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Abstract

Attosecond-transient absorption spectroscopy (TAS) and attosecond time-resolved photo-
electron spectroscopy (TRPES) based on pump-probe setups, in which a system response
(absorption or electron emission) to a probe pulse is measured, have recently become an
experimental reality due to the availability of ultra-fast pulsed laser sources. These exper-
iments follow the electronic motion at its natural time-scale, allowing the characterization
of electronic excited states and transitions while neglecting the influence of the nuclear

degrees of freedom.

Molecular absorption and photo-electron spectra can be efficiently simulated with real-
time time-dependent density-functional theory (TDDFT), which is normally used for
the description of systems in their ground state. In this thesis, I demonstrate how this
technique can be extended to study time-resolved pump-probe experiments. I show
how the extra degrees of freedom (pump pulse duration, intensity, frequency, and time-
delay), which are absent in a conventional steady state experiment, provide additional
information about the electronic structure and the dynamics, which can be used to

improve a system characterization.

In addition to gaining insight by numerical simulations, a microscopical, theoretical un-
derstanding of the processes would be useful. It is well known, that photo absorption
spectra of systems at equilibrium can be written in terms of the dipole-dipole response
function. In pump-driven systems, the photo-absorption spectrum is not an intrinsic
property of the system under investigation, but additionally depends on the shape of the
probe. In this thesis, I reexamine the Lehmann representation of the response function of
a pump-driven system in the non-overlapping regime, deriving some general properties
of the excited state spectra, including position and shape of their resonance peaks. I
demonstrate how this Lehmann representation can be used to understand laser-induced

line shape changes.

Measurement and control of ultrafast processes are inherently intertwined. In this work,
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I assess the possibility of using tailored pumps in order to enhance (or reduce) some
given features of the probe absorption (for example, absorption in the visible range of
otherwise transparent samples). This type of manipulation of the system response could
be helpful for its full characterization, since it would allow us to visualize transitions
that are obscured when using un-shaped pulses. In order to investigate this possibility, I
firstly combine the derived Lehmann representation with a simple numerical model of the
Hydrogen atom to show how Hydrogen can be manipulated to loose its transparency in
the visible. I then proceed to investigate the feasibility of using time-dependent density-
functional theory as a means to implement, theoretically, this absorption-optimization

idea for more complex atoms or molecules.
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1. Introduction

“The beginning is the most important part of the work.”

- Plato, The Republic

In this thesis I have addressed the microscopical, theoretical analysis and the control
of transient spectra using time-dependent density functional theory. Here, the topics
of non-equilibrium (attosecond) spectroscopy of molecular systems and optimal control
theory are united under the technical framework of time-dependent density functional

theory.

The Attosecond Time Scale. Structure and dynamics in the microcosm are inherently
connected by the laws of quantum mechanics. Take, for example, a particle in a linear
combination of its ground state Wy with energy Ey and its first excited state ¥ with
energy F1. This is called a wave-packet and the change in the position of its center of mass
is the closest quantum mechanical analog to a classical trajectory [5]. The solution of
the Schrodinger equation leads to an oscillatory motion with the period Tps. = 27/(AFE)
where AFE = E; — Ey. The larger the energy separation AFE, the faster is the oscillatory
motion. This energy separation is dictated by the spatial extent of the confining potential
in addition to the particle’s mass. Therefore, quantum mechanics connects the rapidity
of a problem with its spatial scale. Furthermore, for a wave-packet made of two bound
eigenstates, the oscillation period T,s. also determines the response time of the system
to an external perturbation. For example, a two-level atom responds to the radiation
field similarly to a classical damped electron oscillator of eigenfrequency wy = 27/Tpsc

[5, 6, 7]. The situation is similar for electron plasmas, where the plasma oscillation
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frequency is inversely proportional to the square root of its density [8]. For a mean
distance comparable to atomic dimensions lyecqn = 0.1 nm, we obtain T,s. = 120 as.
This is close to the oscillation period of valence electron wave-packets in bound atomic
or molecular systems: a semiclassical electron orbits a hydrogen atom in 150 as. Thus
the motion of electrons inside atoms, in molecular orbitals or confined in nanometer-scale
potentials, like the collective dynamics of free electrons in high-density ionized gases, is
naturally measured in attoseconds, and attosecond science is the science of electrons in

motion, both collective and individual.

The Road Towards Attosecond Time Scales. Being able to measure with high
resolution in space and time requires access to physical quantities with well-defined spa-
tial and temporal gradients. They can both be provided by waves, whose wave length
and oscillation period define the spatial and temporal steepness. In waves, the oscilla-
tions are periodic, which can be used to extract temporal information by measuring in
the frequency domain and using the Kramers-Kronig relations [9, 10]. However, obtain-
ing accurate results becomes more challenging with larger distances in space and time.
Moreover, stationary metrology fails in describing non-linear response phenomena [5]. In
these cases, isolated spatial temporal gradients are necessary. Direct space- and time-
domain approaches offer transparent and intuitive measurement tools. In space, these
methods carry the name microscopy, while its time-equivalent is called chronoscopy or
time-resolved metrology. The evolution in the field of time-resolved metrology from the
nanosecond to the attosecond regime was done in three steps, each triggered by new

technologies.

First, the invention of the transistor brought the time-scale down from nanoseconds to pi-
coseconds using wave lengths in the radio- to microwave regime. However, in this regime,
the refractive index of typical materials varies strongly due to lattice vibrations. This
strong dependence of the refractive index on the wave length limits the path length of
distortion-free propagation. Since this path length scales quadratically with the duration
of the transients, the path length of distortion-free propagation sets an upper limit for the
signal speed. The refractive index of transparent optical materials is nearly constant in
the visible and near-infrared. This gives rise to the mode-locking technique [11], which is
based on the constructive interference of phase-modulated modes in a laser cavity and the

resulting possibility of coherent light amplification if the phases are locked accordingly.



Non-linear optical phenomena, like the optical Kerr-effect and negative group delay dis-
persion, play a key-role in the process [12, 13]. These techniques have for example been
implemented in mirror dispersion controlled Kerr Lens mode locked Ti:Sapphire lasers
[14, 15]. To further shorten the pulse durations, the bandwidth of the cavity is increased
using hollow-fiber wave guides [16, 17, 18, 19| and afterwards compressed with for ex-
ample chirped mirrors [20]. By combining these techniques, the pulse duration reached
the 1fs-barrier by 2000 (see e.g. the review articles [21, 22]). Nevertheless, the pulse
lengths are limited by the increasing dispersion towards the ultraviolet due to electronic

transitions.

An alternative approach to the generation of ultrashort pulses are free electron lasers
(FEL) [23], proposed by Madey in 1971 [24], and firstly used by Deacon in 1977 [25].
Current FELs are based on the Self Amplified Spontaneous Emission (SASE) technique
[26, 27, 28, 29| and produce radiation in the extreme ultraviolet to soft x-ray regime
[30, 31] and the hard x-ray regime [32, 33| with durations in the femtosecond regime.
They have been used to study the photoionization of atoms like Neon [34], Argon [35]
and Xenon [36], which was theoretically studied in [37].

Finally, at the beginning of the 21st century, attosecond-pulse laser sources became avail-
able [38, 39]: In 2001 Hentschel et al. reported on the generation of single 650 + 150 as
long soft x-ray pulses [38] and in 2004 Kienberger et al. reported on the generation of
250 as long XUV pulses. The generation of attosecond pulses is based on high-harmonic
generation (HHG) [5, 40, 41, 42| and is described by a three-step model [43, 44, 45|: In
the first step, the laser ionizes an electron from an atom. The ionized electron is then
accelerated by the laser field and recombines with its parent atom, releasing its kinetic
energy in the form of a photon [46, 47]. The trajectory of the electron and its resulting ki-
netic energy depend on its time of release, with a maximal energy of wp,e, = Ip+3.17Up,
where Ip is the ionization potential of the system and Up the ponderomotive potential.
Combining the different electron trajectories, for example by passing them through a thin
aluminium-film [48|, finally leads to the generation of attosecond pulses. An important
variable in this context is the carrier-envelope phase (CEP), which is defined as the phase
difference between the highest half-cycle of the electric field under the envelope and the
envelope itself and was predicted [21, 49| and later observed [50] to play an important
role in strong-field laser-matter interaction. Its control is crucial for the generation and

measurement of reproducible isolated attosecond pulses [51] and the control of electron
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emission from atoms [52]. The emission of attosecond pulses through high-harmonic
generation can happen either in single-cycle mode [53, 54, 55| or as a train of pulses
[56, 57|, which are coherent and can be phase matched among multiple emitting atoms
[58, 59, 60]. One distinguishes between in-situ and ex-situ measurements (for a recent
review see [46]). By 2014, the shortest individual pulse obtained had a duration of 67 as
[46, 61].

In addition to the generation, the ability to measure attosecond pulses is important.
Duration and shape of attosecond-pulses can for example be measured by streak-imaging
[62, 63]. The advent of attosecond-pulse laser sources and the possibility to adequately
characterize the resulting pulses has given birth to a new field of physics — attosecond

physics, where electron dynamics can be observed in real time [5, 42].

Pump-Probe Spectroscopy. Pump-probe experiments are the preferred technique
to study the dynamical behaviour of atoms and molecules: the dynamics triggered by
the pump pulse can be monitored by the time-dependent reaction of the system to the
probe pulse (see Fig. 1.1), a reaction that can be measured in terms of, for example, the

absorption of the pulse intensity, or of the emission of electrons .

‘é Pump

Probe
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Electron

Vibration
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Femtochemistry

Figure 1.1.: Pump-probe spectroscopy setup. The pump pulse triggers the dynamics,
and after a certain delay time, the reaction of the system to a probe pulse
is measured. Depending on the time-scale, electronic, vibrational and rota-
tional properties can be measured. On the sub-femtosecond time-scale, the
electronic-only dynamics can be observed. If we look at time-scales longer
than tens or hundreds of femtoseconds, the atomic structure will have time
to re-arrange, giving rise to the field of femtochemistry.



Before 1900 it was already known, that short flashes of light permit the recording of rapid
phenomena using a technique called spark photography [5]. In 1864 Toepler extended
this technique to study microscopic dynamics, where he used one spark to trigger a sound
wave and a subsequent, delayed one to record it [64]. By taking pictures of the sound
wave as a function of the delay time, he obtained a complete history of sound-wave

phenomena. Pump-probe spectroscopy was born.

The time resolution of these experiments is mainly limited by the duration of the pulses
— although it is also limited by the ability of the experimenter to ascertain their relative
time delay and shape. In order to precisely fix this delay, the two pulses are coherently
synchronized — in fact, they have the same origin, or one of them is used to generate
the other — so that the delay is gauged by an optical path difference. This technique
was developed in 1899 by Abraham and Lemoine, who were the first to derive pump and
probe from the same spark [65]. The resultant synchronism allowed the improvement
of the time resolution to the limit of the flash duration. This completed the conceptual
framework of studying transient phenomena, limiting its progress to the development of

shorter light pulses and techniques for its measurement.

A wealth of possibilities of potential setups exists, depending on the frequencies, durations
and intensities of the two pulses. A common set-up in attosecond physics employs an
XUV attosecond pulse and the relatively more intense, longer (few femtoseconds) NIR
or visible pulse used for its generation. This set-up has two caveats: (i) Experiments are
performed in the regime of temporal overlap of pump and probe pulse. The behaviour is
complex and the results are difficult to interpret [66]. (ii) In some experimental setups,
the NIR controls the system more than it probes it [67]. One way to circumvent this
problem is by combining two XUV attosecond pulses. This is in principle possible (and
has been theoretically analysed [68]), but unfortunately the low outputs of current XUV
attosecond pulses lead to significantly too weak signals. To distinguish the attosecond
pump-probe signal from the pump-only and probe-only background, the probability of
the two-photon process involving a pump and a probe photon must be considerably higher
than the one of the one-photon processes involving only a pump or only a probe photon.
This requires focused intensities of 101> W/cm? [67]. Intensities of 104 W /cm? have
been achieved for pulse trains [69, 70]. Another choice to make is the final observable,
i.e. what kind of system reaction is to be measured as a function of the time delay.

In this work we focus on two common choices: (i) Observing the emission of electrons
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(their energies, angular distribution, or total yield) from the pumped system due to the
probe pulse. This can be called time-resolved photo-electron spectroscopy (TRPES). (ii)
Observing the optical absorption of the probe signal, which can be called time resolved

absorption spectroscopy, or transient absorption spectroscopy (TAS).

Both techniques can of course be used to look at longer time resolutions. If we look at
molecular reactions on the scale of tens or hundreds of femtoseconds, the atomic structure
will have time to re-arrange. These techniques are thus mainly employed to observe
modification, creation, or destruction of bonds, a field triggered by Zewail |71, 72|, which
is now called femtochemistry. TAS, for example, has been successfully employed to watch
the first photo-synthetic events in chlorophylls and carotenoids [73], that transform the
energy gained by light absorption into molecular rearrangements. A review describing
the essentials of this technique can be found in Ref. [74]. Note that in addition to
following chemical reactions, femtosecond-long pulses may also be used for example for
characterizing the final electronic quantum state of ionized atoms [75] and many more

processes.

In TRPES, the probe pulse generates free electrons through photo-ionization, and one
measures their energy or angular distribution as a function of time; if this time is on the
femtosecond scale one can follow molecular dynamics in the gas phase, as demonstrated
already in the mid 1990s [76, 77|, although this technique had already been employed
to follow electronic dynamics on surfaces [78]. For review articles on the topic, see the
recent articles |79, 80, 81, 82, 83].

If the goal —as in this work— is to study the electronic dynamics only, disentangling them
from the vibronic degrees of freedom, then one must move down these spectroscopic
methods to the attosecond regime [84]. In this regime, both TAS and TRPES have
recently been demonstrated. Goulielmakis et al. for example performed a TAS experiment
on the strong-field ionization of Krypton atoms, where the valence electron motion was
observed in real-time [1]. For the obtained TAS see Figure 1.2. Another prototypical
example for TAS is the recent experiment of Holler et al. where the transient absorption
of an attosecond pulse train (created by high harmonic generation) by a Helium gas
target, was studied in the presence of an intense IR pulse. The absorption was observed

to oscillate as a function of the time-delay of pump and probe [85].

Several cases of use of TRPES with attosecond pulses have also been recently reported;

an early example is the use of attosecond TRPES to investigate the time-resolved Auger
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Figure 1.2.: TAS of Krypton ions as obtained by Goulielmakis et al.: The ionization of
Krypton can be observed as a function of time. This figure was published
as Fig. 2 in Ref. [1]. Copyright (© 2010 by the Nature Publishing Group
(NPG).

decay in Krypton by Drescher et al. [86]. In fact, one of the major successes of attosecond
science has been the measurement of the delays of electron ejection. Using a method
called streak-field detection [5, 39, 87|, the difference in electron ejection times can be
measured on the order of tens of attoseconds [66]. In the streak-field method, a strong
field from a NIR pulse is used to shift the momentum of an electron released into a
laser field, giving it a time-stamp at the time of its birth. With this method, Schultze
et al. were able to measure the delay of electrons emitted from the 2p orbital in Neon

in comparison to the ones emitted from the 2s orbital by 100 eV photons to a precision
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of 21 £ 5 as [88]. Uiberacker et al. could observe in real time the light induced electron
tunneling provoked by a strong NIR pulse, demonstrating how this electron tunneling can
be used to probe short lived electronic states [89]. Smirnova et al. studied the ionization
of an atom by an attosecond XUV pulse in the presence of an intense laser pulse, as
a function of the time delay between both [90]. Johnsson et al. employed attosecond
pulse trains and a Helium target to not only control the timing but also the probability
of electron ejection [91]. Attosecond photoelectron spectroscopy was also demonstrated
to yield useful information for condensed matter systems; e.g. Cavalieri et al. performed
experiments on single-crystal Tungsten, where they measured the delay time between

electrons emitted from the core and from the conduction bands [92].

Theoretical Spectroscopy. All these advances demand appropriate theoretical mod-
elling. The use of more than one pulse of light intrinsically requires us to go beyond any
“linear spectroscopy” technique — although if the pulses are weak a perturbative treat-
ment may still be in order. This non-linear behavior provides much more information
about the system at the cost of an increasingly difficult analysis. The use of two (or
more) coherent pulses of light, with fine control over their shape (sometimes called a
“multidimensional analysis”), permits a deeper characterization. This fact was already
acknowledged in the field of nuclear magnetic resonance, or later in femtochemistry — see

for example Refs. [93] and [94] for theoretical treatments of these cases.

A recent theoretical analysis of attosecond TAS based on perturbation theory was given
by Baggesen et al. [68]. Gaarde et al. presented a study for relatively weak pumping
IR pulses in combination with XUV ultrafast probes, for Helium targets and based on
the single active electron approximation [95]. Very recently, the experiment reported
by Ott et al. |2], in which the ultrafast TAS of Helium displayed features beyond the
single active electron approximation, was theoretically analyzed in Ref. [96], utilizing an
exact solution of the time-dependent Schrédinger equation, that cannot however be easily
extended to larger systems. Finally, the above-mentioned experiment of Goulielmalkis
et al. [1] was analyzed with the model described in Ref. [97], which treated the pump IR

pulse non-perturbatively.

Indeed, it would be desirable to analyze these processes with a fully non-perturbative

theory (since at least one of the pulses is usually very intense), which at the same time



is capable of going beyond the single active electron approximation and accounting for
many-electron interaction effects. This last fact is relevant since the attosecond time res-
olution obtained in this type of experiments is able to unveil the fast dynamical electron-
electron interaction effects. The single active electron approximation, which essentially
assumes that only one electron actively responds to the laser pulse, has been successfully
used to interpret many strong-field processes. However, its range of validity is limited,
and roughly speaking it is expected to fail whenever the energies of multielectron ex-
citations become comparable to the laser frequencies or the single electron excitations

[98].

Time-dependent density functional theory (TDDFT) [99] meets all these requirements: it
may be used non-perturbatively, includes the electron-electron interaction and can handle
out-of-equilibrium situations. It has been routinely used in the past decades to study the
electron dynamics in condensed matter in equilibrium. By this we mean that, usually,
one computes the linear or non-linear response properties of systems in the ground state
(or at thermal equilibrium). In pump-probe experiments, however, one must compute
the response of a system that is being driven out of equilibrium by an initial pulse. In
this work, we have developed the theoretical framework and implemented it in the code
octopus [100, 101, 102, 103] to explore the usability of TDDFT for this purpose, and
show how, at least for the two cases of TAS and TRPES, the extension is straightforward.

However, in addition to mere numerical modelling, a more theoretical understanding
of pump-probe experiments would be helpful. It is known, that ground state photo
absorption spectra can be analyzed using the dipole-dipole response function, which can
be conveniently cast into frequency space. The resulting Lehmann-representation of
the response function provides an intuitive interpretation of photo absorption spectra
in terms of the many-body excitation energies. In pump-driven systems, obtaining a
similar mathematical interpretation is more complicated. Recently, several groups have
published results on the theoretical modelling of these pump-probe situations [68, 95,
104, 105, 106]. In this thesis, I recast the Lehmann representation of the interacting
response function of a driven system in the non-overlapping regime for short probe pulses
and analyze some of its properties, paying particular attention to the lineshapes of the
spectral peaks. A similar analysis has been published recently by Perfetto and Stefanucci
[107], who also included the treatment of long probes and the overlapping regime. We

also address how, the Lehmann representation in the non-equilibrium case can be used
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to understand laser-induced lineshape changes.

Optimal Control Theory. The measurement and control of ultrafast processes are
inherently intertwined. In fact, quantum optimal control theory [108, 109] (Quantum-
OCT) can be viewed as the inverse of theoretical spectroscopy: rather than attempting
to predict the reaction of a quantum system to a perturbation, it attempts to find the
perturbation that induces a given reaction. It is the quantum version, first developed in
the 80s [110, 111, 112], of a more general mathematical framework, control theory [113,
114], which is commonly applied in engineering, for example to design trajectories for
satellites and space probes [109]. This quantum version of control was needed given the
fast advances in experimental quantum control — or coherent control of quantum systems,

as it is sometimes called.

The experimental control of quantum systems was born in the field of photo-chemistry:
the goal was to achieve the selective destruction or creation of bonds by means of suit-
ably tailored laser fields. It was therefore a consequence of the raise of the field of
femtochemistry. Numerous techniques were invented in a short period of time, such as
the control of quantum interference proposed by Brumer and Shapiro (also called coher-
ent control scheme) [115, 116, 117], the “pump-dump” control proposed by Tannor and
Rice [118, 119] (where the probe pulse not only probes, but in fact partially “dumps”
the excited state wave-packet on the ground state), stimulated Raman adiabatic pas-

sage [120], wave-packet interferometry [121], etc.

However, the most successful technique - since it can be considered in fact a generalization
of all the previous ones — has been found to be the adaptive feedback control (AFC) first
proposed by Judson and Rabitz [122] and first realized in 1997 [123]. Using AFC, ground-
breaking results were achieved in the control of chemical reactions [124], and in many
related experiments such as the control of the efficiency of photosynthesis processes [125].
Even the photo-isomerization of the retinal molecule in rhodopsin proteins (a process that

is crucial e.g. for vision in higher organisms) was optimized [126].

There are various degrees of freedom in the control pulse that can be manipulated. Take,
for example, the previously mentioned carrier-envelope phase that has been used to con-
trol the electronic motion during the dissociation of diatomic molecules [127]. Recently,

this approach has been extended to more complex polyatomic molecules (namely Acety-

10



lene, Ethylene, Butadiene) by Xie et al. [128, 129].

Another recent development in coherent control is the scheme based on the nonresonant
dynamic Stark effect, developed by Sussman, Stolow and coworkers [130, 131, 132], which
is based on a three-pulse scheme: the pump pulse starting the dynamics, a manipulating
pulse and a probe pulse. For a comprehensive review, I refer the reader to [133] and
to [134] for a perspective on the field of strong field laser control. Experimental control
of absorption spectrum features of methyl iodide (CHsI) using the dynamic Stark effect
has been recently demonstrated by Corrales et al. [135, 136]. In 2006, Stolow et al.
used the nonresonant dynamic Stark effect to control the photodissociation of IBr [131].
They showed, that the dissociation yield depends critically on the delay between pump
and control pulse. The same system was later investigated theoretically by Sanz-Sanz et
al. [137]|. The nonresonant dynamic Stark effect also provides a framework to understand
light-induced avoided crossings and their counterpart light-induced conical intersections.
An experimental exploitation of light-induced conical intersections was recently used to

control the photo dissociation of a polyatomic molecule (CHsI) [138].

Since the advent of attosecond physics, investigating autoionizing resonances in a time-
resolved manner has drawn much attention both from experimentalists [139, 140, 141,
142] and theorists [105, 143, 144, 145, 146]|. Autoionizing states were first observed by
Beutler in 1935 in the photoabsorption spectra of rare gases [147]. Their characteristic
shape was later explained by Fano in 1961 [148] - giving them their name. Recently,
interest has also been focused not only on their time-resolved observation, but also on
their modification and control of resonance shapes using laser dressing [95, 105, 139, 140,
144, 145, 149]. The simultaneous interaction with two light-fields in these experiments,
directly connects them to phenomena like electromagnetically induced transparency [150,
151]. Works like |2, 152| use the NIR pulse of the pump-probe setup to impart a specific
phase to the system under investigation, demonstrating the change from a Fano into a

Lorentz line shape and vice versa (see Fig. 1.3).

All these advances in experimental quantum control require a theoretical counterpart,
provided by Quantum-OCT. In this work, I have concentrated on its possible applica-
tion to attosecond dynamics of many-electron systems. For that purpose, the possibil-
ity of combining Quantum-OCT with TDDFT was recently established [153]. Further-
more it has been shown, that it can be used to optimize strong-field ionization [154],

photo-induced dissociation [155] and is compatible with Ehrenfest dynamics [156]. Very
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Figure 1.3.: (left) Laser controlled amplification of resonant light in the EUV. (A) Spec-
trum of transmitted EUV light without control laser: The Helium resonant
absorption lines can be observed as local minima in an otherwise smoothly
varying spectrum centered at a vertical position of 0 mm. (B) Spectrum of
transmitted and amplified EUV light in the presence of the control laser.
Amplification can be observed exactly at the He resonance positions corre-
sponding to absorption in (A). (right) Transforming asymmetric Fano spec-
tral absorption lines into symmetric Lorentzian absorption peaks in doubly
excited He (A, B) and vice versa, from Lorentz to Fano in singly excited He
(C, D). This figure is an adaption of Figs. 3 and 4 in Ref. [2]. Copyright (©)
2013 by the American Association for the Advancement of Science (AAAS).

recently, Krieger et al. used TDDFT to study intense, short, laser pulse-induced demag-
netization in bulk Fe, Co, Ni, which can take place on time scales of <20 fs [157]. They
studied the influence of laser intensity, frequency and duration on the demagnetization

process.

In this thesis, the goal was to apply Quantum-OCT techniques, possibly in combination
with TDDFT, in order to manipulate optical properties of atoms or molecules. This is
strongly related to the topic of electromagnetically induced transparency: the goal may
be to reduce or to enhance the absorption of light — how much and at which wave length.
In particular, I have assessed the possibility of using tailored pumps in order to enhance

the absorption in the visible range of otherwise transparent samples.

Finally, I have related the obtained results to the concept of perceived colour in humans.
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Indeed, one of the most important ways of perceiving (and consequently interacting) with
our environment as human beings is sight. The human vision is restricted to a very small
spectral range, roughly between 350 and 750 nm. The human eye has three types of light
receptors, each with different sensitivities for different wave lengths. When light enters
the eye, each receptor perceives a different intensity, sending the corresponding electrical
signal to the brain. The human brain then converts this so-called tristimulus into the
colour that we “see”. Which colour would be perceived by the human eye is an interesting
question in the field of dyes and has for example been addressed in [158]. The colour of
a material depends on its electronic response to light (or, at very high temperatures, on
its intrinsic emission), and is therefore subject to manipulation if one has control over
the electronic state. This has been the control route whose viability has been assessed

in this work.

Outline. The thesis is structured as follows. In Chapter 2, I present the necessary
theoretical background for the thesis. I start by introducing the Born-Oppenheimer
approximation, which allows us to separate the electronic from the nuclear degrees of
freedom. Using the clamped-ion approximation for the rest of the thesis, I exclusively
focus on the electronic part of the problem. Then I present the linear response theory
for a general excited system, in the overlapping or non-overlapping regime in Section 2.2.
This includes linear response theory for a system in its ground state as a special case.
For the non-overlapping regime and short probe-pulses, I present a closed form of the
Lehmann-representation of the response function and analyze some of its properties like
the time-independence of its poles and the time-dependence of its spectral weights. Af-
ter describing line-broadening mechanisms in Section 2.3, I show how the generalized
Lehmann-representation can be used to understand lineshape changes in non-equilibrium
systems. In Section 2.4, I present the foundations of (TD)DFT and describe how it can
be used for the calculation of transient spectra. In Section 2.5.1, I present the model
Hamiltonians used in this thesis, present the general theory of Rabi oscillations and show
how this theory can be extended to three-level systems. In Section 2.6, I present the ba-
sic concepts of Quantum-OCT and how it can be used to optimize spectral properties of
laser-excited systems. Finally in Section 2.7, I describe how spectra can be translated

into human colour perception.

After having derived and presented the theory, I show how these concepts can be brought

13



CHAPTER 1. INTRODUCTION

together in spectroscopic applications in chapters 3, 4 and 5.

In Chapter 3, I show examples, where I use both, models and TDDFT to simulate
pump-probe photo-electron and absorption spectroscopy in the overlapping and non-
overlapping regime. First, the transient absorption spectrum of a one-dimensional model
of He is studied using the exactly solvable model, showing how transient spectra can be
interpreted using Rabi physics. The results are then compared to TDDFT calculations
using the LDA and the EXX functional, where I identify and point out some short-
comings of the functionals due to their lack of memory. Afterwards, I present TAS and
TRPES simulations for the real three-dimensional Helium, showing how both techniques
can be combined to obtain a more complete picture of the photo-induced dynamics.
Finally, I extend the study to the Ethylene molecule, which features a # — 7* transition

in the transient spectra.

In Chapter 4, I use the example of analytically solvable Hydrogen to demonstrate how
the Lehmann representation for excited state spectra can be used to interpret transient
absorption spectra in the non-overlapping regime. [ compare analytic and numerical
results and investigate the difficulties of simulating spectroscopy of highly excited states.
I demonstrate how the excited-state spectrum of a non-stationary state changes in time,
how this time-dependence influences the colour and how the oscillatory behaviour of the
spectrum in time manifests in a cromaticity diagram. Finally, I show how the previously
derived Rabi-formalism in a three-level system can be used to control the excitation of

Hydrogen into a state, that absorbs light in the visible.

In Chapter 5, I focus on bringing together TDDFT with the control of transient spectra.
I present the details of the derived algorithm to optimize spectra and demonstrate results
for exactly solvable Hydrogen. Then I compare its performance using the exact formalism
with its TDDFT performance using the case of one-dimensional Helium. This comparison
demonstrates the importance of an intelligent choice of the optimization space, and it also
becomes clear that TDDFT brings about its own special challenges. I also demonstrate
the time-dependence of the excited-state spectrum of Helium in the TDDFT case and
compare it to the exact case as demonstrated in the previous chapter. Singly ionized
Beryllium is investigated as the final single-atom system before I extend the approach
to molecules, where I look at neutral and doubly-ionized Methane. For doubly-ionized
Methane, in addition to presenting the optimization results for two different search spaces,

I perform a pulse-cleaning, where I analyse the dynamics of the excitation process by
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exposing the molecule to only certain parts of the optimized pulse. Finally I present an
alternative approach to the optimization process where, instead of directly optimizing
the spectrum, one first finds an excited state with the desired properties, and then uses

gradient-based optimization algorithms to excite the system into this target state.

In Chapter 6, I summarize the work at hand, its main conclusions and point out open
questions and possible future work. Finally, two appendices provide further details on the
computational methods and a third provides calculations, where we analyze tunneling in
many-particle systems and its description in DFT. The bibliography can be found at the

end of thesis.
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tion of Response Functions . . . . ... ... ... ...... 69

2.6.3. Derivation of a Gradient-Free Algorithm for Quantum Opti-
mal Control Theory . . . . ... ... ... .. ........ 70

2.7. The Colour Perception of the Human Eye. . . . . . . ... .. 72

“Bverything should be as simple as possible, but not simpler.”

- Albert Einstein

In this thesis, we investigate the reaction of atoms and molecules to the irradiation with
electromagnetic fields on the attosecond time scale. The dynamics of non-relativistic,

quantum-mechanical systems are governed by the time-dependent Schrodinger equation

L0 B
i=[2) = H()E) (2.1)

with the wave function |Z) and the time-dependent Hamiltonian

H(t) =Tr +To + Vir + Vee + Vie + Veur(t) (2.2)
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where Vem(t) is the external potential and

TR
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where t; are the positions of the electrons, m is the electronic mass and RI, M; and Z;
are the positions, masses and charges of the nuclei. Note, that atomic units will be used

throughout the whole thesis.

Solving (2.1) is computationally challenging and in practice becomes unfeasible for sys-
tems with more than two or three degrees of freedom. Therefore a range of approxima-

tions have to be applied.

One, that is commonly used to separate the electronic from the nuclear degrees of
freedom, is the Born-Oppenheimer approximation [159, 160]. The Born-Oppenheimer
approximation states, that due to the mass difference between atoms and electrons,
atomic and electronic motion happen on different time-scales and therefore the combined

Schrodinger equation (2.1) can be separated into a nuclear and an electronic part.

In this thesis, we look at electron dynamics at the attosecond time scale. Since we
want to focus on the electronic part, we use the Born-Oppenheimer approximation in
combination with the Clamped-lon Approximation, in which the motion of the nuclei is

completely neglected.

In this chapter, I present the theoretical background to the work done. I start by in-
troducing the Born-Oppenheimer approximation in 2.1. Afterwards, I will exclusively
focus on the electronic problem. The response of a system to an external perturbation
is the topic of response theory, where the connection between perturbation and response

is given by the respective response function. If the perturbation is sufficiently weak, one
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neglects higher orders in the response function, leading to the linear response theory,
which is presented in 2.2. Whilst the theory of linear response is usually based on a sys-
tem in its ground state, where the external perturbation is used to probe the system, I
show, how the formalism can be adapted to describe the response of systems out of equi-
librium. This formalism is useful to describe pump-probe experiments, where external
fields are not only used to probe, but also to excite the system. A generalized Lehmann
representation of the response function for the non-overlapping regime, (where the probe
arrives after the end of the pump), is presented in 2.2.2 followed by some general com-
ments about the connection between real and imaginary part of the response function
in Section 2.2.3. Up to here, everything was about general response functions. How the
optical spectrum can be obtained from one of them — namely the dipole-dipole response,
is presented in Section 2.2.4. With this connection in mind, in Section 2.2.5, I analyze
the consequences of the time-dependency of the developed Lehmann representation for

the spectra of excited states.

In our formalism, excited bound states have an infinitely long life time and spectroscopic
peaks are d-functions, which have to be broadened artificially in order to mimic sponta-
neous emission and other decay mechanisms that could be present in experiments. Dif-
ferent broadening mechanisms and the resulting line shapes are discussed in Section 2.3.
Furthermore, it is shown, how different line shapes are connected with each other and

can be converted into each with the help of lasers.

At the beginning of this chapter, I said, that solving the time-dependent Schrédinger
equation (2.1) is computational challenging. For many-electron systems, only apply-
ing the Born-Oppenheimer approximation is not enough to make the problem solvable.
Further approximations have to be made for the electronic part of the problem. One
way to tackle the electronic problem is Density Functional Theory (DFT) and its time-
dependent counterpart TDDFT, which replace the many-body wave function by the far

more manageable electronic density.

Section 2.4 marries the concepts of response functions with the concept of treating elec-
tronic systems using TDDFT. After a brief introduction, in Section 2.4.1, I present the
Hohenberg-Kohn (HK) theorem, which states, that indeed there is one-to-one correla-
tion between the external potential (and therefore the many-body wave function) and its
ground state density. The HK variational principle then finds the ground state density

by minimizing the energy functional, which is a functional of the density. This is mostly
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done using the Kohn-Sham (KS) equations, where the density is constructed using a
system of fictitious non-interacting electrons occupying the so-called KS orbitals. Whilst
DFT is in principle exact, this functional is not known analytically and in practice has
to be approximated. Section 2.4.1.1 presents the approximations used in this thesis.
For time-dependent problems, a similar theory exists, connecting the time-dependent
density to the time-dependent external potential using time-dependent KS orbitals. A
short introduction into TDDFT and how to propagate the KS orbitals in time is given
in Section 2.4.2.

After the introduction into (TD)DFT it should be clear, that the most important ob-
servable in this context is the time-dependent density. How the time-dependent density
can be used to obtain the density-density response function and how the density-density
response function is coupled to the dipole-dipole response function, which at the end pro-
vides the optical spectrum of a system is shown in Section 2.4.3 followed by the connection
between many-body and KS-response function in Section 2.4.4. In practice, solving the
response equations can be done using several approaches, e.g. by linearizing the time-
dependent Kohn-Sham (TDKS) equations in the frequency domain and casting them
into matrix eigenvalue form or by propagating the same equations in real time applying
a sufficiently weak dipole perturbation. While the first one mostly focuses on ground
state spectrum, the extension of the latter to the case of excited state spectroscopy is
straightforward and our method of choice. A small introduction into its principles can
be found in Section 2.4.5.

Finally in Section 2.4.6, I explain how to perform time-resolved photo-electron spec-
troscopy (TRPES) calculation in TDDFT using the mask method.

Whilst for bigger systems methods like (TD)DFT have to be used, it is instructive to
test theories for smaller systems, which can be solved either analytically or numerically
exactly. In this thesis, calculations for several model systems (in one or three dimensions)
are used. This is the topic of Section 2.5.1. For the analysis of excited state spectra in the
exact case, the concept of Rabi-oscillations assuming a two-level system is used through-
out this thesis. Section 2.5.2 gives a short introduction into the text-book derivation of

Rabi oscillations. This concept is then extended to certain cases of three-level systems.

As mentioned before, this thesis not only deals with spectroscopy, but combines excited
state spectroscopy with control. Not only how to probe, but also how to create and control

excited states is addressed. The general concept of control is presented in Section 2.6 as
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well as the general procedure to derive an algorithm to control spectra.

Finally, we analyze optical spectra in the context of their perception by us - human
beings. We argue, that by controlling the spectrum of a system, one can control its
colour. In this context, one has to understand, how the light, that is perceived by the
human retina is translated into human colour perception. This question is addressed in
Section 2.7.

2.1. Born-Oppenheimer and Clamped-lon Approximation

Thanks to the large difference in masses between nuclei and electrons, a great simpli-
fication in the problem of studying a system combining both types of particles can be
achieved by making use of the so-called Born-Oppenheimer approximation [159, 160].
With it, the problem posed by the Hamiltonian (2.2) can be split into two steps: one
that involves the resolution of an electronic-only problem (yet, in principle, one problem
for each possible nuclear configuration), and one that involves the solution of an equation

for the nuclei only, moving on some “potential surfaces” constructed in the previous step.
First, one defines an “electronic Hamiltonian” for each nuclear configuration R = {R;}:

H.(R)=T. + Vii(R) + Ve + Vie(R) . (2.4)

Note that, here, R are parameters, and not operators. Next, we consider an orthonormal
basis for the electronic Hilbert space, also at each nuclear configuration: {¥(r;R)}.
Using this basis, we may expand (without, yet, any approximation) the full solution of

the Schrédinger equation

A~

A=(rR) = FE(r,R) (2.5)
E(rR) =) Ui(rR)xx(R). (2.6)
p

The substitution of this expression into Eq. (2.5) yields, after some algebra:

Ty + T (R) + Ti(R) + Ukk(R) — B i) = = 3 Uk (R) + Tho (R) + T (R)] i)
k' #k
(2.7)
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where:

Uno(R) = (3 (ri R)| L (R) [ 15 R) 28)

Tie®) = -3 qrdl®) Ve (29)
1

Th(R) = = g (R VAU (i R) (2.10)
1

dh(R) = (We(rsR)|ValWp (1 R) .11

After these manipulations, one may attempt a solution of the full Schrédinger equation
in two steps, where the first step is the construction of the electronic basis and the
computation of the previous objects and the second step is the solution of the nuclear
Eq. (2.7).

Normally, the orthonormal basis is chosen to be the eigenbasis of the electronic Hamil-
tonian:

H(R) W (13 R)) = Uy (R) [ W4 (15 R)) (2.12)

so that the off-diagonals Ugp/(R) = 0 (k # k') vanish. Also, usually (especially if
the electronic eigenstates can be chosen to be real), T}, (R) = 0. However, the Born-
Oppenheimer approximation, essentially, amounts to neglecting the right hand side off-
diagonal (k # k') terms Ty and T}, (the “non-adiabatic couplings”), and the BO diago-

nal correction T}).. In this manner, the nuclear wave functions are completely decoupled:

[TI + Upe(R) | X&) = Elx) - (2.13)

A perturbation theory analysis permits to understand that the neglection of the terms
assumed in the Born-Oppenheimer approximation is good if the ratio of electronic to

nuclear masses is small.

This analysis can be extended to the time-dependent Schrodinger equation, and one may
propagate “nuclear wave packets” moving on the electronic “potential surfaces” Uy (R).
Some subtleties arise whenever the nuclear wave packets approach regions in configuration
space where the potential surfaces cross, rendering the Born-Oppenheimer approximation

invalid.

As a further step, one may “complete” the Born-Oppenheimer approximation by taking
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a classical limit for the nuclear degrees of freedom, arriving to the realm of “molecular
dynamics”. This limit can also be taken before the neglection of the non-adiabatic terms,

arriving to some form of non-adiabatic molecular dynamics.

In any case, for this work we can in fact ignore the nuclear movement (due to the very
fast phenomena we wish to study), and assume the Clamped-Ion Approximation.
Therefore, we are only concerned with the electronic Hamiltonian (2.4), for nuclear posi-
tions fixed at the equilibrium positions (in fact, we may safely remove from the electronic
Hamiltonian the nucleus-nucleus interaction term Vi7(R), since it is now merely a con-

stant.

2.2. Linear Response Theory

When a time-dependent electromagnetic pulse passes through a sample, the molecules
polarize and this polarization modifies the otherwise free propagation of light, leading to
e.g. its partial absorption. In a dilute gas, assuming the electric dipole approximation
and a sufficiently weak pulse, the dipole—dipole linear dynamic polarizability entirely
determines the polarization of the medium and therefore the amount of absorption. Usu-
ally this is understood at equilibrium: the gas is supposed to be at thermal equilibrium
and the only light pulse present is the one, the absorption of which we want to mea-
sure. The pump-probe situation discussed in this thesis is slightly different. Here, we
want to measure the absorption of a probe pulse by a gas, that is also irradiated by
a pump-pulse, either simultaneously (overlapping regime) or with a certain delay (non-
overlapping regime). In this situation, the task is to compute the electric dipole of a
system, which is evolving in time with and without the probe pulse — the difference is

the excess of polarization, which is responsible for the absorption of the probe.

In this chapter, I first derive a generalized Kubo formula of the retarded response function
of a system governed by a time-dependent Hamiltonian. This Kubo formula is valid in
the overlapping as well as in the non-overlapping regime. For the non-overlapping regime,
I then proceed to write-down a generalized Lehmann formula of the response function
that will help us gain microscopical understanding of the mechanisms behind pump-
probe experiments. After shortly presenting the Kramers—Kronig relations and showing
the connection between the dipole-dipole response function and the photoabsorption

cross-section I present a detailed analysis of the generalized Lehmann formula and the
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information, that it holds in the case of transient absorption spectroscopy.

2.2.1. General Time-Dependent Linear Response Theory

Here, we give a short overview about general time-dependent linear response theory. For
a more detailed description, we refer the reader to [3, 161, 162, 163, 164].

We consider a system described by the Hamiltonian
Hol&)(t) = o + E@)V, (2.14)

where # is the static Hamiltonian, that describes the system itself and &(t)V is the
coupling to a pump laser pulse. Note, that we only treat the electric part of the electro-
magnetic field, neglecting the magnetic part. Ho[&](t) is the “unperturbed” Hamiltonian,
which contains only the pump pulse. The full Hamiltonian results from the addition of
the time-dependent perturbation H(t) = F(t)V, where F(t) describes the probe pulse:

H(t) = + &)V + F)V. (2.15)
The time evolution of the system is given by
0, A A
i) = [ Ho(t) + FOV5(1)| (2.16)

and initially (t_ < to, some time before the arrival of both pump and probe laser), the
system is at equilibrium
[;?, pltoo < to)] = 0. (2.17)

For a given pump &(¢), me may assume the evolution of the system to be a functional of
the probe shape p = p[F| and we can expand p in a Taylor series (in a functional sense)

around the case of no perturbation F(t) = 0:
o0
ALF) = pulF), (2.18)
n=0

where p is the unperturbed system evolution (F(¢) = 0, only the pump pulse is present)
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and p,, is nth order in the perturbing field F'(¢):
PIAF] = A" p[F]. (2.19)

A similar Taylor expansion is possible for any expectation value O(t) of an observable O:

O(t) = Tr {,a(t)é} =3 0.0) (2.20)
n=0
with
On(t) = Tt {ﬁn(t)O} . (2.21)

O(t) — Oy (t) is called the response of O to the perturbation F(t)V, where O;(t) is the
linear, O2(t) the quadratic response and so on. There is no proof that this expansion is
convergent, but normally one assumes that it does as long as the perturbing field F'(¢) is
sufficiently weak. Note, that in the case of no pump-laser, Oy is time-independent and

we recover the usual formalism of linear response from the ground state.

For sufficiently weak probes, we are only interested in the linear response
JO(t) = O(t) — Op(t) ~ O1(t) = Tr {ﬁl(t)é} , (2.22)

where p;(t) is the solution to the linearized equation

Do) = [0, i (0)] + [P0V o(0)] (2.23)

with the initial condition p1(tp) = 0. To obtain the solution p1(t) of Eq. (2.23), we
introduce the propagator U [£] (t,t') for the unperturbed time evolution in presence of

only the pump &(t):
U[&) (t,t') =T exp {—z‘ /t t drﬁo[@“’](r)} , (2.24)

where T'exp{- - -} is the usual time-ordered exponential [165]. For the moment, we skip

the explicit notation of the functional dependence on &, but will put it back later.
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Eq. (2.24) is the formal solution to the equation of motion for the propagator

9 - o
ZEU(t, t') = Ho(t)U(t,t) (2.25)
with the boundary condition U(t,t) = I. Using Eq. (2.25), we find the solution to
Eq. (2.23) as

t

prlt) = =i | AUt ) |FE)WV.po(t)| O(F. 1), (2:26)

to
where the differentiation of the propagators yields the first term of the right-hand side
of Eq. (2.23), while the differentiation with respect to the upper limit of the ¢’ integral
yields the second term. Inserting p1(¢) into Eq. (2.22) yields the linear response

Or(t) = —i / t ' F(t') Tr {[)(to) [O[(t), Vf(t')} } : (2.27)

to

with the operators O(t) in the interaction representation being defined as

A~

O1(t) := Ulto, t)OU (t, to) = U (¢, t0)OU (¢, o). (2.28)

Finally we rewrite the linear response as

01 18] (1) = /_ T AW FE gy 6] (1), (2.29)
where
Xo.v [€] (¢, t') = —if(t —t') Tr {f)(to) [Oz (&) (1), Vi [&] (t’)] } (2.30)

is the retarded response function. In Eq. (2.29) we replaced the lower integral limit by
—00, because of Eq. (2.17) and we could replace the upper integral limit by oo because
of the step-function in the response-function. The step-function ensures the causality
requirement, that any response at time ¢ is due to a perturbation at an earlier time ¢’ < t.
Eq. (2.29) has the standard form of Kubo’s formula [166] with one minor difference. In
our case, the unperturbed Hamiltonian H, (t) is time-dependent and therefore the time-
propagation of the operators has to be done using the time-ordered exponentials (2.24).
For systems at equilibrium (i.e. the Hamiltonian Hy is time-independent and the system
is initially at equilibrium), one makes use of the time-translational invariance, since one

may prove that the expression for the response function only depends on t — ¢/, and not
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on both times independently. This permits to define a response function that has only
one time argument (the difference ¢ — ¢’) and only depends on properties of the system

in absence of the probe.

In contrast, in Egs. (2.29) and (2.30) we explicitly mention the functional dependence on
& to stress that in the more general case, the response function is a property of both the
system (defined by the static Hamiltonian H ) and of the pump shape & and explicitly
depends on both times ¢ and ¢'. The response itself is a functional of both pump and

probe pulses, and after taking its Fourier transform can be written as

o
016, F] (w) = / A )xe 5 [6] (1), (2.31)

—00
In the next subsection we look closer at x4 ¢ [6] (w,t') and show, how one can derive a
Lehmann-like representation of the frequency-dependent response function in the non-
overlapping case, where the pump pulse has ended and the system evolves under the

influence of the static Hamiltonian ./Z.

2.2.2. Frequency Dependent Response Function and Generalized
Lehmann Representation

In linear-response theory it is more common to work in the frequency domain than
to consider the response in real time, because replacing the time by the frequency as
variable enables us to extract the excitation energies of a system from its linear response.
For a stationary initial state p(¢yp) and a static Hamiltonian A, one makes use of the
time-translational invariance of the response function, Fourier-transforms with respect
to the time difference ¢t — ' and arrives at the Lehmann representation of the frequency-

dependent response function.

We are interested in a situation, in which at the arrival of the probe the system is not
in its ground state, but in an excited state, due to its excitation by a previous pump
laser. We can show, that while for a general non-stationary state it is not possible to
define a time-independent response function, one can still write down the Lehmann
representation of the response function in closed form, which then additionally depends
on the delay between pump and probe. Here, we present the time-dependent Lehmann
representation for the non-overlapping regime, i.e. for the case, where the pump pulse

has finished before the probe pulse arrives. In [107], a similar expression is presented,

28



2.2. LINEAR RESPONSE THEORY

that includes the overlapping regime.

In the non-overlapping regime, the situation is conceptually equivalent to considering a

Hamiltonian

H(t) = + F(t)V (2.32)

with an arbitrary initial state described by the density operator p[&] (to), which the
system has reached because of the former influence of the pump field &. Hereafter, the
time tg is fixed after the pump pulse, and before the arrival of the probe. In contrast
to the very general case described in Section 2.2.1, the unperturbed Hamiltonian is now

time-independent (but the unperturbed evolution of the system is not).

We recall the time-dependent linear response function (2.30)
s 16.t) = —ioe - e { o) [Or 10T ]} 239)

We now perform several steps at once. First we write the density operator as

PIEN (1) = sulWnlto)) (Walto), > su=1 (2.34a)
n=1 n
with
Te {p[6] (10)0} = D 50 (Wn(t0) O W (t0)), (2.34D)

n

where s,, is the probability of the system to be in the state |U,, (o)) at t = ty. For ease
of notation, we assume, that the system is in a pure state, i.e. that all s, are zero except

for one, which is one. This reduces the trace to
Te {5 [£] (t0)0 } = (W (t0)|O1W (o)) (2.340)

with an arbitrary wave function |¥(to)), which in the eigenbasis of 2 is expressed as

W (to)) = i%‘@j% H\Dj) = £5|;) (2.34d)

=1

where the sum includes both bound and continuum eigenstates |®;); for the latter, the

sum over states has to be converted into the integral over a continuum of states. The
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expansion coefficients v; are complex with
v = |y|es (2.34e)

and depend on the end-time ¢y of the pump pulse, which is the time, when we do the

projection. Finally we make use of the interaction representation
Vr = i (t—to) =it (t—to) (2.34f)

while inserting the completeness relation
1= Y e (2.315)

Using Egs. (2.34), Eq. (2.33) turns into
o [E] (1) = —if(t — 1/ Sy (B | OBy ) (B |V | @, ) e~ HEm =) (tt) o —ilen—e;) (' —t0) 4
Xo,v [€1(t, V(2
jkm
Finally we substitute the step-function 6(¢ — ¢') by the integral representation
i o0 efiw’(tft’)
Ot — 1) = lim — / d (2.35)
n—0t+ 2w J_ o w' +1n

and Fourier transform in order to arrive to a generalized Lehmann representation of

the linear response function (here and in the following, lim,_,y+ is understood):

57825101 Prm) (i V| @)
w— (em —€j) +in

e—i(Ek—é‘j)T

Xo. v €] (w, to+7) :I

jkm

w+ (em —&5) +1in ’
(2.36)

where we introduced the “delay time”

T=t —tg. (2.37)
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For an illustration see Fig. 2.1. If the operators V and O are real, we can always chose

..,.,MH nunf T
W “l” . !

pump

Figure 2.1.: Illustration of the times used in the derivation of the generalized Lehmann
representation of the response function.

the basis set {|®;)} to be real and Eq. (2.36) simplifies to

,Y;f,yke—i(ak—sj')T ’Yj’)’zei(gk_aj)T
w— (em —€j) +1in B wH (em —gj) +in [’

X0 61w ta) = Y (0,10/@0) (@ V]2)

jkm
(2.38)
which, using
v () = fyje_ieﬂ = ]'yj\e_i(eﬂ_‘pj) (2.39)
and
Wjm = Em — € (2.40)
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can be rewritten as

Xo,i [6](w,to+7) = i(%!é\@m)(@m!f/!@w {

jkm

VEOWE) i) }
W—Wjm +1i0 W+ Wjm +1in
(2.41)
The Lehmann representation is one of the most important results in linear response
theory because it shows explicitly how a frequency-dependent perturbation couples to
the excitation spectrum of a system. Here, we present a generalization to a pump-probe
situation, where the probe arrives with some positive delay to the pump pulse (non-

overlapping regime).

Before we continue to the derivation of the Kramers—Kronig relations, let us firstly intro-
duce some useful notation. For further discussions, we divide the linear response function

into its real and its imaginary part

X(w) = X' (w) +ix" (w). (2.42)

X (—w) = x'(w) (2.43)

and unchanged under time-reversal ¢ — —t. It is called the reactive part of the response

function. In contrast, the imaginary part x”(w) is an odd function

X'(—w) = —x"(w) (2.44)

and changes its sign under time reversal. It is called dissipative or absorptive part of

the response function and is also known as the spectral function.

I will now proceed to present the Kramers—Kronig relations for general response functions
before pointing out, how the the density-density response function, a variable that can be
readily obtained with the help of TDDFT, relates to the photoabsorption cross-section of
a system. With this a bit more concrete example in mind, I will finally present a detailed

analysis of Eq. (2.41), pointing out the differences to the usual ground-state formalism.
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2.2.3. Kramers—Kronig Relations

The Kramers—Kronig relations relate the real and imaginary part of the response function
(defined as in Eq. (2.42)) to each other via

1 o0 " /
X (w) = ;P / dw'i Eww)/] (2.45a)
—00
1 o0 / /
X'(w) = —%P / dw'jjiwoj/ , (2.45b)

where P denotes the Cauchy principal value. The Kramers—Kronig relations are derived
as follows. Cauchy’s residue theorem states, that, since the response function is analytic

in the upper half of the complex plane,

7{ d X (2.46)

w —w

for any contour within this region. We choose the contour to trace the real axis and
come back via a large semicircle in the upper half plane. The integral over the semicircle
vanishes because x(w) vanishes faster than 1/|w| and we are left with the integral along

the real axis. Using the relation

1 1
lim —— =P —imd(w — W) (2.47)
n—0t w — w +1n w—w

we get

w/

Ozj{dw' XW) _p

/OO dw’wxl(f,zu] —imx(w). (2.48)

—00

Reordering Eq. (2.48) leads to the Kramers—Kronig relation

/ T X/(“’/) ] . (2.49)

1
= —P
X(w) = - W

17T

Separating this with respect to real and imaginary part finally leads to Egs. (2.45).
Transforming the integrals into one of definite parity by multiplying the denominator by
w' 4+ w and using the symmetry relation x(—w) = x*(w), we can collapse the integration

along the real axis and arrive to the version of the Kramers—Kronig relations, that is
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often found in literature about response calculations

X(w) = %P [ /O mdw’w’M] (2.50a)
X'(w) = —%P Uooodw’cmy (2.50D)

2.2.4. Spectroscopic Observables

The linear optical properties of finite systems are characterized by the frequency depen-
dent dipole-dipole polarizability o, = x DDy where the dipole operator is defined

as
N

Dy=-Y ¢ (2.51)
i=1

in which N is the number of electrons. As we will see in Section 2.4.3, the dipole-dipole
polarizability can be easily obtained from the density-density response function, providing
a straightforward way of using time-dependent density functional theory to simulate
absorption spectroscopy experiments. This is especially true, since the expectation value
of the required observable in this case — the dipole operator — is an explicit functional
of the density: while in principle, all observables are functionals of the time-dependent

density, in practice their functional form may be unknown.

The dipole-dipole polarizability describes the induced electronic polarization p(t) of
a system, that is caused by a perturbing electric field E(¢). If E(¢) is monochromatic of
frequency w with a wave lengths long enough to apply the dipole approximation (i.e. we
assume, that the system exposed to the laser is small in comparison to the wave length
2r/xx << 1) and linearly polarized along the r,-direction (r, being one of the Cartesian
coordinates z, y, z) with amplitude Ejy, the time-dependent dipole-dipole polarizability
tensor o, (t,t') relates the induced electronic polarization in the p-direction p,(t,t)

with the perturbing electric field in the r,-direction E, = Ege™ ™ like

Pultt) = (t,t)Ey(t). (2.52)

From the absorptive part of the polarizability tensor in frequency space oy, (w,to + 7),
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we obtain the photoabsorption cross-section like (|165])
drw
ouw(w,to+7) = 7\904#1,(% to+7) (2.53)
and finally the average absorption coefficient

1
o(w,to+7) = gTra(w,to—i—T). (2.54)

2.2.5. Properties of the Generalized Lehmann Representation

The following analysis is similar to an analysis, that was published by Perfetto and

Stefanucci [107]. Nonetheless, the results were obtained independently.

In Section 2.2.2 we arrived to the generalized Lehmann representation (2.41) of a general
response function from an arbitrary excited state under the influence of an ultra-short
(delta-kick) probe pulse. Since in this work we are interested in the average absorption
coefficient and therefore in the trace of the polarizability tensor, in the following we focus

on its diagonal elements:

apup [€] (w,tﬁﬂzidjmdmk{ (D) () } (2.55)

W+ wWim +1in W — Wjm +1in

jkm
with the dipole matrix elements
djm = (@] D[ ) - (2.56)

Eq. (2.55) can be rewritten as

ei@kj(T) 672'619]'(7-)
au [E] (w,to +7) = Idjmdmkhj'}’k R ——— (2.57)
Jgm Jm

jkm

with the time-dependent phase
Ok (1) = pj — i — wk;T - (2.58)

We now discuss Egs. (2.57) in more detail. The first thing to notice is that the time-
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dependence of ay, [£] (w,to + 7) stems exclusively from the time-dependence of the ex-
pansion coefficients «(7) and enters only through the phase factors. Therefore, the peak
positions of the spectrum do not change, they are an intrinsic property of the many-
body system and located at the many-body transition energies. The time-dependence is

exclusively in the spectral weights, which we look at now.

We distinguish three cases. In case (i) we choose v; = d;o, recovering the usual (time-

independent) Lehmann representation of the polarizability tensor of the ground state

1 1
_ 2 -
(6] (w)—Zi\dOm’ {w+w0m+i77 W—w0m+i7)} (2.59)

which for n — 0 and using Eq. (2.47) leads to

Sa 6] (@) = i dom|? {8(w — wom) — 8(w + wom)} . (2.60)

m

which is proportional to the spectrum. Since wg,, = €, —&g > 0 for all m, the spectrum is

positive at all positive frequencies (and consequently negative at all negative frequencies).

In case (ii), we consider the simplest example of a non-equilibrium state: an excited,
but still stationary state [¥¢) # |Wo), i.e. 75 = dy¢ in Eq. (2.55). The polarizability
tensor has the same shape as in Eq. (2.60) but now the transition frequencies we,, can be
either positive or negative leading to a spectrum, where the peaks for w > 0 (which we
denote by w™) can be either positive or negative, leading to either absorption (positive)

or emission (negative):

S [6] (@W)s0 = D ldem[*6(w — wem) = Y |dem|*6(w + wem) - (2.61)

E<m E>m

It is noteworthy, that for a stationary state, the spectral weights of the peaks are time-
independent and therefore in the same way that the ground state spectrum is independent
of the time, the spectrum of a stationary state is independent of the delay between pump

and probe.

Finally, in case (iii) we look at the spectrum of an arbitrary non-stationary state, which
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assuming real basis functions {|®)}; is

Say, [6] (w,to+T7) = Z djm i |77 | cos O (T) {(5(w — Wjm) — 0(w + wjm)} . (2.62)
jkm
We see, that in the case, that the excited state is a linear combination of degenerate
states, the spectrum is again time-independent. The only time-dependence occurs if the
involved eigenstates are non-degenerate. In this case, we divide the spectrum into two
parts:

Say, (6] (whto+7) = SQEMQ [6] (W) + %aﬁ\[ (6] (wh,to+ 1), (2.63a)

one part being the time-independent sum over equilibrium spectra of the eigenstates

involved, scaled by their occupation:

Saf? (6] (W) =D 1P ) 1dimlP6(w = wim) = D |djm[*6(w + wjm) p , (2.63D)
i

j<m j>m
the other one being a time-dependent interference term between the involved states:

Saf) (6] (w to+7) = Y dimdmrlrinl  {c08(Ok;(7)d(w — wjm)
Jj#kim
—¢08(0;(1))8(w + wjm) } . (2.63¢)

The equilibrium term depends neither on time nor on the initial phase differences ¢; —j,.
It is influenced by the pump only through the occupations |y;|2. The phase- and time-
dependency of the spectrum enters exclusively through the interference terms, which are
governed by the phase differences ©y;(7), which have contributions from both the phase
difference ¢; — ¢ at the end of the laser and from its time evolution wy;7, leading to
a periodic beating pattern, which was firstly observed by Goulielmakis et al [1]. The

time-dependence of a spectrum is therefore a clear sign of a non-stationary state.

Up to now we have analyzed the Lehmann representation for peaks of d-shape, i.e. with

infinitely long lifetimes. Summarizing, we found:
e The positions of the excitation peaks are fixed at the many-body transition energies.

e The spectral weights of the peaks depend on the laser and on the delay 7 between
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pump and probe pulse; peaks can be positive or negative depending on whether

the rate of absorption is larger than the rate of stimulated emission or vice-versa.

e If the pump leaves the system in a non-stationary state, the spectral weights oscil-
late as a function of time. The involved frequencies correspond to the differences

of the eigenenergies of the eigenstates occupied in the non-stationary state.

e For non-stationary states, the spectrum can be divided into an equilibrium and an
interference contribution. The equilibrium contribution depends neither on time
nor on the initial phase differences ¢; — . It depends on the pulse only through
the occupations. Phase- and time-dependence of the spectrum enter through the
interference term, which depends on the initial phase differences and periodically

on time.

In the next section, we will discuss line broadening mechanisms and how the Lehmann
representation can help to understand laser-induced lineshape changes. All these concepts
will be illustrated in Chapter 4.

2.3. Resonance Line Shapes

Up to now we have looked at the positions and the spectral weights of transition peaks.
Since we assumed infinite lifetimes of the states, the discussed peaks were of d-shape.
Nonetheless, in reality, life times of excitations are finite. Thus, the corresponding tran-
sition peaks are not infinitely sharp but have some type of broadening and a specific

shape depending on the interaction of the corresponding state with its environment.

For atoms and molecules in the gas-phase the main broadening mechanisms are lifetime,
pressure (collision) and Doppler broadening. The minimal possible linewidth is deter-
mined by the natural broadening which is the consequence of spontaneous emission. If
atoms and molecules are in gas-phase, they also undergo collisions depending on their
velocity and the pressure of the gas. These collisions reduce the lifetime of the excited
state, leading to pressure broadening. Finite lifetimes caused by spontaneous emission

or by collisions produce lines with Lorentzian or Breit-Wigner shape

L(w) = LUQIJ‘F/Z)F/At (2.64)

where I is the full width at half maximum of L(w). Coupled to the Lorentzian line shape
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via the Kramers-Kronig relations is the Rayleigh shape

w

R@) = 5

(2.65)
If the imaginary part of the polarizability tensor a,, (w, to+7) is described by a Lorentzian,

the real part is described by a Rayleigh and vice versa.

A different line shape is produced by the Doppler broadening, which is a consequence of
particles moving with different velocities. In thermal Doppler broadening, the velocities
of the particles follow a Maxwell distribution, which leads to the spectral lines being of

Gaussian shape

G@) = (), (2.66)
ovV2m
with the full width at half maximum ' = 2v/21n20. If lifetime /pressure broadening
and Doppler broadening happen at the same time and ¢ and I' are of the same order of
magnitude, the lineshape is a convolution of Lorentzian and Gaussian, a peak of Voigt
shape
oo
vwmm—/(Wwaw—m. (2.67)
—o0
If a discrete transition is embedded within a flat continuum of possible transitions, the
configuration interaction couples both configurations, leading to an auto-ionizing state
having contributions from both discrete and continuum states. This phenomenon was
investigated by Ugo Fano in the context of the 2s2p state in Helium [148, 167]|. He found
the related peaks to be of the Fano line shape

(qT/2 +@)°

F(o) =
(@) =00 w2+

(2.68)
with the background oy and the Fano asymmetry parameter ¢, which describes the ratio
between the scattering into the discrete state modified by the continuum states and
the unperturbed continuum states. The Fano line shape consists of two contributions,
one coming from the modified discrete state, the other coming from the continuum.
Both contributions interfere with each other with opposite signs on the two sides of the

resonance, leading to the Fano line shape being highly asymmetric.

Fano resonances describe interferences between bound and unbound (closed and open)

scattering channels. This is a phenomenon, which exists in many areas of physics. In 1927
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Wentzel used a similar approach to explain the Auger effect [168], followed by a series of
papers by Majorana on the non-radiative recombination process of two electron excited
states [169, 170]. Fano’s work was finally followed up by Feshbach, who was working
on the topic of shape resonances in nuclear physics [171]. After having developed the
cloudy crystal ball model of the nucleus [172], he used the same partitioning scheme
(known today as Feshbach-Fano partitioning) to develop the theory of the multichannel
resonances in the frame of the general nuclear reaction theory for multistep reactions
[173]. These resonances today are known as Feshbach-resonances. After Fano realized,
that Feshbach’s work was an extension of his 1935 paper (that he had considered as closed
work [174]), the theory of shape resonances was developed and applied to many processes
of association and dissociation [175]. For a more detailed overview about the development

of Fano-resonances in different fields of physics, I refer the reader to Ref. [176].

In the last years, caused by the development of ultra-fast spectroscopy techniques, the
dynamical properties of line shapes, e.g. Fano resonances have been investigated [141,
142, 143, 146] as well as the modification and control of resonance shapes using laser
dressing [95, 105, 139, 140, 144, 145]. Works like |2, 152] describe and interpret the

laser-control of Fano-to-Lorentz transitions.

In the following, we discuss, how laser-induced Lorentz-to-Rayleigh transitions can be un-
derstood in terms of the generalized Lehmann representation of the excited-state polar-
izability tensor, which was developed previously. In Chapter 4, we will demonstrate this
lineshape-control using the analyticly solvable Hydrogen atom. The concept of changing
the lineshape by imprinting a phase on the wave function is hereby similar to the case of

changing a Fano- into a Lorentzian line [2].

For the following lineshape analysis, we concentrate on isolated peaks only. We denote
this by replacing ¥ by Y. Comments on the continuum part of the spectrum will be
provided afterwards. We again distinguish the three cases described previously. In case
(i) the response function reduces to the usual Lehmann representation of the ground

state spectrum

Sy [6] @F) = 3 ldomlPL(w - wiom) (2.69)

m

where all peaks are positive and of Lorentzian lineshape. In case (ii), as mentioned before,
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we can find both positive and negative peaks. Again both are of Lorentzian shape:

Sy [6] (@) = D ldem L(w — wem) = D |dem[*L(w + wem) - (2.70)
E<m E>m

In case (iii) we divided the spectrum into an equilibrium and an interference term (2.63a).
As to be expected, since the equilibrium term is formed by the equilibrium spectra of
the involved states, it again only contains Lorentzian peaks. The interesting part is the

interference term, which after having applied the broadening is:

%al[fl [&] (w,to+7) = Z djm k|75 Vk| {cos(@kj(T))L(w — Wjm) +8in(O; (7)) R(w — wjm)

Jj#km

—c08(O; (7)) L(w + wjm) + sin(O; (7)) R(w + wjm)}

As one can see, the angle ©; not only modulates the peak’s height with time, but it
mixes real and imaginary part of the response function, therefore converting Lorentzian
line shapes into Rayleigh line shapes and vice versa. A complete spectrum of a non-
equilibrium state will therefore contain time-independent positive and negative peaks of
Lorentzian shape and some interference terms at the same energies, that oscillate between
Lorentzian and Rayleigh shape with a periodicity proportional to the energy-differences

of the eigenstates involved.

This demonstrates, how using a pump to imprint an internal phase difference ¢; — ¢y,
onto a state and controlling the delay time 7 between the pump and probe laser can be
used to change a spectrum, converting absorption into emission peaks (and vice versa)

as well as changing the overall shape of the lines.

In Chapter 4.1.1 we will use the example of an excited non-stationary state of Hydrogen
to illustrate the transformation between Lorentzian and Rayleigh peaks. Furthermore

we demonstrate, how to use a laser to control the spectral lineshapes.

Note, that in the discussion above, the lineshape analysis is valid for isolated peaks with-
out contributions from continuum states. If coupling to continuum states is involved, an
additional shaping comes into play, coming from the dependence of the matrix elements

djm on the energy. This is e.g. the case for Fano lineshapes.
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2.4. Time-Dependent Density Functional Theory for

Response Calculations

Time-dependent Density Functional Theory (TDDFT) in the Kohn-Sham approach can
be utilized to compute the response of a many-electron system to a perturbation, weak
or strong. In the perturbative regime, ideally one wishes to obtain the response func-
tions [(hyper)-polarizabilities, optical and magnetic susceptibilities, . ..|, since (i) these
objects then permit to predict any reaction in the appropriate order, and (ii) experi-
ments typically provide spectra that are directly related to the response functions — e.g.
the optical absorption cross section of a gas is proportional to the imaginary part of
the dipole-dipole molecular polarizability. In contrast, in the strong-field regime, where
perturbative treatments become cumbersome, one normally computes the particular re-
sponse of the system to the perturbation of interest by directly propagating the TDKS

equations in real time.

The vast majority of TDDFT applications have addressed the first-order response of
the ground-state system to weak electric fields — which can provide the absorption spec-
trum, the optically-allowed excitation energies and oscillator strengths, etc. This can be
performed by linearizing the TDKS equations in the frequency domain and casting the
result into matrix-eigenvalue form (using e.g. Casida’s method [177]), or by propagating
the same equations in real time applying a sufficiently weak dipole perturbation. In any
case, the response function computed in this manner will be that of the ground state. If
we want to analyze a transient absorption spectroscopy (TAS) experiment, the objective
is to obtain the response of the excited states that are visited by the system as it is
driven by the pump pulse (i.e. the response function of a system out of equilibrium). A
generalization of the general linear response formalism to the linear response formalism

based on excited states was presented in Section 2.2.

Likewise, TDDFT can be used to compute strong field non-linear photo-electron spec-
tra of atoms and molecules, for example with the method recently presented in [178].
Even though these spectra are also characteristic of the ground state, in Section 2.4.6,
we demonstrate, how the methodology can be extended to tackle the pump-probe case
(TRPES [83]).

In this subsection, I show, how (TD)DFT can be used to perform TAS and TRPES

calculations. To this goal, I first give a brief introduction into DFT and present the
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energy functionals, which are used throughout the thesis. I then discuss the concept
of TDDFT and present the TDKS equations. To perform TAS calculations, we need
access to the dipole-dipole response function. How the dipole-dipole response function
can be obtained from the density-density response function, which is accessible through
TDDEFT is presented in Section 2.4.3 followed by the connection between the many-body
and the KS-response function in Section 2.4.4. In Section 2.4.5, I comment on how the
density-density response function can be obtained by propagating the TDKS equations
in real time after a sufficiently weak dipole perturbation (kick). Finally in Section 2.4.6,

I explain how to perform TRPES calculations using the mask method.

2.4.1. Static Density Functional Theory

I start this section by giving a brief introduction to Density Functional Theory (DFT)
to set the framework to talk about some of the more technical details of the work in this
thesis. For a comprehensive introduction to DFT, I refer the reader to works like e.g.
[179, 180, 181].

Static Density Functional Theory is based on the Hohenberg-Kohn (HK) theorem [182],
which states the possibility to directly and unambiguously correlate the ground-state

electronic energy of a many-particle system with its one-body electron density ng (r).

In Section 2.1 we showed that with the help of the adiabatic principle and the Born-
Oppenheimer approximation, we can separate the many-particle Hamiltonian into a
Hamiltonian for the electronic and a Hamiltonian for the ionic problem. In this work, we
are mainly interested in the electronic problem (2.12), but solving the time-dependent
Schrodinger equation (TDSE) exactly in three dimensions for more than two electrons
is unfeasible [178] and for one-dimensional models, the limit rises to not more than four
electrons [183]. One way to cut down on computational expenses is to shift attention from
the exact ground-state many-electron wavefunction ¥ (r;) to the much more manageable

ground-state one-body electron density ngs (r).

In DFT it is shown, that the ground-state energy of a many-particle system can indeed
be expressed as a functional of the one-body electronic density, what means that by
minimizing this energy it is possible to determine ngs (r). Furthermore, the HK theorem
[184] proofs a one-to-one correspondence between the external potential and the ground

state density. Since the ground state wave function can be obtained from the external po-

43



CHAPTER 2. THEORY

tential by solving the Schrédinger equation, this means, that every quantum mechanical
observable O is a direct functional of the ground state density O = O[n] Nevertheless,
whilst in principal all observables can be obtained from ng, (r), in practice the functional

dependencies are mostly unknown.

The most important observable in DFT is the ground state energy associated to a system
in an external potential. In the Hohenberg-Kohn variational principle one writes the total

energy F for a fixed external potential V.,¢(r) as a functional of the density
Bfin) = (V[olIT + Ve U] + (Wl Vet ¥y = Fraiclo) + [ 1Ve(einle)  (272)
where we defined the HK functional
Fr[n] = ([n]|T + Vee | ¥[n)), (2.73)

which does not depend on the external potential Vg (r). The energy (2.72) is now
minimized with respect to the density n(r) to find ground state density and energy
of the system. This is most commonly done using the Kohn-Sham (KS) scheme [182]
even though orbital-free schemes exist. In KS-DFT, one uses an auxiliary fictitious
system of non-interacting electrons that produces the same density as the interacting
electrons. This is possible, since Fyx[n] depends exclusively on the density and the
proof of the Hohenberg-Kohn theorem does not depend on the interaction of the electrons.
Substituting the interacting electrons by a system of non-interacting electrons with the
same density is the source of a great computational simplification, since a non-interacting
system of electrons can in general be represented by a single Slater determinant formed
by a set of “Kohn-Sham” orbitals, ¢; (i = 1,...,N/2). If not stated otherwise, in this
work, we assume a spin-compensated system of N electrons doubly occupying N/2 spatial

orbitals. In this case, the density is

N/2

nr) =23 leir)P (2.74)
=1

To obtain the KS orbitals ¢;, one splits the Hohenberg-Kohn functional Frx according
to
Fuk[n] = Ts[n] + Egn] + Egzcn] (2.75)
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where

\Y%
Tsln] =~ Y {eilnll - il (2.76)
is the KS kinetic energy,
L[ [ s ()
Eg[n] = 5 //d rd’r Py (2.77)
is the Hartree energy and

is the exchange correlation energy.

The KS orbitals are then obtained by self-consistently solving the KS equations

2
[—Zm + Vks (r)] w;i (r) = €p; (r) (2.79)
together with (2.74) with the KS potential

Vis (r) = Vege (v) + Vi (r) + Ve (v) (2.80)

where the Hartree potential Vi corresponds to a classical electrostatic term

_ [y n(r)
Vir[n](r) = /d g (2.81)
and the exchange-correlation potential V. is the functional derivative of the exchange-

correlation energy
6Eqe [n(r)]
on (r)

The exchange correlation energy is a functional of the density and accounts for all the

Vie (r) = (2.82)

intricate many-electron effects. It is in practice unknown and must be approximated
[99, 101]. Finding good approximations for E,.[n] is an active field of research as well as
analyzing the properties of the exact functional. For example in Ref. [185], Helbig et al.
analyzed the exact KS potential of a stretched Hydrogen molecule by reconstructing the

potential from the exact density. In Appendix C, we include an analysis of the description
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of tunneling in a many-particle system and its description in DF'T, where we compare the
description of the situation by a few current functionals to calculations using the exact

functional, which we reconstruct from exact calculations.

Many energy functionals are currently in usage. In the next paragraph we present the

ones, that are used in this thesis.

2.4.1.1. The Energy Functionals

L(S)DA The simplest density functional to approximate the exchange correlation energy
(2.78) is the local (spin) density approximation (L(S)DA), where it is assumed,
that the density can locally be approximated as homogeneous electron gas. The effects
of exchange and correlation are local in character and the exchange correlation energy
is simply the integral over all space with the exchange correlation energy density being

assumed the same as in a homogeneous electron gas with the same electron density.
ELSDA [n(r)] = /d3rn (r) ehom (n(r)) (2.83)

To be able to use (2.83), eggm has to be determined, which is usually split into exchange
term ¢, and correlation part e.:

€xec = €4 + €. (2.84)

The exchange energy is given by the Dirac functional [186]

€ = —Z <3> : n (r) (2.85)

and the correlation part is parametrized with the help of Quantum Monte Carlo simula-

tions. In this thesis, the parametrization of Perdew and Wang [187] is used.

ADSIC One of the functionals used in this thesis, is the LDA functional coupled to
an Average Density Self Correction ADSIC. In self interaction correction schemes,
one subtracts from the energy the interaction energy of every electron with itself. One
consequence and the reason, why this approach is used so often in this thesis is the yield of
the correct asymptotic behaviour of the exchange correlation potential for large distances
away from the molecule V.(r) ~ —1/r for r — oo. This leads to better accuracies for

the high lying KS bound states close to the ionization threshold. This is particularly
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important for the observation of the m — 7* transition in Ethylene (Section 3.3) but also

for the description of excited-state spectra (Section 5).

The first self interaction correction scheme was proposed by Perdew and Zunger [188|.
One of its drawbacks is its orbital-dependence. A different, orbital-independent ap-
proach is the Krieger-Li-lafrate (KLI) approach [189] (and others). However, many of
the proposed schemes are computationally expensive. A convenient way of combining an
orbital-independent self interaction correction with relatively small computational cost
is the ADSIC approach introduced in [190]|. Here, one assumes that the density n;(r) of
each electron ¢ is represented by an equal fraction of the total spin density n” (r) of its
respective spin o;: n;(r) = n%(r)/N% where N7 is the number of electrons with spin

o;. In this case, the ADSIC exchange-correlation energy is given by

+ 4
EADSIC [n¢7n¢} — EFux [nﬂni} — NEy [Z] — N'E,. ;T,O] — NYE,. 0’]T\LN]
(2.36)

with the Ex being the Hartree energy (2.77) and EF#X the exchange correlation energy
of the functional Fyg, that is to be corrected. In this thesis we use the ADSIC together
with the LDA functional.

LB94 An obvious first step beyond L(S)DA is the inclusion of terms depending on the
density gradient - the generalized gradient approximations (GGAs). One of them is the
LB94 functional developed by van Leeuwen and Baerends [191]. Its exchange-correlation

potential reads

72

1
Vee(r) = —n(r)” 3 2.87
(x) n() ﬂl + 3Bz sinh ™ (z) (2.87)
with x = |V(n§12| and 8 = 0.05. Note, that LB94 is not technically an energy functional,
n(r)3

but a model for the exchange correlation potential (2.82). Here, V. is given explicitly
and is not the functional derivative of an energy. Since for potentials, which are not
derived from an energy functional, the zero-force theorem is not necessarily fulfilled, this
can lead to problems during the time-propagation as for example self-excitation. This
has been shown explicitly for e.g. the Becke-Johnson potential [192] in [193]. LB94 has
— like the ADSIC functionals — the advantage of being asymptotically correct.

EXX Also in use are orbital-dependent functionals, which depend on the KS orbitals.

One of them is the Exact Exchange EXX functional, where one neglects the correla-
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tion term and calculates the exchange energy using the expression for the Hartree-Fock

exchange energy employing KS orbitals

occ

Eln] = ;Z / drar F1 0 )i i) (2.88)

]

The exchange correlation potential V. is then obtained from the energy by solving the
time-dependent optimized effective potentials (TDOEP) equations [194, 195]. Since, this
is not an easy task [196], in practice, the TDOEP equations are solved using the time-
dependent Krieger-Li-lafrate (TDKLI) approximation. In [197], EXX in combination
with the KLI-TDOEP equations were shown to violate the zero-force theorem. This can
again lead to unphysical behaviour like self-excitations. Nevertheless, the authors also

argued, that in many practical cases this was not a problem.

2.4.1.2. Pseudopotentials

The strong Coulomb potential in the core region of atoms is hard to describe with real-
space codes like octopus. Since the KS wave functions are all eigenstates to the same
Hamiltonian, they have to be mutually orthogonal, which requires the valence states
to be strongly oscillating in the core region. These oscillations are numerically hard to
describe. For calculations, where one is not interested in core excitations, one therefore
freezes the core electrons and replaces the strong Coulomb potential in the core region by
smoother potentials (so-called pseudo-potentials) based on a combination of the nucleus

and the influence of the core electrons.

The pseudo-potentials used in this thesis were generated with the Troullier-Martins
scheme [198]| and were used as distributed in the octopus-package [101, 102, 103].

2.4.2. Time-Dependent Density Functional Theory *

As seen in the last Section, DFT [199] establishes a one-to-one correspondence between
the ground-state density and the external potential of a many-electron system. This
implies that any system property is, in principle, a ground-state density functional. For

excited states properties, however, or in order to simulate the behavior of the system in

*The theory presented in this section forms part of [3].
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time-dependent external fields, one must use its time-dependent version, TDDFT [99,
200, 201].

In the case of TDDFT, a one-to-one correspondence also exists between the time-dependent
densities and potentials. If the real system is irradiated with an external field character-
ized by a scalar potential V(r,t) (the extension to vector potentials is also possible), the
“time-dependent Kohn-Sham” (TDKS) equations that characterize the evolution of the

fictitious system are:

. 1
igpeilrt) = *gvzw(nt)+VKs[n}(r,t)90i(r,t), (2.89)
N/2

n(rt) = 2> |pi(r,t)?. (2.90)
=1

As in the static case, the time-dependent density n(r,t) is the central object, and is
identical for the real and for the KS systems. The KS potential Vg is a functional of
this density, and is defined as:

Viks[n](r,t) = Vo(r) + V(r,t) + Via[n](rt) + Vie[n](r,t), (2.91)

where the Hartree potential Vjy is defined as in (2.81) with a time-dependent density
n(r,t), Vo(r) is the static external potential that characterizes the system in its ground
state (in a molecule, originated by a set of nuclei), and the “exchange and correlation”
potential is Vi.[n]. Vic[n] is non-local in time and recently much work has been dedicated
to characterize its time-dependence [202, 203, 204, 205|, but since its time-dependence
is in general not known, in practice one mostly works with adiabatic functionals. Here,
memory-effects are ignored and at each time, the ground state functional of choice is
evaluated with the instantaneous density at this time. In this thesis, all used functionals

are adiabatic.

2.4.3. Time-Resolved Photoabsorption Spectroscopy - The
Density-Density Response

As we have seen in Section 2.2.4, the photoabsorption coefficient of a system can be
obtained from the imaginary part of the dipole-dipole polarizability in frequency space.

Up to here, we have also learned, that the most important observable in (TD)DFT
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is the density and consequently, the most important response function is the density-
density response function. In the following, we show how to connect the density-density
response to the dipole-dipole response, thus enabling us to use TDDFT to extract the

photoresponse of a system from the density-density response function.

The density-density response function describes the response of the electronic density to
perturbation in the density. Here, the external perturbation (e.g. the probe pulse) is a

scalar potential v(r, t), which is switched on at time ¢’ and couples to the density operator

A~

n(r) = Y .2, 6(r — r;), where r; is the coordinate of the ith electron. The coupling is

described by the Hamiltonian

Hi(t) = / d3r'v(r’ t)a(r'). (2.92)
The time-dependent density response is given by
oo
on(r,t) = /dt'/ 3’ xnn (T, 1’ o (r ) (2.93)
— 0o
with the density-density response function of the (excited state) density matrix p(to)
Xnn (x, 1,6, 8") = —i0(t — t') Tr { p(to) [P (x, t), Rp (2, ¢)] } (2.94)

where 7 (r,t) is the density operator in the interaction representation (2.28). For weak

perturbations we are only interested in the linear density response

on(r,t) = ni(r,t) = /dt’/ 3 (v, 1, o1 (1, 1) (2.95)

Eq. (2.94) and Eq. (2.95) describe a particular case of the general definitions Eq. (2.30)
and Eq. (2.29). This can be seen by taking into account that the linear responses to
different perturbations can simply be added up and thus the perturbing Hamiltonian
(2.92) can be seen as sum of perturbations vy (r/,#')n(r’) each giving rise to a retarded

density response.

In order to connect the density-density response ., (r,r’,t,t") to the dipole-dipole po-

larizability a(t,t') = x p p(t, ") we recall Eq. (2.52), which relates the polarization in the
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p-direction p,(t,t") with the perturbing electric field in the 7,-direction like

Pultt) = (t,t)Ey(t). (2.96)

The electronic polarization in p-direction can be obtained from the linear density response

ny(r,t) as

pu(t,t') = —/d?’rrunl(r,t)
= —/d3r/d3r'ruxm(r, vt o (Y1) (2.97)

Here, v1(r’, t) is the potential associated to the electric field E(t), which as in Section 2.2.4
is assumed to be monochromatic of frequency w, linearly polarized along the r,-direction
(r, being one of the Cartesian coordinates z, y, z) and of amplitude Ey. v;(r,t) can then

be written as
vi(r,t) = —qE(t) - v = Egr, e ™", (2.98)

where we again treated the electric field in dipole-approximation. Inserting Eq. (2.98)
into Eq. (2.97) and comparing to Eq. (2.96) leads to the following connection between

density-density and dipole-dipole response function

aW(t,t') = —/d3r d3r’ T‘MT,/ann(I', v’ t,t) (2.99)
which in mixed frequency /time space is

ap(w,7) = — /dSr a3 vl X (v, 7 w0, 7). (2.100)

with 7 = ¢’ — ty. Note again, that while normally o, (w,7) does not depend on 7, the
additional dependence on 7 is caused by the fact, that a(t,t') # «(t —t'). Together
with the definition of the average absorption coefficient in terms of the dipole-dipole
polarizability (2.54) this connection enables us to obtain the photoresponse of a system

from its density-density response, which is easily available in TDDFT.
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2.4.4. Kohn-Sham Linear Response Function

In the last section, we established the connection between a small change in the external
potential dvege(r, ') and the consequent change in the density dn(r,t) via the many-body

density-density response function Xy, (r, v’ t,t)

= /dt'/ A X (v, 1 1,150t (v, 1) (2.101)
with Snlr. 1)
n(r
an(r, 0t — 2.102
o1, = S (2.102)

In a similar matter, one can define the change of the density due to a change in the Kohn-
Sham (KS) potential via the Kohn-Sham density-density response function X5 (r, v/, ,t)
like

/dt / B/ ES (r, v t, 1) dvg s (v, 1) (2.103)
with S, 1)
KS n(r
— 2.104
X (v, 0! 8 ) = Sors(0 )’ (2.104)

According to the Runge-Gross theorem, the time-dependent density of a many-body
system is reproduced within the TDDFT formalism, which means, that both expressions
for the change of density have to be the same. This leads to a Dyson-like equation
connecting the many-body and the KS response function, which for a system in its

ground state reads

1
Xon (1,7, w0) = xE5(r, 1/, w) + /dr1 /drg <\r1—r2| + fzc(rlaI'Z’W)) Xnn (T2, W)
(2.105)

with the exchange-correlation kernel

ge(r, t)

foelr,¥',t =) = on(r’,t')

(2.106)

n=ngs

Here, we took advantage of the time-translational invariance of the response function
of systems in their ground state to get rid of the second time-dependence and have the

response function only depending on the frequency w.

The use of adiabatic functionals can lead to unphysical effects in the description of
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photo-excitation spectra as we will demonstrate in the results chapters. This issue has

also recently been addressed in Ref. [206].

2.4.5. Absorption Spectra from the Time-Evolution

As mentioned before, a common way to obtain optical spectra in TDDFT is by propa-
gating the TDKS equations in real time following the scheme proposed by Yabana and
Bertsch [207]. This is the approach used for most calculations in this thesis, since it
is straightforward to extend the usual formalism to the situation of excited state spec-
troscopy like transient absorption spectroscopy (TAS) and time-resolved photoelectron
spectroscopy (TRPES). Whilst in the case of TRPES, we use finite probe pulses, in the
case of TAS, we probe the system under investigation by applying a delta perturbation,

a so-called ’kick’.

To understand why, we recall the expression for a general linear response O; to a per-

turbation F'(t)V (2.31):

0118, F] (w) = /oo dt/F(t,)Xoy (8] (w,t).

—00

Using as probe a delta perturbation
F{)y=X(t—t) (2.107)
permits to obtain the response-function directly from the linear response by
Xo0 16](,7) = L0186, 067] (@), (2.108)

In our case, this means, that the dynamic polarizability «[&](w,T) needed to obtain
the spectrum can be directly obtained from the change of the expectation value of the

electronic dipole
D [£,N;] (w) = —/dgrén(r,w)x (2.109)

with the dipole operator (2.51) like

ol &](w, ) = %59 €,08,] (). (2.110)
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The action of such a delta perturbation applied at instant 7 on the a system is given as
T(t— 7)) = e V| T(r)). (2.111)

which gives the electrons a coherent velocity field. In the KS scheme, the perturbation

has to be applied to each of the KS orbitals leading to

oi(r,t — 7)) = eMyy(r, 7). (2.112)

Note, that whilst in this thesis, we focus on the optical response, by changing the type of
perturbation one can also address the magnetic response, the dichroic response, etc. In
fact, all linear and higher-order responses can be obtained in terms of a kick or of series
of kicks.

2.4.6. Time-Resolved Photoelectron Spectroscopy — The Mask Method f

In the last sections, I have shown, how TDDFT can be used to obtain time-resolved
absorption spectra. In this section, I present, how TDDFT can be used to obtain
time-resolved photoelectron spectra (TRPES). Note again, that whilst the theorems
of TDDFT tell us, that a functional that describes the PES in terms of the density
exists, in practice, this functional is not known and other ways of obtaining the PES
from the KS equations have to be found. The photoelectron spectra presented in this
work are produced within TDDFT using the Mask Method [178]. This method is based
on a geometrical partitioning and a mixed real- and momentum-space time evolution
scheme [208]. In the following, I summarize the main traits of the technique. A complete
description can be found in [178|. Furthermore, I demonstrate how it can be straightfor-

wardly applied to the non-equilibrium situation required by pump-probe experiments.

In photoemission processes a light source focused on a sample transfers energy to the
system. Depending on the light intensity electrons can absorb one or more photons and
escape from the sample due to the photoelectric effect. In experiments, electrons are
detected and their momentum is measured. By repeating measurements on similarly
prepared samples it is possible to estimate the probability to measure an electron with

a given momentum. From a computational point of view, the description of such pro-

TThe theory presented in this chapter forms part of [3]-
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cesses for complex systems is a challenging problem. The main difficulty arises from the

necessity of describing properly electrons in the continuum.

In typical experimental setups, detectors are situated far away from the sample and elec-
trons overcoming the ionization barrier travel a long way before being detected. The
distances, that electrons travel are usually orders of magnitude larger than the typical
interaction length scales in the sample. During their journey towards the detector, and
far away from the parent system, they practically evolve as free particles driven by an
external field. The solution of the Schrodinger equation for free electrons in a time depen-
dent external field is known analytically in terms of plane waves known as Volkov states.
It therefore seems a waste of resources to solve the Schrédinger equation numerically in

the whole space if a considerable part of the wave function can be described analytically.

In order to take advantage of the previous observations we partition the space according
to the scheme shown in Figure 2.2 (b). The space is divided into two regions, A and B; the
inner region A, containing the system with enough empty space around, is where electrons
are allowed to interact with each other and with the system, and region B, defined as the
complement of A, is where electrons are non-interacting and freely propagating. Every
KS orbital ¢;(r) can be decomposed according to ¢;(r) = ¢ (r) + p2(r), so that ¢ (r)

resides mainly in region A and gof; (r) mainly in region B.

The geometrical partition is implemented by a smooth mask function M (r) defined to

be one deep in the interior of A and zero outside (see Figure 2.2 (a)):

pil(r) = M(r)pi(r), (2.113)
pP(r) = (1—M(x)pi(r). (2.114)
The mask function takes care of the boundary conditions in A by forcing every function

to be zero at the border. In order to give a good description of functions extending

over the whole space it is convenient to represent the orbitals go? (r) in momentum space

@ (p).

A mixed real and momentum-space time evolution scheme can then be easily derived

following the geometrical splitting. Given a set of orbitals at time ¢ their value at a
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(a) ! M(r)

e - -

B

¢B(P)

Figure 2.2.: Schematic description of the space partition implemented by the mask
method. A mask function (a) is used to implement the spatial partitions
(b). In region A (interaction region) the TDKS equations are numerically
solved in real space while in B (free propagation region) electrons are evolved
analytically as free particles in momentum space. Region C is where ¢4 and
p overlap. This figure was published as Fig. 1 in our publication [3]. Copy-
right © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

successive time ¢t + At is provided by

<p§4(r,t + At) = M(r)e’iﬁmgof‘(r,t)

(p—é(t»? Al B

- , » (2.115)
o (Pt +At) =e™* 07 (pt) + & (Pt + At)

with H being the effective single-particle TDDFT Hamiltonian, A(t) the total external

time dependent vector potential (the coupling with the external field is conveniently
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expressed in the velocity gauge), and
1 A .
G+ A0 = o [ M) b wnerr. g

constituting the portion of electrons leaving the system at time ¢ + At. At each iteration
in the evolution the outgoing components of gof‘(r) are suppressed in the interaction
region by the multiplication with M (r) while being collected as plane waves in 3P (p)
via cﬁf(p). The resulting momentum space wavefunctions are then evolved analytically

simply by a phase multiplication.

The advantage of using such an approach resides in the fact that we can conveniently
store the wavefunctions on a spatial grid inside A while treating wavefunctions in B (and
therefore the tails extending to infinity) as free-electrons in momentum space. Moreover
the mask function introduces a region C, where the wavefunctions in A and B overlap (see
Figure 2.2) and that acts as matching layer. In spite of the fact that, from a theoretical
point of view, the matching between inner and outer region could be performed on a
single surface, from a numerical point of view, having a whole region to perform the

matching is more stable and less influenced by different choices of spatial grids.

From the momentum components of the orbitals in B it is possible to evaluate the
momentum-resolved photoelectron probability distribution as a sum over the occupied

orbitals
occ

P(p) =~ lim > a7 (pt)[*, (2.117)
=1

t—o00

the limit ¢ — oo ensuring that all the ionized components are collected. This scheme is
entirely non-perturbative; in a pump-probe setup, it does not assume linearity in either
pump or probe. Therefore, it can be applied in the same manner when two pulses are
present than with one pulse only, as it was shown in [178]. Like in the case of linear
response, where we generalize the usual linear response theory to describe transient ab-
sorption spectroscopy (Section 2.2), we can generalize the previous derivation to address
transient photoelectron spectroscopy (spin-, angle- and energy-resolved) in practice by
employing a pump-probe scheme and performing numerical simulations with two time
delayed external pulses. A TRPES map is then generated by performing a computation

for each different time delay.

From P(p) several relevant quantities can be calculated. The energy-resolved photo-
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electron probability P(FE), usually referred to as photoelectron spectrum (PES), can be
obtained by integrating P(p) over solid angles

P(E =p?/2) = / dQ, P(p). (2.118)
4

The angular- and energy-resolved photoelectron probability P(6,4,FE), or photoelectron

angular distribution (PAD), can easily be evaluated by expressing P(p) in polar coordi-

nates with respect to a given azimuth axis.

It is noteworthy that during the evolution defined in (2.115) the part of the density
contained in A transferred to B is not allowed to return. Clearly, in cases where the
external field is strong enough to produce electron orbits crossing the boundary of A and
backscattering to the core the mask method provides a poor approximation. In these
cases a bigger region A or a more refined scheme must be employed [178]. The laser fields
employed in this work are weak enough that we can safely assume region A to always be

sufficiently large to contain all the relevant electron trajectories.

2.5. Few-Electron Systems and Model-Hamiltonians

In the last Section 2.4, I have talked about how to use Time-Dependent Density Func-
tional Theory (TDDFT) for calculating electronic spectra. But whilst for practical pur-
poses methods like (TD)DFT have to be used, it is instructive to test theories for smaller
systems, which can be solved either analytically or numerically exactly. In this thesis,
we look at excited state spectra of several model systems (in one or three dimensions)
and also use model systems to test our control algorithm. Therefore, in the following, I

firstly present the general form of the model Hamiltonians used throughout the thesis.

For the analysis of excited state spectra in the exact case, the concept of Rabi-oscillations
assuming a two-level system is used throughout this thesis. Therefore, after having pre-
sented the model Hamiltonians, I give a short introduction into the text-book derivation
of Rabi oscillations. This concept is then extended to certain cases of three-level systems,
which will later on be used to obtain a control laser to control the excitation of electrons

from the ground state into a linear combination of excited states in Hydrogen.
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2.5.1. Model Hamiltonians

The 1D model Hamiltonian of an atom exposed to a time-dependent external potential
is given by
H(t) = T + Veur (1) + Ve (2.119)

in which the external potential is given by

N
Vear(t) = =) __c . E(t); (2.120)

i=1 \/ A% + 2?2

where C' is the charge of the nucleus and N the number of electrons in the system. The
Coulomb interaction 1/|z| is softened to 1/v/A% + x2 with the softening parameter A,
which is set to one throughout this thesis. The softening is introduced in order to avoid
unphysical results due to the Coulomb potential being too singular in 1D. One of these

artefacts is e.g. the infinite ground state energy of the 1D Hydrogen atom [209].

In time-dependent problems, the coupling with the external time-dependent field £(¢) is
expressed in length gauge, and electrons are confined to move along the x direction only.

Finally,
N

r- -y 1o (2.121)
- 4= 2027 )
=1 g
is the kinetic energy, and the electron-electron interaction is given by

1 1
Vee=) 5 . (2.122)
; 2 /A2 + (2 — )

This model is numerically solvable given the exact mapping discussed in Refs. [183, 210],
where it is proved that the many-body problem of N electrons in one dimension is

equivalent to that of one electron in N dimensions.

In the TDDFT treatment, the external potential is one-dimensional

V. ¢

and the electron-electron interaction is described through the chosen energy functional.

+ &)z (2.123)
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2.5.2. Rabi-Oscillations

First, the general concept of Rabi oscillations in two-level systems is presented. After-
wards, the general concept is extended to the treatment of three-level systems, where the

transition between two of the levels is dipole-forbidden.

2.5.2.1. Rabi-Oscillations in Two-Level Systems

A Rabi oscillation is a fluctuation behavior of states occupation occuring due to the
interaction of an oscillatory optical field in resonance with a two-level system. The
derivation of the Rabi oscillation formalism can be found in standard textbooks (e.g.
[211, 212]). In the following I give a brief summary of the standard derivation of this

formalism and then show, how we extend it to a three-level Hamiltonian.

The standard derivation of the Rabi oscillation formalism assumes a two-level Hamilto-
nian, whose eigenstates |®,) and |®,) with the eigenenergies €, and ¢, are coupled by
the dipole transition element y = pgp = tpe. The most general wave function in this
system may be written as |U(¢)) = a(t)e *at|®,) + b(t)e *»!|®;) with the constraint
la(t)|? + |b(t)|> = 1. One applies a single-frequency optical field € cos(wt) and observes

the expansion coefficients a(t) and b(t):

a(t) = 2“761 (eitomm)t o eilorannt) p(r) (2.124a)
b(t) = 2“761 (e_i(‘“_wb“)t + e*i(w+wba)t) a(t), (2.124b)

where wp, = € — €4. To continue, one assumes the laser frequency w to be close to
the transition energy wpy,, i.e. the detuning A = w — wp, to be small in comparison to
the transition energy: A < wp,. One then invokes the rotating wave approximation
(RWA), which states, that if exp(—i(w —wpq)) is slowly varying while exp(—i(w +wpq)) is
rapidly oscillating, exp(—i(w-+wyp,)) integrates to approximately zero and can be ignored.
Choosing the initial conditions |a(0)|> = 1 and [b(0)|?> = 0, one finds for the expansion

coeflicients
+iIAL A .
a(t) = e’z Cos(Qt/Q)—zﬁsm(Qt/Q) (2.125)

b(t) = e 24 (’5) (isin(Q/2)) (2.126)
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with the Rabi frequency

Q= \/A2 + (ue)? = VAZ+ Q2 (2.127)
which for the resonant case A = 0 reduces to

a(t) = cos(Qt/2) (2.128)
b(t) = isin(Qt/2). (2.129)

In the resonant case, one can additionally show, that if the envelope function of the laser

is time-dependent, i.e. € = £(t), the expansion coefficients are of the form

a(t) = cos </0 Q(t;)dt,> (2.130)

b(t) = 1isin (/0 Q(t;)dt,), (2.131)

which indicates, that for the resonant case the population transfer depends only on the
integral fg Q(t')dt" and not on the specific form of Q(t). This is called the pulse area

theorem.

Note the differences between resonant and detuned Rabi oscillations. In the resonant case
A = 0, the Rabi frequency is € and the population is completely transfered from state
®, to @ and back. In the detuned case, the Rabi frequency is modified by the detuning
to V2 + AZ and the population is not completely transfered to ®;,. The maximum
population transfered to ®;, reduces to ©/v/Q2 + A2.

2.5.2.2. Rabi-like Oscillations in Three-Level Systems

Here, we extend the previous text book discussion to a three-level Hamiltonian with
eigenstates |®,), |®p) and |®.) and the corresponding eigenenergies e,, €, and .. We
define the transition energies wyp = € — €4, Whe = €c — €p and wye = €. — €4. The most

general wave function of this system can be written as

[T ()) = a(t)e et Dy) + b(t)e 0 |By) + c(t)e | B,), (2.132)
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with the constraint |a(t)|® + |b(t)|? + |e(t)|? = 1. If this system is coupled via its dipole

moments to an optical field
&(t) = e1 cos(wit + 1) + €2 cos(wat + p2), (2.133)

the time-dependent Schrodinger equation in matrix form is

J a(t)e~iat Eq —lap® () —pacd (t)
i | b®eT = = = (8) € —ppe6 (1) | - (2.134)
c(t)eieet —ea (1) —pepd () Ec

We take piap = pipg and pae = fieq and assume, that the transition between |®3) and |®.)
is dipole forbidden, i.e. pup. = pepy = 0. This leads to the following set of differential

equations for the expansion coefficients:

a(t) = i% <51 <6i(w1—wba)t+i¢1 + e_i(w1+wba)t_i%01) + &9 <6i(w2—wba)t+i<ﬂ2 + e~ iwatwpa)t— wz ) bt

o jHac . (ei(wﬁwm)wwl n e*i(w1+wca)t*i@1) tes (ei(m—wca)tﬂ'@z | emilwatwea)t— wz)
2
b(t) . Z-:U'ab £1 (ei(w1+wba)t+icp1 +e—i(w1—wba)t—ig01) + &9 (ei(w2+wba)t+icp2 +e —i(wa—wpg ) t— zgog
2

C(t) _ ,Luuac (51 <ei(w1+wca)t+ig01 + e—i(wl—wca)t—i<p1> + ey (6i(w2+wca)t+i<p2 +e —i(w2—weq )t— chg

If each laser is in resonance with one of the transitions, i.e. w1 = wpg and wo = Weq, We
can apply the rotating wave approximation to the terms combining wy with wp, and the
ones combining we with w., analogue to the two-level case. This casts the differential

equations into the shape:

alt) = z% (slei‘pl + &9 (e—"(m—“’?)”i¢2 + e—"(wﬁw)t—m)) b(t) (2.136a)
. Hac (w1 —wa)t+ip1 —i(witwe)t—ip1 P2
+ 5 (etle +e + ege c(t),
b(t) _ Hab —iepy (w1 +wz)t+ip2 i(w1—wa)t—ipa
= i |eae +eale +e a(t), (2.136b)
e(t) = jHac (51 (ei(“1+“’2)t+w1 + e_i(‘”l_m)t_wl) + 6Qe_i“"2) a(t). (2.136¢)
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To continue, we apply the rotating wave approximation a second time. This time, we

assume, that the laser frequencies are sufficiently well separated in energy:

lwi +wa] > 0 (2.137a)
lwi —we| > 0. (2.137b)

With this approximation, Egs. (2.136) become

a(t) = z‘%qewlb(t)+¢%52ew2c(t) (2.138a)
bt) = i%ale*ma(t) (2.138D)
ot) = z'%@e*w?a(t). (2.138¢)

Choosing the initial conditions a(0) = 1, b(0) = ¢(0) = 0, Egs. (2.138) yield the solution

a(t) = cos(Q/2t) (2.139a)
= Habel e~ U1 gin (§ .
= V (1abe1)? + (Hace2)? ’ (621 (24390)
c(t) = Hac2 e~ #2=7) gin (Q/2t) (2.139c¢)

\/(Uab51)2 + (Hace2)?

with the Rabi-frequency

Q= \/(Uabgl)2 + (Ma052)2' (2'140)

There are three main conclusions from this solution.

I The Rabi-frequency of the three-level Hamiltonian is the Pythagorean mean of the
Rabi-frequencies of the single transitions: = ,/sz + Q2. Consequently, it is

larger than each of the single frequencies.

II The maximum populations of the excited states depend only on the ratio of the

9 52
Rabi-frequencies belonging to the respective transitions Iggg}Q = ggb.

ac

III The relative phases of the expansion coefficients depend on the phases of the applied

lasers.

Finally, one finds, that also in the three-level case, the pulse area theorem holds true.
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2.6. Quantum Optimal Control Theory

In this thesis we are not only interested in the analysis, but also in the control of spec-
troscopic properties. To achieve this goal, we employ Quantum Optimal Control Theory
(Quantum-OCT).

The measurement and control of ultrafast processes are inherently intertwined. In fact,
quantum optimal control theory [108, 109] (Quantum-OCT) can be viewed as the inverse
of theoretical spectroscopy: rather than attempting to predict the reaction of a quantum
system to a perturbation, it attempts to find the perturbation that induces a given
reaction in a given quantum system. It is the quantum version, first developed in the
80s [110, 111, 112], of a more general mathematical framework, control theory [113, 114],
which is commonly applied in engineering, for example to design trajectories for satellites
and space probes [109]. This quantum version of control was needed given the fast
advances in experimental quantum control — or coherent control of quantum systems, as

it is sometimes called.

The experimental control of quantum systems was born in the field of photo-chemistry:
the goal was to achieve the selective destruction or creation of bonds by means of suit-
ably tailored laser fields. It was therefore a consequence of the raise of the field of
femtochemistry. Numerous techniques were invented in a short period of time, such as
the control of quantum interference proposed by Brumer and Shapiro (also called coher-
ent control scheme) [115, 116, 117], the “pump-dump” control proposed by Tannor and
Rice [118, 119| (where the probe pulse not only probes, but in fact partially “dumps”
the excited state wave-packet on the ground state), stimulated Raman adiabatic pas-

sage [120], wave-packet interferometry [121], etc.

However, the most successful technique - since it can be considered in fact a generalization
of all the previous ones — has been found to be the adaptive feedback control (AFC) first
proposed by Judson and Rabitz [122] and first realized in 1997 [123|. Using AFC, ground-
breaking results were achieved in the control of chemical reactions [124], and in many
related experiments such as the control of the efficiency of photosynthesis processes [125].
Even the photo-isomerization of the retinal molecule in rhodopsin proteins (a process that

is crucial e.g. for vision in higher organisms) was optimized [126].

All these advances in experimental quantum control require a theoretical counterpart,

provided by Quantum-OCT. Quantum-OCT is concerned with studying the optimal
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Hamiltonian (in practice, a portion of the Hamiltonian, such as the temporal profile
of the coupling of an atom or molecule to a laser pulse) that induces a target system
behaviour: it attempts to answer questions such as what is that optimal shape, is there
only one or are there various solutions, what is the most efficient computational algorithm

in order to obtain the solution, what is the stability of the solution, etc.

2.6.1. General Aspects of Quantum Optimal Control Theory

Let us consider a quantum mechanical system governed by Schrédinger’s equation during
the time interval [0,T]:

iaa\f(a?,t) = Hut]V(zt), (2.141a)
U(z,0) = Wo(z), (2.141D)

where x is the full set of quantum coordinates, and u is the control, an external potential
applied to the system. Typically, one distinguishes between two types of representations
for u: it can either be a real valued continuous function defined in time or a set of
parameters that determine the precise shape of the control function. Throughout this
thesis, the latter option is used exclusively. The specification of w, together with an
initial value condition, ¥(0) = ¥y determines the full evolution of the system, ¥[u], via

the propagation of Schrodinger’s equation.

The behaviour of the system must then be measured by defining a “target functional” F',
whose value is high if the system evolves according to our goal, and small otherwise. In
many cases, it is split into two parts, F[¥,u] = J1[¥] + J2[u], so that J; only depends on
the state of the system, and Js, called the “penalty”, depends explicitly on the control u.

Regarding Ji, it may have two functional forms:

e It may depend on the full evolution of the system during the time interval [0,T].

We may write this as J;[¥] = JI[O’T} [W], where the Jl[O’T] [¥] functional admits
[0,7]
continuous functional derivatives, in particular ———— is continuous at t = T'.
SU*(x,t)

e J; may only depend on the state of the system at the end of the propagation:
J[P] = JT[9(T)].
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Of course, Ji can be a combination of the two options, i.e.:
_ q[0.7] T
Ji[¥] = J7 ]+ Jy ()] (2.142)
Often, the functionals are defined through the expectation value of an observable O, ie.

JE[(T)] = (¥(T)|O¥(T)) . (2.143)

The mathematical problem is then reduced to the problem of maximizing a real-valued
function G:
Glu| = F[V[u],u]. (2.144)

Therefore, one needs an optimization algorithm to find the maximum (or maxima) of G.
Two broad families can be distinguished: gradient-free procedures, that only require some
means to compute the value of G given a control input u, and gradient-based procedures,
that also require the computation of the gradient of G with respect to u. For our work,
we have mostly used gradient-free algorithms (all the examples shown in this thesis are
based on them); however we have also tried the gradient-based ones. For completeness,

I display here the equation for the gradient that Quantum-OCT provides. It is
T A
V.Glu] = V“F[\Ij’“]‘\y:xy[u] + 2%/ dt (x[u](t)|V o H [u,t]|V[u](t)) (2.145a)
0

if the control is parametrized and

6G  O6F[¥,u]
Su(t)  Su(t)

+ 23 (x[u] ()| D] [u](t)) (2.145D)

U=V y]

if the control is given as a continuous function of time. Here, D is the coupling of u(t) to
the system, i.e. the time-dependent Hamiltonian is H[u,t] = Ho + u(t)D. For a detailed
derivation of Eqgs. (2.145) I refer the reader to Refs. [111, 213, 214, 215]. Note that a new

“wave function”, x[u], has been introduced; it is given by the solution of:

5JT
x[u(z,T) = SO ] (2T) (2.146b)
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This is similar to the original Schrodinger’s equation (2.141), except: (i) It may be
inhomogeneous, if Jl[O’T] is not zero (i.e. if the target is time-dependent) and (ii) The
initial condition is given at the final time ¢ = T, which implies it must be propagated
backwards. The computation of the gradient or functional derivative of G, therefore,
requires W[u] and x[u|, which are obtained by first propagating Eq. (2.141a) forwards,
and then Eq. (2.146a) backwards. The maxima of G are found at the critical points
V.Glu] = 0.

Note, that these are the Quantum-OCT equations based on the linear Schrédinger equa-
tion. If one uses gradient-based Quantum-OCT in combination with the non-linear KS
equations, the Quantum-OCT equations have to be adapted accordingly. However, since

in this thesis only gradient free algorithms are used, I refer the reader to [153] for the
derivation and the full description of the correct TDDFT-Quantum-OCT equations.

Depending on the representation of the control, different optimization strategies are
used. For gradient-based optimization strategies, where the control is parametrized, one
can e.g. use conjugate gradient algorithms like the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) variant [216]. If the control is represented directly in real time, a number of
algorithms have been developed directly in the field of Quantum-OCT. These algorithms
—if applicable— can provide very fast convergence. Examples are the Krotov method
[217] and the monotonically convergent techniques proposed by Zhu and collaborators
[218, 219].

If the gradient of the control is not available, one uses gradient-free optimization strate-
gies. This is the case in this thesis. In these cases, one can use “evolutionary” or “ge-
netic” algorithms, which are specifically designed for large, typically discrete search spaces
[220, 221]. For moderate search spaces, classic choices are the simplex-downhill algorithm
by Nelder and Mead [222] or the newer NEWUOA algorithm by Powell [223]. The op-
timization strategy used for the optimization of spectra in this thesis is based on the

simplex-downhill algorithm. For a more detailed description of it, see appendix A.

Finally, if the problem is small and analytically solvable, one can even perform “Quantum-
OCT by hand” and can write down the optimal pulse analytically (possibly after having
made a few approximations). This is the case in the part about optimal control of
Hydrogen. In Section 4.2.1 we write down the analytical shape of the control field based

on the derivation of the Rabi-like oscillations in three-level systems in Section 2.5.2.2.

A Quantum-OCT formulation is constructed on top of a given model for the system
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process under study. In this thesis we study and optimize the absorption spectra of
atoms and molecules using either analytically solvable model Hamiltonians or obtaining
the spectra by solving the time-dependent Kohn-Sham equations (TDKS). In either case,
we are interested in controlling the spectra with the help of laser pulses, i.e. the control
function u(t) is a laser field &(¢) (in our case in dipole-representation), that couples to
the system via the dipole-operator. In our optimization algorithm, the control function
is implemented in a parametrized representation. It is a natural choice to expand the
control field in a basis set and to establish the coefficients of this expansion as control
parameters:

Et) = cagn(t) (2.147)

i=1

where N is the dimension of the optimization (“search”) space and g, (t) are orthonormal

over the optimization period

/ "t nOgm(t) = S (2.148)

Typical choices for the basis sets are the sine basis

2
gn(t) =/ 7 sin <;nt> n=1,...,N (2.149a)

or the normal Fourier basis

%Sin(%”nt) nzl,...,%,
gn(t) = (2.149Db)
ﬂcos(%ﬁ(n—%f)t) nz(%—kl),...,N.

Both have the advantage, that spectral constraints can be automatically enforced: the
maximum frequency is given by N and if we do not include the zero-frequency mode,
both sets fulfill the condition fOT dt &(t) = 0, which follows from Maxwell’s equations for
a freely propagating pulse in the electric dipole approximation [224]|. In this thesis, a

sine basis is used for all optimizations.
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2.6.2. Derivation of the Quantum-OCT Equations for the Optimization of
Response Functions

We now apply the general theory presented above, to derive the equations for the com-
putation of the gradient of a target functional designed to optimize the response of a
system. The gedanken setup is the following: for a certain time interval [0,7] a quantum
system is driven by a pump pulse & whose precise shape can be manipulated; we wish
to design such shape in order to make the (linear) response of the system to some later

perturbation optimal in some given way.
This setup is consistent with the non-overlapping regime described above; the Hamilto-
nian that governs the system, once that the pump has passed (¢t > T') has the form:

H(t) =2+ Ft)V. (2.150)

If, at time ¢t = T', the system has been driven into the state |¥(7")), the response function

for a perturbation at later times is given by:
X, (b)) = =i0(t — ) (W(T)| [01(0). V1 (#)] [9(T)). (2.151)

The first-order response of the system would then be given by:

O1[&,F)(t) = /Ttdt’F(t’)XaV(t,t’) : (2.152)

In order to simplify the discussion, let us consider a particular form for the perturbation:
a sudden one at the end of the pump F(t') = 6(t — T'). Therefore:

O1[&,0r] (t) = xp v (tT). (2.153)

We may now define a target: for example, we may be interested in enhancing the reaction
of the system at a given frequency, i.e. Oy [£, 7] (w) = [, dt/ e O (t'). By making use
of the previous equations, it can be easily seen that the problem fits into the framework
discussed in the previous section, i.e. the target functional is given by the expectation

value of some operator:

JEW(T)] = (9(T)| —i / dt’ e~ [e“t’*T>f7fo“e*i<t’*T>=f“’f’,V |O(T))  (2.154)
T
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The equations for the gradient are therefore Eqgs. (2.145); that must be completed with the
equations of motion for the co-state, Eq. (2.146a), and, in particular, with its boundary
condition at time ¢ = T, which is the only one that in fact depends on the definition of

the target operator:

(1)) = —i / Tdy et [e“t'—TW Oeilt =) ,V] U(T)) . (2.155)
T
Similar formulas can be obtained for more general definitions of the target functional in
terms of the response O1(w), and for more general probe functions. In all cases the com-
putational difficulties associated to the computation of this boundary condition are also
similar, and are considerable. By inspecting the previous formula, it can be learnt that
various time-propagations of the wave functions, forward and backwards, are required.
These difficulties are even larger if the scheme is formulated within TDDFT — in the pre-
vious derivation we have used the exact many-electron wave functions. In consequence,
we decided to employ, for this type of optimization, gradient-free algorithms, such as the

one that we describe in next section.

2.6.3. Derivation of a Gradient-Free Algorithm for Quantum Optimal
Control Theory

In this thesis the goal is to maximize the absorption of light in a certain energy range by
means of exciting a system with a laser. This idea falls into the optimization category
that we have just described. Here, we describe, a general gradient-free procedure to

optimize spectra — in particular, the maximization of absorption.

First, we define the target functional F[¥[u], u]. For a general optimization of a spectrum,
F' is an arbitrary functional of the average absorption coefficient o(w,T" + 7) (2.54) and

of the control laser &(t) and so is the real-valued function G-
G(&) = F[o[&],6]. (2.156)

F, respectively G have to be chosen in a such a way, that their value will be maximal for
the desired type of spectrum. In order to maximize the absorption of light, we employ
two different definitions of G(&): (A) We compute the integral over the spectrum in a

certain energy interval [Epin, Emae] after the excitation of the system with the control
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laser field & and (B) like before but we add a penalty for ionization:

Emaz

GA (&) = /E (&) (F)dE, (2.157a)
Emaac p—

GB (&) = /E 7[6)(E) exp <—VW> dE . (2.157b)

where Ny and Np are the number of electrons in the system at the beginning and the

end of the control pulse and « is the penalty for ionization.

Laser pulse

i H |
-

TDDFT RUNs
Change
% pulse
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v

Target
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Ty

Figure 2.3.: Gradient-free optimization procedure to optimize the response-function of an
excited-state system using the real-time, real-space TDDFT code octopus.

Next, one chooses a representation of the control field: pump duration, carrier frequen-
cies, polarizations, envelope function and — since we describe pump-probe experiments
— the delay 7 between the end of the pump and the probe pulse (which can be posi-
tive or negative). One then decides, which of these parameters should be optimized and

which ones should be kept fixed. The control pulse is then defined as a function of the
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optimization parameters

5:@(0(61,02,...,61\7) (2.158)

in an N-dimensional parameter space and the initial parameters are chosen.

For this kind of optimizations we work with gradient-free algorithms like the Downhill-
Simplex algorithm, described in appendix A. Having defined the control parameter and

the laser parametrization, we can start the optimization circle.

Each optimization step consists of two steps. In the first step, the pump pulse is generated
and the system is evolved under its influence until the probe time Tp 4+ 7. The evolution
is stopped. In the second step, the absorption is calculated by probing the system with
a delta perturbation. To this end, (n+1) copies of the propagation are created (n being
the dimensionality of the system). In each dimension, a kick is applied (see Section 2.4.5
for how to obtain an excited-state spectrum from a time-dependent calculation) and
the system evolved for the “spectrum time” Ts afterwards. From these (n+1) time-
propagations, the excited-state spectrum &(w,7) is calculated and the control function
G(&) is evaluated. G(&) is then fed back into the optimization algorithm, which creates
a new set of parameters to form a new control pulse. The general procedure is illustrated
in Fig. 2.3.

Note, that in order to obtain the average absorption coefficient, the full-frequency depen-
dent polarizability tensor has to be known. Therefore, (n-+1) time-propagations have to
be performed for the “spectrum time” Ty - one for each kick-direction and the (n+1)-th
for the reference calculation. This makes this scheme computationally rather expensive.
Whilst these calculations are feasible for small systems, a future development of faster

computers and better parallelization techniques will be needed to tackle larger problems.

Appendix B contains further information about the more technical details of the opti-

mization.

2.7. The Colour Perception of the Human Eye

In this thesis, we analyze optical spectra in the context of their perception by us - human
beings. We argue, that by controlling the spectrum of a system, one can control its
colour. In this context, one has to understand, how the light, that is perceived by the

human retina is translated into human colour perception. This question is addressed in
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the following.

In 1802 Thomas Young proposed the existence of three different types of photoreceptors
in the eye [225]. The perception of light from these three receptors should enable the
human being to see all the different colours, that it is able to see. His theory was
further developed by Hermann von Helmholtz and became known as Young-Helmholtz
trichromatic theory. The existence of three different kinds of cones was proven in the
20th century by Gunnar Svaetichin [226] and their existence in the human eye finally
proven in 1983.

According to the Young-Helmholtz trichromatic theory, any colour perceived by the hu-
man eye can be described by only three parameters, the tristimulus values. Each
tristimulus value describes the perception of one of a set of three colour-matching func-
tions (which span the complete colour space). A set of three linearly independent colour-

matching functions is called observer.

The first two observers and therefore the first quantitative link between physical light and
the physiological experience of light was defined in 1931 by the International Commission
on Illumination (CIE). The spanned colour spaces carry the names CIE 1931 RGB colour
space and CIE 1931 XYZ colour space. The observer belonging to the CIE 1931 XYZ
colour space is called CIE standard observer and describes the colour perception of
an average human eye when illuminated from an angle smaller than 2 degrees. A newer

version, the CIE 1964 colour space deals with illumination from angles above 4 degrees.

The CIE’s colour matching functions Z(XA), g(A) and zZ(A), which form the standard
observer are shown in the left part of Figure 2.4. The tristimulus values for a colour with

a spectral power distribution I(\) are obtained from the standard observer according to

780nm

X = /380 I)E), (2.159a)
7887Tm

Y = /380 INF(N), (2.159b)
787(;:le

7 = / I(N)Z(N). (2.159¢)
380nm

A full diagram containing all visible colours is a three-dimensional object. Nevertheless,

in practice, colours are often displayed as objects in a two-dimensional space. This is due
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Figure 2.4.: (left) The CIE standard observer colour matching functions. (right) The CIE
1931 cromaticity diagram (taken from the Encyplopedia Britannica (http:
//global.britannica.com/science/tristimulus-system)).

to the fact, that the description of colours is usually divided into two aspects: brightness
and cromaticity. The CIE XYZ space was designed in a way, that the Y parameter is a

measure for the brightness, while the two derived quantities x and y

X

TS Xiviz (21602)
Y
_ . 2.160b
y X+Y+2 ( )
- 4 (2.160c)
T X+v+2z '

characterize the cromaticity, which is then displayed in a so-called cromaticity diagram.
The CIE 1931 cromaticity diagram is shown in the right part of Figure 2.4. The derived
colour space is called CIE xyY colour space and is widely used to specify colours in

practice.
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Pump-probe experiments are the preferred technique to study the dynamical behaviour
of atoms and molecules: the dynamics triggered by the pump pulse can be monitored
by the time-dependent reaction of the system to the probe pulse, a reaction that can
be measured in terms of, for example, the absorption of the pulse intensity, or of the

emission of electrons [227].

A wealth of possibilities exists, depending on the frequencies, durations and intensities

#The results presented in this chapter were published in [3]
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of the two pulses. A common set-up in attosecond physics employs an XUV attosec-
ond pulse and a relatively more intense, longer (few femtoseconds) NIR or visible pulse
used for its generation. Combining two XUV attosecond pulses is in principle possible
(and has been theoretically analysed [68]), but unfortunately the low outputs of cur-
rent XUV attosecond pulses lead to much too weak signals. Another choice to make is
the final observable, i.e. what kind of system reaction is to be measured as a function
of the time delay. In this work we focus on two common choices. One is time-resolved
photo-electron spectroscopy (TRPES) where one observes the emission of electrons (their
energies, angular distribution, or total yield) from the pumped system due to the probe
pulse. The other is transient absorption spectroscopy (TAS), where one observes the

optical absorption of the probe signal.

Both TAS and TRPES have recently been demonstrated in the attosecond regime [1, 85,
89, 90, 91, 92]. The goal of this work is to study TAS and TRPES at the attosecond time
scale going beyond the Single-Active Electron (SAE) approximation. Indeed, it would be
desirable to analyze these processes with a non-perturbative theory (since at least one
of the pulses is usually very intense), which at the same time is capable of going beyond
the SAE approximation and accounting for many-electron interaction effects. This last
fact is relevant since the attosecond time resolution obtained in this type of experiments
is able to unveil the fast dynamical electron-electron interaction effects. The SAE, which
essentially assumes that only one electron actively responds to the laser pulse, has been
successfully used to interpret many strong-field processes. However, its range of validity is
limited, and roughly speaking it is expected to fail whenever the energies of multielectron
excitations become comparable to the laser frequencies or the single electron excitations
[98].

Time-Dependent Density Functional Theory (TDDFT) in principle meets all require-
ments: it may be used non-perturbatively, includes the electron-electron interaction and
can handle out-of-equilibrium situations. It has been routinely used in the past decades
to study the electron dynamics in condensed matter in equilibrium. By this we mean
that, usually, one computes the linear or non-linear response properties of systems in
the ground state (or at thermal equilibrium). In pump-probe experiments, however, one
must compute the response of a system that is being driven out of equilibrium by an
initial pulse. In Section 2.2 we have demonstrated how the general linear response theory
can be extended to describe TAS and in Section 2.4 we have shown how both TAS and
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TRPES can be combined with TDDFT. The discussed theory was implemented in the
octopus code [100, 101, 102, 103] and here we present some applications.

In order to simplify the illustration of the results, the Born Oppenheimer approximation
in combination with a clamped ion approximation has been used in the calculations for
the molecular case. Further inclusion of the ionic motion could be done at the semi-
classical level with Ehrenfest dynamics [101, 228] — already implemented in the code —

and without any essential modification to the theory presented.

3.1. One-dimensional Model Helium

As first example we study the absorption spectrum of an excited one-dimensional soft-
Coulomb Helium atom. This is an exactly solvable model that provides a useful bench-
mark to test different approximations. We will first discuss the exact solution, and later

apply TDDFT. A more realistic 3D model will be presented in the next section.
The 1D model of the Helium atom is defined as given in (2.119) in Chapter 2.5 with

an atomic charge of C' = 2 and two electrons N = 2. The wave functions and other
necessary functions are represented on a real space regular grid; a squared (linear for
one-dimensional TDDFT) box of size L = 200 a.u. and spacing Az = 0.2 a.u. has been

employed in all the calculations.

In order to illustrate how an external field can modify the optical properties of a system
in Figure 3.1 we show a scan of the non-equilibrium absorption spectrum generated by
a 45 cycle sin? envelope pulse with intensity I = 5.26 x 101 W/cm? at different angular
frequencies 0.51 a.u. < wp < 0.59 a.u.. The plot displays S[a[€,7](w,wp)], choosing the
time of the kick 7 (see Section 2.4.5) right at the end of the pump pulse.

It can be seen how the absorption around the first excitation frequency 0.533 a.u. is
strongly diminished when the frequency of the pump resonates with that frequency. In
that situation, an absorption peak also appears around the excitation frequency cor-
responding to the transition from the first to the second excited state, in our case at
0.076 a.u.. This behavior is a direct consequence of the fact that the laser is pumping
the system to the first excited state and this process is more efficient for a field tuned
with the excitation energy. The absorption spectrum is therefore a mixture of the one

corresponding to the unperturbed ground state and that of the first excited state.
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Figure 3.1.: Out of equilibrium absorption spectrum as function of the pump laser fre-
quency for one-dimensional Helium. The system is driven out of equilibrium
by 45 cycle sin? envelope laser pulses of intensity I = 5.26 x 101" W /cm?, at
different carrier frequencies and then probed right after. Maximal response
is observed for frequencies close to the first optical transition wp = 0.533
a.l..

In order to analyze this point further, a cut at the resonant frequency is displayed in
the lower (blue) curves of Figure 3.2. The filled curve represents the spectrum obtained
from the system in its ground state while the solid line corresponds to the spectra of the
system excited by a laser pulse with a frequency resonant with the first optical transition
and probed after the perturbation. By direct comparison of the two spectra it is easy
to discriminate the peaks associated with the ground-state absorption from the ones
characterizing the absorption from the excited state. In particular, the peaks related
to the ground-state absorption are located at the energies wy—1 = €1 — ¢g = 0.533 a.u.
corresponding to the transition from the ground (¢y = —2.238 a.u.) to the first excited
state (e = —1.705) and wp_,3 = €3 — €9 = 0.672 a.u. corresponding to the third excited
state (e3 = —1.566 a.u.) — the direct excitation of the second excited state is forbidden by
symmetry. The solid curves show fingerprints of the population of the first excited state,

namely the peaks corresponding to transitions from that first excited state to others: in
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Figure 3.2.: Comparison of absorption spectra calculated in different approximations for
a one-dimensional Helium model. The filled curves are the spectra for the un-
perturbed systems while the solid lines are the spectra of the system excited
by a laser as in Figure 3.1 resonant with the first allowed optical transition:
exact time-dependent Schrodinger equation wp = 0.533 a.u. (in blue), EXX
wp = 0.549 a.u. (in red), and LDA wp = 0.475 a.u. (in green). The dashed
blue line is the absorption of the system perturbed by a 180 cycle laser and
probed at t = 30.62 fs, where the population on the excited state is maximal.
The lines have been shifted by a vertical constant to facilitate the comparison
between results.

particular, the peak appearing at the low energy w9 = ea —€; = 0.076 a.u. is associated

with the transition from the first excited state €; to the second one e = —1.629 a.u..

These spectra contain information that is not contained in the equilibrium ones. For
example, let us consider the spectra that would be produced by each single eigenstate,
given by the state-dependent dynamical polarizabilities, which may be written in the

sum-over-states form as:

> 2 5 2
o RALEA RIS
a(w) Z w+ (6 —€)+i0T  w— (¢ —€)+i0F
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The poles of this function provide us with the eigenvalue differences €; — ¢;; if this value
is positive, the corresponding term is associated with a photon-absorption process; if it
is negative, with a stimulated emission term. The weight associated with each one of

these poles provide us with the dipole coupling matrix elements <\Ill|ﬁ|\llj>

During the time evolution, the wavefunction can be expanded on the basis of eigenstates
of the unperturbed system W(t) = 3. v;(t)¥;. When the system is probed at a certain
time ¢, the resulting spectrum can be thought as a linear combination of the spectra
produced by each single eigenstate plus interference terms. An analysis of the transient
spectrum may therefore provide information about the mixing weights ~;, and about
excitation energies and dipole couplings between excited states — information that is

absent in equilibrium ground-state linear response.

In our case, we find by direct projection of the time-dependent wave function onto the
eigenstates, that the system after the pulse is composed mainly of the ground and the
first excited state with weights, |yo|? = [(¥o|¥(¢))|? = 0.7120 and |y1|? = [(¥1|¥(¢))]? =
0.2876. The same information can be recovered by comparing the perturbed and the
unperturbed spectrum at wg_1. At this energy we only have the contribution coming from
Wy — Wy and its inverse W1 — Wy. The peak height of the perturbed spectrum after the
laser pulse h; is therefore a combination of the heights associated with the ground hy and
the excited hy states: hy = |y0|2ho + |y1]|?h1. At this energy ho = —h; due to the nature
of the transition 1 — 0 the ratio a = hy/hg = |v0|*> — |71]*> = 0.4258 thus gives direct
information on the difference of the mixing weights. Complementing this information
with a two-level system assumption |y9|%+|71]* = 1 we obtain |y9|> = (14+«)/2 = 0.7129
and |y1|? = (1 — @)/2 = 0.2871 in good agreement with the results calculated by direct

projection of the wavefunction.

In Figure 3.3 we display the population weights for two different laser pulses. The red
lines correspond to the same laser pulse as in Figure 3.2 while the blue lines pertain
to a four times longer laser with the same parameters (intensity, envelope shape and
carrier frequency) and 180 optical cycles. For both lasers the populations of both the
ground and first excited state at each time almost sum to one, indicating an essential
two-level dynamics. In the case of the long pulse we observe a maximum (minimum) of
the population over the excited (ground) state at ¢ = 30.62 fs. This behavior can be

understood in terms of Rabi oscillations (see Section 2.5.2).

A Rabi oscillation is a fluctuation behavior of states occupation occurring due to the
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Figure 3.3.: Exact population on the ground |yo(¢)|> = |(¥o|¥(t))|? (solid lines) and first
excited |y1(¢)|? = |(¥1]¥(t))]? (dashed lines) states as a function of time
for different laser pulses. In red a 45 cycles pulse with parameters as in
Figure 3.2, and in blue a longer 180 cycles pulse with the same parameters.

interaction of an oscillatory optical field in resonance with a two-level system. The
occupation probability alternates with the Rabi frequency Q(t) = f(¢)uo—1, where po—1
is the dipole transition matrix element between the states and f(t) is the electric field
envelope. Extremal points of the populations should be located at times where the
pulse area O(t) = ffoo dr f(T)po—1 is an integer multiple of 7, O(t) = nw. With the
numerically calculated matrix element pg_1 = 1.11 a.u. the first maximal population of
the excited state is expected at ¢t = 30.65 fs, in good agreement with what is observed.
The absorption spectrum at this time, as shown in Figure 3.2 (dashed blue line), displays
a considerable enhancement at w;_2 and a negative emission peak at wp—1 as expected

from a pure excited state.

It is interesting to study the same model with TDDFT instead of with an exact treat-
ment in order to address the performance of available (mainly static) xc-functionals. In
Figure 3.2 we display results obtained with TDDFT, employing two different exchange-

correlation (xc) functional approximations: exact exchange [229] (EXX) in red, and one-
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dimensional local density approximation [230] (LDA) in green. The calculations were
performed in the adiabatic approximation using the same parameters as in the exact
case. The laser frequency was tuned to match the first optical transition appearing at:
wp = 0.549 a.u. for EXX, and wp = 0.475 a.u. for LDA.

The unperturbed spectrum (solid curve) provided by EXX is in good agreement with
the exact calculation, and the perturbed one qualitatively reproduces the exact result.
In particular the new peak appearing at low energy associated with the transition 1 — 2
is well represented. In contrast LDA is only capable of reproducing one peak both for
the perturbed and unperturbed cases. This is due to the known problem of asymptotic
exponential decay of the functional that in this one-dimensional example supports only

a single bound excited state.

A common feature of both approximations is constituted by the presence of negative
values in the perturbed spectra. This can be tracked down to the lack of memory in the
adiabatic xc-functional approximation [231]|. The lack or wrong memory dependence in
the functional results in slightly displaced absorption and emission peaks associated with
the same transition. This fact, analyzed in the light of Eq. (3.1), results, at the transition
energy, in a sum of two Lorentzian curves with different sign and slightly different centers.
This explains why we get two inverted peaks where we should have only a single one going
from positive to negative strength as we populate the excited state — as shown by the

exact (blue) curves in Figure 3.2.

3.2. Helium Atom in 3D

In this section we study the real Helium atom. We employed the EXX functional and
discretized TDDFT equations on a spherical box of radius R = 14 a.u., spacing Az = 0.4

a.u. and absorbing boundaries 2 a.u. wide.

3.2.1. Transient Absorption Spectroscopy

We begin by investigating the changes in absorption of He under the influence of an exter-
nal UV laser field driving the system with the frequency of the first dipole-allowed exci-
tation. To this end we used a 45 cycle sin? laser pulse in velocity gauge with carrier wp =
0.79 a.u. resonant with the 1s?> — 1s2p transition, of intensity I = 2.6 x 102 W /cm?
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polarized along the z-axis. In Figure 3.4 we show a comparison of the absorption spec-
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Figure 3.4.: Comparison of the absorption spectra of unperturbed (filled curve) and per-
turbed He atom probed at 7 = 5.32 fs (solid line) and after the end of the
pulse 7 = 8.68 fs (dashed line). The spectrum range is below the ionization
threshold. The atom is excited by a 45 cycle sin? envelope laser pulse po-
larized along the z-axis with carrier wp = 0.79 a.u. resonant with the first
optical transition, intensity I = 2.6 x 102 W /cm?.

trum for the unperturbed atom (filled curve) and the perturbed one probed with a delta
perturbation (i) during the excitation at 7 = 5.32 fs (solid line) and (ii) right after the
pump pulse at 7 = 8.68 fs (dashed line). The comparison presents many traits similar to
the ones discussed in Section 3.1 for the one-dimensional Helium model. In particular,
fingerprints of the population of the first excited state can be observed in the appearance
of a peak in the gap at wop 35 = 0.10 a.u. associated with the transition 1s2p — 1s3s.
The second peak, associated with the transition 1s?> — 1s2p, presents height changes
correlated with the former one. We also obtain the small artifacts, such as the energy
shifts and the negative values attributed to the xc-kernel memory dependence discussed
previously which hinder a population analysis similar to what performed for exact 1D

He model. Additional details on the excitation process can be acquired by expanding
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Figure 3.5.: Helium transient absorption spectrum scan for different time delays 7. The
pump laser pictured in the upper panel is the same as in Figure 3.4.

the time dimension of the absorption spectrum. In Figure 3.5 the time resolved absorp-
tion spectrum (TAS) map is displayed. The map was produced by probing the system
at different time delays. As the delay is increased we observe the build-up of the peak
associated with the state being pumped by the laser pulse at wop3,. This changes are
reflected in the oscillations of the ground state first optical peak at wis—2p. In TDDFT
the knowledge of the wavefunction is lost in favor of the density, which does not allow
us to do a population analysis based on simple wave function projection. For this reason
a population analysis, that would require a projection of wavefunctions is not a simple
task. The transient absorption spectrum, on the other hand, is an explicit density func-
tional, and its computation with TDDFT may help us to understand the evolution of the
state populations. The peak appearing in the gap presents a maximum at 7 = 5.39 fs
that emerges before the end of the pump pulse (7 = 8.68 fs). This peak is associated
only with the transition from the 1s2p — 1s3s and therefore its height is proportional
to the 2p excited state population. The oscillation can then be interpreted in terms of

Rabi physics as discussed in Section 3.1.
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3.2.2. Time-Resolved Photo-Electron Spectroscopy
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Figure 3.6.: Helium transient photoelectron spectrum in logarithmic scale. The pump
laser (upper panel) is the same as in Figure 3.4 and the probe is a 40 cycles
trapezoidal laser pulse with 8 cycles ramp, w, = 1.8 au., I = 5.4 x 10°
W /cm? aligned with the pump pulse.

Further insight can be achieved investigating the photoemission properties of the system.
In Figure 3.6 we show the TRPES map, as calculated in a pump-probe set up. Photo-
electrons are calculated with the technique outlined in Section 2.4.6. The pump pulse is
the same as the one employed for TAS. The probe is a 40 cycles trapezoidal laser pulse
(8 cycles ramp) with carrier frequency w, = 1.8 a.u., intensity I = 5.4 x 102 W/em?, po-
larized along the z-axis and is weak enough to discard non-linear effects. We performed
a scan for different time delays, measuring each delay as the difference from the probe
center to the beginning of the pump. Negative delays correspond to the situation where
the probe precedes the pump. Moreover, in order to include all the relevant trajectories
a spherical box of R = 30 a.u. was employed, and photoelectrons were recorded only

during the up-time of the probe pulse.
The TRPES map in Figure 3.6 shows three main features at Fy = 0.66 a.u., Fy =

0.88 a.u. and E3 = 1.67 a.u.. In our case the probe pulse is weak, and photoelectrons
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escaping the system undergo photoelectric-effect energy conservation. A bound electron
can absorb a single photon and escape from the atom with a maximum kinetic energy
E = w, — Ip, where w), is the probe carrier frequency and Ip is the field-free ionization
energy. The ionization potential can be evaluated in DFT as the negative energy of
the highest occupied KS orbital (HOMO) Ip = €35 = 0.92 a.u. [232]. Thus the peak
appearing at Fs is energetically compatible with photoelectrons emitted from the 2s
level: Fo = w, — Ip. Consistently, this peak is the only one appearing at negative delays
where the pulses do not overlap. Moreover, the peak strength is weakly varying with the
delay while slightly shifting towards lower values around 3 fs in accordance with TAS
findings. At about the same delay time the peak at E3 begins to emerge. This peak
corresponds to emission from the pump-excited 2p state B3 = wp +w, — Ip. It is a
process where the atom, initially in the ground state, absorbs a photon from the pump
and gets excited to the 2p bound state. The subsequent absorption of a probe photon
frees the electron into the continuum. The peak at E7 is understood in terms of pump
photons only: E3 = 2wp — Ip. The ionization mechanism shares the first step with the
FE3 process, namely a 2s — 2p excitation produced by the absorption of a wp photon. In
the second step the electron is directly excited to a continuum state by the absorption of
a second wp photon. In the linear regime, the direct photoionization cross-section decays
exponentially with energy [233|. For this reason and due to the disparity in intensity

between pump and probe this ionization channel is by far the most favorable one.

In direct photoemission processes, the photoelectron angular distribution (PAD) contains
information about the electronic configuration of the ionized state [234]. In order to sup-
port the energetic arguments PADS P(0,¢, E) at 7 = 8.99 fs are presented in Figure 3.7
(a), (b), (d) together with cuts on TRPES map at 7 = 0 fs and 7 = 8.99 fs (b). For each
energy marked in Figure 3.7 (c¢) we perform spherical cuts of the photoemission proba-
bility on energy shells at £ = F,, E3, E3. Each cut is then plotted in polar coordinates
with 6 being the angle from the z-axis and ¢ the angle in the xy-plane measured from
the z-axis. Intersection of the lasers polarization axis with the sphere are marked with a

white cross.

Figure 3.7 shows clearly that photoelectrons at E; (a) and E3 (d) have similar nature
compared to Fa (b), in agreement with the energy analysis. Electrons emerging with a
kinetic energy of Fo are emitted from a 2s state, and symmetry of the orbital is imprinted

in the photoelectrons angular distribution. In order to understand the PAD features it
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Figure 3.7.: Energy- and angular- resolved photoelectron spectra for Helium at fixed delay
7 = 8.99 fs. Panel (c) displays a logarithmic scale PES P(E) comparison at
fixed delays 7 = —1.69 fs (red) and 7 = 8.99 fs (green). The other panels
depict normalized PADs P(6,4, E) with polar coordinates referred to axis z
at fixed delay 7 = 8.99 fs and energy: (a) E; = 0.66 a.u., (b) Ex = 0.88 a.u.,
and (d) B3 = 1.67 a.u.. White crosses mark the intersection between the
probe polarization axis and the cutting sphere.

must be taken into account that 2s electrons are perturbed by a laser with a specific
polarization direction that breaks the rotational symmetry. The laser transfers maximal
kinetic energy along directions parallel to the polarization and minimal along the per-
pendicular plane and, if non-liner effects can be discarded, it induces a geometrical factor
of the form |A - p| where A is the polarization direction and p the electron momentum.
For this reason electrons emitted along ¢ = 90°, and 270° are strongly suppressed, and

panel (b) is compatible with the spherical symmetry of a 2s state.

In panel (a) electrons are excited to a p state and then ejected into the continuum by the
absorption of two pump photons. The PAD displays marked emission maxima for the

direction aligned with the laser polarization (indicated by white crosses). The extension
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in € is narrower compared with the 2s emission in panel (b), which is consistent with
the ionization from a p, orbital. Of the three degenerate p orbitals the p, is the one
producing the strongest response. Signatures of p, and p. response can be identified in
the non vanishing PAD on the yz-plane around ¢ = 90° and 270°. Such perpendicular
response indicates a degree of non-linearity induced by the pump. Similar considerations
hold for panel (b) where the p state excited by the pump is probed with w,. As before

the emission is mainly from a p, state.

3.3. Ethylene Molecule

In this section we extend our calculations to the treatment of the Ethylene molecule
(CoHy) and show how these techniques permit to study the time-dependence of molecu-
lar electronic states. In particular we report on the clear observation of a strong 7 — 7*
transition. In order to have a good description of states close to the ionization threshold
we employed the asymptotically correct LB94 xc-functional in the adiabatic approxima-
tion [191]. We choose the molecular plane to be in the zy-plane with carbon atoms
at coordinates (£1.26517,0,0) a.u. and hydrogens at (+2.33230,1.75518,0) a.u. and
(£2.33230, —1.75518,0) a.u.. The ion positions are held fixed during the time evolution.
Norm-conserving Trouiller-Martin pseudopotentials (see Section 2.4.1.2) are employed
to describe the core electrons of Carbon. Moreover TDDFT equations are numerically
integrated on a spherical grid with spacing Ax = 0.3 a.u., radius R = 16 a.u. and 2 a.u.

wide absorbing boundaries.

3.3.1. Transient Absorption Spectroscopy

We perturb the system with a 15 cycles (3 cycles ramp) trapezoidal laser pulse with
carrier frequency wp = 0.297 a.u. and intensity I = 1.38 x 10" W /cm? polarized in
the direction of the z-axis. The laser frequency and the polarization direction are suited
to excite mainly the molecular 1 — #* transition. The absorption spectrum of the
excited molecule probed after the pulse (see Figure 3.8) shows the emergence of a peak
associated with the population of the n* state. Optical transitions from this excited
state to high lying bound states occur at energies lower than the HOMO-LUMO gap as
illustrated by the scheme in Figure 3.8. Effects of the lack of memory in our xc-potential

can be observed in the shifts of the peaks with respect to the known excitations of the
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W~

Cross-section/a.u.
Do

Figure 3.8.: Comparison of the absorption spectra of unperturbed (filled curve) and per-
turbed (solid line) Ethylene molecule below the ionization threshold. The
molecule is excited by a 45 cycle sin? envelope laser pulse polarized along the

r-axis with carrier frequency wp = 0.297 a.u. of intensity I = 1.38 x 10!
W /cm?.

unperturbed system. The characteristic excitations of a many-body system should not

depend on the perturbation, unless we are in a strong light-matter coupling regime.

The build up of the transient spectrum as a function of time is shown in Figure 3.9. In
comparison with the case of He discussed in Section 3.2 the TAS map does not display
any maxima during the pump time lapse due to the envelope area not having crossed w

by the end of the pulse. A pulse with larger area would reveal the first Rabi oscillation.

3.3.2. Time-Resolved Photo-Electron Spectroscopy

The TRPES map is presented in Figure 3.10. Calculations were performed in a box of
radius R = 30 a.u. and the probe pulse is equal to the one used for the Helium atom
in Section 3.2, namely a 40 cycles (8 cycles ramp) trapezoidal pump at w, = 1.8 a.u.
and I = 5.4 x 10° W /cm?, but polarized along the z-axis. The choice of the polarization
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Figure 3.9.: TAS of the Ethylene molecule. The pump laser pictured in the upper panel
is the same as in Figure 3.4.

direction is important since, as we shall show, the spectra may reveal geometrical features
that depend on it.

The TRPES displays a behavior similar to the one discussed in Section 3.2. A set of
constant crests can be observed in the energy range between 0.8 a.u. and 1.5 a.u.. These
are the peaks associated with electrons residing in the ground-state and ejected by the
probe pulse. In particular the peak at Fo = 1.37 a.u. corresponds to the emission from
the 7 HOMO E; = w), — €, with ¢ = 0.43 a.u.. The 7 orbital is localized on the
Carbon atoms with two density lobes lying in the xz-plane and nodes in the xy-plane
(refer to Figure 3.11 (a) for geometrical visualization). A probe laser orientation along
y should suppress electrons on xy-plane perpendicular to its polarization and therefore
the PAD P(0,¢, E») in Figure 3.11 (c) for § = 0° is diminished also due to geometrical
reasons. The signature of a m symmetry can be clearly observed in the oscillations with ¢
presenting maxima at ¢ = 90° and 270° along the plane perpendicular to = that indicates
a concentration along the C' — C bond axis, and minima for ¢ = 0° and 360° consistent

with a depletion in the direction of each carbon atom.

Separated by a probe photon wp at E3 = w, +wp —€; = 1.67 a.u. we find photoelectrons
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Figure 3.10.: Logarithmic scale TRPES for CoH4. The molecule is probed at different
delays with a 40 cycles trapezoidal laser pulse with 8 cycles ramp, w, = 1.8
a.u. and I = 5.4 x 10° W/cm? polarized along the z-axis perpendicular to
the pump. The pump laser (upper panel) is the same as in Figure 3.9.

ejected from the 7* state. The intensity of the peak steadily increases in time accordingly
to what is observed with TAS. Compared with 7, the 7" orbital presents additional
nodes on the plane perpendicular to the molecular bond and a field polarized along z is
sensible to this kind of geometry. The PAD P(6,¢, E3) in Figure 3.11 (e) displays strong
suppression of electrons along the yz-plane at ¢ = 90° and 270° and therefore presents a

clear manifestation of photoemission from a 7* state.

Slow electrons ejected at Ey = 2wp — €, = 0.16 a.u. gradually increase and become the
predominant ionization channel. The emergence in time of multi-photon peaks separated
by wp indicates that the pump is strong enough to trigger non-linear effects. These
electrons are ejected after the simultaneous absorption of pump photons. Electrons at
FEq reach the continuum with an wp photon after the molecule has been excited to a 7*
state by another wp photon. PAD should therefore carry again signs of #* symmetry.
It must be noted, that in this case, 7" electrons are probed with the pump itself, and

therefore the laser polarization is along x. As already discussed in the previous section,
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Figure 3.11.: Angular- and energy-resolved photoelectron spectra for CoHy at two fixed
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delay times. Panel (a) shows the geometry of the process: p indicates
the photoelectron direction, A is the pump polarization vector, and A, the
probe one. Panel (d) shows the logarithmic scale PES P(E) for 7 = —1.69 fs
(red) and 7 = 3.63 fs (green). The other panels depict normalized PADs
P(0,0, E) at T = 3.63 fs and energies marked in (d): (b) Eq = 0.16 a.u., (c)
E; =1.37 a.u. and (e) E3 = 1.67 a.u.. White marks indicate the position
of the probe polarization vector (c), (e) (at the corners) and the pump one
(b) on the sphere.
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the laser polarization carries a geometrical factor of the form A - p with A = Ax, that
introduces a suppression along the yz-plane (¢ = 90°, 270°). Unfortunately, this plane is
precisely where the 7* photoemission minima should lie. For this reason PAD P(6,¢, E3)
in Figure 3.11 (b) is not suited to clearly discern a 7 from a 7* symmetry, and the

suppression for § = 0° along the xy-plane is compatible with both structures.

3.4. Conclusions

In this chapter we studied the problem of describing ultrafast (attosecond scale) time-
resolved absorption and photoemission in finite systems with TDDFT. After having pre-
sented the theory and discussed its implementation in Sections 2.2 and 2.4.6, we demon-
strated that TDDFT can be successfully employed in the task of describing the dynamics
of electronic excited states in atoms and molecules. We illustrated this with three appli-
cations: the one-dimensional Helium model, the three-dimensional Helium atom and the

Ethylene molecule.

We studied the one-dimensional Helium atom perturbed by an external time dependent
field exactly, by solving the time-dependent Schrodinger equation. We showed how it
is possible to recover information about state populations through a comparison of the
perturbed and unperturbed absorption cross-sections, and that the population evolution
in time can be described in terms of Rabi physics. We then performed TDDFT calcula-
tions on the same model, and we may conclude that the results obtained with the EXX
potential are in good agreement with the exact solution, although small artifacts appear

due to the incorrect description of the functional memory dependence.

Furthermore we investigated the Helium atom in a more realistic three-dimensional treat-
ment using the EXX functional. We performed resonant pump-probe calculations mon-
itoring both absorption and photoemission properties of the excited atom. TAS turned
out to be a sensible tool to monitor the build-up of the excited state, allowing us to ob-
serve Rabi oscillations as a function of the time delay between pump and probe. TRPES
also allowed the characterization of the excitation process in time. However, due to a
dominant ionization channel associated with sequential two (pump) photons absorption,
the information about the excited state population was less apparent. Nonetheless the
PAD, being an observable sensitive to the geometrical arrangement of the ionized state,

is a useful tool to discern the nature of each photoelectron peak. As a final example we
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considered the case of the Ethylene molecule, to study the time evolution of a # — 7*
transition. The PAD for ejected electrons offered clear evidence that the states taking

part in the process were indeed of m and 7* nature.

The theoretical framework that we have developed is a useful tool to understand and
control non-equilibrium electronic dynamical processes in nanostructures and extended
systems. New emergent properties of matter in the strong-coupling regime could appear
that might give rise to new technological developments. Furthermore, monitoring elec-
tron and ion dynamics provides fundamental insights into structure (i.e. time-resolved
crystallography) and chemical processes in biology and materials science (e.g. for energy
applications). There is plenty of room for new and fascinating discoveries about the

behavior of matter under out-of-equilibrium conditions.

Still, from the fundamental point of view, there is a clear need for the development of
non-adiabatic exchange and correlation functionals able to provide a reliable description
of non-equilibrium processes and strong light-matter interaction. Clearly, the methods
presented here will automatically benefit from any theoretical advance in this direction.
Conversely, the developers of new functionals may take into account the correct descrip-

tion of pump-probe experiments as a useful quality test.
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In the previous chapter, we showed how to simulate pump-probe photoelectron and ab-
sorption spectroscopy on the attosecond time scale with the help of TDDFT and pointed
out some aspects of how the extra degrees of freedom (pump-pulse duration, intensity,
frequency and delay-time), that are absent in a conventional steady-state experiment,

provide additional information about the electronic structure and dynamics of a system.

In this chapter we take a more detailed look at the origin of spectral excited-state features.
We particularly pay close attention to the shape of the absorption/emission peaks. The
idea is to first understand the effect of electronic excitations on the spectrum of a species
and with this knowledge be able to manipulate its spectral properties. Applying this
knowledge to the visible range, one possible application is to selectively change and
control the colour of molecular systems. In this chapter we present the concept and
demonstrate calculations for the analyticly solvable Hydrogen. We start with a detailed

analysis of the features of excited-state spectra and the changes in the spectrum, that can
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be obtained by a laser excitation and continue to discuss the topic of laser control. As an
application we finally show how we tailor a pulse to manipulate the colour of Hydrogen.
In the next chapter we continue with the topic of control and show how to use TDDFT

to control spectral properties of molecules in the visible.

4.1. Excited State Spectroscopy

In Section 2.2.5 we have developed the generalized Lehmann representation of the polar-
izability tensor a,,[€](w,T) of an arbitrary excited-state and in Section 2.3 introduced
the concept of states with finite life times and the resulting line shapes. For an excited
state spectrum where each peak is subjected to Lorentzian broadening, we found the

diagonal elements of the polarizability tensor to be

Ok () (W + Wi — iv)

(w + wjm)Q + %2

e
up [E] (W, to +7) = I dymdgm|’7j”’7k| {

Jjkm

e (W — wim — i) } (4.1)
. .

with the dipole-matrix elements
dt, = (@] Dyl ,) (12
and the the time-dependent phase
Ori(T) = ©j — Pk — WiyT, (4.3)

where {¢;} are the phases of the expansion coefficients {;} of the wave function at time

to at the end of the pump in the eigenbasis of the time-independent Hamiltonian A

T(t0)) =D yil®)) = yle’|®5),  A|®;) = ¢;|D;) (4.4)
j=1
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and where

wkj = e’fj—e’fk, (4.5)

T = t—tp. (4.6)

We found, that based on the polarizability tensor (4.1), the average absorption coefficient

takes the form

47Tw .
7(w,to+7) Z dnd i |1k | {cos(Okj) L(w — wjm) + sin(Orj) R(w — wjm)
pijkm

— ¢08(Okj ) L(w 4+ wjm) + sin(O; ) R(w + wjm) }
(4.7)

which can be divided into its time- and phase-independent equilibrium contributions:

_ 47rw
779 (6] Z\%!Q D N PLw = wjm) = Y [, PL((w + wjm) ¢

j<m j>m

(4.8)

and its interference terms:

FNE (wito+7) = Y didl vl {c0s(0k; (7)) L{w — wjm) + sin(O; (1)) R(w — wjm)
J#km
— ¢08(O; (1)) L(w + wjm) + sin(Ok; (1)) R(w + wjm) } ,

(4.9)

where the Rayleigh line shape is defined as

w

R = —— 4.10
(@) W2 +1%/4 (4.10)
and the Lorentzian line shape is defined as
F/Q
L(@) = ————. 4.11
(@) w2+ 1%/ (4-11)

Recalling the main conclusions of this analysis, we found that

e The positions of the excitation peaks are fixed at the many-body transition energies.
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e The spectral weights of the peaks depend on the laser and on the delay 7 between
pump and probe pulse; peaks can be positive or negative depending on whether

the rate of absorption is larger than the rate of stimulated emission or vice-versa.

e If the pump leaves the system in a non-stationary state, the spectral weights oscil-
late as a function of time. The involved frequencies correspond to the differences

of the eigenenergies of the eigenstates occupied in the non-stationary state.

e For stationary states, the imaginary part of the polarizability tensor consists of
peaks with Lorentzian shape, while the real part consists of peaks with Rayleigh

shape.

e For non-stationary states, the spectrum can be divided into an equilibrium and an
interference contribution. The equilibrium contribution is time-independent and its
line shapes are always Lorentzians. In the interference part, the phase ©(7) mixes
real and imaginary parts of the polarizability tensor, resulting in a spectrum, where
peak shapes are a combination of Lorentzians and Rayleigh shapes. Since (1) is

periodic in 7, so is the average absorption coefficient.

e The shape of the terms in the interference term is governed by the laser through

the initial phases {¢}; and through the delay.

e If continuum states are involved in the process, an additional influence on the

lineshapes can appear.

In the following we demonstrate these conclusions using the example of Hydrogen, which
is analyticly solvable and compare the analytic solutions to a numerical treatment using
the real-space code octopus. This enables us to address the issue of numerical conver-
gence when dealing with excited states. As example state, we will use a state, that is a

linear combination of |2p,) and |3p,) state:

|\IIT> = ei(p2pz \/a‘2pz> -+ v/ 1— aei5@3pz |3pZ>
= Va|2p.) + V1 — ae™32|3p,) (4.12)

with fixed @ = 0.4 and variable ¢, i.e.

V04 i=2p,

v = meing i = 3pz (413)
0 else
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First we demonstrate the change from Lorentzian to Rayleigh peaks for the analytic
solution. We then compare analytic and numerical treatment and discuss the issue of
convergence. For the numerical solution, we proceed to show a 2D-spectrum of Wp
in dependence of the delay 7 demonstrating the oscillating behaviour of the spectrum.

Finally, we show how these oscillations translate to a periodic change of colour.

4.1.1. Converting Lorentzians Into Rayleigh Resonances and Viceversa *

First we demonstrate the influence of the phase ¢35 on the shape of the spectral peaks.
For this, we use the average absorption (4.7) obtained from the generalized Lehmann rep-
resentation of the polarizability tensor together with analyticly obtained dipole-transition
matrix elements and eigenenergies. In this subsection we are not explicitly interested in
the time-dependence , therefore we set the delay 7 = 0, assuming the probe laser to come
directly at the end of the pump. This results in the phase ©;; = ¢; — ¢r. We denote
this by writing (w,to+7) = (w, ©). Note, that we do so in order to focus attention on
the phase without taking care of the question about its origin. Later on, we will discuss,
how this phase is a function of the pump laser and how it changes with the delay 7. For

Ur as defined in Eq. (4.12), the equilibrium contribution to the spectrum is:
_EQ(, N\ (A~ _
"% (w) = 0.462p(w) + 0.603,(w) , (4.14)

and the interference term:

w .
7N (w,0) =0.4-0.6 3— I dopmdm 3p {cos p3aL(w — wpm) + sin gz R(w — w3p,m)
m

— cos p3aL(w — w3p m) + sin gz R(w — w3p7m)}

+ I dzp7 m,3p {COS (pggL(w — w2p7m) — sin @32R(w — o.)zp,m)
m

— cos w3 L(w — wapm) — sin gz R(w — w2p7m)}] :

Note the change in the sign of the Rayleigh terms in both sums.

$The results presented in this section form part of [235].
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Figure 4.1.: Absorption coefficient &(w) of the the state U7 = 1/0.4/2p.) + v/0.6¢%|3p.)
for ¢ = 0, 1/27, m and 3/2mw. The total spectrum (black line) is the sum
of the two phase-independent terms 0.469,_ (red shaded) and 0.6a3,, (blue
shaded) coming from the excited state spectra of the respective states multi-
plied by the absolute values of their expansion coefficients squared plus the
phase-dependent interference term /% (w,©) (green dashed line), which is
responsible for the change of the spectrum with the delay time .

Fig. 4.1 shows the different contributions and the resulting complete spectrum for the
phases @32 = 0, 1/27, m and 3/2m, which are the cases, where the interference term is
either of purely Lorentzian (¢32 = 0 and 7) or of purely Rayleigh shape (p32 = 1/27 and
3/2m). The shaded areas show the weighted stationary-state contributions (red shows
G2p, blue shows 73,), the dotted line shows the interference terms and the solid line the
final absorption coefficient. The energy range shown includes the transitions from n = 2
to all higher states and from n = 3 to all higher states and to n = 2. Transitions to the

ground state lie outside of the shown region.

As can be seen from Eq. (4.7), interference terms require the existence of eigenstates ®,,
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which are dipole-coupled to both ®9, and ®3,. This is the case for s- and d-orbitals.
This means, that for example for Hydrogen in a linear combination of the states ®q;
and @47, all the interference terms are zero. Let us look a bit closer at the structure
of the interference terms. We start with the interference term at the energy wos: It
has contributions from terms with m = 2s, m = 3s and m = 3d. All contributions
have different prefactors and the contribution of the 2s-state has the opposite sign of the
contributions of the 3s and 3d states. For the other peaks, one can wonder, why the
interference terms are so much smaller at energies energies ws, than their counterparts
at the energies wy,. Looking at Eq. (4.15), one sees, that in fact, the height of the
interference peaks of the response function is the same for each set of peaks wo, and ws,
with the same state n. The difference comes purely from the factor 4:,7:—;. Furthermore
it is interesting to note, that the sign of the Rayleigh contributions is opposite in these

pairs of peaks. This variation in the amplitude of the interference terms has the following

consequences for the change of the overall spectrum:

At the transition energies ws, the spectrum has positive contributions from &3, and
contributions from the interference terms, but since the interference terms are much
smaller than o3, , the spectrum changes only slightly for different ¢’s. This is differ-
ent for the peaks at energies wo,. Here, the photoabsorption spectrum has positive,
phase-independent contributions from &g, (w), but the contributions from the interfer-
ence terms are much larger and dominate the spectrum leading to a strong dependence
of the spectrum in this energy range on the phase ws3. For w3 = 0 and 30 = m,
cos g3z = 1 and sin 3y = 0, therefore /™ (w,©) only contains Lorentzian peaks and
consequently the whole spectrum only contains Lorentzians. Nevertheless, 5V (w, ©)
changes sign between 30 = 0 and @32 = 7, switching the sign of all peaks wsy,. This is
a demonstration of, how the manipulation of the internal phase ¢ can lead to a switch
from gain to loss regime and vice versa. Finally, for p32 = 1/2m and 32 = 3/2m,
the interference spectrum contains purely Rayleigh shaped peaks. Together with the
small contributions from the stationary-state contributions, the final spectrum consists
of slightly asymmetric Rayleigh peaks, again with different signs for @32 = 1/27 and
w32 = 3/2m. We can therefore not only change peaks from emission to absorption peaks,

we can also manipulate their resonance shape.
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Figure 4.2.: Average photoabsorption coefficient & of |¥r) = v/0.4|2p,) + /0.6/3p.) of
Hydrogen. Analytic result including states up to n = 9 (shaded) in com-
parison to (top) numerical results (solid lines) obtained through the gener-
alized Lehmann representation with numerically obtained eigenenergies and
dipole matrix elements for boxes with radii r = 30 (blue), r = 45 (black) and
r = 60 a.u. (red) and to (bottom) numerical results obtained through the gen-
eralized Lehmann representation (solid line) and through time-propagation
(dashed), both in a box with r = 60 a.u.. The shaded blue area indicates
the visible range of the spectrum (350 nm - 750 nm).

4.1.2. Convergence Tests

Whilst in the case of Hydrogen many calculations can be done analytically, this is not

true for general systems, where results have to be obtained numerically. Even some time-

dependent calculations of Hydrogen have to be done analytically due to many excited

states being involved. To put our work on a general equal footing, in the following we

make the transition from analytic results to numerical simulations. It is therefore impor-

tant to look at the numerical accuracy, that can be achieved. The main complication of

calculations, that involve excited states, is the need of an increased basis set. If one uses
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codes which employ orbital basis sets, one has to use more basis functions. In contrast,
if one uses a real space grid, one has to take into account, that excited states are more

delocalized than the ground state, and increase the size of the simulation box.

Figure 4.2 shows a comparison of the average photoabsorption coefficient & of the test
state |Ur), once obtained analytically, once obtained numerically. The exact solution
was obtained from the generalized Lehmann representation with analytic eigenenergies
and dipole matrix elements, including states with main quantum number up to n = 9,
corresponding to a basis set of 285 states. In the upper panel we show a comparison
of the analytic solution with results, that were obtained using the generalized Lehmann
representation in combination with eigenenergies and dipole matrix elements for the first
100 states (= n = 6) in a spherical simulation box with radii r = 30 a.u., r = 45 a.u.
and r = 60 a.u.. As comparison, a calculation of the ground state density converges with
r = 10 a.u.. Here, two effects can be seen, one due to the number of states used, one due

to the size of the simulation box.

The first effect is the smaller set of basis functions (100 states for the numerical calculation
in comparison to 285 states for the analytic calculation). Since only states with main
quantum number n < 6 are included in the numerical calculation, transitions to higher
peaks do not appear in the numerically obtained spectrum, whilst they are present in

the analyticly obtained spectrum.

The second effect is due the size of the simulation box. If a state does not fit freely into
the box, it is squeezed and its energy increases. Since the effect is stronger for higher
lying states, in general peaks, that are effected by the box, get shifted to higher energies
with smaller box sizes. Let’s look at which box size is needed to correctly describe the
shown transitions. In a box of radius r = 30 a.u. the states with main quantum number
n = 2 and n = 3 are described correctly, whilst states with n > 4 are not. Therefore
the transition peak 2 — 3 is located at the correct energy. whilst all peaks describing
transitions to states with n > 4 are shifted upwards. In a box of radius r = 45 a.u.,
states with n up to 4 are described correctly, so the n = 4 peaks 2 —+ 4 and 3 — 4
are located at the correct positions and the heights are reproduced. Finally, a box with
radius r = 60 a.u. describes peaks including states up to n = 5 correctly in position
and height, whilst any transition including states with main quantum number n > 6
is not described correctly any more for radii smaller than 60 a.u.. Unfortunately, this

is roughly the computational limit for 3D calculations. Since our goal is to correctly

103



CHAPTER 4. CONTROL OF OPTICAL PROPERTIES — THE CASE OF THE
HYDROGEN ATOM

describe spectral properties in the visible and the whole Balmer series of transitions
from n = 2 lies in the visible, we in principle have to correctly describe orbitals with
arbitrarily high main quantum numbers, which is obviously not possible. Nevertheless,
as one can see in Figure 4.2, transitions to states with n = 6 have already very small
peaks in comparison to peaks involving only lower lying orbitals. Therefore we content
ourselves with a box size of radius r = 60 a.u., knowing that we can correctly describe the
spectrum of peaks with main quantum number n up to 5. Nevertheless, we still include
states with n up to 6 in our calculations. States with higher quantum numbers are not

included in the basis set.

Finally we compare the results obtained numerically through the Lehmann representation
in a box of r = 60 a.u. with the average absorption coeflicient obtained from a time-
dependent propagation in the same box with absorbing boundary conditions. Absorbing
boundaries of width w = 20 a.u. were used. The result is shown in the bottom panel
of Figure 4.2. Due to the absorbing boundaries, we can only describe peaks including
states with n up to 4. Similar to the results obtained with the help of the Lehmann
representation for a box of r = 45 a.u., peaks that include transitions to states with
n = 5 or higher are not reproduced exactly, but are slightly shifted. This leads to the
conclusion, that the time-propagation due to the absorbing boundaries gives worse results

for higher states than the Lehmann representation.

In the rest of this chapter, we will therefore present results, that were obtained using the
generalized Lehmann representation in combination with numerically obtained eigenen-
ergies and dipole-matrix-elements in a box with radius r = 60 a.u., including the first

100 eigenstates.

4.1.3. Transient Absorption Spectroscopy and the Change of Colour

In the previous section, we analyzed the effect of the phase @23 on the spectral weights
and the shape of the photoabsorption spectrum. In this context, we considered 23 to
be fixed and did not care about its origin. Here, we show, how, by taking into account
the dependence of this phase on the delay 7 between pump and probe, one can obtain
a time-resolved spectrum of an excited non-stationary state. We also show, how the
periodicity of the time-dependent phase shows up in the spectrum and the associated
colour. As before, we look at the test state |¥r) as defined in Eq. (4.12), but now with
fixed p32 = 0. The time-dependence of the angle ©35(7) then enters through the delay
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Figure 4.3.: Time-resolved spectrum of the v/0.4|2p.) +1/0.6/3p.) of Hydrogen. Because
the phases of the |2p) and |3p) states evolve with different velocities, the
spectral weights of each of the peaks changes with time, leading to a time-
dependent spectrum with a periodicity of T = —2*— ~ 9la.u.. The first

€2p—E€3p
100 eigenstates were included, continuum contributions neglected.

7 like O32(7) = wsa7. Figure 4.3 shows the time-resolved spectrum & (w,7) of |¥r).
Since the eigenenergies of |2p,) and |3p,) are different, the phase ©32(7) evolves with

s _ _ 3m
2wz T T wm and 7 = 2ws32’

the frequency wse. At 7 =10, 7 = the spectra of ¢33 = 0,
w32 = 1/2m, @30 = m and ¢ = 3/2m, that were discussed in Section 4.1.1 are reproduced.

One sees the strong changes of & in the energy range w > 0.06 Ha, while the spectrum

2m

remains almost unchanged for w < 0.06 Ha. The spectrum is periodic with T" = o P

91 a.u..

Finally we address, which effect the change of the spectrum has on the colour of a system,
translating the time-dependent spectra of the v/0.4|2p.) + 1/0.6|3p.) state in Hydrogen,
which is shown in Figure 4.3 into a chromaticity diagram. For this we assume a thin
medium, so that changes in the medium due to the propagation through the medium

can be neglected. Furthermore we neglect the contribution of the emission peaks to
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Figure 4.4.: (top) CIE 1931 colour matching functions Z , § and z and the spectral power
distribution of the sun (orange). (center) Average absorption coefficient of
|U7) = v0.4[2p.) + v/0.6/3p.) (solid) and the part taken into account in
the calculation of the colour (shaded). (bottom) Power distribution of sun
light after having passed through a gas of atoms in the state |¥p) with a
pathlength of 1 = 1 a.u. (blue) and 1 = 5 a.u. (pink).

the colour, treating them as energy windows, where the light can propagate unaffectly.
These assumptions enable us to use the Beer-Lambert law, which describes the power
distribution I(w) of a light source after having propagated through a medium of density
N for the length [

I\ 1) = Ip(N)e oI, (4.16)

The resulting power distribution is then matched with a set of matching functions, which
describe the sensitivity of the human eye to different wave lengths. The resulting so-called
tristimulus values (e.g. the RGB-values) then characterize the colour perceived by the
human eye and can be presented as a point in a chromaticity diagram. For a more

detailed description of how to convert spectra into colours, see Section 2.7.

Figure 4.4 demonstrates the procedure using the example of the spectrum of v/0.4|2p,) +
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Figure 4.5.: (top): Colour associated to the time-dependent spectrum of the v/0.4|2p.) +
v/0.6|3p,) state of Hydrogen for a path in the gas of length 1 = 1 a.u. (left)
and of 1 = 5 a.u. (right). From left to right, from top to bottom each square
shows the colour at a time At = 1.01 a.u. later than the previous one.
(bottom) The colours above shown in a chromaticity diagram, illustrating
the periodic changes in colour with time. (inset) Time-averaged colours.

v/0.6|3p.). The middle panel shows its average absorption coefficient. We neglect the
emission part, treating it as a window, where light can pass without being effected by the

medium. The bottom panel shows I(w,) for two different propagation lengths [, if the
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radiation source is the sun, the spectral power distribution of which is shown in the upper
panel. These exponentials are folded with the colourmatching functions (shown in the
upper panel) to obtain the tristimulus values X; = [dAZ(N\)I(N,1), Y, = [dA\g(A\)I(A1)
and Z; = [ dAz(X\)I(),1), which are then converted into z = ﬁ andy = ﬁ and
form a point in the chromaticity diagram. By converting the time-dependent absorption
coefficient of Hydrogen shown in Figure 4.3 into a colour at each delay 7, we can translate
the time-dependent absorption coefficient into a time-dependent colour, forming a colour-
trajectory in the chromaticity diagram. Figure 4.5 shows in the two bottom panels these
colour-trajectories for the two pathlengths 1 = 1 a.u. and 1 = 5 a.u., where the colour was
calculated for times nAt with At = 1.01 a.u.. It is interesting to see, how the periodicity
of the spectrum is reflected in the fact, that the trajectories form a closed path in the

chromaticity diagram. The upper two panels show again the single colours at each t.

Whilst it is interesting and instructive to discuss time-dependent colours, one has to take
into account, that calculations as the one above describe samples, where all atoms/molecules
are in the same phase. This is usually not the case for macroscopic samples. For real-
istic macroscopic samples, one should take the time-average of the average absorption

coefficient Eq. (4.7), leading to a time-averaged average absorption coefficient

(W) = [v2p.102p. (@) + [13p.T3p. (W), (4.17)

which is the weighted sum of the stationary state spectra of the involved states. Note,
that here, the interference terms disappear. The resulting time-averaged colours are

shown in Figure 4.5 as inset.

4.2. Control I

In the previous section, we have taken a detailed look at excited state spectral properties
of Hydrogen. We have discussed the spectral weights and the shape of the spectral peaks
in detail and shown how these properties translate into a time-dependent spectrum and
the associate colour. We have therefore discussed extensively the probe part of a pump-
probe experiment. But what about the pump part? Imagine, we want to design a system

with specific properties. The previous section has told us, how a state looks like, that

TThe results presented in this section form part of [235].
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has specific properties. But how do we get our system — here Hydrogen — into this state?
This is the topic of this section. We ask the question of how to design a laser, that brings
our system from the ground state into an excited state of our choice. As before, we look
at the test (or here target) state |¥r) as defined in Eq. (4.12). The task is therefore to
bring Hydrogen from its ground state |1s) into a linear combination of |2p,) and [3p,).
Since here, we have reduced the dimensionality of the problem by including only the [1s),
|2p.) and |3p,) states and since |2p,) and |3p,) are of the same symmetry and therefore in
dipole-approximation decoupled, we do not have to apply the general theory of control,
but can indeed solve the problem analytically. To this goal, we have in Section 2.5.2.2
developed a Rabi-like formulation of the behaviour of the expansion coefficients under
the influence of a laser, that is resonant with both transition energies ws; and ws;. In
the following we extend the results of Section 2.5.2.2 to demonstrate full control of the
excitation of a Hydrogen-like atom from an eigenstate into a linear combination of this
eigenstate plus two other eigenstates, both dipole coupled to the first, but without dipole
allowed transition among them. First, we point out the general procedure, then we show

numerical simulations.

4.2.1. Equations of Control
4.2.1.1. Time-independent Envelope Functions

Asin Section 2.5.2.2 we assume, that our system is described by a three-level Hamiltonian
with eigenstates |®,), |®p) and |P.), the corresponding eigenenergies ¢,, €, and &, and
the transition frequencies w;; = €, — ¢;. In this Hilbert-space, any time-dependent wave

function can be written as
|¥(t)) = a(t)e_iaat|‘1>a) + b(t)e_ie”t@b) + c(t)e_ia"t@c) (4.18)

with the constraint |a(t)|? +|b(t)|? + |c(t)|? = 1. We found, that if we couple this system
to an optical field

E(t) = e1 cos(wpat + ¢1) + €2 cos(weat + Y2), (4.19)
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the time-evolution of the coefficients is

a(t) = cos(Q/2t), (4.20a)
b = Fab®1 e~ 1= gin (Q , .20b

(t) \/(Mab€1)2 + (Mac€2)2 ( /2t) (4 * )
c(t) = Hacta e~ (22~ sin (Q/21) . (4.20¢)

\/(Nabgl ) 2 + (,uacEQ ) 2

with the Rabi-frequency

Q= \/(/'Label)2 + (/Lac<€2)2~ (421)
We define the target state
[Ur) = |ale™" [ ®a) + [Ble™ 8| @p) + [y]e 7 |@c) (4.22)

with the constraint |a|? 4 |5]? + |y|> = 1. Since the overall phase of a wave function has

no physical meaning, we can recast |¥Ur) into

]| @) + |Ble " (#8=2)|@y) 4 |yl (#17%e)|D,)
]| @,) + | Ble™%8(Dy) + |yle~ 7| D) (4.23)

|¥r)

A similar recast can be done for the time-dependent expansion coefficients (2.139) of the

wave function under laser-influence, resulting in:

[W(t)) = cos(€/2t)|®)

HabE1 (O —i(p1—m+wpat)
+ sin (£2/2t) e~"\¥1 bt | D)
\/(Mab51)2 + (Mace2)? ( )
B iretiny (420

\/(Nabgl ) 2 + (,Ufac?":Q ) 2

Our goal is to find a laser pulse, that drives our system from the state |¥(t = 0)) = |®,)
into the target state |U7) within the time 7.

[(U(T)|¥r)[* = 1. (4.25)

Whilst here we focus on a laser with constants €; and €9, we can relief the constraint of
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constants €; and €9 and work with envelope functions by making use of the pulse area

theorem.

Setting the wave function under laser influence at ¢ = T equal to the target function
Eq. (4.22) leads to two sets of equations: one connecting the envelope functions £; and

g2 to the populations |a|?, |3|? and |v|?

la| = cos(€/2T) (4.26a)
_ Hab€l <in = .

o= V (1abe1)? + (pace2)? (©/21) (4:260)

hl = . sin (/27 , (4.26¢)

\/(Nabgl )2+ (facg2)?

and the other one connecting the laser phases to the relative phases ¢g and ¢, of the

wave function

P = ¢1— 7+ wpT (4.27a)
Py = P2 -7 + wea T (427b)

Solving these sets, we find

2
e = 2 ‘arccos(\a\) 181 (4.28a)
T sin(arccos(|a|) tap

.Y — 2 .arccos(\a\) e (4.28D)
T sin(arccos(|a|) tae

and

P11 = g+ T —wT (4.29a)
Y2 = @y+ 7T —weT. (4.29Db)

An example of a constant-envelope laser, that achieves the required transition is therefore

given by
2 arccos(|af) (|B] . il .
Et)=—=——"—"-—"— | — t—T S t—1T
®) T sin(arccos(|a|) \ ptap cos{uwan )+ vo ™ Kac cos(wael )+ Pt ™)

(4.30)
Note, that in addition to the set {e1,e2}, also all other sets {(2n + 1)e1, (2n + 1)ea}
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fulfill the equations above. These solutions represent lasers, where the evolution of the

coefficients covers (n+1) complete Rabi cycles within the time 7.

4.2.1.2. Time-dependent Envelope Functions

In practice, one is often interested in time-dependent envelope functions. For these cases,
we have to adapt the amplitude of the laser according to the pulse area theorem in a
way, that the laser envelope covers the same area. In the following, we will use a sin?

envelope with period 27" and Eq. (4.28) is modified to

a) = 4 _wccosal) 15 ;oo (wt) (4.31a)

T sin(arccos(|al) pap T

. t
= 2e sin? <7TT>

~ 4 arccos(lal) |y L o[ ¢
n o= 4 ] v 4.31b
22(t) T sin(arccos(|a|) pac ST ( )

t
= 2e9 sin? <7TT>

and the time-dependent Rabi-frequency is

= = = . t
0 = /G 7+ (ool = 26050 (1) (432)
The populations finally result to

a(t) = cos (W), (4.33a)

t O /
b(t) = Habel e~ HP1=7) gin / s ) (4.33b)
V (1ape1)? + (ace2)? 0 2
t O /
c(t) = Pact2 e—il2m) iy / 20 | (4.33¢)
\/(uab51)2 + (Mac<€2)2 0 2

with the integral

/Ot Q(t;)dt/ = (;t - % sin <27r;>> Q. (4.34)
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4.2.2. Numerical Example

As an example for the presented control of a three-level system, we show numerical
simulations of the excitation of an electron in a Hydrogen atom from the groundstate
|®,) = |1s) to an excited state, which is a linear combination of |®;) = |2p,) and
|®.) = [3p.). As before, the target state is defined as

|Ur) = mml%) + m‘?’pz>- (4.35)

2_envelope pulse. Assuming,

The control time is set to T" = 3200 a.u.. We apply a sin
that there is no coupling to other states, we can write down the shape of the control
pulse analytically. In accordance with Eq. (4.30) and the time-dependent modifications

Eq. (4.31), the control pulse is

g(t):%<m V0.6

T cos(wisop(t —T) +m) +

t
cos(wis—3p(t —T') + ) sin? (77) .
H1s—2p H1s—3p

T
(4.36)
Calculations were performed using the octopus code [101]. The wave functions are rep-
resented on a real-space regular grid. A spherical simulation box of radius r = 60 a.u.
(see Section 4.1.2), a spacing of Az = 0.435 a.u. and absorbing boundaries of a width of
20 a.u. were employed. To align the atomic orbitals a small electric field in z-direction
was applied during the ground state calculation. The relevant dipole-matrix elements in
this configuration are 152, = 0.725 a.u. and p1s—3, = 0.283 a.u.. Figure 4.6 shows the
time-evolution of the populations |a(t)[?, |b(¢)|? and |c(t)|? of the states |®15), |P2p,) and
|®3,.) respectively. The numerical values (solid lines) follow closely the analytic model
(4.33) (dashed lines). A frequency analysis of the additional oscillations shows, that
they are due to the rotating wave approximation in the derivation of the Rabi formula.
The small derivation in the final populations from the analytic prediction comes from
the charge transfer into the |®3,) orbitals (not shown). Coupling to these orbitals was
neglected in the three-level approximation. The charge transfer to the |®34) nonetheless
is less than 4% , in total we achieve a charge transfer into the desired wave function
|¥r) of 96%. The bottom panel of Figure 4.6 shows the time-evolution of the phase

©3p — P2p. After some switching-on time, we see the periodic variations with a period of

21
€3p—E2p

~ 90 a.u.. As desired at T' = 3200 a.u. the phase difference is zero.
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Figure 4.6.: Time-evolution of the populations of the 1s—, 2p,— and 3p,— state. Dashed
lines show the analytic model, solid lines the numerical results. The total
pump-laser (upper panel, black) has two carrier-frequencies, one resonant
to the transition |®15) — |®2,) (green), the other resonant to the transition
|®15) — |®3p,) (blue). The bottom panel shows the phase difference @3, —ap.

4.3. Summary and Conclusion

In this chapter we took a detailed look at the origin and the control of spectral excited-
state features in the non-overlapping regime using the example of excited states in Hy-

drogen.

First we carefully analyzed general features of excited-state spectra. Using a general
Lehmann representation of the response function, we discussed the principle differences
between spectra obtained from (i) the ground state, (ii) stationary states and (iii) non-
stationary states. We found that whilst the peak positions are fixed through the many-
body transition frequencies, the heights of the transition peaks as well as their shape

depend on the expansion coefficients of the wave functions. The main conclusions are
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the following. Ground state spectra are always non-negative and have only Lorentzian-
shaped peaks. Stationary-state spectral peaks are still Lorentzian shaped, but can be
positive or negative, depending on the size of the transition dipole-matrix elements of
the states involved in the process. Both ground and stationary-state spectra are in-
dependent of time, i.e. stationary state spectra are independent of the delay between
pump and probe. Finally, the contributions to the spectrum of a non-stationary state
can be divided into (i) stationary contributions, which are the stationary spectra from
the respective states scaled by their population and (ii) interference terms. The station-
ary contributions are of Lorentzian shape and time-independent, while the interference
terms are time-dependent (i.e. depend on the delay between pump and probe) and oscil-
late with a frequency proportional to the energy-difference of the involved states. Their

shape oscillates between Lorentzian and Rayleigh shape.

This strong dependence of the spectrum on the expansion coeflicients is also reflected in
the colour that would be perceived by the human eye when illuminating a macroscopic
coherent sample of atoms/molecules with light. The time-dependence of the spectrum of
a non-stationary state is periodic in time and leads to a time-dependent peridodic change
of colour. The time-dependent colour, if shown in a chromaticity diagram, forms a closed
trajectory. Nonetheless, one has to take into account that in a macroscopic sample, not
all molecules are in the same state at the same time. Therefore, one has to take the
time-average of the spectrum, which leads to a spectrum that only contains stationary

contributions.

After having analyzed the features of excited state spectra, we focused on the part of
control. We showed that a Rabi-like formalism can be formulated for three-level systems,
where the excited states are not dipole-coupled. This formalism can be used to derive
a laser-pulse that excites an electron from its ground state into a non-stationary state,
which is a linear combination of two non-dipole-coupled eigenstates. We found that
whilst the envelope of the control-laser is responsible for controlling the populations of
the involved states, the relative phases of the involved states are governed by the phase

of the laser pulse.

We showed that the developed model is valid for the case of Hydrogen, when exciting
the electron from the ground state into a linear combination of the |2p,) and the |3p,)
state. Using the analytically derived pulse, we can achieve an overlap of 96 %. A

population analysis shows that the missing few per cent are due to the fact that the
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3-level assumption is not 100 per cent accurate and that some population is transfered
to other dipole-coupled states. Nevertheless, we conclude that it is a viable assumption

and provides a good model for the control of Hydrogen.

On the technical aspects, we found that due to the stronger delocalization of excited
states, particular care has to be taken of numerical convergence when dealing with excited
state spectra. In the context of simulations using real-space grids, this mainly means that
the box has to be adjusted to the extension of the states. We found that, depending on
which part of the spectrum one is interested in and the involved transitions, numerical
convergence can be difficult. Nevertheless, if one is interested in transitions from the
ground state, transitions to very highly excited states are mostly not very strong and

one can confine oneself to the description of a few excited states.
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In the previous chapter, we have analyzed the properties of excited state spectra using the
example of exactly solvable Hydrogen and have demonstrated a way to control its spectral
properties by laser excitation. In this chapter we move beyond one-electron systems, and
demonstrate the optimization of the absorption in the visible of a set of atoms and
molecules using TDDFT. In the following we present two different approaches to tackle
this problem. In the first approach, we define a target function that characterizes the
absorption of radiation in the visible, and perform a direct optimization of the absorption
by finding a laser pulse that maximizes this target. In the second approach we focus on
an excited state with the desired absorption properties, and attempt to find a laser that

excites the system from its ground state into this target state.
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5.1. Approach I: Direct Optimization

Here, we use the downbhill-simplex algorithm (also called Nelder-Mead or amoeba algo-
rithm, for a description see Appendix A) to optimize a laser pulse to make a system,
that is transparent in its ground state, absorb as much light as possible. To this goal we

employ two different control target functions:

Ema:l:

Alg) = /E o l)m)E, (5.1a)
Ema$ —

Bl = /E . |&)(E) exp <7W> dE'". (5.1b)

where 6.[&](E) [in the following we will call it just o(F)| is the average absorption
coefficient of the system at a given time delay 7 after the pump pulse &(t), and E,un
and FE,,,, define the optimization region (OR) - the energy range, where the absorption
is optimized. In the second target function we have introduced an exponential factor
that depends on Ng and Np,, the number of electrons in the system at the beginning
and the end of the pump pulse, respectively. The reason to introduce this factor is to

avoid ionization, i.e. we wish to lead the system to a state with the desired absorption
properties, but keeping the ionization probability low. The term exp <—7W

inflicts a penalty, whose strength can be modulated by 7, to pump pulses that produce
strong system ionization. Note that ionization is characterized in our calculations with
the help of absorbing boundary conditions: Electrons are considered ionized as soon as
they are absorbed by the boundaries. In practice, one can also combine the two target
functions: one may start optimizations using 2 [&], and later continue with 2 [&],

restarting from the previous optimum.

To test the algorithm, we start with a broader energy range and in later examples reduce
the optimization region to the visible. We chose to work with the simplex-downhill
algorithm because it is gradient free. The general procedure is explained in Section 2.6.3,
a more detailed description of the computational details is given in Appendix B. We
choose to work with a parametrized representation of the pump laser, with a sine basis.
The pump duration Tp and the polarization are fixed, as well as the delay 7 between
the end of the pump and the beginning of the probe pulse. We exclusively work in the

non-overlapping regime, where the system is probed after the end of the pump pulse (i.e.
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7 > 0). Firstly, we present optimizations, where the pump frequencies were chosen as the
frequencies of standard commercially available laser systems, later we show results with
carrier frequencies adjusted to the resonance frequencies of our system. As optimization
parameters we take only the expansion coefficients of the laser in the sine basis. The
calculatios are started with a set of initial coefficients {c?} € R, that are then iterated,

creating at each step m a pump laser:

En(t) = Z ¢ sin(w;t) O(1)O(Tp —t) (5.2)

The downbhill-simplex algorithm varies the laser coefficients {c¢;}" in order to maximize ¢,
keeping the laser polarization, the carrier frequencies and the phases fixed. As explained
in Section 2.6.3, each computation of e, consists of two steps. In the first step, the
system is evolved under the influence of the pump pulse &,,(t) for the time 7. In the
second step, the absorption after a given delay time 7 is calculated from a time-evolution
as described in Section 2.4.5: The system is probed with a delta perturbation at the
time Tp + 7 and then evolved for the “spectrum time” Ty afterwards. Finally, e, [&,] is

calculated from the average absorption coefficient &(w, 7) (2.54).

To obtain the full polarizability tensor, the time evolution after the perturbation has to
be performed four times, once for each polarization direction of the probe and a fourth
time for the reference time evolution without perturbation. Performing time evolutions
is computationally expensive and in our setup, the required resources scale linearly with
a factor of four in Ts and scale to the power of three in the radius of the box. Therefore,
during the optimization, we keep Ts and the box size as small as possible. At the end of
the optimization, the average polarization under the influence of the optimal pump laser
is converged with respect to the box size and the system is propagated for a longer time

Ts to obtain a more detailed spectrum.

5.1.1. One-dimensional Model Hydrogen

As first test case for the algorithm, we studied the optimization of a 1D soft-Coulomb
Hydrogen atom. The 1D model of Hydrogen is defined by the Hamiltonian (2.119) in
Chapter 2.5 with an atomic charge of C' = 1 and one electron N = 1. The numerical
parameters can be found in Table 5.1. After the optimization, we checked the convergence

of the spectrum with respect to the box size and found the optimization box to be
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Figure 5.1.: Optimization of the one-dimensional soft-Coulomb Hydrogen atom. (Top)

Comparison of initial (green) and optimized pump laser (Fourier transforms).
Peaks are labeled by their basis wave length and the number n of their
harmonic 2n + 1. (Bottom) Ground state (shaded) and excited state (solid
lines) spectra. Results for the initial pump laser are shown in green, results
for the optimized pump laser (after 100 iterations) are shown in blue. The
numbers label the transitions. The grey shaded box marks the optimization
area, the blue shaded one the visible range of the spectrum (350 nm - 750
nm). (Top inset) Populations of the ground state (red), the first excited
state (green) and the second excited state (blue) under the influence of the
pump pulse. The black line shows the number of electrons in the system.
(Lower Inset) The function ¢4 as a function of the number of iterations.

sufficiently large. The search space was constructed from the two wave lengths A = 800

nm and A = 1450 nm and their first nine odd harmonics. Wave lengths of 800 nm and
1450 nm can be obtained e.g. with a Ti:Sapphire (800 nm) and a diode laser (1450 nm).

All initial coefficients were set to c? = 0.005. The optimization region covers the energy

range between 200 nm and 800 nm.

Figure 5.1 shows the ground state spectrum of the 1D model Hydrogen in comparison to
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system Ax r w dt T Ts

opt conv opt conv opt conv
H, He, Be 0.2 50 100 20 70 0.025 800 50 450 1450
CHy4 0.3 15 30 ) 15 0.04 800 0 250 1000
CHiJr 0.3 15 30 5 15 0.04 600 0 250 1000

Table 5.1.: Numerical parameters: spacing Az, radius r, absorbing boundary width w,
time step dt, pump pulse duration T’p, delay 7 and spectrum time T, both
during the optimization (opt) and for the fully converged calculations (conv).
All values are given in a.u..

the excited-state spectrum after excitation by the initial guess pump-pulse &y(¢) and after
excitation by the optimized pump-pulse &1go(t) after 100 iterations. The bottom inset
shows the evolution of the control function e? with the number of iterations. The initial
pulse is actually, by chance, a rather good guess: While the ground state spectrum of
the atom is completely flat in the optimization region, the initial-guess pump pulse &p(t)
creates features there. The value of € obtained with it is around 0.1. The inset shows a
steady enhancement of €4 up to a value of about 0.2, where the enhancement starts to
flatten. This result could be further enhanced by restarting the optimization using the
optimized laser coefficients as initial guess for a new optimization (see comments on the
convergence of the downhill-simplex algorithm in appendix A). Nevertheless, since this

is just a test-case for the algorithm, we stopped the optimization at this point.

A comparison of the excited state spectra at the beginning and at the end of the op-
timization shows, that the algorithm further enhances the peaks, that appeared under
the influence of the initial pump pulse. Its effect is mostly to excite the system from its
ground state (e = —0.670 a.u.) into its first excited state (e; = —0.275 a.u.), creating
peaks at wj_,9 = 0.123 a.u. and w;_,4 = 0.211 a.u. in the optimization region (the transi-
tion from 1 to 3 is dipole forbidden) and into the second excited state (ez = 0.151 a.u.),

creating peaks at ws_3 = 0.059 a.u. and ws_5 = 0.106 a.u..

The disappearance of the ground state peaks indicates, that the laser completely depop-
ulates the ground state. A population analysis (which is shown for the improved laser
&100 in the bottom inset of Figure 5.1) confirms this suspicion. The algorithm optimizes
the pump pulse to transfer most of the population (~ 75%) from the ground state into
the first excited state, while the second excited state is also slightly populated (=~ 5%).

About 16% of the electrons are ionized and the rest is distributed evenly across the re-
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maining states. In comparison the initial pump pulse &y only transfers about 21% into
the first excited state (which is the most desirable to obtain features in the optimization
region), while the transfer into the second excited state is almost the same. It is note-
worthy, that a relatively small change in the pump pulse (see the Fourier transform of

the laser in the top panel) can have such a strong effect on the population transfer.

5.1.2. One-dimensional Helium !

As second example, we study the one-dimensional soft-Coulomb Helium atom. One-
dimensional Helium is interesting, because it is still exactly solvable and can be used to
compare the exact solution to the solution obtained with TDDFT. The 1D model of the
Helium atom is defined as given in (2.119) in Chapter 2.5 with an atomic charge of C' = 2
and two electrons N = 2. In the TDDFT treatment, the external potential is given by
(2.123) and the electron-electron interaction is described through the adiabatic exact
exchange functional (EXX, as described in Section 2.4.1.1). In the following, this case
will be named TDEXX description. The numerical parameters are the same as in the
case of Hydrogen (see Table 5.1) and also the carrier frequencies and initial coefficients

are the same. The optimization region lies between 200 and 800 nm.

Figure 5.2 shows a comparison of exact and TDEXX optimization. The first thing to
notice is the difference of the spectra already at the level of the ground state spectrum.
Taking this into account, it does not surprise that the systems show different excited-
state responses under the influence of the same initial pump pulse. Both systems (exact
and TDEXX) gain features in the optimization region under the influence of the initial
pump laser, but to a different extend. While in the exact case, the system reacts strongly
to & reaching an 5’:’&(” of approximately 0.090, 5’:’79[) pxx = 0.006 is about an order
of magnitude smaller. This trend continues throughout the whole optimization: both
models enhance £2, but while the exact treatment reaches an 6?7’61;)2& of about 0.11 after
the first 100 iterations, 5’2’%%0]5 vy is only 0.013. This difference is clearly visible in the
excited state spectra. While the exact model under the influence of the pump gains a
broad feature in the optimization region (consisting in fact of several peaks), the TDEXX
model only grows a shallow peak, which almost disappears in the bottom panel, which

shows the results fully converged with respect to the simulation box size.

IThe results presented in this section form part of [235].
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Figure 5.2.: (Middle and bottom) Ground state (shaded) and excited state (solid lines)
spectra of one-dimensional Helium in a box of (middle) r = 50 a.u. and
(bottom) r = 100 a.u.. In the bottom panel, the excited state transitions of
the exact calculations are indicated. (Top) Comparison of initial (green) and
optimized pump laser (Fourier transforms). Peaks are labeled by their basis
wave length and the number n of their harmonic 2n + 1. (Inset, middle)
The control function e as a function of the number of iterations. (Inset,
bottom) [(¥(#)|¥;)|? of the exact time propagation under the influence of
the optimized pump pulse for the (red) ground state, (green) first excited
state, (blue) second excited state, (pink) third excited state and (turquoise)
fourth excited state. In all panels, results obtained by exact propagation
are shown in blue, results obtained by (TD)DFT using the adiabatic spin-
polarized exact exchange functional are shown in red. The grey shaded box
marks the optimization area, the blue shaded one the visible range of the
spectrum (350 nm - 750 nm).

In the exact case, the laser transfers the population from the ground state (¢g = —2.238 a.u.)
into the first excited state (e; = —1.705) with the help of the 13th carrier frequency (the
9th higher harmonic of A = 1450 nm) at wpi3 = 0.534 a.u.. Due to this population

transfer, the peak at wg—1 = 0.533 a.u. turns from positive to negative and peaks com-
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ing from the first excited state (wi2 = 0.076 a.u. and wi4 = 0.159 a.u.) arise in
the excited-state spectrum, where the peak at wi_,9 is located in the visible part of the
energy range. At the same time, population is transfered into the second excited state
(e = —1.629 a.u.), leading to e.g. the peaks at wy_,3 = 0.062 a.u. and we_,5 = 0.103 a.u..
Note, that the numbering of the peaks is according to their appearance in the ground
state spectrum, i.e. states, that are not dipole coupled to the ground state (e.g. triplet

states) are not discussed.

The bottom inset of Figure 5.2 shows the time evolution of the populations |[(¥(#)|¥;)|?
during the radiation by the pump &199(t). The population analysis confirms, that the
laser depopulates the ground state and transfers population into the excited states. At
the end of the pump pulse only ~ 8% of the electrons remain in the ground state, the
rest has been transfered into higher excited states. About half of the electrons have
been excited into the first excited state, and about a fifth into the second excited state.
Also the third and fourth excited state are populated. This population of excited states

explains the appearance of the peaks in the excited state spectrum.

The strong difference between the exact and the TDEXX case might be due to two effects.
Firstly, it is known, that the real-time description of resonance processes is subject to an
error if TDDFT is used with adiabatic functionals [231, 236] and the consequences for
calculations using coherent control schemes were pointed out for example in Ref. [237,
238]. Secondly, the search space formed by the carrier frequencies of the pump pulse
includes a frequency that is almost exactly resonant to the transition from the ground
state to the first excited state in the exact case, but not so close to resonance in the
TDEXX picture. Assuming a Rabi-like picture, this detuning between the transition
energy and the driving frequency would lead to a smaller population transfer. While the
small peak of the TDEXX spectrum is at roughly the position of the wq_,o-transition-
peak, it does not seem to be strongly populated. The population analysis of the exact
calculation suggests that the excitation of the higher states is a subsequent process after
the excitation to the first excited state. Therefore, if this is not strongly populated, no
subsequent excitation of higher states can occur. This might explain the lack of higher

excitation peaks in the TDEXX spectrum.

To clarify this aspect, we repeated the TDEXX optimization with an adapted search

1450

space, in which the laser component at w = wg™” was replaced by a component with

the same initial intensity at w = 0.549 a.u., which is in resonance with the TDEXX
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absorption coefficient

Figure 5.3.:

0.2 0.3 0.4 0.5

energy [a.u.]

(Middle and bottom) Ground state (shaded) and excited state (solid lines)
spectra of one-dimensional Helium in a box of r = 100 a.u.. (Middle) Spec-
trum optimized with the adapted search space using TDEXX after 550 iter-
ations. Features in the visible have emerged. (Bottom) Optimized spectra
after 100 iterations: Comparison of the exact optimization (blue) with the
TDEXX optimization in the adapted search space (black). (Top) Optimiza-
tion lasers in energy space: (shaded green) adapted initial laser and (green
line) original initial laser as well as optimized laser with TDEXX after (black)
100 iterations and (red) 550 iterations. (Inset) Target function €4 for the
adapted TDEXX optimization (red) and original exact optimization (blue).

transition from the ground to the first excited state. The results are shown in Figure 5.3.

The middle panel shows the optimized spectrum after 550 iterations. In contrast to

the optimization with the previous search space, features in the visible emerge. The

bottom panel shows a comparison between the optimization in the exact case with the

previous search space and the optimization in the TDEXX case with the adopted search

space. Omne notices, that similar features arise, but still the 1 — 2 peak of the exact

case seems to be missing. There is, however, one peak arising in the TDEXX case at

the same position as the exact 2 — 3 peak, which could in fact be the shifted 1 — 2
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transition. Unfortunately, one cannot do a real population analysis with TDDFT (since
we do not have access to the real many-electron state and its projections), and therefore
this question remains unsolved. Nevertheless, one can conclude that a better performance
of the exact optimization can be obtained once the search space is chosen more wisely,

including the right frequencies.

Finally, we draw attention to the fact, that again, one can observe the artefacts of TDDFT
spectroscopy as already pointed out in Chapter 3. While the peaks of the exact spectrum
are independent of the ionization, this is not true in the TDEXX-case. With increasing
ionization, the peaks are shifted to higher energies (compare the ground state and the
excited state spectrum in Figure 5.2). To avoid these artefacts as much as possible,

attention should be paid to keep the ionization of the system as small as possible.
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Figure 5.4.: (Top) Transient Absorption Spectrum of Helium after the excitation with a
45 cycle sin? laser pulse of intensity I = 5.26 - 10" Wem™2 with a carrier
frequency resonant to the excitation energy from the ground state to the
first excited state for (left) exact and (right) adiabatic EXX description.
(Bottom) Time-evolution of the cross section tensor at selected energies E,, =
0.2 (red), 0.4 (blue), 0.6 (purple) 0.8 (turquoise) a.u. for (left) exact and
(right) adiabatic EXX description. In the exact case, the curve at 0.6 a.u. is
offset for clarity. In all cases, the time interval T' = 27/e, — ¢, is shown.
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To wrap up the comparison between exact and TDEXX formalism, we compare the
dependence of the excited-state spectrum on the delay 7 in exact and TDEXX calcula-
tions. Figure 5.4 shows in the top panels the TAS of He in the exact description (left)
and TDEXX formalism (right). The systems were excited by a 45 cycle sin? laser pulse
resonant with the excitation energy from the ground state into the first excited state. In
both cases, the laser excites the system into a linear combination of ground state and first
excited state, resulting in a peak at w = 0.076 a.u., which corresponds to the transition
from the first to the second excited state. Note, that the excited state spectra at a delay
of 7 = 0 were already shown in Figure 3.2 and discussed in Chapter 3. Comparing the
two figures, one notes, that here, the features in the very low energy region are missing.

This is due to the usage of absorbing boundary conditions.

As previously discussed, a system in a linear combination of ground state and first excited

21
€1—€0’

state should have spectral components, which oscillate with the period time T =
which is 11.76 a.u. in the exact case and 11.26 a.u. in TDEXX. However, in the exact case,
a time-dependence of the spectrum is hardly visible due to scaling effects. Therefore, in
the bottom panels of Figure 5.4 we display a time-analysis of the spectrum, where we
record the cross section in dependence of the delay at a number of energies En = 0.2,
0.4, 0.6 and 0.8 a.u.. The exact case is shown in the left bottom panel. The figure shows
the time window corresponding to the period time 11.76 a.u.. As expected, the values

oscillate with the predicted period time.

We now compare this to the TDEXX case. Here, the oscillations in the spectrum with
the delay time are clearly visible. Nevertheless, performing the same analysis as in the
exact case, one finds, that the values of the cross section vector in the TDEXX case do
not oscillate with the expected periodicity of Trppxx=11.26 a.u., but twice as fast (see
bottom right panel). We conclude, that the TDEXX description seems to have a similar
structure to the exact case, in the sense, that the energy difference of the involved states
is reflected in the periodicity of the oscillations of the spectrum. Nonetheless, there
are major differences in the behaviour, which is reflected in the factor of two in the
periodicity. We again point out, that the observed lineshapes are also different and the
lineshapes occuring in the TDEXX description could e.g. be the result of two peaks of
Lorentzian/Rayleigh shapes, which are shifted in energy.
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Figure 5.5.: (Middle and bottom) Ground state (shaded) and excited state (solid lines)
spectra of one-dimensional singly-ionized Beryllium in a box of (middle)
r = 50 a.u. and (bottom) r = 100 a.u. (Top) Comparison of initial (green)
and optimized pump pulse (Fourier transforms). Peaks are labeled by their
basis wave length and the number n of their harmonic 2n + 1. (Inset) The
target function e™ as a function of the iteration number m. The grey
shaded box marks the optimization area, the blue shaded one the visible
range of the spectrum (350 nm - 750 nm).

5.1.3. One-dimensional Singly-lonized Beryllium

Our final single-atom test system is one-dimensional singly-ionized Beryllium, which is
calculated with TDDFT using the adiabatic local density approximation (ALDA). The

optimization parameters (box and times) are defined as before (see Table 5.1). The carrier

S()Onm 800nm

frequency search space is the same as before, except that we discarded w and wg

for being too close to wj"™ and w{?®®. The optimization region lies between 200 and

800 nm.

Figure 5.5 shows spectrum and laser of the best result after about 550 iterations. The

algorithm clearly enhances the amplitude of the 8th carrier frequency (the 5th harmonic
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of A = 1450 nm) wpg = 0.3457 a.u., that is in resonance with the ground state excitation
wp—1 = 0.346 a.u.. Nevertheless, it is not clear, which transition belongs to the peak,
that appears in the optimization region. It lies at around 0.15 a.u. but the lowest exci-
tation from the first excited state, judging by the energy differences in the ground state
spectrum, should be at around 0.2 a.u. The peak is not a spurious numerical feature,
which we discarded by repeating the calculations with very well converged parameters.
The most likely explanation is that this peak is due to a transition w;_,,, where wg—, is
dipole-forbidden, and therefore does not appear in the ground state absorption spectrum.
This example is a good illustration of how a general search algorithm like the one we
employ can find routes to the solution that are not obvious, or are even hidden, in a

simple system analysis.

5.1.4. Methane

J

Figure 5.6.: Structure of Methane: A Carbon atom tetrahedrically surrounded by four
Hydrogen atoms. Taken from https://commons.wikimedia.org/wiki/
File:Methane-3D-balls.png.

Finally, we applied our scheme to molecules. Since the optimizations involve many time-
propagations, we had to choose a relatively small molecule due to the restriction of compu-
tational resources. We chose Methane, which consists of one Carbon atom tetrahedrically
surrounded by four Hydrogens (see Fig. 5.6) with a binding lenth of CH = 2.054132 a.u..

It has eight valence electrons.

The optimizations of neutral CHy were carried out in a reduced version of the previous
carrier frequency search space used for the case of Beryllium, where — in order to keep
computational times as small as possible — only the lowest nine frequencies were kept. As

before, the optimizations were carried out in a small box and after the optimization the
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Figure 5.7.: (Middle and bottom) Ground state (shaded) and excited state (solid lines)
spectra of Methane (CHy) in a box of (middle) r = 15 a.u. and (bottom)
r = 30 a.u. for two different laser pulses. The grey shaded box marks the
optimization area, the blue shaded one the visible range of the spectrum (350
nm - 750 nm). The spectra within the optimization area are shown enhanced
by a factor of 5. (Top) Comparison of initial (green) and optimized lasers
(Fourier transforms). Peaks are labeled by their basis wave length and the
number n of their harmonic 2n + 1. (Inset) The spectra shifted to lower
energies to coincide with the ground state spectrum.

calculations were converged with respect to the box size. The parameters can be found
in Table 5.1. The employed functional was the adiabatic LB94 functional due to its good
description of higher lying states and the optimization region covered the energy range
between 200 and 800 nm.

The use of a 3D model further increases the required computational resources. In par-
ticular the calculations scale cubically with the simulation box radius, which makes it
unfeasible — with the current numerical implementation and resources — to reach a radius
like the ones used for 1D calculations. Unfortunately, the use of small boxes leads to

the artificial interaction of the electrons with the box boundaries. This effect results, in
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our calculation, in the appearance of spurious peaks in the absorption spectrum that are
due to “box states”, i.e. bound states that are due to the confinement in the simulation
region. These unwanted errors can be alleviated with the use of absorbing boundary
conditions, but even in this case the box needs to be sufficiently large. In practice, we
found a good compromise using spherical boxes with a 15 a.u. radius, which includes a
5 a.u. absorbing region. This is the “small box” that we used for the optimization runs;

later the optimal pulse was checked with a “large box” twice as large.

Furthermore, in order to discourage the algorithm from exciting too many electrons into
the continuum, we modified the target function 5;4 to include an exponential “penalty”

for ionization, leading to the definition of £Z:

eB = cAexp (—nyO]_VjVTP> (5.3)
Here, Ny is the number of electrons of the system at time zero and Np, is the number
of electrons left in the system after the pump. The parameter  controls the strength of
the penalty. Figure 5.7 shows a comparison between the average absorption coefficients
712(E) (red) in the 12th iteration step and 5% (E) (blue) in the 66th iteration step of
the same optimization. A comparison of the spectra in the small and the big box shows,
that the obtained features in the optimization region persist. We note, that both spectra
are shifted with respect to the ground state spectrum: 512(E) by about 0.03 a.u., 5% (E)
by about 0.07 a.u.. This is due to ionization, which is not completely suppressed by
the algorithm. The ionization in the case of 71%(E) is about 0.1 electrons, whereas the
ionization in the case of %0 (F) is 0.35 electrons. The inset of the top panel shows the
converged spectra, offset by these shifts. One sees, that the weight of the first peak is
almost not affected by the laser, while the weights of the higher lying peaks change and

some of them become negative.

Since the optimization of CHy was smaller than what we had hoped for, we started
working with its doubly-ionized version CH3+. CHiJr has two main advantages over
neutral Methane: (i) it has two fewer electrons and therefore requires about a quarter
less computational time, and (ii) it has more unoccupied bound states. The number
of bound states is important, since we want the excited state spectrum to have peaks
coming from transitions into bound states, not into the continuum. Also it is obviously

more difficult to ionize the cation.
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The previous results were obtained with a search space, constructed from carrier frequen-
cies that are high harmonics of standard commercially available laser systems, such as
the ones we used for the 1D models presented in the previous sections. Nonetheless, those
results obtained for 1D Hydrogen and Beryllium suggest, that it might be important to
include resonant laser frequencies in the search space. For the optimization of CH2", we
therefore tailored the carrier frequencies included in the search space to resonances of
the molecule. The excited state resonant frequencies were obtained from resonances in

the ground state spectrum of CH?J.

** Here, we present two of these optimizations. For the first search space, the idea was
to find two eigenstates with energies €, and ¢;, that differ by an energy in the visible:
0.057 a.u. < €y — ¢ < 0.139 a.u.. By exciting the system into the lower state ¢ (“basis
state”) one might obtain transition peaks in the visible due to the transition into the
higher one. This fact is not guaranteed since the transition might not be dipole allowed
— a possibility that we cannot know beforehand by simply performing linear response
TDDEFT calculations. The energy of the eigenstates with respect to the ground state €q
is extracted from the ground state spectrum of CH?J, which is shown in Figure 5.8. The
peaks are numbered for reference and we refer to them by €,, with n being the peak

number in the ground state spectrum.

The ground state spectrum shows, that the first possible basis state is e3. The energy
difference between €3 = 0.690 a.u. and €4 = 0.816 a.u. is w3_4 = 0.126 a.u. and lies —
with 362 nm — at the red end of the visible spectrum. Also ¢4 provides a transition in
the visible range — into €5 = 0.938 a.u. with wy5 = 0.122 a.u. = 373 nm. Starting
from €5, states even have more than one transition in the visible. We therefore choose
a carrier frequency search space, that allows the construction of a pump pulse, that
excites electrons from the ground state into e3 and higher lying states either directly or

by successive excitations.

The first search space includes carrier frequencies, that are resonant to the ground state
excitation energies €, or to excited state excitations €, — €,. To avoid ionization, all
carrier frequencies are smaller than e; = 1.0 a.u.. The second carrier frequency search
space was designed using the ionization potential Ip of the system (which according to
Koopman’s theorem is equal to minus the energy e of the highest occupied KS orbital

vp) and the energy differences Ip — €,. One carrier frequency is resonant with —eg,

**The results presented in the following for doubly-ionized Methane form part of [235].
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Figure 5.8.: Ground state spectrum of doubly-ionized Methane CHZJF. Peaks are num-
bered for later reference. The the blue area marks the visible range of the
spectrum (350 nm - 750 nm).

all other frequencies are resonant with excitations from the target excited states (es to
€g) to the continuum limit. The idea is to excite an electron into a state close to the
ionization threshold and from there deexcite it into one of the target states. The laser
frequencies, that were included in the search spaces and the corresponding resonances

are summarized in Tab. 5.2.

In both optimizations, box, time-step, delay and spectrum time were the same as for
neutral CHy (see Table 5.1). The pump duration was reduced by 200 a.u. to 600 a.u.
(14.5 fs). The initial coefficients were ¢! ~ 0.001 for all i # 6 and ¢} = 0.005 and
cH ~ 0.001 for all i. The employed functional was ADSIC LDA (see Chapter 2.4.1.1)
because of its accurate description of the higher lying states. The optimization region was
reduced to the interval between 328 and 750 nm. The obtained pump pulses &7 and &7,
the associated excited-state spectra and the resulting colours are shown in Figure 5.9.
It can be seen that both search spaces include optimal lasers that cause the molecule to

loose its transparency and absorb in the visible. These new absorption features found by
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Search Space I

wi wj wh wi who owg o Wl Wb oWy Wi
0.122 0.248 0.345 0.479 0.601 0.654 0.690 0.816 0.938 1.000
€4— €5 €3—€5 €1 /€ —€3 € —€4 €] — €5 €9 €3 €4 €5 €7

Search Space II

LA Y L LR (L
0.311 0.364 0.386 0.426 0.548 0.674  1.364

es—Ip e —1Ip es—Ip e —Ip er—1Ip eg—1Ip Ip

Table 5.2.: Laser frequencies (in a.u.) and the corresponding resonances of the search
spaces of the optimization of CH?J. Nomenclature as in Figure 5.8, e is
minus the energy of the highest occupied KS state. w?{ is the average of

€1 = 0.337 a.u. and €3 — €1 = 0.353 a.u.. Since the frequencies are broadened

by the finite pulse duration, wgl) covers both resonances.

the algorithm making use of a small simulation box persist when repeating the calculation
with a larger, fully converged box radius. We may therefore conclude that the proposed
algorithm is a viable option to find pump laser pulse that excite systems into visible light
absorbing states, also when considering realistic 3D molecular first principle descriptions,
and not only 1D models. The scalability of TDDFT permits to foresee the extension of
the technique to larger systems. Nonetheless, the need for larger search spaces for more
complex molecules and the resulting increase of the number of iteration steps needed

pose challenges on the computational feasibility.

These challenges can partially be faced by intelligent design of the search space, i.e. by
careful selection of the carrier frequencies included in the search space. In order to be
able to design more appropriate search spaces, a detailed understanding of the underlying
dynamics would be useful. This has two benefits: (i) By analyzing the dynamics, one
can obtain deeper insight into how laser excitations are described within the TDDFT
formalism. (ii) An identification of the laser components, that are the main driving forces
in the optimization, allows us to put forward a two-step optimization process. In the first
one, a broader search space could be used for a pre-optimization to find the important
frequencies in the optimization. In a second step, one could then discard the frequencies
without effect and further optimize the pulse in a smaller search space, leading to faster
convergence. Alternatively one could use the cleaned pulse as an initial guess for a more

costly gradient-based algorithm, which would be expected to show faster convergence
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(Middle and bottom) Ground state (dark grey) and excited state spectra of
doubly-ionized Methane (CH3") in a box of (middle) r = 15 a.u. and (bot-
tom) r = 30 a.u. for two different pump pulses &7 (brown) and &1 (green).
The grey shaded box marks the optimization area, the blue shaded one the
visible range of the spectrum (350 nm - 750 nm). (Top) Comparison of initial
(shaded) and optimized (solid lines) pump pulses (Fourier transforms). (In-
set) Chromaticity diagram with colours obtained by excitation of the system
by the pump pulses.

since the initial guess is already close to an optimal solution. This scheme has recently

been proven useful in the optimization of quantum gates [239].

In either scenario, the first step is to identify the components of the control laser, that play

the main role in the obtained excitation. One can think of several possible approaches

to this analysis: (a) One solves the response equations using e.g. Casida’s scheme and

obtains the many-body excitations in a basis of KS particle-hole excitations. One de-

termines the time-dependent occupations of the KS ground state orbitals and tries to

correlate the change in occupation with the many-body excitations. One checks against

the excited state spectrum to confirm the analysis. (b) One uses TAS and its analysis as
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described in Chapter 3 to analyse the time-dependent excitation of the many-body states.
(c) One selectively exposes the system to the single frequency components of the control
laser (and some combinations) and calculates the resulting excited state spectra. These
spectra can then be compared to the excited state spectrum created by the full pump
and to the many-body excitation energies obtained from the ground state spectrum (as
described before).
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Figure 5.10.: (Middle and bottom) Laser spectra obtained by exposure of CHiJr to se-
lected frequency components of the pump pulse &. The shaded line shows
the spectrum obtained by the full pulse. (top) Many-body excitation en-
ergies obtained through analysis of the ground state spectrum. The x axis
denotes the excitation energy, the y axis the excited state, from where the
excitation takes place.

In the following, we opt for (c), demonstrating the procedure using the example of the
optimized pump &7 obtained in the first search space. Figure 5.10 shows in the top panel
the many-body excitation energies, which were obtained from the ground state spectrum
through calculating the energy differences between the ground state peaks. Each row

represents the possible transitions between the corresponding peak (e.g. the row labeled
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’2’ belongs to the second peak of the spectrum) and the others (higher and lower ones),
i.e. the n-th row depicts the transition energies w;,_,,. Transitions from the first excited

state lie outside of the energy range shown .

We want to compare these many-body excitation energies to the peaks obtained in the
spectrum by selectively exposing the system to the single frequency components of the
pump. From this we hope to be able to reconstruct the excitations triggered in the
system by the single frequency components. Furthermore, we want to identify the main
driving frequencies of the multi-step excitation, that leads to the optimized excited state
spectrum. We start this analysis by exposing the system to each of the pump frequencies
{wi}i=1,...10 alone. We find, that out of the eight frequencies, there are only two, that are
able to excite the system, leading to a change in the spectrum in comparison to the ground
state spectrum. These are the frequencies wé = 0.654 a.u., which corresponds to the
excitation from the ground state into the second excited state = e and wé = 0.816 a.u.,
which corresponds to an excitation from the ground state into the fourth excited state
= ¢4 (see Tab. 5.2). Figure 5.10 shows the resulting spectra (blue lines). Here, we focus
on the analysis of the frequency wé , which is shown in the middle panel. The analysis of

wé , which is shown in the bottom panel can be done in a similar way.

Figure 5.10 shows a comparison of the full excited state spectrum (obtained through
excitation with the full control laser &') in shaded with the spectrum obtained by the
exposure to the single frequency component wé . One sees, that this single frequency
causes a peak similar to the main peak of the full spectrum. This is surprising at first
sight, since wé is the resonance frequency to excite the system from its ground state into
its second excited state and as shown in the top panel, the second excited state (labeled
’2’, depicted in blue crosses) should not have any peaks at this energy. This shows, that
calculating the energy differences of the ground state peaks can only lead to a rough
analysis of the excitation energies between excited states: There might be transitions to
peaks, which do not show up in the ground state spectrum (since their excitation from
the ground state might be dipole-forbidden) and others, where the transition between

the excited states is dipole-forbidden.

To extract the important frequency components of &7 and get further insight into the
dynamics of the excitation, we now combine wé with a second carrier frequency to look
for subsequent excitations. Again, only a few of the frequencies show effect, namely w;

and w3, but since the changes due to wg are minor, we do not analyze this combination
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further but concentrate on the combination with w{. Note, that the same holds true
for the case, where we analyze the combinations with the carrier frequency wé (shown
in the bottom panel). By combining w} with the laser component at w! = 0.122 a.u.
(green spectrum) we are able to reconstruct already most of the features in the depicted
energy range and to create an absorption peak in the visible, which is even slightly higher
than the one created by the full pump &!. This is partially “corrected” by adding the
component at wé , which modifies the main peak in the visible in the direction of the one
obtained by &7. As can be seen in the figure, this combination of the three frequency
components at w!, wé and wé almost completely reproduces the spectrum obtained in

the energy range [0.0-0.3] a.u..

By exposing the system to combinations of the frequency components of the pump pulse,
we were therefore able to identify the main driving frequencies of the multi-step excita-
tion. A possible application of this knowledge would be to start a new optimization in a
search space consisting of only these three frequencies. As a side effect of this analysis we
even found a pulse, that produces a higher absorption in the visible than the optimized
one — the one, that only consists of the components at wé and w{ . Therefore, one would
expect the algorithm to follow this path in future iterations, diminishing the frequency

component at wé.

5.2. Approach Il: Spectrum of an Excited Kohn-Sham
Orbital

As we have seen in the last section, the optimizations obtained with our first approach are
not very impressive. We have found that the choice of the optimization space is crucial to
obtain good results; unfortunately, the identification of a good search space is not easy.
One could in principle choose a very large search space hoping that it contains the right
region, but then the optimizations become prohibitive: the number of optimization steps
grows super-linearly with the search space dimension. Each of these steps requires one
time evolution under the influence of the pump pulse and four time evolutions to obtain
the spectrum after the excitation. In the following, we present a different approach, that
cuts back on the required computational resources by getting rid of the time evolution
after the laser. In this approach, the optimization is divided into two steps: In the first

step, we analyse the ground state spectrum for promising excited many-body states,
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and in the second step we look for a laser pump pulse that drives the system, at least

approximately, into these excited states. The procedure is the following:

I First, we perform an analysis of the ground state absorption spectrum, which can be
computed with the real-time propagation technique, or with the Casida equations.
One can then identify states that (1) are strongly dipole-coupled to the ground
state, and (2) are separated energetically to other excited states in the visible

range, so that their absorption spectrum is likely to contain features in that range.

IT We then analyze the excited state in terms of the Casida ansatz for the excited

states [177]:
W) ~ Z Cijod}gdicr|(b0> ; (5.4)

ijo

where Wy is the ground state KS determinant, and &;de is a creation-annihilation
operator pair that substitutes the occupied ioc KS orbital by the unoccupied jo
orbital (i and j run over the spatial orbitals, and o is the spin index). The coef-
ficients c¢;j, are obtained from the solution of the Casida equations. The resulting

states are approximations to the true excited many-particle states.

IIT We are interested in those excited states that are composed primarily of one domi-
nant single-particle excitation, i.e. those for which the previous linear combination
of determinants is dominated by only one of them. Note, however, that we are
considering spin-restricted calculations, and therefore, even pure “single-particle”

excitations are in fact necessarily composed of two Slater determinants, i.e.:

) = \2 b + alag) [0). (5.5)
IV Once we have identified interesting excited states according to those criteria, we
construct the Kohn-Sham determinants that approximate them, by substituting
the corresponding occupied by unoccupied orbitals. We then compute the excited
state spectra of these approximate excited states to confirm that they have good
response properties in the visible (a fact that is not guaranteed, since the excited
state to excited state transitions could be dipole-forbidden). In this manner, we
select the excited state with the spectrum, that is most convenient for our purpose,

e.g. that has the largest absorption in the visible.

V This will be the target state for step two: we use an optimal control algorithm to
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find a pump pulse that excites the system from its ground state into this target

state.

Note that, in the spin-restricted setup that we are using, the simple swap of an occupied
by an unoccupied orbital results in fact in a double excitation, that cannot be used
to approximate the excited states that we are targeting. As mentioned above, these
are necessarily composed of two Slater determinants, with unoccupied KS orbitals of
opposite spins. We want, however, to use only one Slater determinant, and in order to
do so, we employ the following further approximation: we swap the occupied state i by
a linear combination, with equal weights, of ¢ and the unoccupied state j. The resulting
KS determinant has the same density as the single particle excitation composed of the

two Slater determinants.

In the following, we demonstrate the procedure using the example of the Methane
molecule as described before. In order to be able to perform the Casida analysis, we
return to the neutral Methane. This is necessary, because due to the three-fold degen-
eracy of the KS HOMO, one has to use fractional occupations for the cation in order to
converge the ground state density, and our implementation of the Casida method does
not allow for fractional occupation numbers. The calculations were performed in a spher-
ical box of radius r = 45 a.u. with 15 a.u. absorbing boundaries and a spacing of 0.3 a.u..
Again, the LDA functional in combination with ADSIC was used.

The ground state spectrum of Methane using the LDA-ADSIC functional is shown in
Figure 5.11. One candidate for a target state is the first excited state ¢; = 0.379 a.u.
From here, there might be interesting transitions to €3 = 0.458 a.u., ¢4 = 0.471 a.u.,
€5 = 0.491 a.u. and €5 = 0.496 a.u.. With excitation energies between wi_,3 = 0.079 a.u.
(=577 nm) and w6 = 0.117 a.u. (= 389 nm) all of them lie in the desired energy range.
An analysis of the Casida excitations furthermore reveals, that there are more transitions
in this energy range, which do not appear in the ground state spectrum, because their
excitation from the ground state is dipole-forbidden. Nonetheless, they might contribute
to the excited state spectra. Also interesting as target state are the second excited state
€2 = 0.425 a.u. and the third excited state e3. From both, excitations in the visible can be
found. Analyzing €1, we find that it is three-fold degenerate and contains contributions
from the KS excitations @3 — @5, 3 — @5 and @4 — @5 (¢; being the involved KS
orbitals). By applying a small electric field during the ground state calculation, one can

align the KS orbitals in such a way, that one of the three versions of €; belongs to a
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Figure 5.11.: Ground state spectrum of Methane using the LDA-ADSIC functional.

single KS excitation, e.g. consists to almost 100 % of the excitation ¢4 — 5. This
transition is then used for two different excitations. In the first, we transform the 4th KS
orbital ¢4 into 5. This can be interpreted as a double-excitation from the HOMO into
the LUMO. Accordingly, half of this transformation, i.e. transforming 4 into a linear
combination of ¢, and 5 with equal weights: @4 — 1/v/2 (4 + 5) results in the same
density as exciting a single electron from the HOMO into the LUMO and can therefore

be interpreted as such.

In the same way, we find that e; (which belongs to the HOMO — LUMO+1 transition)
consists in transforming two of the degenerate KS orbitals @2, 3 and ¢4 into linear
combinations of themselves with one of the also degenerate KS orbitals ¢g, ¢7 and s,
e.g. at the same time transforming 3 — 1/v/2(p3 + @g) and o4 — 1/v/2(¢4 — 7). This
forms the third excitation, that we perform. After the transformations are made, the
spectra of the so-created excited-states are calculated. They are shown in Figure 5.12
in the bottom panel while the top panel shows the many-body excitation energies as
obtained from the ground state spectrum (energy differences to higher and lower lying
states are depicted). The excited-state spectra confirm, that all three excitations lead to

strong absorption in the visible. We also see, that both - the peaks of the single and of the
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Figure 5.12.: (Bottom) Excited-state spectra of CHy according to scheme II and (inset)
the chromaticity diagram with the resulting colours. (Top) Many-body ex-
citation energies of CHy obtained through calculating the energy differences
of the ground state spectrum. The x axis denotes the excitation energy, the
y axis is the excited state, from where the excitation takes place.

double excitation from the HOMO into the LUMO (HOMO-LUMO (le) and HOMO-
LUMO (2e)) are at energies, where €; should have peaks according to the frequency
analysis shown in the top panel. The case of the HOMO — LUMO-1 excitation is not
clear though. The new peak in the spectrum is at an energy, where only €; should have

peaks.

In the second step, we would now have to find a laser, that excites the system into the
state, that we put it into manually. This could be done using a quantum optimal con-
trol algorithm. Unfortunately, there was not enough time to finish the quantum optimal
control calculations for this thesis. However, I did some test runs, where I exposed the
system to pulses with carrier frequencies around the many-body resonance frequency.
Particularly in this system, due to the degeneracy of the KS-HOMO, it was important

to chose the laser polarization in accordance to the orientation of the KS-orbitals. These
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test runs were done in a very small box, so the results are not necessarily reproducible in
a bigger box neither. What I found during these optimizations, was, that for the system
in question, it was necessary to dynamically “retune” the carrier frequency during the ex-
posure to the pump. For the small system I was able to achieve a considerable excitation
using this retuning technique. Together with the known problem of achieving full excited
state populations using standard approximate adiabatic xc-functionals of TDDFT, this
could give first hints to the necessity of combining Quantum-OCT with chirped pulses

to obtain a satisfying excitation into higher states in the TDDFT formalism.

5.3. Summary and Conclusions

In this chapter, we have presented two ways of optimizing the absorption in the visible
region and how they can be used in combination with TDDFT. In the first approach,
we define a target function — the integral over the visible region of the excited-state
absorption spectrum — and optimize the coefficients of a pump pulse, which was given as
linear combination of components with different carrier frequencies (the search space) to
maximize the target function, which was calculated from the excited state spectrum after
a certain delay time. The coefficients were the only components that were varied; phases,
duration and polarization of the pump as well as the delay between pump and probe
were kept fixed during the optimization. The algorithm was tested for a one-dimensional
Hydrogen model, which was solved exactly, one-dimensional Helium, which was used to
compare exact and TDEXX treatment and for singly-ionized Beryllium, which was only
treated within the TD-ALDA framework. The carrier frequencies included in the search
space belonged to the wavelengths A = 800 nm and A = 1450 nm, two standard laser

wave lengths and their higher harmonics.

We found that this search space was appropriate for both Hydrogen and Helium in the
exact treatment. In both cases, the search space included the transition energy from the
ground state into the first excited state and the algorithm was able to take advantage of
this resonance to excite electrons into excited states and create absorption peaks in the
visible. In the case of Helium, even subsequent excitation into higher excited states took
place, further improving the absorption in the target region. In comparison, the TDEXX
optimization of Helium did not lead to satisfying results. We found that this was due to

different ground-state excitation energies of the exact model and the TDEXX treatment.
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While in the exact case, the resonance between the ground state and the first excited
state was included in the search space that was not true for the TDEXX case, where a
resonant excitation into the first excited state was not possible. This demonstrates the
importance of an appropriate design of the search space. When we adapted the search
space by replacing the exact excitation energy by its TDEXX equivalent, we found that an
excitation was achieved, creating features in the visible, which were shifted with respect
to the exact ones. We found that it was hard to tell, if the emerging peaks came from
subsequent excitations or were just shifted with respect to the exact ones, since TDDFT

does not allow for a real population analysis.

The importance of resonances in the design of the search space also becomes clear in the
case of singly-ionized Beryllium in TDALDA treatment. Here, the optimization algorithm
clearly enhances the amplitude of the laser frequency belonging to the resonant excitation
of the first excited state from the ground state. This leads to the creation of a peak in
the optimization region with unknown origin. From this example, we also learn that the
ground state spectrum can only give us a few possible excited-state excitation peaks. Not
all excited-state transitions that we can calculate based on the ground state spectrum will
be allowed and not all allowed excited-state transitions are deducible from the ground

state spectrum.

We also analyzed the time-dependence of a non-stationary state spectrum in TDDFT,
using the example of Helium, which was excited into a linear combination of ground state
and first excited state. We found that in this linear combination, the TDEXX oscillations
in the spectrum were related to the many-body excitation energy as one would expect.
Nonetheless, the oscillations were twice as fast as the predicted ones. Analyzing this
behaviour in TDDFT is the goal for future work.

We then moved on to Methane and doubly-ionized Methane, which is more convenient
for computational purposes due to it having two fewer electrons (and therefore being
computationally less expensive) and also because it has more unoccupied, bound states.
We learned that the chosen search space was not suitable for Methane. Furthermore,
we found that the algorithm favours the excitation of box states, leading to a large,
but unfortunately unphysical absorption in the optimization region. We found that this
problem can partially be solved by introducing absorbing boundaries and an exponential
penalty factor for ionization. For doubly-ionized Methane, we designed two search spaces

taking into account its resonances. The first search space was based on subsequent
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excitation, the second one on excitation of states close to the ionization threshold and
subsequent stimulated relaxation into the lower excited target states. We found that
both approaches enable us to construct pump lasers, which do improve the absorption in
the visible. Furthermore we found that an analysis of the involved excitations can yield

some insight into the dynamics of excitation, but exactly identifying the mechanisms is
difficult.

Regarding the technical aspect, we found that whilst this optimization scheme in princi-
ple works, it requires vast computational resources due to its multiple time propagations.
An intelligent design of the search space can cut down on the resources needed, but is
hard to do in practice since the ground state spectrum does not provide any information
on whether inter-excited-state transitions are allowed or not. The second approach de-
veloped cuts down on computational resources within the optimization by splitting the
optimization into two steps. In the first step, a KS excited state with desirable features is
identified. For neutral Methane, we were able to find three interesting KS excited states.
In the second step, a laser is found that excites the system from the ground state into
this KS excited state. To this end, efficient quantum optimal control algorithms can be

used. Finding these pulses is the goal for future work.
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6. Conclusions and Outlook

“I gotta stop somewhere - I'll leave you something to imagine.”

Richard Feynman - Symphony of Science

In this thesis, I studied how to analyze and control transient spectra using exactly solvable
model systems and first principles real-time time-dependent density functional theory.
Normally, TDDFT is used for the description of the response of systems in their ground
state. Here, I showed how TDDFT can be used to study time-resolved pump-probe
experiments in an excited state and assessed the possibility of combining TDDFT with
Quantum Optimal Control Theory in order to tailor pump pulses for enhancing (or
reducing) some given features of the probe absorption. This provides a tool for the
interpretation of fast evolving attosecond time-resolved spectroscopic experiments and a

method to design control experiments.

In the first part, I studied the problem of describing ultrafast (attosecond scale) time-
resolved absorption and photoemission in finite systems with TDDFT. I demonstrated,
that TDDFT can be successfully employed to describe the dynamics of electronic ex-
cited states in atoms and molecules. I illustrated this with three applications: the
one-dimensional Helium model, the three-dimensional Helium atom and the Ethylene
molecule. Using a one-dimensional Helium model, I showed how in the exact case, it
is possible to recover information about state populations through a comparison of per-
turbed and unperturbed absorption cross-sections, and that the population evolution in
time can be described in terms of Rabi physics. From the TDDFT calculations of the
same system, one may conclude that the results obtained with the adiabatic EXX po-

tential are in good agreement with the exact solution, although small artifacts appear
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due to the incorrect description of the functional memory dependence.

Using the same functional, I investigated the Helium atom in a more realistic three-
dimensional treatment, where I performed resonant pump-probe calculations monitoring
both absorption and photoemission properties of the excited atom. TAS turned out to
be a sensible tool to monitor the build-up of the excited state. TRPES also allowed the
characterization of the excitation process in time. However, due to a dominant ioniza-
tion channel associated with sequential two (pump) photon absorption, the information
about the excited state population was less apparent. Nonetheless, the TRPES is rich
in information; for example it can be angularly resolved in order to obtain the photo-
electron angular distribution (PAD), which is sensitive to the geometrical arrangement
of the ionized state, and is a useful tool to discern the nature of each photoelectron peak.
Finally, I found that for the case of the Ethylene molecule, the PAD for ejected electrons
was able to provide clear evidence of the occurrence of a m — 7* transition and to study

its time evolution.

In addition to numerical modeling a theoretical understanding of the described processes
would be useful. Therefore, in the second part I took a detailed look at the origin and
the control of spectral excited-state features in the non-overlapping regime using the
example of Hydrogen. First I carefully analyzed general features of excited-state spectra.
Using a general Lehmann representation of the response function, I analyzed the main
differences between spectra obtained from (i) the ground state, (ii) stationary states and
(iii) non-stationary states. I found that whilst in all cases the peak positions are fixed
at the many-body transition frequencies, the heights of the transition peaks as well as
their shape depend on the state, i.e. they depend on the expansion coefficients of the
wave functions in the eigenbasis. If there are no continuum contributions, ground state
and excited stationary state spectra have only Lorentzian-shaped peaks: positive ones
in the ground state case, and both positive and negative ones in the excited state case.
Furthermore, the peaks are time-independent. For the non-stationary states I found that
their spectra can be divided into (i) stationary contributions, which are the stationary
spectra from the respective states scaled by their population, and (ii) interference terms.
The stationary contributions have Lorentzian shape and are time-independent, while
the interference terms are responsible for the time-dependence of the spectrum. They
oscillate with a frequency proportional to the energy-difference of the involved states and

their shape oscillates between Lorentzian and Rayleigh type.
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The time-dependence of the spectrum would be reflected in the color, perceived by the
human eye when illuminating a macroscopic coherent sample with light. Its periodicity
leads to a time-dependent periodic change of color. This “time-dependent color”, if shown
in a chromaticity diagram, forms a closed trajectory. Nonetheless, one has to take into
account, that in a realistic macroscopic sample, not all molecules are in the same state
at the same time. Therefore, one has to take the time-average of the spectrum, which
leads to a spectrum, that only contains stationary contributions. Also, the human eye is
not able to capture such fast oscillations, and therefore the resulting impression would

also reflect the time average.

In the third part, I used Quantum Optimal Control Theory to optimize excited state
spectra. I took three different approaches, one based on analytical models, the other two
based on TDDFT. The first one is a viable option for systems whose behaviour can be,
after some assumptions, modeled with few-level models, therefore allowing to understand
the optimization processes analytically. For these cases, given a certain dipole-coupling
structure, one can use the theory of Rabi oscillations to describe the excitation of a system
into a non-stationary state. I performed the necessary derivations for a three-level system,
but it can easily be adapted to include more levels. For a three-level system, I showed
how to use the Rabi-description to derive a laser-pulse, that excites an electron from its
ground state into a non-stationary target state. I found that whilst the envelope of the
control-laser is responsible for controlling the populations of the involved states, their
relative phases are governed by the phase of the laser pulse. I showed, that this model
is valid for the excitation of Hydrogen from its ground state into a linear combination of
the |2p,) and the |3p.) state and was able to obtain an overlap of 96% with the target
state, where the missing few per cent were due to the coupling to states outside of the
three-level assumption. I concluded that the proposed model provides a good description

of the control of Hydrogen.

I also analyzed the time-dependence of a non-stationary state spectrum in TDDFT, us-
ing the example of Helium, which was excited into a linear combination of ground state
and first excited state. I found that, in this linear combination, the TDDFT oscillations
in the spectrum were related to the many-body excitation energy as one would expect.
Nonetheless, the oscillations were twice as fast as the predicted ones. Analyzing this
behaviour in TDDFT is the goal for future work. In this context, investigating the exis-

tence of a Lehmann representation of the TDDFT response function of an excited state
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(and if it exists, deriving it) would be helpful. I then presented two ways of combining
Quantum-OCT with TDDFT to optimize excited state spectra. In the first approach,
I used a gradient-free quantum optimal control algorithm to maximize the integral over
the visible region of the excited-state absorption spectrum. The laser was expanded in
a sinusoidal basis set and its expansion coefficients taken as control parameters while
phases, duration and polarization were kept fixed. The choice for a gradient-free al-
gorithm was motivated by the heavy computational demands found when attempting
gradient-based ones; I also derived the Quantum Optimal Control equations that pro-
vide the gradient for this type of optimization, but concluded that the resulting scheme

was not computationally viable.

The gradient-free algorithm was tested for a one-dimensional Hydrogen model, which was
solved exactly, one-dimensional Helium, which was used to compare exact and TDDFT
treatment and for singly-ionized Beryllium, which was only treated within the TDDFT
framework. It was then used to assess the feasibility of optimizing a poly-atomic molecule
using the examples of neutral and doubly-ionized Methane. I found that a search space
consisting of frequencies of two standard laboratory lasers and their higher harmonics
was appropriate for the exact models, since it included the excitation energy from the
ground state into the first excited state in both cases and the algorithm was able to
take advantage of this resonance to excite the system and create absorption peaks in the
visible. In the case of Helium, even subsequent excitation into higher energy states took

place, further improving the absorption in the target region.

In comparison, the TDDFT optimization of Helium did not lead to satisfying results
due to different ground-state excitation energies of the exact model and the TDEXX
treatment. While in the exact case the resonance between ground state and first excited
state was included in the search space, that was not true for the TDEXX case, where a
resonant excitation into the first excited state was not possible. This demonstrates the
importance of an appropriate design of the search space. When I adapted the search
space by replacing the exact excitation energy by its TDEXX equivalent, I found that an
excitation was achieved, creating features in the visible, which were shifted with respect
to the exact ones. The attempt to ascertain the reason for this shift was hampered
however by one significant deficiency of TDDFT: it does not permit a real population
analysis (as the true many-body wave functions are not accessible). Due to this fact, it

was not possible to tell if the emerging peaks were due to subsequent excitations, or were
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just the original peaks, but shifted due to the TDDFT functional approximation error.

The importance of resonances in the design of the search space also became clear in
the case of singly-ionized Beryllium in TD-ALDA treatment. Here, the optimization
algorithm clearly enhanced the amplitude of the laser frequency belonging to the resonant
excitation of the first excited state from the ground state. This leads to the creation of a
peak in the optimization region, although of unknown origin. This example demonstrates
that the ground state spectrum can only give us a few possible excited-state excitation
peaks. Not all excited-state transitions that one can calculate based on the ground state
spectrum will be allowed and not all allowed excited-state transitions are deducible from

the ground state spectrum.

I then moved on to Methane and doubly-ionized Methane. Since the optimization of
Methane with the previously chosen search space failed, for doubly-ionized Methane I
designed two search spaces based on its resonances. The first search space was based
on subsequent excitation, the second one on a combination of excitation and stimulated
relaxation. I found that both search spaces included pump pulses that lead to absorption
in the visible. Furthermore I found that an analysis of the involved excitations can yield
some insight into the dynamics of excitation. A cleaning of the pulse in terms of its
frequency components can help to learn more about the involved dynamics, but exactly
identifying the mechanisms is cumbersome. Perhaps the main computational challenge
of the technique used for these optimizations was the necessity of a large simulation box
in real space. The high intensity fields, in combination with the choice of the target,
favours the excitation of “box states” (i.e. excitations that appear due to the existence
of a finite simulation box), leading to a large, but unfortunately unphysical absorption
in the optimization region. The partial solution to this problem was found to be the
introduction of absorbing boundaries, and the inclusion to an exponential penalty factor
for ionization in the definition of the target. I conclude that while the optimization
scheme in principle works, it nevertheless requires vast computational resources due to
its necessity of multiple time propagations. An intelligent design of the search space can
cut down on the resources needed, but is hard to do in practice since the ground state
spectrum does not provide any information on whether inter-excited-state transitions are

allowed or not.

The second approach developed cuts down on computational resources within the opti-

mization by splitting the optimization into two steps. In the first step, a KS excited state
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CHAPTER 6. CONCLUSIONS AND OUTLOOK

with desirable features is identified. For neutral Methane, for example, three interesting
KS excited states could be identified. In the second step, a laser is found, that excites the
system from the ground state into this KS excited state. To achieve this goal, efficient
quantum optimal control algorithms could be used. Finding these pulses should be done

in the near future based on the finding of the present PhD thesis.

The theoretical and computational framework developed here is a useful tool to under-

stand and to control non-equilibrium electronic dynamical processes.

First, we created a toolbox for simulating pump-probe experiments with the help of first
principle real-time real-space time-dependent density functional theory by implement-
ing TRPES and TAS into the octopus code. Creating these kind of toolboxes enables
us to simulate experiments on the computer. New emergent properties of matter in
the strong-coupling regime could appear that might give rise to new technological de-
velopments. Furthermore, monitoring electron and ion-dynamics provides fundamental
insights into structure (i.e. time-resolved crystallography) and chemical processes in bi-
ology and materials science (e.g. for energy applications). There is plenty of room for
new and fascinating discoveries about the behavior of matter under out-of-equilibrium

conditions.

But being able to simulate does not necessarily mean understanding if the tools to inter-
pret the findings are missing. A microscopical understanding of the underlying processes
is therefore required — or at least useful. Thus, I analysed the general properties of
non-equilibrium excited-state spectra using a modified Lehmann representation, where
I analysed positions and shapes of the spectral peaks. This analysis in addition to pro-
viding understanding of the structure of excited-state spectra, also helps to understand
the possibilities and restrictions to the control possible, for example the fact, that in
the non-overlapping regime, the positions of the resonances are an inherent property of
the system and therefore controllable only through the weights of the peaks. Having
a detailed understanding of the time-dependence of excited-state spectra can also be
used to investigate properties of excited-state spectra in a TDDFT description and help
to identify shortcomings of current adiabatic exchange and correlation functionals, e.g.
could we show, that in the current implementation, excited state spectra exhibit incorrect
shapes and an incorrect time-dependence. Further work in this direction is required and
could be combined with the search for a KS excited state response function (or solving

the question about its existence). Both the implemented pump-probe toolbox as well as
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the analysis of the excited state spectral properties were then combined with Quantum-
OCT (analytical and numerical) to control and modify excited-state spectra of atoms
and molecules for a given purpose. I illustrated the concept with optimizing a system
to absorb as much light as possible in a given range of the spectrum, e.g. in the visible,

turning a previously transparent sample opaque.

Whilst I could show, that the developed optimization algorithm in principle works and
that TDDFT is a suitable candidate to describe out-of-equilibrium spectroscopy experi-
ments and solve the related control-questions, I could also identify fundamental caveats
that need to be addressed in the future. From the computational perspective, it became
obvious that the computational requirements are too big to tackle large molecules and
systems. Therefore, schemes to reduce the model complexity and smarter system repre-
sentations are needed. Much work has already been done to improve the speed of TRPES
calculations using massive parallelization strategies, but a similar development for TAS
(and consequently for the control of absorption properties) is still missing. More impor-
tantly, from the fundamental point of view, TDDFT is still in clear need of more precise
non-adiabatic exchange and correlation functionals, capable of providing a reliable de-
scription of non-equilibrium processes and strong light-matter interaction. Clearly, the
methods presented here will automatically benefit from any theoretical advance in this
direction. This is particularly apparent in the part of the thesis about control, where a
correct description of resonant excitation is necessary. On the other hand, performing
Quantum-OCT on the resonant excitation of states could provide deeper insight into
the failures of current functionals. Finding pulses, that do achieve a sufficient excitation
by “tracking” the TDDFT resonances could give insights into the time-dependence of
the TDDFT energy levels. Conversely, the developers of new functionals may take into

account the correct description of pump-probe experiments as a useful quality test.
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A. The Downhill-Simplex Algorithm

The downhill-simplex algorithm, also known as Nelder-Mead or amoeba algorithm is a
gradient-free optimization method proposed by John Nelder and Roger Mead in 1965
[222]. Tt is based on a simplex, the simplest volume in a N-dimensional parameter space,
which is spanned by N+1 points. Examples include a line-segment in one dimension,
a triangle on a plane, a tetrahedron in a three-dimensional space and so on. Given a
continuous function y = f(x1,...,2zx), the goal is to find the minimum y™ and its cor-
responding position x" using reflection, contraction, compression and expansion.
One starts the algorithm by choosing N-+1 starting points x!, x2, ..., xN¥*1. Then one

follows the following scheme (The different operations are illustrated in Figure A.1):

I Ordering: Evaluate f(x') and order them according to the values of their vertices
fx') < f(x*) <o < fMT (A.1)

II Reflection: Calculate the mirror center
x° = 1 Z x! (A.2)
N

max

from all points but the worst x™**. Reflect x™%* at the mirror center using the

reflection coefficient «

x" =x° — a(x™"" — x°) (A.3)

If f(x!) < f(x") < f(x"), i.e. the reflected point is better than the second worst,
but not better than the best, replace the worst point x"*! by the reflected point
x" and go back to step 1.

If f(x") < f(x!), i.e. x" is the best point so far, go to step 2. If the reflected point

is not better than the second worst, contract (go to step 4).

III Expansion: If the x, is the new minimum, one expects to find interesting points
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v

in this direction, therefore one makes a bigger step in the reflection direction, using

the expansion coefficient ~:
x¢ = x* —y(x"T! — x%). (A.4)

n+1

Replace the worst point x by whichever is better, x® or x" and go back to step

1.

Contraction: If the reflected point is not better than the second worst, one ex-
pects to be able to find a better value inside the simplex. Therefore compute the

contracted point x° using the contraction/compression coefficient
x¢ = x° + B(x"T! — x%) (A.5)

If f(x¢) < f(x"*1), ie. the contracted point is better than the worst point, replace
the worst point by x° and go back to step 1. Otherwise continue at step 5.

Reduction: For all but the best point x!, replace the point by its reduced version
xt = x! + p(xt — xb). (A.6)

Go back to step 1.

The reduction handels the case, that contracting away from the largest point in-
creases f. Since this should not happen close to a non-singular minimum, one

contracts towards the lowest point, hoping to find a simpler landscape.

Usually the parameters are chosen as o = 1, § = 1/2 and y = 2, which are the parameters

suggested by Nelder and Mead and which they showed gave the best results for a set of
test cases [222].

Local Minima: As with many optimization algorithms, there is the danger of converging

into a local minimum. There are several approaches to dealing with this problem, all of

them centered around stopping the algorithm at some point and at this point, starting

from the best value x! at this point, construct a new initial simplex and restart the

algorithm. When to stop the algorithm (if after a fixed set of steps or randomly) and

how to create the new initial simplex varies between the approaches.
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point

Figure A.1.: The four methods used in the Downhill-Simplex algorithm. (a) Reflection,
(b) expansion, (c) contraction, and (d) compression. Taken from [4].
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B. The Optimization Procedure -

Scheme 1

The implementation of the optimization algorithm was done in Python, using the scien-
tific libraries scipy and numpy. The reason to use python, is that it is easy to program

and that there is a huge variety of predefined libraries, that can easily be included.

The ones needed are numpy, scipy, subprocess, os, shutil, linecache, pickle (and amoeba

or fmin from the scipy library (see B.4).

As pointed out in Section 2.6.3 and Section 5.1, the algorithm optimizes one of the two

target functionals

Emaz

Alg] = [E "o lsl(m)E, (B.1a)
Emam J—

2] = [ aelm e (—VW) i, (B.1b)

where 7, [&](F) is the average absorption coefficient of the system at a given time delay
7 after the pump pulse &(t) and E,,ip and Epq, define the optimization region — the
energy range, where the absorption is optimized. Ny and Np, are the number of elec-
trons in the system at the beginning and the end of the pump pulse, so that the term

No—Nr,[6] . . . L
exp (—fy%’g> inflicts a punishment of strength v on the system due to ionization.

The control pulse is defined in a parametrized representation, the optimization parame-

ters are the expansion coefficients of the laser in the sine basis.

En(t) = Z ¢ sin(w;t) O(1)O(Tp —t) (B.2)

Pump duration Tp and polarization (depending on the symmetry of the system) are

fixed, as well as the delay 7 between the end of the pump and the probe pulse. We
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exclusively work in the non-overlapping regime, where the system is probed after the end

of the pump pulse (i.e. 7 > 0).

Each optimization iteration consists of two steps. In the first step, the system is evolved
under the influence of the pump pulse &,,(¢) for the time Tp. In the second step, the
absorption after a given delay time 7 is calculated by obtaining the absorption spectrum
from a time-evolution as described in Section 2.4.5: The system is probed with a delta
perturbation at the time Tp + 7 and the system is evolved for the “spectrum time” Tg
afterwards. Finally, e, [&),] is calculated from the average absorption coefficient &(w, 7)
(2.54).

At the end of the optimization, the average polarization under the influence of the optimal
pump laser is converged with respect to the box size and the system is propagated for a

longer time T's to obtain a more detailed spectrum.

The main part of the program is the definition of two classes - the octopus and the
optimization class and a few functions. The octopus class includes everything, that
has to do with octopus and is different for each system, the optimization class defines
everything else and is the same for all optimizations, it basically constitutes the wrapper

around everything.

B.1. The Octopus Class

The octopus class has the attributes shown in Table B.1, a constructor, a routine to write
input files, several run routinges (run, run_gs, run_laser, run response) and finally a
routine to calculate the spectrum. Each of the run routines consists in linking or copying
the necessary files (see Section B.5), creating the necessary input files and running the
main run routine, which runs the specified executable on the specified number of nodes.
The calculate spectrum routine runs the octopus utility to obtain the cross section

vectors for each of the kick directions and calculates the average absorption from them.

B.2. The Optimization Class

The optimization class has the attributes shown in Table B.2, a constructor, and a call

routine, which takes as input a set of laser coefficients — the optimization parameters
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parallel Path of the octopus executable (parallel)
runmode Serial or parallel executable
spectrum Path of the oct-propagation spectrum executable
ncore Number of cores to use for parallel calculations
np Number of nodes to use for parallel calculations
lasertime Tp
spectime Ts
dt time step
laserfrequencies | frequencies of laser
machine cluster, where it is running
dim number of dimensions
Table B.1.: Attributes of the octopus clase.
octopus an instance of the octopus class mentioned above
Eoin lower boundary of the optimization window
Erax upper boundary of the optimization window
nelectrons | number of electrons in the system Ny
gamma punishment -~y
iter number of iteration, where the run started from (for restarting purposes)

Table B.2.: Attributes of the optimization clase.
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at that iteration. The call routine takes the laser coefficients, sets the right links and
then runs one after the other the run routine of the octopus class: laser propagation
(run_laser), the necessary (n+1) time evolutions after the kick, the octopus tool, that
obtains the cross section vectors and a function combing the cross section vectors to
obtain the average absorption coefficient (all together combined in the run_response
routine). Finally, it uses another function get epsilon to obtain e (either A or B), which

it returns to the main program.

B.3. The Main Program

The main program knits everything together in the following order

I reads laser frequencies from laserfrequencies.dat, which contains a list of all the

laser frequencies included in the search space
IT reads octopus class attributes (see Table B.1) from optimizationparameters.dat
IIT initializes octopus class
IV reads iteration file: does it restart (if so from which iteration) or start from scratch

V if it starts from scratch: reads the initial coefficients file (containing a list of all the
initial coefficients in the same order like the laser frequencies) and feeds them into

the minimization algorithm (fmin or amoeba). Otherwise: restarts

VI waits for convergence

B.4. Implementation of the Simplex-Downhill - Amoeba or

fmin

The easiest way to implement the minimization is by taking the fmin routine as it is
included in the scipy package. A disadvantage of this solution is, that the fmin routine
does not seem to include a restart option. Therefore, I took an implementation of the
Simplex-Downbhill algorithm, that is provided in the GPAW package (https://wiki.
fysik.dtu.dk/gpaw) and adapted it using the pickle package to enable restarting. The
implementation of a restart option was necessary for the bigger systems, since they were

calculated on clusters, where the maximal run time was limited.

162


https://wiki.fysik.dtu.dk/gpaw
https://wiki.fysik.dtu.dk/gpaw

B.5. GENERAL COMMENTS ON THE IMPLEMENTATION

B.5. General Comments on the Implementation

Performing time evolutions is computationally expensive. Several things have to be taken
into account: The computational time scales linearly in the simulation time. If one wants
to optimize resources, one can calculate the time evolution under influence of the laser,
stop and save the result and then fork the calculation into the (n+1) calculations needed
for the response. Nonetheless, one has to restrict the time Tp» of the laser influence.
Even more important is the time needed for the response, since this calculation has to
be done (n+1) times. But here, one can at least take advantage of the fact, that these
(n+1) calculations are independent of each other and are therefore perfectly suitable for

parallelization.

Memory and computational time scale to the power of three in the radius of the box.
This can be partially compensated by using the code in parallel. Nevertheless, a price
for the communication has to be paid. For an overview about the scaling of the octopus

code see Ref. [103].

Depending on the network communication of the cluster, writing data can take consid-
erable amounts of time. To save on this time, (i) output and restart files should only be
written at the end of each run and (ii) a multipoles-dummy file can be used, which has
the correct header (kick strength, kick time, etc). Instead of writing the multipoles file,
during the pump time T’p, one can use this file as a dummy, which is then copied into
the folders, where the response calculations are performed. This can be done, because
the time-evolution of the dipole moment during the pump pulse has no influence on the

response.

When using the Downhill-Simplex algorithm, the simplex has to be generated at the
beginning, i.e. if one has m laser frequencies, m initial evaluations have to be performed.
This has to be taken into account, if the time available is limited and no proper restart
options are available (e.g. because one uses the fmin algorithm, which does not provide

a restart option).
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C. Many-Body Tunneling in Exact and
Density Functional Theory

C.1. Introduction

In this thesis we have seen some examples of failures of current state-of-the-art approx-
imations to the exchange and correlation energy or potential functional. These failures
prompted us to study these limitations from a different perspective, namely from the
point of view of the correct description of tunneling. Since this study departs from the

main research line of the thesis, we describe it in this separate appendix.

Here, we analyze tunneling in many-particle systems (two, three and four electrons),
first exactly, and then using DFT. The goal is to study how interacting electrons tunnel
through a barrier from a donor to an acceptor. First, we will look at exactly solvable
model Hamiltonians. We will analyze how the resonance conditions for tunneling differ
in a fully-interacting system from a system in which the electrons on the donor and the
acceptor do not interact among them. To this goal, we compare the exact tunneling
points to the ones obtained by simply aligning the ionization potential of the donor with
the electron affinity of the acceptor. We then develop a scheme to correct the resonances
predicted by this simple alignment to get the exact resonances, by making use only of
the densities of the subsystems. This scheme is developed for two electrons and extended

to three and four electrons.

We then approach the problem with DFT. We first show that DFT, using the LDA
functional, is not able to predict the tunneling behaviour in an interacting two-electron
system, and neither is LDA-SIC or spin-polarized LDA. Only the spin-polarized LDA-SIC
is able to predict the correct density, but unfortunately the spin-resolved density is not
correct. We also compare the exact KS-potential (which is obtained from inverting the
exact solution) to the different potentials in LDA, LDA-SIC etc. Finally, the procedure is
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analyzed in terms of the KS eigenenergies: these must fulfill some conditions to correctly

describe tunneling.

Section C.2 presents the model systems to be studied; Sections C.3 and C.4 present the

exact and DFT calculations, respectively.

C.2. A Simple Donor-Acceptor Many-Body Model

Tunneling is often treated in the framework of non-interacting particles. The goal of this
appendix is to analyze the influence of the interaction and to predict the necessary con-
ditions for interacting electrons to tunnel through a barrier from a donor to an acceptor.
To this end, we solve the many-body Schréodinger equation for a system of N electrons
in one dimension. We compare calculations for a fully interacting system with those of
a system in which the interaction between electrons at the donor with electrons at the

acceptor is switched off. The corresponding Hamiltonians read
0D = F 4 Ty 4 V02), 1)

where, T =SV . —8/as2 denotes the one-dimensional kinetic energy and
7=1 J gy

N
‘A/ewt = Z %mt(mj) (CZ)
i=1

is the external potential. This external potential is shown in Fig C.1. It describes a
system of donor (D) and acceptor (A), separated by a barrier (B). The potential V4 of
the acceptor is fixed to zero, while the potential Vp of the donor can be varied. This
system mimics a tunneling setup, where the potential of the donor can be varied by
applying a gate voltage. Vp is the barrier height, for which we use two different values
in the calculations: case (I) (high-barrier case), for well separated subsystems, and case
(IT) (low-barrier case), where the subsystems coupling is stronger. In both cases, since
we want to focus on tunneling from one bound system to another, the vacuum potential
Vi is large in comparison to all other potentials, and is for computational purposes set
to infinity.

The Hamiltonians H® and H® differ in the form of the electron-electron interaction,
(1) (2)
or V.

e ce . We will label the corresponding wave-functions, densities, etc, with (1) or
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(2) only whenever necessary.

Figure C.1.: The external potential Vg, (x) is a double well potential surrounded by vac-
uum of the energy Vy,. The right well is located between xpp and zp and
serves as donor (D). Its potential is Vp and can be varied. The left well is
located between x4 and x4p and serves as electron acceptor (A). Its poten-
tial is fixed to zero for all calculations. Donor and acceptor are separated
by a barrier of variable height Vg, which is fixed to two different heights.

The precise definition of the electron-electron interaction potentials is as follows:

N 1
v = (C.3)

kg<k A/ (x5 — xk)z +1

describes a softened Coulomb interaction and

V(2 — Z 0(z; — zBD) $k—$BD)+9( zj +xAB)0(—x) +TAB)
J<k m m

a truncated softened Coulomb interaction, where electrons, that are localized in different

subsystems do not interact with each other. Therefore,

AVee =V =V (C.4)

describes the intersystem interaction between electrons on the donor with electrons on
the acceptor. The Schrodinger equation can be solved exactly either as the Hamiltonian
of one electron in N dimensions in the external potential Vemt + f/'ee [210] or in second

quantization with the help of a Jordan-Wigner transformation. The contributions to the
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Hamiltonian (C.1) in second quantization read

1

T = YN Z(ég,aé“‘l,a—i—élﬂ,aélvg)
l,o
1 .
—i—ml Mo, (C.5a)
& el emaré
T o=y Lo Tm,o Tm0 7ho (C.5b)
“ lmUJ,Q\/(le—mA:c)Q—i—l’
Vet = Y Vear(D 0, (C.5¢)
l,o

where we use a second-order finite-difference scheme for the kinetic energy. In all cases

Ax denotes the spacing between the sites.

To study the conditions for electrons to tunnel from donor to acceptor through a barrier,
we have to define a tunneling measure. The most natural object to look at is the trans-
ferred charge; one possibility to measure it is to simply integrate the number of electrons

N4 on the acceptor

TAB
Ny = Z/ dry...dey |VU(zi00, 2200, ..., 2n0N)|? (C.6)
o; YTA
as a function of the donor potential Vp, where W(z101, 2209, ...,2x0y) is the ground-

state wave-function.

C.3. Exact calculations

We perform exact many-body ground-state calculations for N = 2, 3 and 4 electrons. The
calculations for 2 electrons are done using the real-space finite-difference code octopus
[101, 102, 103|, whereas for 3 and 4 electrons we treated the system in a basis constructed
in second quantization. Since the computational effort for calculations with N electrons
on Ng points in space grows as (2NS)N , we can obtain a better spatial resolution for
2 electrons, while for more than 2 electrons we restricted our calculations to a 6 points

lattice.

For the two-electron calculations, the complete system has a length of L = 36 a.u. and
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is divided into an acceptor region (A) of width d4 = 15 a.u., a donor region (D) of
width dp = 20 a.u., and finally a barrier of width dg = 1 a.u.. The grid spacing is
Az = 0.2 a.u. for all calculations. In the high-barrier case (I) the barrier height is
VB = 100 a.u., whereas in the low-barrier case (II) the barrier height is Vp = 0.3 a.u..

For three and four electrons, the complete system has a length of L = 2.4 a.u., which we
represent as a six-point lattice. To be as close as possible to the two-electron calculations,
we choose an asymmetric setup, where 3 of the 6 points belong to the donor (Lp =
1.2 a.u.), 2 points belong to the acceptor (L4 = 0.8 a.u.) and the barrier is located on
a single point (Lp = 0.4 a.u.). The grid spacing is Az = 0.4 a.u.. Since a stronger
confinement of the electrons implies higher energies, we also adapted the barrier height
Vp: In the high-barrier case (I) the barrier potential is Vp = 2000 a.u. and in the
low-barrier case (II) it is Vp = 100 a.u.

For each barrier height Vi we vary the donor potential Vp while keeping the accep-
tor potential V), fixed to zero. We scan 1000 different donor potentials Vp, starting
from a potential for which all electrons are located on the donor and ending at a po-
tential for which all electrons are located on the acceptor. For two electrons we choose
—0.3 a.u. < Vp < 0.3 a.u., while we choose —6.0 a.u. < Vp < 11.0 a.u. for three and four
electrons. For each setup we calculate the exact N-electron ground-state wave function

)

U(z101,...xN0nN), for both model electron-electron interactions 176(51’2 , and extract the

number of electrons on the acceptor NS’Q) according to Eq. (C.6).

Panel a) of Fig. C.2 shows the number of electrons on the acceptor N4 as a function of
Vp for a system with two electrons for both electronic interactions ‘76(61’2) for the high-
barrier case (I). For small donor potentials Vp, both electrons are localized on the donor.
If we increase Vp, first one electron, and then the other one tunnels to the acceptor.
This increases N4 from zero to one, and then to two. Panel ¢) describes the same
situation for the low-barrier case (II). The behaviour differs clearly in the abruptness
of the tunneling: in case (I) the increase of electrons on the acceptor follows an almost
perfect step function, leading to an integer number of electrons in each subsystem for
any given gate voltage Vp. In contrast, in case (II), the increase is broadened, leading
to fractional charges on donor and acceptor for a small window of donor potentials. As
Fig. C.2 shows, the transfer of charge takes place at particular gate voltages, which define
the tunneling points. While in the high-barrier case (I), the tunneling points are clearly

defined due to the mentioned sudden transfer of electrons, for lower barriers one must
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Figure C.2.: (Top) The number of electrons on the acceptor N4 as a function of the
donor potential Vp for the case of N = 2 for the truncated electron-electron
interaction 176(62) (C.4), and for the full electron-electron interaction Ae(el)
(C.3). Panels a) and b) display to the high-barrier case, and c) and d)
display the low-barrier case. For comparison a) shows in grey the result
as obtained by DFT calculations using the LDA functional. (Bottom) The
derivatives of the number of electrons on the acceptor with respect to the
donor potential 4Na/qv, normalized to its maximum.The tunneling points
are identified by the local maxima of dNa/qv,,. The vertical lines show the
predicted tunneling points, in blue for the IP-EA prediction (C.11), and in
green for the predictions corrected with the Hartree interaction Cy (C.18).

define a tunneling point as a local maximum of the first derivative of the charge on the

acceptor N4 with respect to the donor potential Vp:

TP = .
Toel dVp

(C.7)

For better visualization, we normalize this derivative to its global maximum in the lower
panels of Fig. C.2. Note, that different peak heights result from different peak widths
due to the broadening plus the fact, that exactly one electron tunnels at each tunneling
point, i.e. fTP dVpdNa/av, = 1. The derivative as a function of the donor potential is
shown in panel b) for the high-barrier case (I) and in panel d) for the low-barrier case (II),
i.e. they are shown directly below the respective densities. Results for both electronic

interactions 6(31’2) are shown together. One sees, that the tunneling points for the full

(1)

interaction Vee are shifted towards zero with respect to the truncated interaction Ve(f).
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In general, a system of N electrons exhibits N tunneling points. In the following we will
show how these tunneling points can be predicted performing calculations on the isolated
subsystems, both for the truncated interaction f/e(eg ), and more importantly for the full

(1)

electron-electron interaction Ve’ .

C.3.1. Tunneling Points From lonization Potential and Electron Affinity

Vi Vi

A A
WA — W
' V!
05---XA -"?XOE
Voi ]

Figure C.3.: The external potentials of the isolated subsystems (dashed red). These were
used to calculate the ionization potentials, the electron affinities and the
wave functions of the isolated subsystems. On the left we show the potential
VA, () of the isolated acceptor, on right side we display the potential V.2, (x)

ext
of the isolated donor. For comparison Vgg(x) of the combined system is

shown underlying in black.

By just looking at the isolated acceptor and donor system, one may expect tunneling
to occur when the ionization potential of the donor and the electron affinity of the
acceptor align. In fact, for non-interacting electrons the tunneling points coincide with
the alignment of the one-particle energy levels. In order to define the energy levels for the

subsystems, we split the complete system into two isolated subsystems, whose external

potentials are given in Fig. C.3.

The ionization potential 1P and the electron affinity FA of a general system with N

electrons read

IP(N) = E(N)—E(N -1), (C.8a)
EA(N) = E(N+1)— E(N). (C.8b)
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Changing the donor potential Vp has only a small effect on the wave function, unless we

cross a tunneling point. We, therefore, approximate the energy on the donor by
Ep(N,Vp) ~ E%(N) + NVp. (C.9)

with E9(N) being the energy on the donor at Vp = 0, i.e. we neglect the change in the
wave function. For the case of an infinitely high barrier Eq. (C.9) is exact. Since the
potential of the acceptor is fixed to zero for all calculations, i.e. E4 = Eg)), we can now
align the ionization potential of the donor, I Pp, and the electron affinity of the acceptor,
E Ay, by adjusting Vp and changing the total energy of the N electrons on the donor by
N x Vp. For a system with N electrons in total, being divided into M on the acceptor

and N — M on the donor, aligning I Pp and EA4 leads to the condition
TPy : IPp(N — M) = EA4(M) (C.10)

for the M-th tunneling point, which leads to the following alignment condition for the
donor potential Vp

Vi (TPy) = EQ(M +1)+ EL(N — M —1)
— [EY(M) + EY(N — M)). (C.11)

This allows us to estimate the tunneling points of the combined system from the knowl-
edge of properties of the isolated subsystems. In the following we refer to this as the
IP-EA approach. Note, that the interwell interaction AV,. does not affect the energies
EA(N) and E%(N).

For N = 2 electrons, we find two tunneling points, which in this IP-EA approach are

predicted by

Vb(TPy) = ES(1)+ E%(1) — E%(2), (C.12a)
Vp(TPy) = E%(2) — E%(1) — EY(1). (C.12b)

Vb (TPg) and Vp(TP;) for two electrons are shown in Fig. C.2 as dashed blue lines. They
almost exactly reproduce the tunneling points of the Hamiltonian H (2), where electrons
from different subsystems do not interact. One can now start from this IP-EA approach,

and find the necessary corrections to predict the tunneling points for the full Hamiltonian
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W,

C.3.2. Energy Corrections

In the following we present a scheme to include the electron interaction AV,. between
donor and acceptor in order to compute the TP® of the fully interacting Hamiltonian.
The interaction between M electrons on the acceptor with N — M electrons on the donor
can be calculated by constructing an approximate many-body ground-state wave-function
U(z101,...xzy0N; Vp) of the fully interacting Hamiltonian HO for the respective donor
potential Vp, as an antisymmetric product wave function from the (N — M )-electron
wave function of the donor and the M-electron wave function of the acceptor. The so-
constructed ¥ (zq101,...zyoN; Vp) approximates the ground-state wave-function of HD
in the range of Vp(T'Py—1) < Vp < Vp(TPys), which is the range of Vp, where M
electrons are localized on the acceptor and N — M are localized on the donor. Having
approximated the wave function of the fully-interacting system, we can calculate the

expectation value of the electronic intersystem interaction
V(M,N — M) = (¥(z101,...c50N; VD)|AVee|¥(2101, ... 2n0N; VD)), (C.13)

and use it to correct the prediction of the tunneling points for the fully interacting

Hamiltonian, which yields

!

Vp(TPy) = ESY(M +1)+ EL(N - M —1) (C.14)
+V(M +1,N — M —1)
— [EQ(M)+ EL(N — M) +V(M,N — M)].

For our two-electron case, this results in

Vp(TPy)
Vp(TPq)

Note, that AV,. can be seen as a perturbation to the Hamiltonian H®. Therefore,
(C.13) is the first-order correction to the total energy of H®),
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Figure C.4.: a) Hartree correction (C.18) and b) exchange correction (C.19) for high-
barrier case (I) (orange) and low-barrier case (II) (red). The vertical dashed
blue lines show the tunneling points of case (II) as predicted by the IP-
EA approach. They mark the donor potentials Vp, where in the naive
correction scheme the energy corrections to predict the tunneling points of
the fully interacting system would be calculated. For the high-barrier case
(I), the corrections can be calculated at any point. The strong increase of
the energy corrections of case (II) is due to the break-down of our wave
function approximation, which is caused by the delocalization of the donor
wave-function ¢p for donor-potentials Vp which are at the order of the
barrier height Vp.

For two electrons and a spin-independent Hamiltonian, the ground state is a singlet wave
function. For the range of Vp where one electron is on the donor and one electron is on

the acceptor, the wave function of the complete system can be approximated by

1
(101, 2202) = m[\ﬂ) — [N x [pa(z1)ep(w2) + ¢p(z1)palzz)]  (C.16)
where pp(x) and p4(z) are the normalized spatial parts of the single-electron wave
functions of donor and acceptor, respectively, and k := | [dzop(x)pa (x)‘ is the overlap
between them, which depends on Vp and Vp. To get the interaction energy between

electrons which are localized in different subsystems, we evaluate (C.13) with the ap-
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proximate wave-function (C.16). This leads to

Cu Cx

V(1,1) = (U(2101, 2902) | AVee | U (21071, 2003)) = Tt LT (C.17)
with
Cn = [[doda’ ep(@)ep(x)pa(a)pal@) _ [[da da’ np(x)na(z) (C.18)

(x—a')2+1

Vi —a)?+1

describing the Hartree interaction between the electron on the donor with the electron

on the acceptor and

Cx = |[dwds sDA(x’)sD(J; (f’lclp;(i)fp(x) (C.19)

describing the exchange.

The fact that our subsystems are well separated even in the low barrier case implies
that the overlap k is small. For the high barrier case (I) £ = 0 for all Vp, while for
the low-barrier case (II) £ < 0.04 for all values of Vp < TPl(Q). In consequence, the
normalization prefactor is close to 1 and the dependence of the corrections on Vp via the
normalization prefactor is negligible in the intervals where the approximation is valid.

Hence, the prefactor can be neglected.

The first-order Hartree correction as a function of Vp for case (I) and case (II) is shown
in panel a) of Fig. C.4, while panel b) shows the first order exchange correction. The
exchange correction for the high-barrier case (I) is zero on the scale of the plot. In the
high-barrier case (I) the Hartree and exchange interactions are independent of the donor
potential Vp, because the wave function is the same for all TPy < Vp < T'P; due to the
very high barrier. In contrast in the low-barrier case (II) the change of the donor potential
Vp results in a change of the effective barrier height which is seen by the electron on
the donor. The larger Vp the smaller is the effective barrier height and the more density
penetrates into and through the barrier. Therefore, the electronic densities in the two
systems approach each other, resulting in an increase of the energies. In consequence,
for small barriers, where the change of the donor wave function due to the change in Vp
is not negligible, it is not clear at which values of Vp the energy correction Cy + Cx

should be evaluated.

175



APPENDIX C. MANY-BODY TUNNELING IN EXACT AND DENSITY
FUNCTIONAL THEORY

) using the

A naive approach would to evaluate the energy corrections for each TP]S
correction energies that are obtained at the tunneling points predicted by the IP-EA
approximation. Even though this appears intuitive, it leads to incorrect results. As it
can be seen in panels a) and c¢) of Fig. C.2, the truncated Hamiltonian H® produces a
plateau with electron-electron distribution (1, 1), that is longer than the plateau of the
fully interacting Hamiltonian H® . The tunneling points TPJS) of H® where we would
evaluate the corrections V' (1,1, Vp) are located in a region, where the fully interacting
electron distribution is (0,2) for TPy and (2,0) for TP;. Therefore, the naive approach
evaluates the energy correction in a region of Vp, where the approximate wave-function
U(z101,x202) (C.16) is not valid. For a high enough barrier this does not make a big
difference, since the single-electron wave-function ¢p is not sensitive to changes in the
potential Vp. It is a problem for barriers that are low in comparison to Vp. This can
be seen in Fig. C.4. Here, the IP-EA approach predicts a first tunneling point, that
is shifted so far, that for the single well calculation, the electron is not bound in the
donor subsystem anymore. This delocalization in the subsystem calculation leads to a
fast increase in Hartree and exchange correction, as can be seen for Vp > 0.1 a.u.. This

makes this naive approach rather unreliable.

A possible alternative is to evaluate the corrections at Vp = 0. Even though this method
has in principle the same drawback, it has the advantage, that it evaluates the energy
corrections for the same potential, where the energies Ep(1), ... Ep(N) are calculated.
Therefore, the energy correction scheme breaks down at the same point, where the cal-

culation of the energies Ep(1), ... Ep(N) does and no further uncertainties are added.

We now compare the size of Hartree and exchange corrections and their significance
for the correction of the tunneling points. Cpr describes the Hartree interaction between
electrons on the donor with electrons on the acceptor. It is a classical electrostatic energy,
that depends only on the densities and does not require any wave function overlap. In
contrast, the exchange energy is small for small overlaps k, and zero if the subsystem
wave-functions do not overlap at all. Therefore we expect the exchange correction to
be small in comparison to the Hartree correction, which does not require any wave
function overlap. This is confirmed by our calculations: it is on average about two
orders of magnitude smaller, and therefore it can be neglected. The Hartree corrected
predictions for the tunneling points of the fully interacting Hamiltonian H® are shown

in Fig. C.2 as green dashed lines. We see that Hartree correcting the IP-EA predicted
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tunneling points TPJS) already gives a good agreement with the true tunneling points of
the fully interacting Hamiltonian. We also note, that the Hartree interaction overcorrects
the predictions. This could in principle be compensated by extending the perturbation

approach to higher orders.

C.3.3. Three and Four Electrons
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3.0 r_— r

=20 r -
NN S O
b) g

1.0
0.8
(=]
3 06 ]
z !
Z 04
0.2

0.0
6.0 -40 -20 0.0

4.0 6.0 8.0 10.0

40 60 80 100 60 -40 20 00 20 :
V, [Ha]

2.0 :
v, [Hal

Figure C.5.: (Top) Number of electrons on the acceptor N4 as a function of the donor
potential Vp in the low-barrier case (II) for a) N = 3 (dark orange) and b)
N = 4 (dark violet) electrons. For comparison the case of N = 2 electrons
is shown in black. A system of N electrons exhibits N tunneling points.
The behaviour of three and four electrons is qualitatively similar as the one
of two electrons. (Bottom) The derivate dNa/4v,, as a function of the donor
potential for ¢) N = 3 and d) N = 4. In each panel, the predicted tunneling
points are shown as dashed vertical lines. The light orange (violet) dashed
line shows the IP-EA predicted tunneling points, the slightly darker orange
(violet) dashed line the Hartree corrected predictions.

Fig. C.5 shows in the top panels a) and ¢) the number of electrons on the acceptor N4
for three (orange) and four (violet) electrons for the low-barrier case (II). The behaviour
of two electrons (black) is shown for comparison. A system with N electrons exhibits N
tunneling points, but except for that, the functional line shape is similar to the one of
the two electrons system, which was analyzed in detail before. It is interesting to note
the differences of the plateau widths for the cases of three and four electrons. For closed

shell systems, the tunneling points appear in pairs of two, whereas the ones in open shell
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system appear isolated.

This can be explained already at the level of non-interacting electrons. For very narrow
wells, the energy-levels of non-interacting electrons are far apart in energy. Therefore, the
level spacing is bigger than the energy splitting due to the electron-electron interaction
of electrons in the same spatial non-interacting energy level. The difference of the IP of
a system with 2n electrons and the same system with 2n — 1 electrons is much smaller
than the difference between the IP of the system with 2n — 1 and the IP of the system

with 2n — 2 electrons, i.e.
|[IP(2n) — IP(2n —1)| < [IP(2n — 1) — IP(2n — 2)|, (C.20a)
and analogous for EA
|[EA(2n) — EA2n+1)| < |[EA(2n+ 1) — EA(2n + 2)]|. (C.20Db)

Basically, IP and EA always appear in pairs. This pair structure is inherited by the
tunneling points. The difference between open-shell and closed shell calculations is that
for the closed-shell calculations, two tunneling points in a row either keep IP and EA in
the same pair or both IP as well as EA change the pair. If both stay in the same pair, the
tunneling points are close together, if both change, i.e. new energy levels are involved on
both donor and acceptor, and then the tunneling points are further apart. In contrast,
for the open-shell calculations, for every tunneling point either IP or EA changes from
one pair to the next, but never both. For the closed-shell calculations, the width of the
plateaus with odd numbers of electrons in the subsystems is mainly governed by the
Coulomb interaction of electrons, that would sit in the same one-particle level, the width
of the plateaus with even numbers of electrons is mainly governed by the energy level
spacing. For completely non-interacting electrons, the odd plateaus vanish, whereas the
even ones persist. In contrast, for open-shell calculations, the level spacing plays a role
in all of the plateau lengths: even in the case of non-interacting electrons, all plateaus

persist.

Furthermore, the tunneling points of three electrons seem to lie in the middle of the odd
plateaus of the closed-shell calculations. This is due to symmetry of donor and acceptor.
For a completely symmetric setup, the tunneling points of three electrons would in fact

lie exactly in the middle.
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We now apply our correction scheme for the tunneling points of the fully interacting
Hamiltonian H®) to the three and four electron calculations. The bottom panels of
Fig. C.5 show the derivatives dNVa/av;, of the interacting number of electrons on the
acceptor NS) for three (b) and four (d) electrons. The vertical dashed lines show the
exact tunneling points. The light lines show the IP-EA predictions, the darker lines the
tunneling points, that were corrected with our derived scheme. We see, that also for
three and four electrons our correction scheme gives a good agreement with the exact

tunneling points. Again, we see, that the scheme slightly overcorrects the energies.

C.3.4. Lineshape of Electronic Transport

3 | |
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NA

data
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Figure C.6.: Tunneling of (top) three and (bottom) four electrons in a 9-site model. The
figure shows the numerical data in comparison with our model, both for the
full and the truncated interaction. In both cases, our model reproduces the
numerical results on the shown scale. Figs. C.7 and C.8 show zooms into
the relevant regions for three and four electrons respectively.

The tunneling behaviour can be characterized by two things: the tunneling point, i.e.
the gate voltage at which electrons tunnel, and the functional shape of the number
of electrons on the acceptor N4 as a function of the donor potential Vp. In the last

sections, we have discussed the voltage, in the following we would like to find a simple
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Figure C.7.: Comparison of the tunneling behaviour predicted by our model and the
corresponding numerical data for an asymmetric double-well potential with
three electrons (zoom into the regions of the different tunneling points).

mathematical model in order to give an analytical expression for the shape.

To this end, we assume, that the tunneling process can be described by two energy levels:
one on the donor and one on the acceptor, coupled to each other by a coupling term 7.

This situation is described mathematically by the two-level Hamiltonian

S 0 T
(). o

Here, the on-site potential at the acceptor is zero, the on-site potential of the donor is
Vp and is assumed to be variable as in the previous calculations. The coupling of the

two sub-systems is given by 7, which mimics a higher or lower barrier.

The Hamiltonian (C.21) yields the energy eigenvalues

1 1
€12 = §VDi§\/V5+47'2, (C.22)
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Figure C.8.: Comparison of the tunneling behaviour predicted by our model and the
corresponding numerical data for an asymmetric double-well potential with
four electrons (zoom into the regions of the different tunneling points).

and the corresponding eigenvectors

1 7VD:F\/ Vg+47’2
2T

g = — C.23
1/2 A i (C.23)

with the normalization factor

[ V2 +4r2

Since we are interested in the number of electrons on the acceptor, we calculate the

respective electronic densities

VVptar? (C.25a)
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and of the excited state

1- 2
1 v T
m=; 1, B (C.25b)
+ \/VE+ar?
where
1 1%
Na(Vp)== |1+ S — (C.26)

2 \/V1%+47'2

gives us the number of electrons on the acceptor for the ground state in dependence of

the coupling term 7.

Since we have a step for each tunneling point and one tunneling point per electron in the
system, taking into account that we have to place the steps at the right points T'P,,, we

find for general overall shape of N4

N-1
N 1 Vp -TPF,
NalVo) =5 +3 2. -

im0 \ \/ (Vo — TP,)? + 472

(C.27)

One sees, that the functional shape of the number of electron on the acceptor is governed
by the coupling element 7. This coupling 7 is the energy splitting between the many-
body energy levels at the tunneling point. In 1961, Herring used the continuity equation
in combination with a two-term expansion of the wavefunction to obtain this energy
splitting for the case of a single particle in a symmetric double-well potential as [240]:

dp
P — p— p— C . 28
T [w dw} . ©=¢pA=¢D (C.28)

This formula was adapted by Rastelli to asymmetric double-well potentials [241]:

1[ dep dSDA]
zo

_ 2
T 2 va dx ¥D dx (C.29)

Both of these cases are for single particle tunneling. To find an approximation to the
energy splitting in the many-electron case, we define an auxiliary “excess-electron wave

function”. To this goal, we define the “excess-electron density” of the N-th electron on
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donor /acceptor:
pé\:;cess,D/A(w) = pg/A(‘r) - pg/_Al ({L’) (CBO)

Since we are interested in this quantity only at x¢ under the barrier, where it is always

positive, we can define the “excess-electron wave-function” at xg:

N
(pecccess,D/A(mO) = pé\a[ccess,D/A(mO) (031)

which can be used together with the Rastelli formula (C.29). Figure C.6 shows the results
for a 9-site model, with a spacing of Ax = 0.2 and four sites on the donor, three sites on
the acceptor and two sites for the barrier, Figs. C.7 and C.8 show zooms of the results.
As we see, the agreement between the numerical simulations and the predictions using
Rastelli’s formula in combination with our “excess-electron wave function” is rather good.
To further improve the results, we also implemented a second order correction. This
requires a correction of densities and wavefunctions. One possibility is to recalculate
the subsystem densities with an additional Hartree potential coming from the other
subsystem. We found, that this gives vanishingly small contributions to the tunneling

point corrections and does not change the lineshape noticeably.

C.4. Tunneling in Density-Functional Theory

We now compare the exact calculations for two electrons to calculations using DFT with
different functionals. Firstly, we show that for two electrons in an asymmetric double-
well potential, LDA and LDA-ADSIC do not reproduce the correct tunneling behaviour,
but instead predict a continuous charge transfer from one well into the other. We then
show, that the spin-polarized LDA-SIC using the Perdew-Zunger scheme (LDA-PZSIC)
has multiple solutions and one of them does reproduce the correct density in the two-
electron case. Unfortunately, this comes with the price of an incorrect spin density. We
then analyze, how to use the LDA-PZSIC spin-resolved potentials to construct a KS-
potential, that reproduces the correct spin-densities and analyze, how tunneling in DFT

can be understood in terms of the KS eigenenergies.
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C.4.1. Tunneling with Different Functionals

Figure C.9 shows the number of electrons on the acceptor N4 as a function of the donor-
potential Vp. The red line shows the exact many-body tunneling behaviour, the other
lines the behaviour with different DFT functionals. One sees that neither LDA, nor LDA-
ADSIC reproduce the step-like charge transfer from the donor to the acceptor, but instead
predict a continuous behaviour. Furthermore, one finds, that LDA-SIC in the Perdew-
Zunger scheme has multiple solutions. If one chooses the one with minimal energy, it

reproduces the step-like behaviour of the exact calculations as shown in Figure C.9.
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Figure C.9.: Number of electrons on the acceptor as a function of donor potential Vp
for two electrons in an asymmtric double-well potential. The red line in-
dicates the exact many-body solution, the other lines DFT solutions with
different functionals: LDA (green), LDA-ADSIC (blue) and spin-polarized
LDA-PZSIC (pink). The spin-polarized LDA-PZSIC solution has multiple
solutions. If one chooses the one with minimal energy, it exhibits a step-like
behaviour like the exact solution.

Nevertheless, even though, the total density is reproduced well, the spin-resolved density

is not. If we had the exact functional, the density would be correct for a closed-shell
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calculation, with both electrons occupying the same orbital. This leads to the question,
if we can use the correct behaviour with respect to the overall density of the spin-polarized

LDA-PZSIC calculations to construct the correct spin-unpolarized KS potential.

C.4.2. Constructing the Exact KS Potential for Tunneling

As a first step, we compare the exact KS potential with the spin-resolved potentials of
the spin-polarized LDA-PZSIC calculations. The exact KS potential can be obtained

from the exact density through inversion [185]:

2 nir
vics(r) = ;V\ﬁ Vn(r()) tea (C.32)

Fig. C.10 shows the exact KS-potential on the left, the spin-resolved KS-potentials in the
middle and the LDA potential on the right, each together with their respective ground-
state densities. The top row shows the situation, where both electrons sit on the donor,
the middle row shows the situation where one electrons sits on the donor and the other
one on the acceptor and the bottom row shows the situation, where both electrons sit on

the acceptor.

In the exact case (left column), the first thing, that jumps into one’s eye, is the peak in
the KS-potential, which forms between the two densities. This is the well-known peak,
that is necessary to keep the two electrons apart [185]. If we now compare this peak
structure to the spin-dependent KS-potentials in the case of the spin-polarized LDA-
PZSIC calculation (center column), we find, that the two spin-dependent KS-potentials
seem to form a similar structure between the two of them. As a comparison, the KS-
potential of the LDA calculations (shown in the right column) is completely different
from the exact one in all three cases. In the following, we would like to use the two
spin-polarized PZSIC KS potentials to construct a new KS potential, which reproduces
the correct density without the need of breaking the spin-symmetry. In order to do so,

we follow the steps:
I Perform a spin-polarized calculation using the LDA-PZSIC functional.

IT Combine the two spin-resolved KS-potentials plus possible modifications to a new
KS potential Veg.

IIT Assuming, that Vig is the correct KS-potential, solve the Schrédinger equation for
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Exact LDA SIC, spinpol LDA

Figure C.10.: KS potentials vi g and the respective ground-state densities for exact, spin-
polarized LDA-PZSIC and LDA calculations. The top row shows the sit-
uation where both electrons are on the donor, the middle one, the one,
where one is on the donor, one has already tunneled to the acceptor and
the bottom row shows the situation where both electrons have tunneled to
the acceptor. The left column shows the exact Vg (red) with its respec-
tive density (blue), the middle one the spin-polarized LDA-SIC potentials
(red and green) with their respective spin-densities (blue and pink) and the
right column finally shows the LDA potential (red) with its density in blue.
Note, that the offsets of the potentials are arbitrary and have no physical
meaning.

independent particles in the potential Vg to get the non-interacting wave functions.

IV Occupy the non-interacting wave functions with two electrons and calculate the re-

sulting density. This density should then reproduce the correct density and because
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we are not performing spin-polarized calculations, the correct spin-densities.

The difficult step is to design a recipe to construct Veg. First, we take the minimum
of the two spin-polarized potentials V4 and V| in order to take advantage of the before-
mentioned peak, that is formed between both. If we compare the resulting potential
with the exact one, we find, that the offset between the wells is wrong and that, whilst
it has a bit of a peak in the region between the two peaks in the electronic density, the
peak is not high enough. We therefore recall [185|, where the exact KS-potential for two

electrons in a double-well potential in the stretched limit was found to be
Vks = Vewr+ 511+ Pn1

with the external potential V., the step-like structure

Ilm + Igng
Sy = 2= C.33
1 ni + no ( )

and the peak-like structure

2
Py = (Vdey/z — \/i2dsymr)” (C.34)

2 (n1 + n2)2

It is therefore only natural to add these structures by using the spin-polarized densities

with n1 = n4 and ng = n). Thus, we construct our potential Vg as
Ver = min (V3,V})+ Sy + Py

2
Npdy /N — /N dy\/Tip
_ min(%,V¢)+ITnT+I¢m+ (\ﬁ \/7 F \/7>

n 2 (ny +ny)°
2
(vtdeyms = yaide )
= min (V;,V}) — SN 5 (C.35)
Ny 2 (ny +ny)
where I = —¢, because the orbitals in question are the HOMO orbitals.

Applying this scheme, we find that the so-constructed KS-potential Veg indeed displays
a Coulomb blockade plateau, even though it is not wide enough: Figure C.11 shows
the number of electrons on the acceptor N4 as a function of the donor potential Vp in

the exact case, as obtained by spin-polarized LDA-PZSIC, confining the solution to the
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Figure C.11.: Number of electrons on the acceptor N4 in dependence of the donor po-

tential Vp for the exact case, as obtained with the wrong spin-symmetry
with spin-polarized LDA-PZSIC, with our proposed scheme with the cor-
rect spin-symmetry using Ve(é) = min (VT7 VU, Ve(flfl) = min (V¢, V:L) + Sy

and Ve(f?i) = min (VT7V¢) + Sy + Py Ve(f? does not produce a plateau,

V;(flfi) produces first hints of a plateau in the center and Ve(f?i) produces a
plateau, even though it is still too narrow. LDA is shown for comparison.

branch with minimal energy and using our developed scheme using (i) Ve(é) = min (VT, VO
, (ii) Ve(f’f’) = min (V4, V) 4+ Sy, and (iii) Ve(fzf“) = min (V4, V) + St; + Py, One sees that

just taking the minimum of the potentials is not enough. We need to add the step

structure Sy to get a bend in the Ny curve. Finally, by additionally adding the peak

Py, we obtain a real plateau, even though it is too narrow.

But what is happening here? How can we explain, what step and peak do? And how can

we relate this to the results, that we know about many-particle tunneling? The answer

lies in the KS-eigenvalues.
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C.4.3. Eigenenergies - Exact vs. DFT

In many-particle tunneling, we know that tunneling points are situated at avoided cross-
ings between energy levels that have spatially different electronic densities. The tunnel-
ing point energy is determined by the avoided crossing, and the energy splitting at the

avoided crossing defines the curvature of the tunneling curve at this point.

We wish to determine if this relationship between avoided crossings and tunneling points
is reproduced at the DF'T level. The answer can be found in Figure C.12, which shows
the KS eigenvalues as a function of the donor potential Vp for the different constructed

potentials, in comparison to the eigenvalues of the exact KS potential, which was obtained

by inversion using Eq. (C.32). In contrast to the many-body eigenenergies, which have

C—

0.05 |

o
o
G o

o
o
o

eigenvalues
o

o

0.05 |-

Figure C.12.: (top) Number of electrons on the acceptor NA as a function of the donor
potential V D (as in Fig. C.11) and (i) - (iv) the corresponding KS eigenval-
ues: (i) exact KS, (ii) Ve(f? =min (V4, V) , (iii) Ve(fzfz) =min (V4,V}) + Spy
and (iv) Ve(fzf”) = min (VT,VQ + 53, + Py. Eigenvalues are plotted as
differences to the lowest eigenvalue.

avoided crossings at the tunneling points, the two lowest eigenvalues of the exact KS
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potential are (almost) degenerate for the whole length of the plateau. This can be
understood as follows. In the KS case, both electrons occupy a single orbital. In the
Coulomb blockade plateau region, this one-particle orbital is spread over both wells.
From the many-body calculations, we know, that this is the case only at the many-body
tunneling points with (almost) degenerate orbitals. Therefore, the KS potential has to
mimic this situation over the whole plateau length. This is very well illustrated in panel
(ii) of Fig. C.12, which shows the eigenvalues of the potential V;(é) = min (W, V¢) Here,
the two lowest eigenvalues are very close in energy only at a single donor potential Vp,
which is precisely the only point, where one electron is on the donor and one on the

acceptor (see blue line in the top panel).

The job of step and peak is to create this near degeneracy by closing the gap between
the first and the second KS-eigenvalue. The main work is done by the step: In panel (iii)
(which corresponds to the pink line in the top panel) the two lowest eigenvalues are close
in energy over a certain energy range already. If we now also add the peak (panel (iv)),
the difference between the eigenvalues is decreased even more and the Coulomb plateau

(bright blue line in top panel) becomes even wider.

It is worth noting, that for LDA (not shown), the (near) degeneracy between first and
second eigenenergy is present during the whole time of constant charge transfer; LDA’s

problem is purely the delocalization of the eigenstates.

C.5. Summary

In this appendix, we have analyzed tunneling in many-particle systems (in practice two,
three and four particles), first exactly, then from a DFT point of view. First, we have
looked at exactly solvable model Hamiltonians. Here, we analyzed how the resonance
conditions for tunneling differ in a fully-interacting system from a system, where donor
and acceptor do not interact. We found, that aligning the ionization potential of the donor
with the electron affinity of the acceptor predicts the tunneling points of a Hamiltonian,
where electrons on the donor do not interact with the electrons on the acceptor. We
then developed a scheme to correct the resonances predicted by this alignment to get the
fully-interacting resonances, based on only the densities of the subsystems. Being able to
neglect the exchange interaction, we learned that we can construct a correction scheme

for the tunneling points in the case of interacting subsystems, where the correction only
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depends on the respective subsystem densities. This scheme is therefore easily applicable
to any DFT or Hartree-Fock calculation. Finally, we analyzed the tunneling line shapes.
We found, that we can adapt the formula developed by Herring for single particles in
symmetric wells and adapted by Rastelli for single particles in asymmetric double wells

to many particles by defining an excess-density wave function.

We then proceeded to look at the DFT description of many-particle tunneling. We
showed, that DFT using the LDA or the LDA-ADSIC functionals is not able to correctly
predict the tunneling behaviour in an interacting two-electron system. Only the spin-
polarized LDA-SIC approximation using the Perdew-Zunger scheme is able to predict
the correct density, but does so by using incorrect spin-densities. We then compared the
exact KS-potential, which was obtained from inverting the exact solution, to the different
potentials in LDA, LDA-SIC, etc. We then found that one can use the spin-polarized,
self-interaction corrected potentials to obtain a solution with the correct spin-resolved

densities.

Finally, we found, that while in many-body tunneling, the many-particle energy levels
show avoided crossings at the tunneling points, in the DFT case, the first and second
eigenvalues are degenerate over the whole Coulomb-blockade plateau. This is one neces-
sary condition for the KS eigenvalues in order to produce the correct description of the

Coulomb-plateau in the description of tunneling.
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