn(r, σ; 0+) = e−iτ0v0(r)/~φn(r, σ) ; 1 ≤ n ≤ N , (2.94)

and for t > 0+ the evolution of the KS system can be obtained from Eq. (2.78) just setting
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δvext = 0. Since

δvext(r, t) = τ0v0(r)δ(t) =
τ0
2π

∫ +∞

−∞
v0(r)e−iωtdω , (2.95)

the Dirac-Delta kick is, up to a factor, the superposition of all the monochromatic per-

turbations v0(r) exp(−iωt). If τ0 is very small, linear response theory guarantees that

there will be no coupling between the responses due to different frequencies. There-

fore, if δn(r, t) is the time-dependent induced density given by the time propagation of

the KS equations after the Dirac-Delta kick, the density induced by the perturbation

v0(r) exp(−iωt) is

δn(r, ω) =
1

τ0

∫ +∞

0

δn(r, t)e+iωtdt , (2.96)

since δn(r, t < 0) = 0. The corresponding excitation rate given by Eq. (2.81) is then

w(ω) = −2

∫
v0(r) [Im δn(r, ω)] dr , (2.97)

and if v0(r) = xiE0 (with i = x, y, z), the polarizability tensor can be evaluated from

αji(ω) = − 1

E0

∫
xjδn(r, ω)dr . (2.98)

Therefore, the dipole optical-absorption spectrum can be obtained from a single time

propagation (or three if we are interested in the full polarizability tensor). The critical

convergence parameter is the time-propagation time Tmax and, in practice, a damping

factor exp(−ηt) is included into Eq. (2.98). This damping is completely equivalent to that

used to broaden the Dirac-Delta peaks in the calculation of the absorption in the frequency

domain. Furthermore, we can calculate explicitly the electron motion under arbitrary

time-dependent potentials, not necessarily weak. For instance, the time evolution of

the system under quasi-monochromatic pulses and pump-probe laser fields is perfectly

achievable. Time propagation is presently implemented in many codes, including ad-hoc

programs aimed at evaluating the optical response of model jellium nanostructures [70,

77, 78]. In what follows we will use the Octopus package [185–188], which solves the KS
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time-dependent equations in a real-space grid representation.

It is worth to note that besides the real-time TDDFT calculations of excited-state prop-

erties in molecules under the Yabana-Bertsch scheme [184], the code is able to perform

many types of calculations of ground-state and excited-state properties. Although most of

the capabilities of the code used throug this work were already implemented, other were

to be implemented and/or improved. Next, we briefly mention some of the capabilities of

the code required to carry out this Thesis.

2.3.1.1 Forces and the FIRE algorithm for geometry optimizations9

The precise determination of the geometrical structure that atoms do adopt on nanostruc-

tures is probably the first and most crucial step in their description and understanding.

If not all, most methods to obtain stable structures are based on local minimizers. This

local minimizers are algorithms adapted to identify the first minimum-energy structure

starting from an arbitrary point on the coordinates space, which can be an informed guess

or an arbitrary point in parameter space. The algorithm generates a serie of steps that

ends when a stop criteria is reached with a determinated accuracy, such as when the

gradient is near zero, or when the value of the energy function stops changing. A function

represented on a real-space grid is not invariant under translations as one would expect

from a physical system. The potential of an atom sitting on top of a grid point might

be slightly different from the potential of the same atom located between points. This

phenomenon is the so-called “egg-box effect”. The egg-box effect is particularly prob-

lematic for calculations where the atoms are allowed to move, for example to study the

dynamics of the atoms (molecular dynamics) or to find the minimum energy configuration

(geometry optimization). Several schemes to control the egg-box effect in Octopus has

been studied [189]. The first step is to use pseudo-potential filtering to eliminate Fourier

components of the potential that cannot be represented on the grid [190]. Additionally, it

has been found a formulation for the forces that reduces the spurious effect of the grid on

the calculations. It mainly consist on rewrite the forces in such a way they do not include

9This subsection is based on part of the Ref. [188].
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the derivative of the ionic potential vα, but the gradient of the orbitals with respect to the

electronic coordinates [191]. As the orbitals are smoother than the ionic potential, the

calculation of the forces is more precise than the calculation of the energy when the sys-

tem is discretized on a grid. As the fast inertial relaxation engine (FIRE) [192] algorithm

to perform geometry optimizations rely only on the forces, without needing to evaluate

the energy, and has become in one of the most convenient algorithm due to its speed

and precision to reach the nearest local mini- mum starting from a given initial configura-

tion [193] we implemented the FIRE algorithm in the Octopus code. The FIRE algorithm

is based on molecular dynamics with additional velocity modifications and adaptive time

steps which only requires first derivatives of the target function. In the FIRE algorithm,

the system slides down the potential-energy surface, gathering “momentum” until the

direction of the gradient changes, at which point it stops, resets the adaptive parameters,

and resumes sliding. This gain of momentum is done through the modification of the time

step ∆t as adaptive parameter, and by introducing the following velocity modification

v(t)→ V (t) = (1− α)v(t) + α|v(t)|F̂ (t) , (2.99)

where v is the velocity of the atoms, α is an adaptive parameter, and F̂ is an unitary

vector in the direction of the force F . By doing this velocity modification, the acceleration

of the atoms is given by

v̇(t) =
F (t)

m
− α

∆t
|v(t)|

[
v̂(t)− F̂ (t)

]
, (2.100)

where the second term is an introduced acceleration in a direction “steeper” than the

usual direction of motion. Obviously, if α = 0 then V (t) = v(t), meaning the velocity

modification vanishes, and the acceleration v̇(t) = F (t)/m, as usual.
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2.3.1.2 Forces and the TDDFT Ehrenfest Dynamics

With the exception geometry optimizations, in which the positions of the nuclei are crucial,

for many calculations it is assumed that the dynamics of the nuclei that compose the

system are not relevant. Simulations in this context are performed in a clamped ion

approximation, where the ions are fixed and the electrons move in the fixed classical

potential generated by them. This approximation is justified by the large nuclear mass,

compared with the electronic one.

In real-time TDDFT, electron dynamics is described by the time-dependent Kohn-Sham

equations given by Eqs. (2.75) to (2.77) [71, 74, 157]. Applying the Ehrenfest theorem

to the ionic motion and assuming that ions can be approximated by point charges. The

time-dependent equation for ions becomes

Mα
d2

dt2
Rα = −∇Rα (vion−ion + vion−elec + vext) , (2.101)

where Rα and Mα correspond to the coordinates and mass of the α-th ion respectively.

The first and second terms on the right-hand side of Eq. (2.101) are time-dependent forces

due to ion-ion interactions and ion-electron interactions, respectively. The third term is

the force from the external EM fields.

In particular, in this work, we performed calculations in order to study the mechanism of

material removal of a target under the influence of a strong laser field. Thus, besides to

perform TDDFT Ehrenfest dynamic calculations, it was necessary to extract separately

the total, electronic, and ionic forces acting on each of the ion from the rest of system.

This is, for each atom, we extracted the forces from the ions, from all electrons, as well

as the combined force from both the remaining ions and all electrons separately. As this

feature was not included on the Octopus code it was necessary to implement it.
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Chapter 3

Theoretical analysis of the optical

properties of mixed samples of

Cu2−xS nanocrystals

3.1 Introduction

As we stated at the begining of this work (see Chapter 2) LSPs are collective and non-

propagating oscillations (excitations) of conduction electrons around the surface of a

metallic object that arise as a result of a resonant coupling with an external incident

electromagnetic (EM) field. However, in the realm of semiconductor nanomaterials, a

crystal lattice heavily doped with cation/anion vacancies or ionized atomic impurities is

considered to be a general prerequisite to accommodating excess free carriers that can

support localized surface plasmon resonances [8, 25, 30]. In this context and going be-

yond, it has been recently denmostrated that anisotropic copper sulfide nano-crystals,

selectively trapped in the covellite phase, can exhibit intense and size-tunable LSPR at

near-infrared wavelengths despite their stoichiometric, undoped structure [37], where ex-

perimental extinction spectra were satisfactorily reproduced by theoretical calculations

performed by the discrete dipole approximation (DDA) method within the framework of
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the Drude-Sommerfeld model.

Following these recent results on the stoichiometric CuS (covellite) disk-like nanocrystals

reported by Xie et.al. [37], experimental NIR spectra of nonstoichiometric mixed-phase

samples were rationalized on the basis of electrodynamic scattering simulations performed

within the frame of the discrete dipole approximation (DDA) [201]. This method allows

to compute scattering and absorption cross-sections of targets of arbitrary geometry by

solving the relevant Maxwell’s equations. Namely, the target is treated as a finite array

of interacting and polarizable points, which acquire dipole moments in response to a local

electric field produced by the incident light and by the electric filed generated by the other

dipoles. The polarizabilities of the dipoles are described by the effective bulk dielectric

function ε(ω) of the target.

3.2 DDA fitting of the experimental spectra

3.2.1 Methodology

Thus, electromagnetic scattering calculations were performed within the frame of the

discrete dipole approximation method [201] using the Amsterdam DDA code [202]. The

interdipole distance used in all the calculations was 0.25 nm, and we considered orientation

averaging of different incident polarized plane waves.

To extract the parameters of the Drude, and Drude-Lorentz models associated with the

different phases and samples, the experimental extinction cross sections σexp
S (λi), rela-

tive to NDs, dissolved in CHCl3 were fitted to the computed ones σDDA
S (λi). For each

sample (S), we computed the relative difference (∆σS between the DDA-calculated and

experimental normalized cross-section through the following function:

∆σS =
1

N

N∑
i=1

∣∣∣∣ σDDA
S (λi)

max[σDDA
S ]

− σexp
S (λi)

max[σexp
S ]

∣∣∣∣ , (3.1)
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where

σDDA
S =

∑
l

{
σDDA
l ×Wl

}
, (3.2)

where, l stand for the different phases of the sample, Wl correspond to the weight of

each phase, λi ranged from 600 to 2100 nm in steps of 50 nm, (thus, originally N = 31,

but we skipped the values corrensponding to 1650 and 1700 nm, due to the noise on

the experimental spectra, so at the end N = 29) and the extinction spectra were taken

normalized to the corresponding extinction band maxima, max[σDDA
S ] and max[σexp

S ].

First, we minimized ∆σS for the covellite sample. The experimental data were fitted

through a three-dimensional scan of the Drude parameters, as follows: ωp was varied

from 4.3 to 4.7 eV in steps of 0.2 eV; ε∞ was varied from 7 to 11 in steps of 2; and γ

was varied from 0.10 to 0.90 eV in steps of 0.05 eV. This served to assess and confirm the

findings by Xie et al about the covellite.

Finally, we minimized the absolute difference ∆σ considering all the phases/samples si-

multaneously, that is, we minimized the following function

∆σ =
1

4

∑
S

∆σS . (3.3)

Only ε∞, and ωp for the covellite phase were fixed during the calculations. The other

parameters were varies as follows: ε∞ was varied from 1 to 11 in steps of 2; ωp was varied

from 1.0 to 4.5 eV in steps of 0.2 eV: γ was varied from 0.1 to 0.9 eV in steps of 0.05 eV;

∆ε was varied from 0 to 1.0 in steps of 0.1; ωL was varied from 0.2 to 2.0 eV in steps of

0.2 eV; and γL was varied from 0.1 to 0.9 in steps of 0.05 eV.

The DDA extinction scattering cross-sections of four mixed-phase samples of nanodisks

(NDs) disolved in CHCl3 (refractive index 1.4459) were computed. Depending on the

sample, variable crystal-phase compositions, with covellite (CuS), digenite (Cu1.8S), and

low-chalcocite (Cu2S), each one characterized by a different stoichiometry and structure,
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Figure 3.1: Representative low-magnification TEM image galleries of Cu2−xS mixed-phase
samples. The relative weight percentages of the different phases are determined by XRD
analyses.

are present in different relative weight proportions. The mixed-phase samples were treated

as weighted mixtures of identical size and shape NDs, each one characterized by a different

dielectric function. The low-magnification TEM images of the mixed-phase samples are

shown in Fig 3.1, and details of each sample are displayed on Table 3.1.

D (nm) H (nm) Shape
Relative weight percentages (%)

CuS Cu1.8S Cu2S

20 5 hexagon 100 0 0
15 7 cylinder 73 27 0
11 7 cylinder 10 73 17
18 8 cylinder 10 86 4

Table 3.1: Morphology of the modeled NDs, and phase-composition of each sample.

As shown recently by Xie et al [37], the experimental electromagnetic response prop-

erties of stoichiometric copper sulfide (CuS) nanocrystals can be explained under the

DDA framework by considering the complex Drude dielectric function. That is, the elec-

tromagnetic response of covellite nanocrystals is dominated by collective excitations of
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free-carriers, and excellent agreement with experimental data is achieved by taking the

values ε∞ = 9 and ωp = 4.5 eV. However, recent works have highlighted that the mod-

eling of the bulk dielectric function for nonstoichiometric Cu2−xS phases on the basis of

the Drude model, which describes a system of free carriers in a crystal, may not be the

most suitable [41], as the carriers supporting the plasmon resonance can experience a

certain degree of localization. As it was stated in Chapter 2, one proposed way to over-

come this limitation of the Drude model, is to add one or several Lorentzian terms to

the Drude dielectric function, in order to take into account localized carriers or interband

transitions [41, 203]. This approach, usually known in the literature as Drude-Lorentz

model, has been used in previous studies with slight modifications depending on the spe-

cific cases [41, 203, 204]. Therefore, we have used the Drude-Lorentz dielectric function

(Eq. 2.48) to model spectra of these nonstoichiometric mixed-phase nanostructures.

Our aim was to extract the best set of parameters of the corresponding models, for

the whole set of samples, by fitting their experimental spectra. To do so, the relative

difference (∆σS) for each sample, and the absolute difference (∆σ), considering all the

samples simultaneously, between the DDA-calculated and experimental normalized cross-

section was minimized through a multi-dimensional scan of the Drude (covellite) and the

Drude-Lorentz (digenite and low-chalcocite) parameters. However, when considering all

the samples, the best agreement between (∆σ) the DDA-calculated and experimental

spectra was found for ∆ε = 0 for the digenite, and low-chalcocite phases, correspondig to

the Drude-only model. This best agreement (absolute minimum, ∆σ = 2.56%) between

DDA-calculated and experimental spectra was found for ε∞ = 9, and ωp = 4.5 eV for the

covellite; ε∞ = 7, and ωp = 3.8 eV for the digenite; and ε∞ = 7, and ωp = 2.2 eV for the

low-chalcocite phase.

For the first sample, the best agreement (∆σS = 2.92%) between DDA-calculated and

experimental spectra is found for ε∞ = 9, ωp = 4.5 eV, and γ = 0.30 eV, thus confirming

the previously value of the plasma frequency of the covellite by Xie et al [37]. The

optimized computed optical spectrum for this sample is displayed on Fig. 3.2 together

with the experimental one. For the sake of completeness, we also depict the in-plane
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Figure 3.2: Experimental (solid grey line) and theoretical DDA (solid black line) extiction cross-sections
of a covellite hexagonal ND (H = 5 nm, D = 20 nm). The DDA spectra for incident light polarized along
the out-of-plane (x) and in-plane axis directions (y, z) are included as well.

(electric field perpendicular to the ND axis) and out-of-plane (electric field parallel to

the ND axis) DDA responses. As we may see, the spectrum is dominated by an in-plane

localized surface plasmon resonance (LSPR) in the near infrared (NIR) range. The DDA

calculation reveals a weaker but recognizable contribution from the out-of-plane LSPR

at higher energy due to the large aspect ratio (D/H = 4) of the NDs. However, this

spectral feature is not resolved in the experimental spectrum as it lies, precisely, in the

region where the agreement between theory and experiment is worst. Since the relative

allocation of the in- and out-of-plane resonances depends very sensitively on the shape

of the NDs, we believe that the small discrepancies between the DDA prediction and

the experimental spectrum are due to the presence of geometrically-different disks in the

sample.

Concerning the second sample (73% covellite, 27% digenite), the set of parameters which

minimize the relative difference (∆σS = 5.14%) are given in Table 3.3, and the experimen-

tal and optimized computed spectra are displayed in Fig. 3.3. In particular, the obtained

value of ωp = 3.8 eV of the digenite phase corresponds to Nh ≈ 0.70× 1022 cm−3 (i.e., ∼

0.24 holes per Cu1.8S molecular unit), which still approaches the free carrier concentration
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Covellite Digenite Low-chalcocite Mixed

Relative weight percentages (%) 100 0 0 -
Dielectric function Drude - - -

ε∞ 9(b) - - -
ωp (eV) 4.5(b) - - -
γ (eV) 0.30 - - -

λexpmax (nm) 1218 - - 1218

λDDA
max (nm) 1150 - - 1250

λDDA
in (nm) 1250 - - 1250

λDDA
out (nm) 900 - - 900

Table 3.2: Parameters featuring the steady state NIR extinction of the covellite sampe ND, deduced
on the basis of DDA-based calculations, and fits of experimental spectra.

typical of several metals [205–210]. Thus, the CuS NDs were found to accomodate a free

hole density 1.4 times higher than the deduced for the Cu1.8S nanocrystals. In this regard,

as stated by Xie et al [37], it is worth to note that previous estimations of Nh in Cu2−xS

nanocrystals with 1.93 < 2−x < 2, where 0.77×1021 cm−3 . Nh . 1.36×1021 cm−3 [39],

are likely to be imprecise, as the assumed models fails to account for the partially localized

character of hole carriers sustaining LPRS in those nonstoichiometric materials.

The aspect ratio of the NDs comprising this second sample is rather small, thus explaining

the impossibility to clearly differenciate in- and out-of-plane contributions in the spectra

(see Fig. 3.3). The decomposition of the optimized DDA spectra of each phase, according

to the polarization of the incident light is presented in Fig. 3.4. As a second conclusion, our

DDA calculations indicate that the overall shape of the experimental optical absorption

curve is due to a convollution of two peaks, one corresponding to a LSPR ocurring at

covellite NDs and a second one, at lower energies, that can be attributed to a collective

excitation at digenite NDs. Note in passing that the smaller aspect ratio implies that the

experimental results are less sensitive to the shape-dispersion of the NDs in the sample,

thus allowing for a better fit of the calculated-DDA absorption.

Finally, for the two non-stoichiometric three-mixed-phase samples (10% covellite, 73%

digenite, 17% low-chalcocite; and 10% covellite, 86% digenite, 4% low-chalcocite), the best

set of parameters which minimize the relative difference ∆σ between DDA-calculated and
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Covellite Digenite Low-chalcocite Mixed

Relative weight percentages (%) 73 27 0 -
Dielectric function Drude Drude(a) - -

ε∞ 9(b) 7 - -
ωp (eV) 4.5(b) 3.8 - -
γ (eV) 0.70 0.30 - -

λexpmax (nm) - - - 1135

λDDA
max (nm) 1000 1250 - 1150

λDDA
in (nm) 1100 1250 - 1200

λDDA
out (nm) 950 1100 - 1000

Table 3.3: Parameters featuring the steady state NIR extinction of the two-mixed-phase sampe ND,
deduced on the basis of DDA-based calculations, and fits of experimental spectra. (a)The best agreement
was found for ∆ε = 0 on the Drude-Lorentz model, which correnpond to the Drude-only model. (b)This
parameters were fixed on the global minimization of ∆σ.
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Figure 3.4: DDA extinction cross sections of the two-mixed-phase NDs along with their
total in-plane and out-of-plane contributions. The two upper panels correspond to the
unweighted cross sections of each phases, whereas the lower panel represents the cor-
responding averages. Note that the different contributions by each phase are easier to
observe in the spectrum corresponding to polarized incident light than in the spectrum
associated to unpolarized light.

51



Covellite Digenite Low-chalcocite Mixed

Relative weight percentages (%) 10 73 17 -
Dielectric function Drude Drude(a) Drude(a) -

ε∞ 9(b) 7 7 -
ωp (eV) 4.5(b) 3.8 2.2 -
γ (eV) 0.40 0.60 0.50 -

λexpmax (nm) - - - 1137

λDDA
max (nm) 1100 1150 2000 1150

λDDA
in (nm) 1100 1200 2050 1150

λDDA
out (nm) 1050 1100 1900 1100

Table 3.4: Parameters featuring the steady state NIR extinction of the three-mixed-phase (10% covellite,
73% digenite, and 17% low-chalcocite) sample ND, deduced on the basis of DDA-based calculations, and
fits of experimental spectra. (a)The best agreement was found for ∆ε = 0 on the Drude-Lorentz model,
which correnpond to the Drude-only model. (b)This parameters were fixed on the global minimization of
∆σ.
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Figure 3.5: Normalized experimental and theoretical NIR extinction espectra of the three-
mixed-phase samples. Note the small contributions from the low-chalcocite phase (red
line with symbols).

experimental spectra are given in Table 3.4, and Table 3.5 respectively. The experimental

and optimized computed spectra for this two samples are displayed in Fig. 3.5. In both

cases, the agreement with the experimental data is excellent, being the relative errors of

the fitting ∆σS = 0.99% and ∆σS = 1.20% for the third and forth samples, respectively.

The Drude plasma frequency of the low-chalcocite phase corresponds to Nh = 0.19 ×

1022 cm−3 (i.e., ∼ 0.04 holes per Cu2S molecular unit), which still (around the limit)

could be considered on the domain of the carrier densities of semiconductors [30].
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Covellite Digenite Low-chalcocite Mixed

Relative weight percentages (%) 10 86 4 -
Dielectric function Drude Drude(a) Drude(a) -

ε∞ 9(b) 7 7 -
ωp (eV) 4.5(b) 3.8 2.2 -
γ (eV) 0.25 0.60 0.70 -

λexpmax (nm) - - - 1135

λDDA
max (nm) 1150 1200 2050 1150

λDDA
in (nm) 1150 1250 2100(c) 1200

λDDA
out (nm) 1100 1050 1750 1000

Table 3.5: Parameters featuring the steady state NIR extinction of the three-mixed-phase (10% covellite,
86% digenite, and 4% low-chalcocite) sample ND, deduced on the basis of DDA-based calculations, and
fits of experimental spectra. (a)The best agreement was found for ∆ε = 0 on the Drude-Lorentz model,
which correnpond to the Drude-only model. (b)This parameters were fixed on the global minimization of
∆σ. (c)This parameter in on the upper limit of the range of wavelengths we simulated.
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Figure 3.6: DDA extinction cross sections of three-mixed-phase NDs (10% covellite, 73%
digenite, and 17% low-chalcocite) along with their total in-plane and out-of-plane contri-
butions. Panels (a), (b), and (c) correspond to the unweighted cross sections of each phase,
whereas panel (d) represents the corresponding averages on the mixed-phase sample.
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3.2.2 Decomposition of the optical response

Regarding the decomposition of the optical response in LSPRs excited by in-plane and

out-of-plane polarized incident light, the aspect ratio of the third sample is equal to 1.57,

therefore, the in-plane and out-of-plane responses are expected to be rather similar. This

is indeed the case as can be observed in Fig. 3.6. Finally, the larger aspect ratio of the

NDs of the forth sample (D/H = 2.25) leads to different resonant frequencies for the

in-plane and out-of-plane LSPRs of the covellite, digenite, and low-chalcocite phases (see

Fig. 3.7). Nevertheless, all contributions can be hardly discriminated in the averaged

spectrum, which is dominated by in-plane dipolar LSPRs. As a conclusion, despite the

rather small aspect ratio of the mixed-phase samples, a careful theoretical analysis of

the absorption spectra clearly demonstrates the shape-dependence of the LSPRs in the

plasmonic covellite, digenite, and low chalcocite phases. This further supports the inter-

pretation of the already mentioned experimental findings by Xie et al in covellite NDs [37]

and also the reported experiments by Hsu et al for Cu2−xS NDs [39,42].
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Figure 3.7: DDA extinction cross sections of three-mixed-phase NDs (10% covellite, 86%
digenite, and 4% low-chalcocite) along with their total in-plane and out-of-plane contribu-
tions. Panels (a), (b), and (c) correspond to the unweighted cross sections of each phase,
whereas panel (d) represents the corresponding averages on the mixed-phase sample.
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Chapter 4

Theoretical analysis of the optical

properties of WO3−δ hemitubes

4.1 Introduction

As we already know (see chapter 1), doped semiconductor nanostructures are capable

of supporting LSPRs [31]. The highly variable carrier density of doped semiconductor

nanocrystals, enables a variable resonance frequency over the entire infrared region [30,

33, 211]. Then, varying the doping level by controlling the concentration of vacancies it

is possible to tune the resonance frequency of these nanocrystals [30, 36,39,40,212,213].

In the case of WO3−δ, a variety of oxygen-deficient stoichiometries can be obtained, leading

to some contradictory results, ranging from WO2.72 (W18O49) nanowires which appear to

be semiconducting on the basis of electrical transport and photoluminescence studies [44,

45], to W02.8 (W5O14) nanowires which appear to be metallic on the basis of XPS and

electrical transport measurements [46]. It has been also recently shown that nanoscale

WO2.83 (W24O68) nanorods support strong LSPRs and that these LSPRs account for a

strong absorption feature ranging from the red edge of the visible to the NIR region [36].

On the other hand, unlike classical metal nanoparticles, there is a controversy on how

LSPRs in doped semiconductor nanocrystals are sensitive to anisotropic nanoparticle
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shape [214,215]. In this context, faceted octahedral indium-doped cadmium oxide nanocrys-

tals have shown multiband LSPR that were well matched by simulated spectra computed

in the framework of the DDA method, in which multipolar spatial modes contributed to

the line shape [215,216], whereas despite their anisotropic morphologies WO3−δ nanorods

and Cu2−xTe platelets, rods, and tetrapods have not shown LSPR band-splitting [36,41].

Furthermore, in-plane and out-of-plane modes with shifts with changing the aspect ra-

tio of Cu2−xS nanodisks were observed [42]. Meanwhile, only an in-plane resonant peak

red-shift was observed with increasing the diameter of CuS nanoplatelets [214].

Considering the above, and with the extra motivation of recently synthesized nonstoi-

chiometric WO3−δ (mainly WO2.72) nanocrystals of hemitubular morphology by a col-

laborating research group, in this chapter, we have performed classical and semiclassical

calculations, within the frame of the DDA and finite element method with the aim of sheed

light on the unique structural-optical properties, of these novel nanostructures, which ex-

perimentally show tunable NIR to mid-IR plasmon resonances, essentially dependent on

their aspect ratio.

4.2 Hemitube morphology and experimental data

A direct template-free, solution-phase synthesis of plasmonic nonstochiometric WO3−δ

hemi-nanotubes was recently developed by a collaborating research group. These exotic

nanocrystals show tunable NIR to mid-IR plasmon resonances, essentially dependent on

their aspect ratio.

4.3 Theoretical analysis of the experimental data

In order to make a theoretical analysis of the experimental data, the frequency-dependent

WO2.72 bulk dielectric function ε(ω) is required. Of course, ε(ω) might be obtained from

a parametrization of different experimental data, as it is customary done in nanoplas-
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Lenght Wall thickness Internal diameter Overall diameter
L (nm) a (nm) b (nm) c (nm)

16.5± 4.2 2.0± 1.0 2.0± 1.0 5.0± 0.5
10.8± 3.6 2.0± 1.0 2.0± 1.0 8.5± 0.6
17.9± 3.1 2.0± 1.0 2.0± 1.0 8.0± 1.5
59.9± 18.7 2.0± 1.0 2.0± 1.0 6.4± 0.6
39.6± 7.4 2.0± 1.0 2.0± 1.0 6.3± 1.3
78.4± 21.9 2.0± 1.0 2.0± 1.0 6.5± 1.2
62.1± 10.7 2.0± 1.0 2.0± 1.0 8.0± 1.0
56.4± 14.5 2.0± 1.0 2.0± 1.0 8.5± 1.1

Table 4.1: Morphology of the different WO3−δ hemitubes.

monics [4]. Unfortunately, to the best of our knowledge the experimental determination

of the optical absorption of different bulk-WO3−δ compounds is still lacking. However,

since our primary interest is the analysis of the plasmonic response of WO2.72 hemitubes,

a qualitative approach to the actual ε(ω) can be made from general considerations as

follows.

WO3−δ compounds result from the reduction of WO3 which, up to quantitative details

depending on the phase, is a semiconductor with optical gap ∆g ∼ 2.7 eV [217–219].

The WO3 valence band consists of oxygen 2p states whereas the bottom of the conduc-

tion band arises from unoccupied tungsten 5d states, likely exhibiting a slight hybridiza-

tion [220, 221]. Hence, the WO3 optical absorption is governed by interband transitions

and its dielectric function mainly consists of a sum of Lorentzians. As anticipated, there

are not fully reliable reflectivity measurements providing the whole absorption Im ε(ω),

but some estimations were already proposed long ago [217] and ab-initio calculations using

the many-body Bethe-Salpeter equation [72] have been recently reported [222]. Since we

are interested on optical properties at low frequencies, it is legitimate to model the WO3

dielectric function as a single Lorentzian plus a constant ε∞ that aims at describing the ac-

tual ω →∞ limit of the dielectric function (ε∞ ∼ 4) [222,223], the low-frequency average

of the real part of further Lorentzian terms, and possible ionic-background contributions:

εL(ω) = ε∞ −
fLΩ2

L

ω2 − Ω2
L + iωγL

. (4.1)
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Figure 4.1: Representative low-magnification TEM image of WO3−δ hemitubes.

Here, ΩL is the excitation frequency, fL is the oscillator strength, and γL is a damping

frequency that accounts for the finite width of the Lorentizian peak. It is worth to note

that Eq. 4.1 is a particular case of Eq. 2.45. From the calculations in Ref. [222] we have

that ΩL ' 4.1 eV, γL ' 0.5 eV, and fL ' 2 is a reasonable choice. Estimations based on

EELS experiments on WO3 thin films Ref. [217] suggest slightly different values. In any

case, for our purposes the most relevant quantity is the static limit εL(ω → 0) since, as

we will see later on, the optical response below 2 eV is quite robust against variations of

ΩL and γL.

Upon reduction of pure WO3 samples extra electron states start to appear at the bot-

tom edge of the conduction band, a process accompanied by a shift of the Fermi level,

subtle structural reconstructions, and a redistribution of the density of states (thus, some

tungsten 5d states could now be present below the Fermi level) [4, 5]. A fully detailed

understanding of the whole mechanism has not been achieved yet, but the main trends are

now well established [220,221,224–228]. First of all, WO3−δ is still semiconductor for small

number of oxygen vacancies (δ . 0.1), and the vacancy-induced electron states explains
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the blue coloration exhibited by WO3−δ compounds [218,219] as well as the appearance of

low-frequency bulk plasmons in thin metal films [217]. However, WO3−δ becomes metallic

at δ ∼ 0.1 and, as a consequence, a strong plasmonic response appears in the near IR

region for WO3−δ nanosheets [229] and for WO2.82 nanorods [36]. The Lorentz-like absorp-

tion peak is expected to remain regardless the density of oxygen vacancies, as observed

in the UV-vis photoluminescence spectrum of WO2.72 nanobundles [45].

Bearing all this in mind, it is legitimate to model the WO3−δ (δ & 0.1) dielectric function

as the sum of a Drude term, describing the reduction-induced free carriers, and a Lorentz

dielectric function, which is expected to be rather similar than the WO3 one given in

Eq. 4.1 and has the same form of Eq 2.48. That is:

εL(ω) = ε∞ −
ω2
p

ω(ω + iγD)
− fLΩ2

L

ω2 − Ω2
L + iωγL

, (4.2)

where ε∞ contains in an averaged manner further optical-response mechanisms (extra in-

terband transitions, ionic contributions, etc.), but should not be very different than the ref-

erence value ε∞ ∼ 4 corresponding to pristine tungsten trioxide. Then, the bulk-plasmon

frequency ε(ω), the damping frequency γD, and ε∞ must be regarded as δ-dependent

parameters, although will also depend on the specific geometry of the nanostructure [20],

as explained in chapter 2. In this way, the vis-IR optical absorption is dominated by

free-carriers LSPs, whereas the absorption below λ ∼ 450 nm (2.75 eV) corresponds to

interband transitions.

Thus, the parameters ωP , γD, and ε∞ corresponding to WO2.72 can be estimated from

the present experimental data. First, surface scattering effects are expected to be almost

negligible for the axial modes (note that the length of the hemitubes is of the order of

tens of nanometers). Hence, from the experimental FWHM of the main plasmonic peaks

for the longest hemitubes we have that the bulk (intrinsic) contribution to the damping

frequency γD is γbulk ∼ 0.9 eV, which, as just mentioned, is a good approximation to the

Drude damping frequency for axial response.

Second, ωp and ε∞ are obtained from a semi-analytical approach to the optical absorption
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Figure 4.2: Theoretical wavelength of axial plasmonic modes obtained with Drude-Lorentz
(solid lines) and Drude-only (dashed lines) dielectric functions (solid lines) as a function
of the WO2.72 hemitube effective aspect ratio Reff . The experimental wavelengths of the
axial modes are represented by green symbols, whereas the wavelength where perpendic-
ular modes arise in the spectrum for large-aspect-ratio hemitubes is depicted by a purple
circle. The shadowed area indicates the zone of the spectrum dominated by interband
transitions.

by an hemitube (see chapter 2). In brief, the optical response is approximated by the

one corresponding to an equivalent spheroid of aspect ratio Reff , in such a way that

the frequency of maximum absorption for the hemitube and for its equivalent spheroid

coincide. Once the effective aspect radii are determined, and since the absorption of a

spheroid is fully analytical, it is inexpensive to compare the experimental maxima with

the theoretical one for different values of ωp and ε∞ (remember that γD ' 0.9 eV and the

Lorentz parameters are already fixed).

As shown in Fig. 4.2, when the full dielectric function (Eq.4.2) is used with parameters

ε∞ ' 6 and ωp ' 6.3 eV, there is a fairly good overall agreement between the experimental

and theoretical maxima. A slightly better account of the absorption maxima for the most

elongated hemitubes is reached if ωp ' 6.8 eV and ε∞ ' 7, but the agreement for the

shortest hemitubes is lost. Similarly, ωp ' 5.8 eV and ε̃∞ ' 5 seem to be more appropriate
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for the less elongated hemitubes, but such a choice clearly overestimate the wavelength

of the axial mode for the longest hemitubes. That is, bearing in mind the unavoidable

size/shapes uncertainties we can conclude that the bulk plasma frequency of WO2.72 is

ωp = 6.3± 0.5 eV, whereas ε∞ = 6± 1.

From Eq.2.49 and Eq.2.50, the carrier density is ne ∼ 3.46 × 10 22 cm−3, which cor-

responds to Ncpm ∼ 1.75 carriers per molecular WO2.72 unit, and the conductivity is

σ ∼ 6 × 103 Ω−1cm−1 (we have considered that the molar mass is 227.4 g/mol, that the

mass density is 7.45 g/cm3, and that the effective mass of the carriers is m∗ ∼ 1.2me, as

done in previous studies of the plasmonic response of WO3 nanorods [36]).

Despite the overall good agreement with the experimental axial-plasmon frequencies, the

use of an isotropic dielectric function is not appropriate for the present case. Indeed,

for axial (perpendicular) modes the natural length D appearing into Eq. 2.50 is the

hemitube length L (the wall thickness a). Since L� a ∼ 2 nm, shape anisotropy has to

be incorporated into the model dielectric function through an orientation-dependent γD.

Then, whilst γD = γbulk ∼ 0.9 eV is a reasonable choice for the Drude damping frequency

of axial modes, for perpendicular modes (i.e. to analyze the optical response if the incident

light is polarized on the plane perpendicular to the hemitube axis) we must take a value

γD,⊥. The Fermi velocity corresponding to ne = 3.4622 cm−3 is vF ∼ 104 cm/s, and taking

D ∼ a ∼ 1 − 3 nm in Eq. 2.50 we have that γsurf ∼ 0.7 − 0.2 eV. Thus, in our definite

dielectric function the Drude damping frequency is γD,⊥ ' 0.9 eV if the incident light is

polarized along the hemitube, but γD,⊥ should lie within the range 1.1 − 1.6 eV if the

incident light is perpendicularly polarized with respect to the hemitube axis.

4.3.1 The dielectric function

The model dielectric function that we have derived above assumes that the material

is isotropic, since the different values of γD aim at incorporating the shape anisotropy

of the samples. However, the monoclinic-phase WO2.72 holds intrinsic crystal-structure

anisotropies, which would lead to a LSP-peak splitting even for nanostructures with aspect
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ratio close to one [230]. However, we have already commented that the splitting of the

absorption spectra only appears for very elongated hemitubes.

As a consequence, crystal-anisotropy effects are expected to play a minor role if compared

to shape-anisotropy ones, so we will not consider the former in our analysis. A different

issue is the actual origin of the broadening of the main plasmon peak in the observed

spectra. We have considered that it is mainly related to the finite conductivity of the

carriers (i.e. to intrinsic effects), but the unavoidable size dispersion of the samples and/or

the coexistence of hemitubes with slightly different stoichiometries might be important

as well. This has been recently reported as the main source of the observed width of

plasmon resonances in aluminium-doped zinc oxide nanocrystals [231]. Therefore, our

estimated value γbulk ' 0.9 eV is actually an upper bound for the intrinsic damping

WO2.72. Note that such a damping lead to quality factors Q of the order of 1.5 for the

axial resonances and of the order of 2.0 for the perpendicular ones (although the latter

are obscured by the nearby axial modes for the small- and medium-length hemitubes).

On the contrary, typical quality factors for coinage-metal plasmonic structures are ten

times larger. However, after a simple analysis of the uncertainty of the bulk plasmon

frequency by incorporating sample size dispersion and a plausible coexistence of other

stoichiometries close to the nominal one WO2.72 we can conclude that the quality factor

of the plasmon resonances for individual hemitubes may be of the order Q ∼ 4.

4.3.2 DDA numerical spectra

A detailed analysis of the whole vis-IR absorption spectra requires fully numerical discrete-

dipole approximation (DDA) calculations since our simple semi-analytical model only

accomplishes the hemitubular shape in an averaged manner. The comparison between

experimental and numerical DDA results for different samples is presented in Fig.4.3. As

expected, there is a very good overall agreement between experiment and theory. The

main reason explaining the small quantitative disagreements between DDA and experi-

ments is the unavoidable size/shape uncertainty of the samples. However, is worth men-
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tioning that the strong confinement of electrons within the walls conforms to a scenario

close to the limit of validity of classical local-optics [76] and hence of the DDA. Non-local

optics corrections and/or quantum confinement effects might provide further corrections

to the classical-local-optics spectra [81, 232]. In any case, none of these considerations

affects the essence of our analysis: numerical DDA simulations with a suitable, physically

motivated dielectric functions provide an excellent account of the experimental trends.

DDA calculations allow us to explore in more detail the nature of the absorption spectrum.

In Fig.4.4 we present the contributions to the total DDA absorption corresponding to

incident light polarized in the x, y, and z directions for a hemitube with effective aspect

ratio of 10.7. As can be observed, the plasmonic response appears to be the superposition

of three modes. The first and weakest one is located around λ ∼ 700 nm and is excited

by x-polarized light. The second appears at a slightly large wavelength (λ ∼ 800 nm)

and emerges as a response to y-polarized light. These two spectral features constitute the

perpendicular plasmonic response, but are so close to each other that cannot be resolved

either in the experimental spectrum or in the total DDA one. Finally, as we have already

discussed, the main spectral contribution comes from the axial mode. We also depict in

Fig. 4.4 snapshots of the driven induced density for each mode. As expected, induced

densities behave as oscillating dipoles along the incident E-field direction, but they are

distorted due to the different curvatures of the surface. This is especially evident for the

highest-frequency mode (x-axis polarization).

The aspect-ratio dependence of the components of the decomposed absorption is depicted

in Fig. 4.5. The x-axis mode appears in a narrow range of wavelengths (650 − 750 nm)

although its position and shape is practically the same for all the hemitubes with Reff > 5.

The second perpendicular mode (y-axis polarization) appears in a slightly broader range

(750−1000nm) but, again, it is quite insensitive to the geometrical details of the hemitubes

as long as Reff > 5. Finally, the absorption for incident light polarized along the hemitube

main axis is redshifted as the aspect ratio of the hemitubes increases. Hence, despite the

unique hemitubular shape of the synthetized nanostructures, the perpendicular modes are

very robust with respect to variations of the geometry, whereas the axial mode displays
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Figure 4.3: Vis-IR normalized absorption of WO2.72 hemitubes with different effective
aspect ratios Reff . Upper panel: experiments; bottom panel: numerical DDA calcula-
tions. The DDA spectra is equal to the incoherent sum of the absorptions for incident
light polarized in the three Cartesian directions (x,y,z), and a damping γD,⊥ = 1.4 eV has
been used for the evaluation of the perpendicular response. Note that the λ-dependent
representation of the absorption overemphasizes the differences in the long-wavelength
range.
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Figure 4.4: (Top panels) Sketch of the driven induced surface charge densities for the
three resonances corresponding to each polarization of the incident E-field. (Bottom
panel) Decomposition of the DDA absorption (thick black line) for a hemitube (effective
aspect ratio Reff = 10.7) in contributions corresponding to x-, y-, and z-polarized incident
light (red, blue, and dark grey solid lines, respectively). The dark- grey dashed line is the
analytical absorption Az(λ) for a spheroid with the same aspect ratio.
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the characteristic length tunability of standard, more symmetric nanorods.

4.3.3 Electric field enhancement1

Of paramount importance is the analysis of the near field induced by the plasmonic re-

sponse. Many of the plasmonic-based applications relies on the ability of metallic nanos-

tructures to enhance and concentrate light at a scale far smaller than the wavelength of

the incident light.

In the present scenario, the existence of different length scales (length, width, wall thick-

ness) should be reflected on near-field enhancement patterns. This is confirmed in Fig. 4.6,

where we plot contour plots of the corresponding E-field enhancement, |Etot(r, ω)|/|Eext(r, ω)|,

for the three frequencies that maximizes the absorptions for external incident fields

Eext(r, ω) polarized along the three Cartesian axes. As we may observe, at a distance

s = 1 nm from the upper face of the hemitube there exist four well-defined “hot spots”

of nanometric size associated to the axial LSP and for x-polarized incident light. Such

spots also appear when perpendicular LSP are excited by y-polarized light, but are more

diffused. Most noticeably, in all the cases the near-field patterns are distorted according

to the hemitubular shape of the nanostructure.

4.3.4 Fine structure of the absorption spectra

As we have seen, optical absorption, induced charge surface densities, and electric field

enhancement patterns exhibit a rich structure that are absent in simpler, most compact

nanoestructures. As anticipated, it is plausible that loses were overestimated in our

calculations since we used damping frequencies (γD,z = 0.9 eV and γD,⊥ = 1.4 eV) aiming

at reproducing the experimental optical absorption. For this reason, it is interesting to re-

evaluate numerically the optical absorption, but using smaller damping frequencies, and to

1The electric field enhancement calculations were made by Antonio Fernández-Domı́nguez from the
Universidad Autónoma de Madrid, and are included in this work for the completeness of the theoretical
analisys we did in collaboration.
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Figure 4.5: DDA absorption spectra for x-, y-, and z-polarized incident light as a function
of the effective aspect ratio. Note that the perpendicular response is practically the same
for medium and large aspect ratio hemitubes, regardless their geometrical details.
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Figure 4.6: Top panels: Contour plots on two selected planes of the electric field en-
hancement corresponding to the resonances for x-, y-, and z-polarized incident light. As
depicted in the inset within the bottom panel, plane A (B) is parallel to the upper (front)
face of the hemitube and located at a distance s = 1 nm. Bottom panel: As in Fig. 4.4
for a short hemitube with effective aspect ratio Reff = 4.4.
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compare the absorption spectrum with those corresponding to other simpler geometries.

In Fig.4.7 we present the optical absorption and its polarized-dependent contributions

for a short hemitube (Reff = 4.4) and for a long one (Reff = 15.2) one, but using

small damping frequencies (γD,z = γD,⊥ = 0.2eV). We can see that the single-peak

absorptions Ax(ω) and Ay(ω) depicted in Fig. 4.5 are actually the result of a convolution

of, a least, five resonances. Moreover, some of such resonances can be excited by incident

light polarized in different directions. For instance, the weak resonance at λ ' 600 nm

can be excited by electric fields oriented in both the x and y directions, whereas there

are further resonances that can be excited by electric fields with axial and perpendicular

polarizations. In general, the main spectral feature corresponding to incident light which

is polarized along a single Cartesian axis cannot be (or can be very weakly) excited by

electric fields with perpendicular polarizations. Therefore, the eigenmodes and electric

field enhancements associated to these resonances are expected to be quite similar than

those depicted in Fig. 4.4 and Fig 4.6, respectively. However, the induced electric dipole

for the weakest spectral features is not oriented along any Cartesian axis and, therefore,

can be seen as the result of shape-induced hibridizations between simpler modes that

resembles those appearing in an elongated ellipsoid. Finally, for the longest hemitube

there is a well-defined pure axial mode at λ ' 1300 nm. Although, of course, the induced

density has a non-zero dipolar moment along the z-direction, it can be interpreted as a

hybridized multipolar mode that can be excited because of the sharp termination of the

hemitube. As we will see below, such mode also appears for cylindrical and hemicylindrical

nanostructures.

To determine how interband transitions affect the shape of the fine structure of the per-

pendicular plasmonic modes, in the bottom panel of Fig. 4.8 we depict the Drude-only

absorption spectra for a hemitube with aspect ratio Reff = 15.2. Here, we have chosen

ωP = 3.4 eV, ε∞ = 1 , and γD ' 0.2 eV to guarantee that the perpendicular modes will

appear in the vis-near IR. A direct comparison with the spectra represented in the bottom

panel of Fig. 4.7 indicates that, as expected, the presence of interband transitions leads

to a damping of the resonances at lowest wavelengths, that is, of the plasmon modes that
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Figure 4.7: Decomposition of the DDA absorption (thick black line) for hemitubes with
effective aspect ratio Reff = 4.4 (top panel) and Reff = 15.2 (bottom panel) in contri-
butions corresponding to x-, y-, and z-polarized incident light (red, blue, and dark grey
solid lines, respectively). The Drude-damping frequency in the Drude-Lorentz dielectric
function is equal to 0.25 eV, which allow us to analyse in detail the fine structure of the
response in the range 500 − 1500 nm. The main axial resonance for the longest hemi-
tube appears at λ ' 3000 nm and, therefore, the axial resonance at λ ' 1300 nm is a
“multipolar” mode that can be excited due to the sharp termination of the hemitube.
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Figure 4.8: From top to bottom: decomposition of the DDA absorption (thick black line)
for a cylinder of length L = 59.9 nm and diameter c = 6.4 nm, a hemicylinder, and a
hemitube in contributions corresponding to x-, y-, and z-polarized incident light (red,
blue, and dark grey solid lines, respectively). To allow for a comparison only based on
the different geometries of the nanostructures, the dielectric function does not include
contributions from interband transitions, and the corresponding Drude parameters are
ωP = 3.4 eV, ε∞ = 1 , and γD ' 0.2 eV.
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are closer to the interband transitions. In any case, up to different spectral weights and

frequency shifts, the resolved structure of the perpendicular response without interband

transitions is, as expected, rather similar than the response with interband transitions.

Finally, to show how the hemitubular shape is responsible of the fine structure of the

plasmonic response, we represent in the first and second panels of Fig. 4.8 the absorption

spectra for a cylinder and for a hemicylinder (length L = 59.9 nm, diameter c = 6.4 nm)

using the same Drude-only dielectric function. In all the cases the main axial plasmonic

mode is out of scale, and the axial mode that appears at λ ' 1700 nm in the cylinder and

at λ ∼ 2300 in the hemicylinder and the hemitube is the already discussed hybridized

multipole axial resonance. Focusing on the perpendicular modes, whereas the absorption

spectrum for a cylinder is dominated by a single peak at λ ' 750 nm, the hemicylinder

absorption exhibits two well defined peaks that are above and below a much weaker

spectral feature. That is, the spectrum resembles that of an ellipsoid with three different

main axes plus an additional weaker hybridized perpendicular mode. Finally, when the

hemicylinder is carved we can see how the plasmon resonance corresponding to the y-

direction (x-direction) is redshifted (blushifted), and the emergence of new hybridized

plasmon resonances which, in addition, have a better resolution than the hybridized mode

of the hemicylinder.

4.4 Conclusions

The experimental optical absorption of synthesized WO2.72 hemitubes can be well un-

derstood in terms of the classical Mie-Gans theory [3, 4]. The vis-IR optical spectra are

dominated by a broad [full width at half maximum (FWHM) γ ' 0.9 eV/~] but intense

peak whose position depends very sensitively on geometry of the sample. A second and

much weaker spectral feature, which only emerges as a discernible shoulder in the spectra

for the longest hemitubes, appears around λ ∼ 700 nm for all the samples. The lower-

energy peak can be attributed to a localized surface plasmon (LSP) associated to collective

oscillations of the conduction electrons along the hemitube axis (hereinafter labeled as
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“axial mode”). On the contrary, the higher-energy feature corresponds to LSPs where

the electrons mainly oscillate in the direction perpendicular to the hemitube axis. We

denominate “perpendicular modes” to such collective excitations. Therefore, the maxima

of the experimental absorption can be assigned (up to a small error) to the frequency of

the axial mode.
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Chapter 5

TDDFT study on femtosecond laser

ablation on finite 2D/3D systems

5.1 Introduction

The rapid development, and the increasing availability of intense and ultrashort laser

systems over the last years has opened up a wide range of new applications in industry,

material science, medicine, and even in the arts. One important physical effect in light-

matter interaction driven by these intense and ultrashort laser pulses, is the capacity to

couple large amounts of energy into the target on a femtosecond time scale, leading to a

growing interest in material removal or laser ablation induced by intense and ultrashort

lasers pulses, which can be used for the deposition of thin films, the creation of new

materials, for micromachining, and even for picture restoration and cleaning [93,94].

Regarding the time scales, femtosecond laser ablation has the important advantage in such

applications compared with standard ablation using nanosecond pulses because there is

little or no secondary effects like mechanical or thermal damage on the target being

ablated, i.e., neither collateral damage due to shock waves, nor heat conduction/difussion

are produced in the material. [94–102].

Along with the great interest in the material removal induced by intense femtosecond lasers
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pulses, several experimental and theoretical studies has been published on the topic, some

of them including different analytical models wich fits reasonably well the experimental

results of ultrashort laser ablation processes [103–107], and a thorough knowledge of the

short-pulse laser interaction with the target material is being reached rapidly. However,

many fundamental questions remain concerning the physical origin of the material removal

process by femtosecond laser irradiation [108].

It is well known that for ultrashort laser ablation processes, there are two mechanisms of

material removal, the so-called “gentle phase of ablation” or simply “gentle ablation” at

the initial stages, and the consequently “strong-ablation”. In this context, there is still a

controversy on what is the physical mechanism of ion removal from a surface illuminated

by a femtosecond laser pulse in the gentle ablation regime.

Reviwing the literature, some authors argue that the electrons that are removed from

the material by the laser pulse, pull ions from the surface. That is called electrostatic

ablation [104,105,109]. However there are even more studies stating that electrons quickly

fly away, and the ions are pushed out of the material by the excessive leftover positive

charge [110–119]. That is the Coulomb explosion (CE) mechanism. Even more, one

method or the other are usually used to explain the mechanism of material removal in the

gentle ablation regime, ignoring completelly to the other one [103,104,194]. Then, to the

best of our knowledge, the apparently simple question of which of the two mechanisms

is actually operative in laser ablation is still not answered [195]. One of the reasons is

that it is very difficult to image the motion of ions, because they do not strongly interact

with optical fields. Motivated by this, in this chapter we present some results based on

simulations of laser ablation processes of quite simple structures, with the goal of sheed

light on the controversy about the mechanism of ablation in the genle ablation regime.

All the simulations in this chapter were performed at an ab-initio level by using TDDFT

coupled with standard Ehrenfest dynamics in the Octopus code [185,186,188].

All the calculations were performed by using real-space grids following the first-principle

TDDFT formalism implemented in the Octopus code [185, 186, 188] coupled with stan-
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dard Ehrenfest dynamics. The wave functions, densities, and potentials were discretized

in a real-space grid. Norm-conserving Troullier-Martins’ pseudopotentials [196] were em-

ployed to properly describe the interaction between the ionic core and the active elec-

trons, and Perdew-Zunger’s exchange-correlation functional [197] was used within the

time-dependent local-density approximation (TD-LDA).

In order to obtain insights on which is the mechanism of ablation in the gentle-ablation

regime, we proceed in a kind of botton-up way, performing simulations from a 0-dimensional

system: a Li4 cluster, to a 2-dimensional system: a graphene nanoribon.

5.2 Li4 system

In order to start addressing 2D/3D cases, we simulated the laser ablation process of a

Li4 cluster. The frequency dependence of the electron dynamics during femtosecond laser

resonant photoionization of this system has been already studied [38]. The ground-state

lowest-energy geometry of the Li4 cluster is a rhombic planar geometry (see Figure 5.1),

and the calculated bond length along the rhombus side is 5.68 a.u. which is in good

agreement with the experimental and previous calculation values [198–200].

Fig. 5.1 shows the Li4 cluster placed at the center of a spherical box with a radious of

25 a.u. During the nonlinear laser-material interaction, a imaginary absorbing potential

of 5 a.u. is added to the Kohn-Sham Hamiltonian at the box boundary to account for the

emitted electrons during the simulation process (light-blue shaded region on Fig. 5.1). As

is shown, the simulation box is far enough away of the electronic charge density of the

system in their ground state.

In the case of the Li4, a spatial three-dimensional uniform grid inside a sphere box with

the radius of 30 Bohr was employed to describe the wave function (see Figure 5.1). The

Li4 cluster was placed at the center of the sphere box. The time step of ∆t = 0.02 a.u.

and grid spacing of ∆x = ∆y = ∆z = 0.3 Bohr ensured a stable time evolution.

In order to control for the laser ablation process of the Li4 cluster during the simulations,
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Figure 5.1: Representation of the spherical simulation box used in the calculation. The
radius of the simulation box is 25 a.u., including an absorbing boundary condition of
5 a.u. The Li4 cluster is placed at the center of the simulation box.

only the labeled atom 1© was allowed to move freely (see Figure 5.1).

We consider the photoionization of Li4 cluster with a photon energy of 1.66 eV (closer to

resonance, see Fig 5.2) and we represent the laser irradiation by subjecting our system to

an external alternating electric field parallel to the x axis. laser pulses.

The applied laser pulse is a 45 fs Gaussian wave packet, and the total time of the simulation

is 160 fs. Four different laser peak power density of the pulse are used, 1× 1012 W/cm2,

3×1012 W/cm2, 5×1012 W/cm2, and 1×1013 W/cm2. Figure 5.3 shows the electric field

of the different applied

Figure 5.4 shows the dipole responses along x axis during the simulations. It is quite clear

how the dipole response start to increase around t = 40 fs for the three cases were the

intensity of the laser pulse is higher.

In all the cases, the system starts to ionize rapidly, and the system start to emit electronic

charge abruptly, as can be seen from the top panel of Figure 5.5. Once the laser pulse is

switched off at t = 45 fs, the remaining electrons continue to perform collective oscillations
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Figure 5.2: Calculated photoabsorption spectra of the Li4 cluster
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Figure 5.4: Time evolution of the dipoles along x-axis of Li4 cluster under different
femtosecond laser irradiation.

82



E
m

it
te

d 
el

ec
tr

on
s 

(a
.u

.)

 0

 1

 2

 3
Io

n 
m

ov
em

en
t 

(a
.u

.)

Time (fs)

1×1013 W/cm2

5×1012 W/cm2

3×1012 W/cm2

1×1012 W/cm2

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120  140  160

Figure 5.5: (Top panel) Time evolution of the x-displacement of the 1© Li atom for the
different applied laser pulses. (Bottom panel) Time evolution of the emitted electrons for
the different applied laser pulses.

(see Figure 5.4), however bottom panel of Figure 5.5 shows how at around t = 40 fs, were

the intensity of the laser has decreased considerably, the emission of electronic charge has

reached a saturation regime, and during the rest of the simulation time there are almost

no emission of electronic charge.

Bottom panel of Figure 5.5 shows the movement of the 1© atom through the x axis.

Comparing top and bottom panels of Figure 5.5, it is possible to see a correlation between

the emission of the electrons and the movement of the ions. We found that in all the cases

there was a delay (almost 10 fs) between the departure times for electrons and the ion,

suggesting a possible electrostatic ablation case, however this delay is due to the emitted

electronic charge is taken into account only once it reaches the absorbing boundary of the

simulation box, and the movement of the ions are always taken into account. That is, the
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ion starts its movement after the ionization process.

In all the cases the free atom starts to move at around t = 20 fs, however only under the

most intensity fields (5× 1012 W/cm2, 3× 1013 W/cm2, and 1× 1013 W/cm2) the free ion

really leaves the cluster. On the other hand, in the lower intensity case (1×1012 W/cm2),

the free atom starts to go back to its original position around t = 110 fs, indicating that

in this case there were no ablation.

Through the entire evolution of the system, we computed total forces acting on the atom

labeled as 1© from all electrons and from the rest of the ions. In Figure 5.6, we show the

time dependence of the total forces acting on the free ion from the rest of the ions, from

all electrons, as well as the combined force from both the remaining ions and all electrons.

As stated above, with the exception of the weaker field (1 × 1012 W/cm2) where there

were no ablation, in all the cases the ionic forces dominates over the electric ones, a

concomitant consequence of the previous ionization process. Being this another indication

that Coulomb Explosion is the mechanism of ablation of this system.

In order to check the total forces we have performed numerical differentiation of the data

of the position of the free ion. Figure 5.7 shows the velocity of the free atom in all the

cases.

Figure 5.8 shows the derivated forces of the free atom for the three studied cases. Com-

paring with the total forces shown on Figure 5.6 there is a noticeable match between

them.

In order to try to figure out from where is being emitted the electronic charge, we plot, for

the case 1© the electron density over the surface of the simulation sphere from t = 70 fs

to t = 73.5 fs.

From the analysis of the electronic density in the simulation sphere we note that spite

the electronic charge density is leaving the simulation sphere from all the directions, it

mainly does oscillating through the x axis, as could be inferred from the dipole moment

(see Figure 5.4). That is, the emision of electrons always keeps the aproximated spherical
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Figure 5.6: Time dependence of the total forces acting on the atom labeled as 1© from the
rest of the ions, from all electrons, as well as the combined force from both the remaining
ions and all electrons for the different laser pulses.
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Figure 5.7: Time evolution of the velocity for the free atom in all the cases.
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Figure 5.8: Numerical calculation of the forces over the free atom obtained from the
positions.
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Figure 5.9: Electron density over the surface of the simulation sphere at different times.
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Figure 5.10: Time evolution of the x-displacement of the 1© atom applying no laser over
the ground state of the four-electron system, but removing artificially the charge density
of one electron.

symetry despite the fact that the ionic structures does not. This can be seen as a further

confirmation of the abscence of an electrostatic ablation process.

In order to get more insight on the nature of the ablation mechanism we perform an

additional simulation, in this case we apply no laser over the ground state of the four-

electron system, but we artificially remove one electron, and let the 1© atom free to move.

This should mimic the extreme case of Coulomb explosion mechanism. Figure 5.10 shows

the movement of the 1© atom through the x axis.

As can be seen from Figure 5.10, the “free” atom start to move slowly away from its

equilibrium position at the beginning of the simulation, but at t ' 95 fs the free atom

starts to go back and it keeps oscillating. The movement of the 1© atom with the different

laser pulses are also plotted as a reference.

That is quantitatively speaking, the movement of the ion is similar than the one corre-

sponding to the laser-induced ionization.

5.3 Graphene nanoribbon

The previous (Li4) simulation addres the “0-dimensional” case, while your analysis ad-

dressed the “1-dimensional” one. Lets now proceed with a study of the laser ablation of

88



a 2-dimensional system. To do so, we simulated the laser ablation process of an armchair

graphene nanoribbon terminated by hydrogen atoms in three of the four edges. In their

ground state, lowest-energy geometry of this system, the atoms are densely packed in a

regular hexagonal pattern (see Fig. 5.11).

During the nonlinear laser-material interaction, a imaginary absorbing potential of 2.8 a.u.

is added to the Kohn-Sham Hamiltonian at the box boundary to account for the emitted

electrons during the simulation process (light-blue shaded region on Fig. 5.11). As is

shown, the simulation box is far enough away of the electronic charge density of the

system in their ground state.

In the case of the graphene nanoribbon, a spatial three-dimensional uniform grid inside

a parallelepiped box (29.75 × 39.90 × 19.95 Bohr) was employed to describe the wave

function (see Figure 5.11). The time step of ∆t = 0.06 a.u. and grid spacing of ∆x =

∆y = ∆z = 0.35 Bohr ensured a stable time evolution.

In order to control for the laser ablation process of the graphene nanoribbon during the

simulations, only carbon atoms inside the black rectangle (purple-carbon atoms) were

allowed to move freely (see Figure 5.11).

We consider the photoionization of small graphene nanoribbon with a photon energy of

6.63 eV (closer to the frequency of the π-plasmon, see Fig. 5.12) and we represent the

laser irradiation by subjecting the graphene nanoribbon to an external alternating electric

field parallel to the x axis.

The applied laser pulse is a 20 fs Gaussian wave packet, and the total time of the sim-

ulation is 100 fs. We have tested several laser peak power densities of the laser pulses,

ranging from 5 × 1013 W/cm2 to 5 × 1014 W/cm2. As in the case of the Li4 cluster,

the graphene nanoribbon starts to ionize rapidly, and the system start to emit electronic

charge abruptly, as can be seen from the top and middle panel of Figure 5.13.

With the exception of the most intense laser pulse cases (1 × 1014 W/cm2, and 5 ×

1014 W/cm2), top panel of Figure 5.13 shows how at around t = 20 fs, were the intensity
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Figure 5.12: Calculated photoabsorption spectra of the graphene nanoribon.

of the laser has vanished, the emission of electronic charge has reached a saturation regime,

and during the rest of the simulation time there are almost no emission of electronic charge,

however under the most intensity fields (1× 1014 W/cm2, and 5× 1014 W/cm2) some of

the free atoms have reached the boundary of the simulation box early on, provocating an

abrupt emission of charge which we do not plot in order to avoid confusion.

Fig. 5.14 shows the dipole response of the system along x axis during the simulation

(the gray region represent the duration of the 20 fs laser pulse). It is worth to note how

after the pulse is switched off at t = 20 fs, the remaining electrons continue performing

collective oscillations, and the system continue emitting electronic charge (see top panel

of Figure 5.13).
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Figure 5.13: (Top panel) Time evolution of the emitted electrons for the different applied
laser pulses. (Middle panel) Ionization rate as a function of the time. (Bottom panel)
Time evolution of the x-displacement of the “A” atom for the different applied laser
pulses.
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Figure 5.14: Time evolution of the dipoles along x-axis of the graphene nanoribon under
different femtosecond laser irradiation.

So, as we stated above, during the simulation, only the purple-carbon atoms inside the

black rectangle of Fig. 5.11 were allowed to move. In particular, in the bottom panel of

Fig. 5.13 we plot the movement of the A-labeled atom through the x axis with respect

to their equilibrium position in the ground state of the graphene nanoribbon. In our

system this A-labeled atom should represent the most similar conditions to any atom in

a periodic (or very large) graphene nanoribbon. It is worth noting here that when the

system is perturbed by the weaker field (1×1012 W/cm2) there is no ablation (See movies
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online).

So through the entire evolution of the system, we computed the total forces acting on this

atom from all the electrons, from the rest of the ions, as well as the total combined force

from both the remaining ions and all electrons.
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Figure 5.15: Time dependence of the total forces acting on the “A” atom from the rest of
the ions, from all electrons, as well as the combined force from both the remaining ions
and all electrons for the different laser pulses.

Figure 5.15 shows how in all the cases the ionic forces dominates over the electric ones.

Being this a signal which indicates that if the A-labeled atom is removed from the sample,
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then it is removed by a Coulomb Explosion mechanism. Furthermore, from the top and

middle panel of Figure 5.13 it is possible to observe how during the first 10 fs of the

simulation, the system have reached a maximum on the ionization rate (regardless of the

intensity of the laser pulse), and during this time interval, being the system positively

charged, the A-labeled atom almost has not moved from its equilibrium position, but it

does from 10 fs onwards, confirming the Coulomb Explosion again. This can be observed

on the online movies also.

95

http://nano-bio.ehu.es/~alejandro/


96



Chapter 6

Anisotropy Effects on the Plasmonic

Response of Nanoparticle Dimers1

6.1 Introduction

The resonant interaction of light with metallic nanostructures is at the heart of the de-

veloping field of nanoplasmonics. Recent advances in the fabrication and characteriza-

tion of nanodevices have opened the possibility of tailoring plasmonic modes and, as a

consequence, the response of nanosystems to external radiation [47–49]. From these ad-

vancements, a number of applications have been realized and/or proposed over the last

few years, including optoelectronic hybrid devices [50,51], optical nanoantennas [52], op-

tical traps [53], nano-sensors [54–56], and broad-band light harvesting devices [57], among

others.

Many properties of these nanodevices can be understood perfectly in terms of classical

optics [4]. However, if one of the characteristic lengths of the system reaches the sub-

nanometric scale, genuine quantum effects emerge in the optical response [48, 58], as has

been observed over the last few years in a series of breakthrough experiments [59–63]. In

this regime, the theoretical treatment of the electromagnetic response must include the

1This chapter is based on Ref. [233].
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inhomogeneities of valence-electron densities and of photoinduced currents between the

constituents of the device. Although there are some recent theoretical attempts aimed

at incorporating such effects into the realm of classical optics [64, 65], in principle, the

quantum behavior of both ground- state and light-induced densities should be explicitly

treated to obtain reliable theoretical predictions.

A prototypical case is a system made up of two metallic nanoparticles with subnano-

metric separation. In this metallic nanodimer, the establishment of a photoinduced

electric current between the particles dramatically changes the plasmonic modes of the

system [66–68]. The main trends [69, 70] can be explained by describing the nanopar-

ticles with the spherical jellium model in which the atomic structure is neglected, and

by evaluating the optical response using the quantum mechanical time-dependent density

functional theory (TDDFT) [71–74]. The latter provides the necessary accuracy when

describing both the inhomogeneity of the electron density and the inherent nonlocality

of the electromagnetic response. Thus, the combination of the jellium model and the

TDDFT-based quantum treatment of light-matter interactions defines what is now con-

sidered to be state of the art in theoretical nanoplasmonics. Consequently, this approach

has been applied to analyze the tunable response properties of nanorods [75], plasmonic

cavities formed by nanowires [76–79], nanomatryushkas [80], and more recently, the op-

tical properties of doped semiconductor nanocrystals [81]. Furthermore, the predictions

of the jellium/TDDFT method can also be used to assess [76, 78] the capabilities of so-

phisticated refinements of classical optics [64, 65, 82–90], whose range of applicabilities

is certainly broader because the numerical implementation of fully quantum methods is

limited to systems containing up to thousands of atoms.

The widespread use of the jellium model when analyzing simple sp systems can be easily

justified on the basis of the collective character of the plasmonic response. Moreover,

the dynamical screening due to d electrons in noble-metal nanostructures can be mim-

icked by a dielectric background with an appropriate dielectric function [91]. Then, the

atomic structure can be safely neglected in nanostructures made up of weakly interacting

compact elements. However, this is not a valid approximation in systems like hybrid
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nanoclusters [92], where the chemical composition of the nanoparticle is essential to un-

derstanding its optical properties. For strongly coupled nanostructures, we have recently

shown that surface corrugation due to the atomic structure leads to induced near fields

with spatial distributions and intensities that are fairly different than the ones obtained

from the jellium model [234]. As mentioned previously, the electromagnetic response of

a nanodimer is greatly affected by the induced current between the particles. Therefore,

it is expected that the relative orientation of the nanoparticles, which leads to different

atomic arrangements around the dimer junction, will have to be taken into account. Thus,

a careful analysis is needed to quantify the actual role played by the anisotropy of the

atomic structure in the establishment of induced photocurrents and to determine those

regimes in which its description is relevant. These are the main objectives of this study.

6.2 Nanoparticle dimers

To achieve this goal, we analyzed the optical response of a prototype sodium nanocluster

dimer. Each cluster is made up of 297 atoms in an icosahedral arrangement, which is

the most stable configuration for isolated Na nanoparticles of this size [235](The relaxed

atomic structure of the Na297 cluster is taken from the Cambridge Cluster Database,

http://www-wales.ch.cam.ac.uk/ CCD.html.). As can be seen in Figure 6.1, the Na297

cluster is almost spherical with 2R ' 2.61 nm being its effective diameter. This value

corresponds to an average atomic density that is slighty larger than the one corresponding

to bulk Na. The distance between the clusters is defined as d = b − 2R, where b is the

distance between the central atoms of each cluster. Therefore, this definition does not

depend on any atomic rearrangement in the gap region.

Once the distance d is fixed, there are two main features to consider: the relative orienta-

tion of the clusters and the atomic relaxation due to the mutual interaction. Concerning

the relative orientation, in the present work, we treat the two cases depicted in Figure 6.1.

The first leads to a spatial gap that is limited by two 12-atom faces (F2F orientation),

whereas the second corresponds to a spatial gap between two 3-atom edges (E2E ori-
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Figure 6.1: Representation of the two different geometrical arrangements of icosahedral Na297 dimers
considered in the present study. In the edge-to-edge (E2E) relative orientation (upper panel), two 3-atom
edges are faced. In the face-to-face (F2F) relative orientation (lower panel), the spacial gap is between
two 12-atom faces. The applied electric field is orientated along the dimer axis.

entation). Thus, in the F2F geometry, we maximize the width of the dimer junction

whereas the E2E configuration corresponds to a smaller separation between atoms. That

is, there are two distinct effects (the distance between the nearest-neighbor atoms and

the contact width) that tend to cancel out. Thus, we performed energy-optimized relax-

ation of the atomic positions in the E2E geometry, which is required due to the smaller

distance between atoms. Such a relaxation obviously has to be restricted to the region

around the spacial gap because the dimer itself is metastable: full relaxation would lead

to coalescence of the two clusters.

Both energy optimization and ground-state calculations are performed under a real-space

prescription of the density functional theory (DFT) Kohn-Sham equations [160] using the

OCTOPUS package [185–188]. The explicit treatment of the 3s conduction electrons using

norm-conserving pseudopotentials [196] suffices for the purposes of the present work. The

relaxation is performed using the FIRE algorithm [192] recently implemented in OCTO-

PUS [188] under a semilocal approximation to the exchange-correlation (XC) functional.
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Once the equilibrium geometries were obtained, ground-state electron densities, n0(r),

were evaluated using the same prescription.

The TDDFT optical response was also calculated with OCTOPUS following the Yabana-

Bertsch time-propagation recipe [184], which is very efficient in systems containing hun-

dreds of atoms. At t = 0, the electron system was perturbed by a delta-kick electric field

E(r, t) = (~‖′/e)δ(t)ex, where e is the absolute value of the electron charge, ex is the

direction of the dimer axis (i.e., the external field is oriented along the dimer junction),

and ‖0 = 0.005 a.u. Then, all of the E1 selection-rule transitions were excited, and the

induced density of a transition of frequency ω was directly related to the time-dependent

density of the system after the kick, n(r, t), though a Fourier transform

δn(r, t) =

∫ ∞
0

δn(r, t)e(iω−γ)t , (6.1)

'
∫ Tmax

0

δn(r, t)e(iω−γ)tdt , (6.2)

where δn(r, t) = n(r, t) − n0(r). Here, γ = 0.1 eV/~ is a damping frequency that ac-

counts for absorption spectra broadening due to nonelectronic losses, and Tmax is the

actual propagation time in the calculations. The absortion cross-section is then given by

σabs(ω) = (ω/cε0)Imα(ω), where the dynamical polarizability α(ω) is

α(ω) = − e2

~k0

∫
xδn(r, ω)dr (6.3)

In practice, α(ω) is evaluated from the Fourier transform of the kick-induced time-

dependent dipole moment. Well-converged results are achieved using Tmax = 20 fs, a

propagation-time step of ∆t = 10−4Tmax, and grid spacing of 0.026 nm.

6.3 Optical absorption

The dipole optical absorption of Na297 dimers in the 0 ≤ d ≤ 0.6 nm range of separations is

presented in Figure 6.2 for unrelaxed F2F and relaxed E2E geometries. For completeness,
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Figure 6.2: Optical absorption of Na297 dimers as a function of the distance d as defined in the text.
Upper panels: contour plots of the photo-absorption cross sections, σabs(ω). The vertical dashed line
indicates the approximate distance of where the hybridized Q mode becomes the main spectral feature in
the spectrum. Lower panel: waterfall plot of the absorption cross sections. The red [blue] lines correspond
to the F2F [relaxed E2E] relative orientations. For each distance, the separation in nm between faces
[edges] is indicated in parentheses. The spectral peaks corresponding to coupled D, charge-transfer D
and Q, and hybridized Q modes are indicated as well.
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we have also included the optical absorption for the E2E overlapping clusters (d = −0.1

nm), where a major reconstruction of the junction occurs. We can define three distinct

regimes: (a) d ≥ 0.6 nm, where the interaction between clusters is mainly electromagnetic

and the photoinduced charge transfer (CT) is very small; (b) d ≤ 0.1 nm, where there is a

direct overlap of the ground-state densities of each cluster because the Fermi level of the

system is above the potential barrier in the dimer junction; and (c) 0.1 nm < d < 0.6 nm,

where tunnelling CT between the clusters appears as a result of a photoinduced voltage

bias between the clusters.

As seen in Figure 6.2, there are marginal differences between the E2E and F2F optical

spectra for the (a) and (b) separation regimes. The irrelevance of the relative orientation

of the clusters in regime (a) is not at all a surprise because there are minor differences

between the F2F absorption and the spherical jellium model even when d = 0.5 nm [234].

Furthermore, this is the regime in which the optical absorption can be explained well in

classical terms, and it is also possible to have a quantitative agreement with the quantum

predictions as long as the nonlocality of the electromagnetic response and the inhomo-

geneity associated with the electron-density spill-out in each nanoparticle are properly

addressed. As is well known [66, 84, 178, 236, 237], the optical absorption in this regime

is dominated by coupling between the Mie dipole-localized surface plasmon resonances

(LSPRs) of the individual clusters. This coupled mode, in what follows labeled as D, is

red-shifted with respect to the value ωM = 3.13 eV/~ of the main Mie resonance of the

isolated Na297 cluster [234]. In addition, a weak but discernible spectral feature appears

at higher frequency. This is the signature of hybridized plasmon resonance (Q) due to

excitation of the quadrupole LSPR of each cluster by the induced near field of the other.

As mentioned above, regime (b) corresponds to direct overlap of ground-state densities.

In this limit, the two clusters cannot be consider as individual entities anymore and the

system is actually a single “peanut-like” nanoparticle. The atomic arrangements in the

junction and at the surfaces are very different in the F2F and E2E geometries, but such

differences are blurred in the valence-electron density. As a consequence, the classically

predicted sensitivity of the propagation of surface modes with respect to the surface
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inhomogeneities [238] is no longer relevant. In this case, the spectrum is dominated by

two LSPRs, labeled as D(CT) and Q(CT). In both resonances, there is a capacitive charge

transfer between the two clusters (actually, between the two lobes of the peanut-shaped

nanoparticle). In turn, these modes can also be characterized using classical optics if the

actual ground-state density of the system is properly modeled [237,239].

On the contrary, the importance of the relative orientation between the nanoparticles

is manifested in regime (c), where the optical absorption of the dimer is the result of

a delicate interplay of the electromagnetic interaction mediated by near fields and the

appearance of a tunneling CT between the clusters. When d ≥ 0.4 nm, the splitting of

the D and Q modes in the F2F geometry is clearly visible. Furthermore, the frequency

of the D mode decreases when approaching the clusters. Thus, the behavior of the F2F

response can be described by classical electromagnetism despite the fact that there is

charge transfer between the clusters as we will show below. For the E2E geometry, the

value of the frequency of the D mode is already locked in this range of separations, and the

transfer of spectral weight from the D mode to the hybridized Q mode is clearly reflected

in the spectrum. Interestingly, the intensity of the tunneling current, ICT, when the D

mode is excited is very similar in the F2F and E2E configurations. However, because

the junction in the E2E orientation is substantially narrower than in the F2F one, the

CT current density across the spatial gap is greater in the E2E case. As a consequence,

propagation of the plasmonic density waves over the surface of the clusters is slightly

altered by the tunneling CT in the F2F geometry, and the hybridization process follows

the classically predicted trends. In fact, the quantum effects are only discernible in the

F2F spectrum when the distance d is less than 0.4 nm. However, the E2E optical response

is more sensitive to the establishment of an induced current, and we can say that the onset

of quantum behavior due to tunneling is above d = 0.5 nm.

Within regime (c), the differences are more dramatic at smaller separations. In the F2F

orientation at d = 0.3 nm, the D mode still dominates the spectrum, but the corresponding

mode in the E2E geometry has already been quenched, and the main spectral feature

comes from the hybridized Q mode. Nevertheless, this interpretation cannot be taken
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Figure 6.3: Impact of the atomic relaxation on the absorption cross sections for E2E Na297 dimers at
separations of d = 0.1 and 0.3 nm. Optical absorption for relaxed geometries are the solid blue lines, and
absorption for unrelaxed geometries are the dashed lines. For the sake of comparsion, the corresponding
F2F spectra are also depicted (red solid lines).

literally because, unlike the well-defined classical plasmon modes, quantum collective

excitations are the result of a coherent superposition of multiple electron-hole transitions,

which cannot be isolated from other surrounding electron-hole pairs. In fact, the broad

absorption range that characterizes both spectra at d = 0.3 nm is an admixture of the

quantum collective excitations corresponding to the classical D and Q modes, electron-hole

transitions, and likely other many-body collective excitations [240]. In any case, at d = 0.3

nm, the two spectra are qualitatively different, and such a difference will be even more

evident when analyzing the driven-induced densities and currents. The spectral feature

corresponding to the D mode in the F2F orientation finally vanishes when the separation

is smaller than 0.3 nm, and the maximum absorption at d = 0.2 nm corresponds to the

excitation of a Q mode for both geometries. Note that there is still reminiscence of the

D mode excitation in the F2F spectrum around ω = 2.3 eV/~.
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6.3.1 Impact of the atomic relaxation

We will now analyze the impact of atomic relaxation in the optical absorption. The

corresponding reconstruction in the junction is negligible if the distance between nearest-

neighbor atoms is > 0.6 nm and hardly noticeable in the range 0.5−0.6 nm, which means

that relaxation effects are expected to be significant if d ≤ 0.4 nm for the E2E geometry

and ≤ 0.25 nm for the F2F configuration. For shorter distances, when the atomic densities

of both clusters overlap, the atomic reconstruction itself will be noticeable. However, we

have seen that, in this regime, the specific atomic arrangement is not a fundamental issue.

Therefore, the atomic relaxation will play a role only in the range of critical distances in

which there is a transition from a dominant D mode to a Q mode. To confirm and quantify

this prediction, we compared the relaxed-E2E optical absorption considered so far with

that of unrelaxed-E2E at d = 0.1 and 0.3 nm. This comparison is depicted in Figure 6.3

where, as expected, we see that atomic relaxation has a marginal impact on the optical

response when d = 0.1 nm. At the critical distance d = 0.3 nm, the separation between the

atoms is slightly greater in the unrelaxed configuration than in the relaxed one (0.51 and

0.48 nm, respectively). This small rearrangement does affect the absorption spectrum,

because the intensity of the tunneling CT is weaker in the unrelaxed configuration. In

any case, the changes are merely quantitative and less important than those related to

the relative orientation, albeit they illustrate the sensitivity of the plasmonic response to

the CT current intensity.

To gain further insights concerning the optical properties of the nanocluster dimers, we

analyzed the electron dynamics at different resonant frequencies. Specifically, we looked

at the induced densities, the current intensities between the clusters, and the total electric

field (external plus induced) at the middle of the junction, r = 0. To carry out this study,

we applied a weak uniform quasi-monochromatic laser pulse of mean frequency ωext over

the system with duration τ = 20π/ωext given by

E(t) = −E0 sin (πt/τ) cos (ωextt)ex , (6.4)
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Figure 6.4: Snapshots of the induced electron densities at different resonant frequencies, as indicated in
each panel. The top panels depict the induced densities when the current between the clusters reaches a
maximum, whereas the second line corresponds to induced densities when the charge difference between
clusters is maximum (zero intensity). The scale range is −ρ ≤ δn ≤ ρ, where ρ = 0.5 × 10−6 a.u. for
d = 0.1 and 0.3 nm, whereas ρ = 10−6 a.u. for d = 0.5 nm. A sketch of the corresponding ground-state
electron densities is also shown to illustrate the different contact regimes.

where E0 = 10−6 a.u. ' 0.51 × 106 Vm−1 is the maximum amplitude of the incident

electric field. The maximum intensity of the laser pulse is 34.5 kW cm−2, which is well

below the onset of nonlinear effects.

In Figure 6.4, we depicted snapshots of the photoinduced densities in a plane containing

the dimer axis for the following selected cases: (a) D mode at d = 0.5 nm (E2E, ωext = 2.83

eV/~), (b) D and Q modes at d = 0.1 nm (E2E, ωext = 2.01 eV/~ and ωext = 3.05 eV/~,

respectively), (c) D mode (F2F, ωext = 2.79 eV/~) and Q mode (E2E, ωext = 3.00

eV/~)at d = 0.3 nm. In all of these cases, the relaxed atomic geometries were used for

the E2E relative orientation. The snapshots were collected at times where the induced

current is maximum (i.e., when the two clusters have the same charge) and where the

induced current is close to a minimum (i.e., when the net charge of each cluster reaches

its maximum absolute value).

Case (a) is representative of a coupled D mode (albeit very slightly altered by the ap-

pearance of a tunneling CT). The coupling between the dipole resonances of each cluster

is reflected by a high concentration of oscillating-induced charges of opposite sign in the

sides of the junction. As has been extensively analyzed using classical and quantum

prescriptions, this distribution of charge is the primary reason for the high electric field

enhancements that appear in this plasmonic cavity.

In case (b), we show direct CT modes. Although the overall shape of the driven densities
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are partially obscured by the atomic corrugation, the different nature of the D and Q

modes is evident. Also note that the induced densities are practically zero in the junction,

which is in fair correspondence with the single-nanoparticle character of the system at

this separation.

Finally, case (c) illustrates the sensitivity of the dynamical response to the atomic config-

uration in the critical regime in which the optical absorption is affected by photoinduced

electron tunneling. The most relevant aspect is the difference between the E2E and F2F

driven densities. The first can be assigned to a Q mode (compare with the correspond-

ing Q mode at 0.1 nm), whereas the second has a shape closer to a D mode. Also note

the different distributions of the induced densities around the spacial gap between the

clusters.

6.4 Induced currents and electric field enhancement

In Figure 6.5, we display the time-evolution of the induced current, ICT, and the total

electric field at the middle of the junction (r = 0) for the three cases discussed above. We

have also included the induced current and field for the F2F configuration at d = 0.5 nm

(D mode, ωext = 2.78 eV/~). It is worth emphasizing the overall delay in the response

with respect to the applied field and the persistence of the induced currents and fields even

when the external field has vanished, which are obvious signatures of resonant coupling.

Non- electronic losses are not included in this calculation and, therefore, the decay of

the driven modes can only occur via Landau fragmentation (i.e, though the formation of

electron-hole pairs) [240–242]. Also note that the generation of hot electrons mediated

by plasmon resonances is a very efficient mechanism that has important implications in

heterogeneous catalysis, for instance [16]. In any case, the excitation of electron-hole pairs

is the main damping mechanism of plasmons in nanoparticles of this size.

The electric fields at r = 0 for the two coupled D modes at d = 0.5 nm considered here

(EFE and F2F) are very similar, although the field corresponding to the E2E geometry

108



Figure 6.5: Time evolution of induced currents (solid green lines) and total electric fields (dotted blue
lines) at the middle of the dimer junction (r = 0) due to the resonant coupling of selected modes of the
nanoparticle dimer with an applied external field (depicted in the upper panel) of frequency ωext. In
each panel, we indicate the maximum value of the induced intensity, ICT, corresponding to an incident
electric field with maximum amplitude E0 = 10−6 a.u.

109



is slightly more intense. We can attribute this effect to the shorter atom-atom distance

and also to the more angular profile of the induced density in the E2E configuration. On

the other hand, fields and intensities practically oscillate in phase, correspond- ing to a

resistive character of the junction. This behavior agrees with that obtained for the jellium

nanocluster [70] and nanowire dimers [78]. Note the weak charge-transfer intensity (on

the order of 100 nA) for the incident laser pulse given in Eq. 6.4.

Focusing on the direct CT regime, d = 0.1 nm, we must first note the different phase shifts

of the oscillations of both the Q and D modes with respect to the applied field. Moreover,

for both resonances, there is a relative phase between the induced current and the electric

field in the center of the dimer with the intensity being delayed with respect to the

total electric field. Again, this capacitive character of the resonance is in full agreement

with previous findings for jellium systems [70, 78]. Although the optical absorption at

the D mode is weaker than at the Q resonance (see Figure 6.1), the E field intensity is

stronger in the D mode. Nevertheless, once the applied field fades out, the amplitudes

of the D mode oscillations are quickly damped as expected from the wider corresponding

peak in the absorption spectrum. Finally, in this regime, the charge-transfer intensity

is approximately one order of magnitude larger than in the tunneling regime previously

described (at touching distance, d = 0, the maximum charge-transfer intensity is 1600

nA).

In line with the previous discussion, there are quantitative differences between the E2E

and F2F orientations in the intermediate distance regime d = 0.3 nm. The intensities of

the driven currents are rather similar up to a small relative phase. However, the electric

field in the E2E geometry is weaker than in the F2F orientation. This is not surprising

because the dominant mode in the E2E geometry is the Q resonance. Remarkably, the

intensity and the total E field oscillate in phase in the F2F dimer, thus indicating that

the charge flows across a resistive junction. On the contrary, the E field and the current

do not oscillate completely in phase in the E2E geometry. This is consistent with a weak

capacitive behavior, which again can be traced back to the different atomic configurations

in the junction.
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6.5 Conclusions

In summary, we have presented a detailed study of the impact of the atomic configuration

on the electromagnetic modes of prototypical metallic nanodimers when a charge transfer

is established between the constituent clusters. Effect like atomic relaxation and different

relative orientations, to date unexplored in quantum implementations of ab initio nano-

plasmonics, have been explicitly addressed. Our findings confirm the accuracy of the

jellium model, either in combination with quantum mechanical calculations or classical

theories, except in the subnanometric separation regime in which the photoinduced tunnel

current leads to changes in the optical properties of the system. This is precisely the regime

where the most complicated processes occur. Thus, we have shown that accounting for the

atomic structure of the junction (mainly the relative orientations between the faces) for

very close nanoparticles is necessary to obtain theoretical results with enough predicitive

power.

Although quantum TDDFT simulations can be applied to systems containing thousands

of atoms, this is still too small for the sizes of many nanoparticles of technological interest.

In these cases, the theoretical analyses aimed at helping in the design and characterization

of novel nanodevices must necessarily be performed using either advanced prescriptions of

the well-established classical electromagnetic theory [64, 65] or simplified TDDFT meth-

ods [146,243]. However, even in simple systems like the one analyzed in this work, there is

a subtle interplay between induced near fields (which can be perfectly described classically

using nonlocal optics) and induced tunnel charge transfers (which can be approximately

accounted for using effective dielectric media [65]). Therefore, the present work provides a

stringent playfield for the assessment of future refinements of semiclassical theories which,

as we have noted, are much more amenable for the analysis of very complex structures

than quantum ab initio methods. From a different perspective, the conclusions raised

in this study pave the way for further explorations concerning fieldlike optoelectronics,

nanosensing, and photoinduced catalysis in which the complexity of the light-matter in-

teractions at the nano scale opens the possibility of a panoply of applications.
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Chapter 7

Single atom induced effects on the

plasmonic response of nanoparticle

dimers

7.1 Introduction

The resonant interaction of light with metallic nanostructure has been attracting signif-

icant attention in the field of nanoplasmonics during the last years. One of the sources

of this attention is the possibility of tailoring plasmonic modes and, as a consequence,

the response of nanosystems to external radiation [47,48]. In particular, tunnel junctions

offers unique possibilities to tune these plasmonic modes due to the establisment of a

photoinduced current through the nanogap. [66–68].

Among the possible tunnel junctions, single and multiple molecular junctions have re-

ceived much recent interest due to the possibility to realize molecular-scale electronic

components [51,62,244,245]. On the other hand vacuum nanogaps have received its part

of the attention due possibility of modify the tunneling conductance by changing the

width of the gap [60,61,133].

The ultimate limit between vacuum nanogaps and molecular junctions, are nanogaps
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bridged by single atoms. In the electronic research and industry, these nanogaps have re-

ceived lot of consideration due the promise of high-speed, low power consumption and high

density devices [246]. More recently, experimental-photonic research on these nanogaps

have also received its part of attention, due to the posibility of control the interaction be-

tween photons and matter at the atomic scale [247–251], bringing with a bigger promise,

the possibility of new opto-electronic devices for quantum information processing.

Even so, the theoretical photonic-research literature on nanogaps bridged by one single

atoms is by far not as abundant as for their counterparts. Recently a few quantum-

mechanical studies of plasmon excitation and plasmon-induced charge transport in an

atomic tunnel junction consisting of single atoms sandwiched between two metal nanopar-

ticles in a dimer configuration has been reported based on jellium models and time depen-

dent density functional theory (TDDFT) [142, 252, 253]. On the other hand, the effects

the atomic structure on the plasmonic response of metal nanoparticle dimers has been

recently reported [142, 233, 234, 254, 255]. However, as far as our knowledge, there is no

report on the optical response of a prototype sodium nanocluster dimer, considering the

atomic details of the structure, bridged with a different sigle atoms.

7.2 Influence of the one-atom bridge

We analyzed the optical response of a sodium nanocluster dimer with different single

atoms in between. Each cluster is made up of 297 atoms in an icosahedral arrangement,

which is the most stable configuration for isolated Na nanoparticles of this size [235]. As

can be seen in Figure 7.1, the Na297 cluster is almost spherical with 2R = 2.6 nm being

its effective diameter. This value corresponds to an average atomic density that is slighty

larger than the one corresponding to bulk Na.

Ground-state calculations as well as optical response were performed under a real-space

prescription of the density functional theory (DFT) Kohn–Sham equations [160] using

the OCTOPUS code [185, 186, 188]. The explicit treatment of the conduction electrons
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Fermi level
occupied states

unoccupied states

Figure 7.1: Representation of the geometrical arrengement of the icosahedral Na297 dimer
bridged by one single atom.

using norm-conserving pseudopotentials [196] and under a semilocal approximation to the

exchange-correlation functional, suffices for the purposes of the present work.

The dipole optical-absorption of each sysstem was obtained from a single time propagation

following the Yabana-Bertsch recipe [184]. At t = 0 the system is perturbed by a small

delta kick electric field E(r, t) = (~/ke)δ(t) along the direction of the dimer axis, where

e is the electron charge, and k is 0.005 a.u. Well-converged results are achieved using

Tmax = 20 fs, a propagation-time step of ∆t = 104 Tmax, and grid spacing of 0.026 nm.

As can be seen in Figure 7.2, the absorption spectrum in the 2–4 eV/~ frequency range

of the metal nanoparticle dimer, is affected by the inclusion of different single atoms

between the two clusters. It is well known that in metallic nanoparticle dimers with

subnanometric separations, the establishment of a photoinduced electric current between

the particles, changes the plasmonic modes of the system [66–68], which has been more

recently confirmed by fully TDDFT calculations, taking into account the details of the

atomic structure [81, 233]. It is quite remarkable how similar are the spectra in the case

of no atom bridging the two nanparticles, with the case were a Cl atom is in the middle
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Figure 7.2: Absorption spectra of the metal nanoparticle dimer bridged with different
single atoms in the 2–4 eV/~ frequency range.

of the junction, slightly blueshifting the plasmon resonance peak in the later case with

respect to the former one. The same kind of similarity is found in the case of the Na and

Al atom bridging the nanparticles. This can be qualitatively understood in terms of the

nature of the specific atom in the middle of the junction. When the Cl atom is bridging

the two clusters, the photoinduced current is blocked be the central atom which try to

attract electronic charge in order to close its shell. However when the Na or Al atom is

the central one, the electronic charge of valence electrons tends to be moved through the

nanoparticles by effect of the collective oscillations of the electronic charge in the system.

In the low frecuency range of the spectra (up to 2 eV/~), as shown in Fig 7.3, depending

on the added atom bridging the gap between the two clusters, the differences between the

spectrum increase. If a Na or Al atom is in the middle of the junction, it is possible to

identify a set of peaks emerging in this region. These resonances have been also observed

in previous works analyzing the response of a nanoparticle dimer bridged with a sodium

atom using jellium-TDDFT presciptions [252,253], where these charge transfer modes are
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Figure 7.3: Absorption spectra of the metal nanoparticle dimer bridged with different
single atoms in the 0–2 eV/~ frequency range.

atributed to the resonance of one of the energy levels of the single atom with the Fermi

level of the nanoparticles. However, this is the first time that these resonances have been

observed by fully ab-initio calculations taking into account the atomic structure. On the

other hand, when the Cl atom is bridging the junction, or when there is no atom in between

the clusters, it is quite difficult to recognize this resonance modes in the absoption spectra,

being both spectrum strikingly similar between them. This similarity match remarkably

well with the explanation stated above, due there is no resonance between the energy

levels of the Cl atom with the Fermy energy of the nanoparticle dimer in this frequency

range.

As expected, this resonances are reflected on the intensity across the plane that separates

the two clusters, perpendicular to the dimer axis, as shown in Figure 7.4. Again, as in the

case of the absorption spectra, our results of the photoinduced current in the junction with

and without the Na atom agree cualitatively well with the jellium/TDDFT the results

reported by Song et al. [252].
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Figure 7.4: Intensity of the photoinduced current in the junction of the metal nanoparticle
dimer bridged with different single atoms in the 0–4 eV/~ frequency range.

Figure 7.5 show the calculated energy different cluster dimers. As an example, the elec-

tronic density of of some of the electronic states are also plotted in the case of a Fe-atom

bridging the two clusters. The hybridization of some electronic states of the clusters with

electronic states of the central atom are responsible for the charge transfer plasmons, and

hence for the transmission between the two clusters.

7.3 Conclusions

In conclusion, we have presented a fully ab-initio TDDFT study on the plasmonic response

of Na nanoparticle dimers bridged by different single atoms, considering the atomic struc-

ture of the system. Our finding confirm qualitatively the accuracy of jellium/TDDFT

models in the case where a Na atom is bridging the clusters as well as in the case where

there is no atom in the junction. However we provide new details of the resonances de-

pending on the single atom bridging the junction. We have show how the changes in the
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Figure 7.5: Energy levels of the different cluster-atom-cluster systems.
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optical properties of the system depend strongly on the single atom junction, which is

able to either hinder or facilitate the photoinduced current between the clusters, specially

in the low-energy regime. This low energy mode would be active in coupling to molecular

vibrations and may have promising application in plasmon enhanced catalytic reactions.

The control of various parameters, such as dimer radius, separation, type of molecules, and

dielectric environment would offer us unique ways to tune the photoinduced conduction

and plasmon-electron coupling in molecular junctions and other plasmonic structures.
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Chapter 8

Conclusions

In this thesis, we have addressed the modeling of different linear and non-linear inter-

action processes between electromagnetic radiation and low-dimensional nanostructures

to simulate particular physical phenomena based on nanoplasmonics. Depending on the

length scale of the system to be modeled, we have used different techniques, ranging from

classical to atomistic ab-initio methods.

In chapter 3 we performed classical simulations in the framework of the discrete dipole

approximation model to fit the experimental NIR absorption spectra of non-stoichiometric

mixed-phase Cu2− xS nanocrystals disolved in CHCl3, recently synthesized by a collab-

orative research group. The experimental data was fitted through a multi-dimensional

scan of the Drude-Lorentz parameters for the dielectric function, considering all the

phases/samples simultaneously. As recent works has been highlighted that the model-

ing of the bulk dielectric function for nonstoichiometric Cu2−xS phases on the basis of

the Drude model, may not be the most suitable, as the carriers supporting the plasmon

resonance can experience a certain degree of localization, we proceed to overcome this lim-

itation by modeling the dielectric function under the Drude-Lorentz prescription, adding

a Lorentzian terms to the Drude dielectric function to take into account localized carriers

or interband transitions. However, in our calculations, the best agreement between the

DDA-calculated and the experimental spectra was found in the Drude-only model for all
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the mixed-phase samples.

Through the analisys of our calculations, we were able to obtain the plasma frequency of

each mixed-phase nanocrystal and from there to obtain theoretically their carrier densities,

confirming the previously reported metallic-like character of the covellite, as well as the

one of digenite, and and even low-chalcocite, which is in between the frontier of metallic

and heavily doped semiconductor.

Regarding the decomposition of the optical response in LSPRs excited by in-plane and

out-of-plane polarized incident light, all contributions can be hardly discriminated in the

averaged spectrum, which is dominated by in-plane dipolar LSPRs. As a conclusion, de-

spite the rather small aspect ratio of the mixed-phase samples, a careful theoretical anal-

ysis of the absorption spectra clearly demonstrates the shape-dependence of the LSPRs

in the plasmonic covellite, digenite, and low chalcocite phases.

In chapter 4 we performed classical and semiclassical calculations, within the frame of the

DDA, Mie-Gans Theory, and finite element method with the aim of sheed light on the

unique structural-optical properties of recently synthesized (by a collaborative research

group) nonstoichiometric WO3 − δ nanostructures of hemitubular morphology, which

experimentally show tunable NIR to mid-IR plasmon resonances, essentially dependent

on their aspect ratio.

The comparison between experimental and numerical DDA results for different samples

show a very good overall agreement between experiment and theory. From our analysis we

conclude thet the vis-IR optical spectra are dominated by a broad but intense peak whose

position depends very sensitively on geometry of the sample. A second and much weaker

spectral feature, which only emerges as a discernible shoulder in the spectra for the longest

hemitubes, appears around λ ∼ 700 nm for all the samples. The lower-energy peak can be

attributed to a localized surface plasmon (LSP) associated to collective oscillations of the

conduction electrons along the hemitube axis. On the contrary, the higher-energy feature

corresponds to LSPs where the electrons mainly oscillate in the direction perpendicular

to the hemitube axis (perpendicular modes) to such collective excitations. Therefore,
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the maxima of the experimental absorption can be assigned (up to a small error) to

the frequency of the axial mode. Furthermore, the existence of different length scales

(length, width, wall thickness) of the hemitubes is reflected on the calculated near-field

enhancement patterns.

In chapter 5, and motivated by a collaboration with an experimental research group (dif-

ferent from the one of the chapters 3 and 4), we have modeled the laser ablation processes

in low-dimensional nanostructures, driven by intense and ultrashort laser pulses (in the

plasmon resonance regime). Through these simulations, we have analyzed if Coulomb Ex-

plosion or electrostatic ablation is the mechanism of material removal in the early stage of

the gentle ablation regime. All the simulations in this chapter were performed at an ab-

initio level by using TDDFT coupled with standard Ehrenfest dynamics in the Octopus

code. In order to obtain insights on which is the mechanism of ablation in the gentle-

ablation regime, we proceed in a kind of botton-up way, performing simulations from a

0-dimensional system: a Li4 cluster, to a 2-dimensional system: a graphene nanoribon.

In both cases, different laser pulses (intensities) at frequencies close to the resonance of

each system were applied, and in order to control for the laser ablation process during the

simulations some atoms were allowed to move freely while others were clamped. Through

the entire evolution of the simulations, we computed total forces acting on the free atoms

from all the electrons and from the rest of the ions. From the analissys of these calcu-

lations we observe how in all the cases the ionic forces dominates over the electric ones.

Being this a signal which indicates that if the free atom is removed from the sample, then

it is removed by a Coulomb Explosion mechanism.

In chapter 6 we have performed fully atomistic ab-initio simulations on metal cluster

dimers to study the anisotropy effects of the plasmonic response of this nanostructures.

All the simulations in this chapter were performed at an ab-initio level by using TDDFT

in the Octopus code. Specifically, effects like atomic relaxation and different relative ori-

entations, to date unexplored in quantum implementations of ab initio nanoplasmonics,

have been explicitly addressed, including the electric field enhancement and the photoin-

duced current. We have shown that accounting for the atomic structure of the junction
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(mainly the relative orientations between the faces) for very close nanoparticles is nec-

essary to obtain theoretical results with enough predicitive power, providing a stringent

playfield for the assessment of future refinements of semiclassical theories. From a dif-

ferent perspective, this work, pave the way for further explorations concerning fieldlike

optoelectronics, nanosensing, and photoinduced catalysis in which the complexity of the

light-matter interactions at the nano scale opens the possibility of a panoply of applica-

tions.

In this context, and finally, in chapter 4 we studied how the influence of a one-atom junc-

tion between the two atomic conformations affect the electromagnetic modes of prototyp-

ical metallic nanodimers when a charge transfer is established between the constituent

clusters. From the theoretical analisys of our simulations it is possible to infer that the

charge transfer plasmons, and hence the transmission observed in the absorption spec-

trum of the system is driven by a resonant excitation between a hybridized atomic state

and an atomic state of the clusters.

124



Bibliography

[1] Hornyak, G. L., Tibbals, H., Dutta, J. & Moore, J. J. Introduction to Nanoscience

and Nanotechnology (CRC Press, 2008).

[2] Haus, J. W. Fundamentals and applications of nanophotonics (2016). URL http:

//www.sciencedirect.com/science/book/9781782424642.

[3] Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small

Particles (Wiley-VCH, 1983).

[4] Maier, S. A. Plasmonics: Fundamentals and Applications (Springer US, 2007). URL

http://dx.doi.org/10.1007/0-387-37825-1.

[5] Wokaun, A. Surface enhancement of optical fields. Molecular Physics 56, 1–33

(1985). URL http://dx.doi.org/10.1080/00268978500102131.

[6] de Aberasturi, D. J., Serrano-Montes, A. B. & Liz-MarzÃ¡n, L. M. Modern applica-
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mance of nonlocal optics when applied to plasmonic nanostructures. The Journal

of Physical Chemistry C 117, 8941–8949 (2013). URL http://dx.doi.org/10.

1021/jp401887y.

[77] Teperik, T. V., Nordlander, P., Aizpurua, J. & Borisov, A. G. Robust subnanomet-

ric plasmon ruler by rescaling of the nonlocal optical response. Phys. Rev. Lett.

110, 263901 (2013). URL http://link.aps.org/doi/10.1103/PhysRevLett.

110.263901.

133

http://dx.doi.org/10.1021/nl300269c
http://dx.doi.org/10.1021/nl300269c
http://link.aps.org/doi/10.1103/PhysRevLett.52.997
http://link.aps.org/doi/10.1103/PhysRevLett.52.997
http://link.aps.org/doi/10.1103/RevModPhys.74.601
http://stacks.iop.org/0034-4885/70/i=1/a=R01
http://dx.doi.org/10.1021/nn101589n
http://dx.doi.org/10.1021/nn101589n
http://dx.doi.org/10.1021/jp401887y
http://dx.doi.org/10.1021/jp401887y
http://link.aps.org/doi/10.1103/PhysRevLett.110.263901
http://link.aps.org/doi/10.1103/PhysRevLett.110.263901


[78] Teperik, T. V., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum effects

and nonlocality in strongly coupled plasmonic nanowire dimers. Opt. Express 21,

27306–27325 (2013). URL http://www.opticsexpress.org/abstract.cfm?URI=

oe-21-22-27306.

[79] Andersen, K., Jensen, K. L., Mortensen, N. A. & Thygesen, K. S. Visualizing

hybridized quantum plasmons in coupled nanowires: From classical to tunneling

regime. Phys. Rev. B 87, 235433 (2013). URL https://link.aps.org/doi/10.

1103/PhysRevB.87.235433.

[80] Kulkarni, V., Prodan, E. & Nordlander, P. Quantum plasmonics: Optical properties

of a nanomatryushka. Nano Letters 13, 5873–5879 (2013). URL http://dx.doi.

org/10.1021/nl402662e.

[81] Zhang, H., Kulkarni, V., Prodan, E., Nordlander, P. & Govorov, A. O. Theory of

quantum plasmon resonances in doped semiconductor nanocrystals. The Journal

of Physical Chemistry C 118, 16035–16042 (2014). URL http://dx.doi.org/10.

1021/jp5046035.

[82] McMahon, J. M., Gray, S. K. & Schatz, G. C. Nonlocal optical response of metal

nanostructures with arbitrary shape. Phys. Rev. Lett. 103, 097403 (2009). URL

https://link.aps.org/doi/10.1103/PhysRevLett.103.097403.

[83] McMahon, J. M., Gray, S. K. & Schatz, G. C. Optical properties of nanowire dimers

with a spatially nonlocal dielectric function. Nano Letters 10, 3473–3481 (2010).

URL http://dx.doi.org/10.1021/nl101606j. PMID: 20715807.
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