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Abstract

This paper deals with an isoperimetric optimal control problem
for nonlinear control-affine systems with periodic boundary conditions.
As it was shown previously, the candidates for optimal controls for this
problem can be obtained within the class of bang-bang input functions.
We consider a parametrization of these inputs in terms of switching
times. The control-affine system under consideration is transformed
into a driftless system by assuming that the controls possess properties
of a partition of unity. Then the problem of constructing periodic tra-
jectories is studied analytically by applying the Fliess series expansion
over a small time horizon. We propose analytical results concerning
the relation between the boundary conditions and switching param-
eters for an arbitrary number of switchings. These analytical results
are applied to a mathematical model of non-isothermal chemical reac-
tions. It is shown that the proposed control strategies can be exploited
to improve the reaction performance in comparison to the steady-state
operation mode.
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Highlights

• Bang-bang control strategies corresponding to periodic trajectories of
nonlinear control-affine systems with isoperimetric constraints are stud-
ied in detail.

• An approximate method for defining the switching parameters in terms
of solutions to auxiliary algebraic equations is proposed.

• The proposed control strategies are applied to the optimal control of
non-isothermal chemical reactors.

• The performance improvement of a nonlinear reaction is confirmed by
analytical and numerical results.

1 Introduction

The issues of optimal design of processes in chemical engineering give rise to
a series of challenging problems in mathematical control theory. An impor-
tant class of these problems is related to the analysis of mathematical models
of nonlinear chemical reactions described by ordinary differential equations
under periodic control strategies (see, e.g, [1, 2, 3] and references therein). It
was pointed out in [4] that the performance measure of a nonlinear chemical
reaction essentially depends on characteristics of the periodic input signal
corresponding to the feed composition. A particular estimate of the im-
provement of the objective function for different types of periodic controls
was proposed in [5] by computing the second variation of the cost in the fre-
quency domain. It was shown there that small harmonic oscillations in feed
reactant concentration lead to the increase of the mean product concentra-
tion for a class of second-order isothermal chemical reactions. Over the last
few decades, the optimization problems for mathematical models of periodic
chemical reactions have received a lot of attention in both mathematical and
engineering studies.

Sufficient conditions for improving the performance of a periodic process
in a neighborhood of the given steady-state were proposed in [6]. These con-
ditions are based on the Pontryagin maximum principle and relaxed steady-
state analysis. It was noted that the relaxed steady-state analysis can indi-
cate that the improvement of large magnitude is possible by cycling, while the
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maximum principle provides no information about the magnitude of possible
improvement.

The Laplace–Borel transform has been applied in [7] for the study of
forced nonlinear processes with hyperbolic equilibrium points. This approach
is equivalent to the transfer function approach with a modified set of ze-
ros and poles to mimic nonlinearities in the system. The modified transfer
function is computed in [7] for a second-order isothermal reaction to obtain
minimum and maximum bounds for the amplitude and phase to single-tone
inputs. Another method for finding periodic trajectories corresponding to
the maximum of the time-average output of a nonlinear system was proposed
in [8] within the framework of extremum seeking control. By assuming that
the considered control system is flat, the original optimal control problem is
transformed to a parameterized optimization task. This idea is applied to a
drug delivery example in [8].

Second-order necessary optimality conditions have been studied in [9,
Chapter IX] for periodic problems described by nonlinear ordinary differential
equations with state constraints and an isoperimetric condition. A Π-test
under state constraints is proposed to estimate optimal periodic solutions
in a neighborhood of the steady-state of the system. This result extends
the second variation technique in the frequency domain developed in [5] for
unconstrained problems. As an example, the Π-test is applied to a non-
isothermal chemical reaction with a single control in [9]. The considered
control is proportional to the overall heat transfer coefficient and can be
adjusted by the coolant flow rate. The behavior of this dynamical system
in a neighborhood of its steady-state is analyzed by treating the Damköhler
number as a bifurcation parameter.

A generalized Π-criterion was proposed in the paper [10] to describe the
effects of periodic perturbations around any given steady-state of a nonlinear
system. This criterion is not restricted just to the optimal steady-states, but
allows studying an arbitrary equilibrium point under the stability assump-
tion. The criterion is applied to a nonlinear system describing two parallel
chemical reactions of the type 2A → B and A → C. This methodology has
been further developed in [11] for other types of chemical reactions, in par-
ticular, A → B → C. The generalized Π-criterion has been applied to find
constraints on the activation energy such that the yield of the product is im-
proved using high-frequency periodic perturbations in the temperature. The
Π-criterion was also successfully applied to broad classes of nonlinear sys-
tems with multidimensional inputs, including mathematical models of con-
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tinuous bioprocesses governed by the conservation equations for cell mass.
A particular class of such models governed by third-order nonlinear ordi-
nary differential equations with integral constraints was considered in [12].
The differential equations of this type have been further addressed in the
paper [13] by exploiting the Laplace–Borel transform and separating the sta-
tionary behavior and the transient dynamics. The above study resulted in
the computation of the proper forcing amplitude and frequency to optimize
the performance measure.

The Π-criterion was adapted to periodic inputs with very low frequencies
and tested on an isothermal continuous stirred-tank reactor (CSTR) in [14].
For a set of non-isothermal parallel reactions in a CSTR, the Π-criterion
was applied in [15]. In the cited paper, a numerical simulation is performed
with periodic forcing of the feed temperature, and the optimal frequency for
the best performance improvement is found numerically. It is noted in [16]
that the Π-criterion has local nature and provides approximate estimates
of the performance measure for the inputs with small amplitudes. Thus,
higher-order corrections to the Π-criterion are proposed in [16], based on
approximations of the center manifold by power series. As a result, a trun-
cated series is obtained to compute approximately the performance measure
of a nonlinear control problem with harmonic inputs. This approximation
is applied to a non-isothermal CSTR controlled by the temperature varia-
tion under sinusoidal control strategies. The case of square wave inputs is
considered by using the truncated Fourier series. It is shown that the use
of higher-order terms can improve the accuracy of analytic estimates of the
performance under large control amplitudes.

A method for solving an optimal control problem within the class of
periodic inputs based on the Carleman linearization was proposed in [17].
The authors of the cited paper considered pulsed periodic modulations of
single-input nonlinear systems and applied their construction to optimize an
isothermal CSTR. It was shown that the second-order Carleman procedure
produces a good approximation of the results from direct numerical integra-
tion.

Forced oscillations in an exothermic CSTR were studied in [18] within
the framework of vibration control. This approach resulted in a modification
of the dynamical properties of the nonlinear system under consideration by
using fast oscillations of the input flow rate. Such input modulations are
designed to ensure an asymptotically stable periodic operation of the reactor
in a neighborhood of its unstable equilibrium. Analytic stability conditions
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have been derived by using the averaging method, and numerical simulations
have been performed together with experiments to verify the stability of
the controlled system. A rather general version of the averaging method
for multifrequency systems with exact estimates of solutions in powers of
a small parameter was presented in [19]. The proposed method also allows
studying conditional asymptotic stability of integral manifolds and averaging
the boundary conditions together with the differential equations. Note that
the averaging technique was previously applied to nonlinear systems with
Arrhenius-type dynamics in the paper [20]. It was shown there that an
increase in productivity of catalytic reactors, modeled as Arrhenius systems,
can be achieved by means of vibrational stabilization.

Recent results on estimating the time-average performance of chemical
reactions by the nonlinear frequency response method with periodic inputs
can be found in [21, 22].

In the paper [23], the problem of maximizing the performance of a periodic
chemical reactor is treated as an optimal control problem with isoperimetric
constraints. It has been shown that each optimal control for this problem
is a bang-bang control, and the maximal number of switchings has been es-
timated for the linearized equations. Although some basic properties of the
extremal controls have been analysed in [23, 24] for a particular first-order
non-isothermal reaction, the general question of computing control strate-
gies for problems with isoperimetric constraints and periodic boundary con-
ditions remains open. The reported few attempts to apply experimentally
the principle of forced periodic operation of chemical reactors were recently
summarized in [1].

The objective of our work is to propose an efficient technique for defining
the switching controls for a wide class of nonlinear control-affine systems with
isoperimetric constraints, and to apply these theoretical results to mathemat-
ical models of nonlinear chemical reactions with periodic inputs. The current
paper originates from our previous conference paper [24] and essentially ex-
tends the analytical approach of [24] for the case of bang-bang controls with
an arbitrary number of switchings. The main theoretical results are pre-
sented in Section 3 and tested by numerical simulations in Section 4. We
present a novel class of conditions linking together the switching parameters
and the initial data. Such conditions are formulated as systems of algebraic
equations involving vector fields of the system and their Lie derivatives at the
initial point. The efficiency of the control design scheme, based on these alge-
braic equations, is illustrated with an example of a non-isothermal chemical
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reaction of the type “A→ product”.

2 Mathematical model of a non-isothermal

chemical reaction

Our study is motivated by optimal control problems for mathematical models
of non-isothermal chemical reactions governed by nonlinear ordinary differ-
ential equations. As an important representative of this class of models,
we consider a simple reaction of the type “A → product” described by the
following control-affine system (see [23, 24]):

ẋ = f0(x) +u1g1(x) +u2g2(x), x =

(
x1

x2

)
∈ R2, u =

(
u1

u2

)
∈ U ⊂ R2, (1)

U = [umin1 , umax1 ]× [umin2 , umax2 ].

The components of the state vector x(t) have the following physical meaning:
x1(t) describes to the outlet concentration of A, and x2(t) corresponds to the
temperature in the reactor at time t. System (1) is controlled by modulating
the inlet concentration of A (input signal u1(t)) and the temperature of
the inlet stream (input signal u2(t)). The values of x1, x2, u1, and u2 are
taken as dimensionless deviations of the corresponding physical quantities
from their steady-state values under a suitable rescaling. Thus, system (1)
admits the equilibrium x1 = x2 = 0 with u1 = u2 = 0 which corresponds
to a certain operating mode of the reactor with constant inflow and outflow
characteristics.

For the mathematical model of the n̄-th order reactions considered in [23],
the vector fields of system (1) are

f0(x) =

(
k1e
−κ − φ1x1 − k1(x1 + 1)n̄e−κ/(x2+1)

k2e
−κ − φ2x2 − k2(x1 + 1)n̄e−κ/(x2+1)

)
, g1 =

(
1
0

)
, g2 =

(
0
1

)
,

(2)
where κ, ki, and φi are parameters of the reaction. All the necessary details
concerning the derivation of control system (1) can be found in [2, 3, 23].

As it has been already noted in the introduction, a series of challeng-
ing problems is related to the optimization of periodic operating modes for
nonlinear chemical reactions. One of this problems deals with maximizing
the rate of conversion of A to the final product. The equivalent task of
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minimizing the mean concentration of A at the output of the reactor has
been considered in [23, 24] in the context of isoperimetric optimal control
problems.

2.1 Isoperimetric optimal control problem

We recall the problem statement from [23] below.
Problem 2.1. For given τ > 0, x0 ∈ R2, and ū1 ∈ R, the goal is to find

a control û ∈ L∞([0, τ ];U) that minimizes the cost

J [x] =
1

τ

∫ τ

0

x1(t)dt

along the solutions x(t) of system (1) corresponding to the admissible controls
u ∈ L∞([0, τ ];U) such that the periodic boundary conditions

x0 = x(0) = x(τ)

and the isoperimetric constraint

1

τ

∫ τ

0

u1(t)dt = ū1

hold.
This problem statement has clear physical meaning: to minimize the

remainder of A in the output of the reactor by consuming a fixed amount of
A over the period of time t ∈ [0, τ ]. As one can easily see, the cost J vanishes
on the steady-state solution x(t) ≡ with u(t) ≡ 0. So, in particular, if one
can construct a τ -periodic control u(t) such that

∫ τ
0
u1(t)dt = 0 and the

corresponding solution x(t) is τ -periodic with J [x] < 0, then such control
improves the performance of the reaction with respect to its steady-state
operation.

Remark 2.1. The above isoperimetric problem was analyzed in [23] by
using a modification of the Pontryagin maximum principle with Lagrange
multipliers (cf. [25, 9]). It was shown in [23] that, if û(t) is an optimal control
for the above problem, then the minimizer û(t) can be chosen in the class of
bang-bang controls. The number of switchings of û(t) was also estimated
in [23] for the linearization of system (1) with n̄ = 1, when the differential
equations for x(t) and the adjoint variables p(t) of the Hamiltonian system
are decoupled. In the latter case, it was shown that any bang-bang control û(t)
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satisfying the Pontryagin maximum principle has at maximum 4 switchings
in the interval t ∈ [0, τ ], provided that

D = (φ1 + φ2 + n̄k̃1 + κk̃2)2 − 4(φ1φ2 + φ1κk̃2 + n̄φ2k̃1) > 0, (3)

where k̃1 = k1e
−κ, k̃2 = k2e

−κ. Note that the condition (3) holds for the
reactor model considered in [23].

Based on the assumption D > 0, some particular switching strategies for
Problem 2.1 have been analysed in the previous papers [23, 24] for the the
control system (1) with the vector fields given by (2). We will consider this
problem in a more general form below.

3 Main results

In this section, we will address the problem of defining the bang-bang controls
with desired properties for general control-affine systems of the form

ẋ = f0(x) +
m∑
j=1

ujgj(x), x = (x1, ..., xn)T ∈ X, u = (u1, ..., um)T ∈ U, (4)

where the vector fields f0, g1, ..., gm are assumed to be smooth in the domain
X ⊂ Rn, and the set of control values U ⊂ Rm is compact. We also assume
that (0, 0) ∈ X×U and f0(0) = 0, so that system (4) admits the equilibrium
x = 0 with u = 0. For a time horizon τ > 0, we denote the set of admissible
controls as Uτ = {u ∈ L∞[0, τ ] : u(t) ∈ U for all t ∈ [0, τ ]}. In the sequel, we
will treat the control system (1) as a particular case of system (4) and study
properties of related switching control strategies for arbitrary dimensions n
and m.

3.1 Bang-bang inputs for general control-affine sys-
tems

In order to study the family of bang-bang controls satisfying the isoperimetric
constraint

1

τ

∫ τ

0

u1(t)dt = ū1 (5)

such that the corresponding solution x(t) of system (4) satisfies

x0 = x(0) = x(τ), (6)
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we fix an integer N ≥ 1 and consider a finite sequence of control values

u1, u2, ..., uN ∈ ∂U (7)

together with a partition of the time interval

0 = t0 < t1 < ... < tN = τ, (τj = tj − tj−1 > 0), (8)

in order to define the following bang-bang control u ∈ Uτ :

u(t) = uj for t ∈ [tj−1, tj), j = 1, N. (9)

As it follows from the results of Section 2 for a particular form of sys-
tem (4) with n = 2 and U = [umin1 , umax1 ] × [umin2 , umax2 ], if u ∈ Uτ is an
optimal control for Problem 2.1, then u(t) can be constructed in the form (9)
by minimizing the corresponding cost

J [x] =
1

τ

∫ τ

0

x1(t)dt (10)

for all possible choices of N , switching scenarios (7), and switching times (8),
such that the constraints (5)–(6) are satisfied.

3.2 Reduction to driftless systems and the Fliess ex-
pansion

Our goal is to propose an efficient control design scheme that allows comput-
ing the switching parameters τ1, τ2, ..., τN from auxiliary algebraic equations.
For this purpose we first rewrite (4) with the controls (9) as the driftless sys-
tem

ẋ =
N∑
j=1

vj(t)fj(x) (11)

with

fj(x) = f0(x) +
m∑
i=1

ujigi(x) (12)

and
vj(t) = χ[tj−1,tj)(t) for j = 1, 2, ..., N. (13)

Here χ[tj−1,tj)(t) is the indicator function: χ[tj−1,tj)(t) = 1 if t ∈ [tj−1, tj), and
χ[tj−1,tj)(t) = 0 if t /∈ [tj−1, tj). The family of control functions {v1, v2, ..., vN}
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possesses an important property of a partition of unity:
∑N

j=1 vj(t) = 1 for
all t ∈ [0, τ).

For each vector field fj, j = 1, 2, ..., N , we denote its flow on X by etfj , i.e.
x(t) = etfj(x0) stands for the solution to the Cauchy problem ẋ(t) = fj(x(t))
with the initial value x(0) = x0 ∈ X. Then the problem of finding an
admissible bang-bang control of the form (9) such that the corresponding
solution of (4) satisfies (6) can be formulated as the problem of defining
positive numbers (τ1, τ2, ..., τN) such that

eτNfN ◦ ... ◦ eτ2f2 ◦ eτ1f1(x0) = x0 (14)

or, equivalently,

eτifi ◦ ... ◦ eτ1f1(x0) = e−τi+1fi+1 ◦ ... ◦ e−τNfN (x0) for some i < N. (15)

From the geometric viewpoint, the study of admissible periodic trajectories
for Problem 2.1 is thus reduced to the construction of closed curves in X
from arcs of the type etfj(x). Although the two conditions (14) and (15) are
equivalent, the application of (15) may have an advantage in computation if
the eτjfj(x) are growing fast for large values of τj. In the sequel, we exploit
formula (14) as a condition between the initial value x0 and switching times
(τ1, τ2, ..., τN) if the time horizon τ > 0 is small enough. As the left-hand
side of (14) is the solution of (11), (13) at time τ , we will apply the Fliess
functional expansion for formal manipulations with such solutions.

If the vector fields fj are analytic and y = h(x) is an analytic output
function, then the value of y(t) = h(x(t)) for the corresponding solution
x(t) of system (11) with the initial data x(0) = x0 admits the following
representation [26], [27, Chapter 4]:

y(t) = h(x0)+
∞∑
ν=0

N∑
i1,...,iν=1

Lfi1 · · ·Lfiνh(x0)

∫ t

0

dξiν · · · dξi1 , t ∈ [0, τ ], (16)

where Lfih(x) = ∂h(x)
∂x

fi(x) denotes the Lie derivative, and ∂h(x)
∂x

is the Jaco-
bian matrix. Note that the Fliess expansion (16) can be obtained from the
Volterra series (see, e.g., [26]). The iterated integrals in (16) are defined as∫ t

0
dξi = ξi(t) =

∫ t
0
vi(t)dt for i = 1, 2, ..., N , and, by induction,∫ t

0

dξiν · · · dξi1 =

∫ t

0

dξiν (s)

∫ s

0

dξiν−1 · · · dξi1 .

10



In particular, the first terms of the expansion (16) for the controls given
by (13) and h(x) = x can be written as

x(t) = x0+

N∑
i=1

fi(x
0)Vi(t)+

N∑
i,j=1

(
Lfj fi

)
(x0)Vij(t)+

N∑
i,j,l=1

(
LflLfj fi

)
(x0)Vijl(t)+R(t), t ∈ [0, τ ], (17)

where

Vi(t) =

∫ t

0

vi(s)ds,

Vij(t) =

∫ t

0

∫ s

0

vi(s)vj(p)dp ds,

Vijl(t) =

∫ t

0

∫ s

0

∫ p

0

vi(s)vj(p)vl(r)dr dp ds.

(18)

Note that the expansion (17) is valid if the vector fields fj are of class
C3(X), and its remainder admits the estimate max[0,τ ] ‖R(t)‖ = O(τ 4),
see [28, 29] for the proof. Throughout this paper we use the asymptotic
notation O(tk) for small values of t > 0: we write φ(t) = O(tk) if and only if
lim supt↓0 |φ(t)|t−k <∞.

3.3 Control design scheme

The basic result we will prove is as follows.
Theorem 3.1. Let u(t) be a control defined by (9) with some parameters

N ≥ 1, {u1, u2, ..., uN} ⊂ U , 0 = t0 < t1 < t2 < ... < tN = τ , and let x(t),
t ∈ [0, τ ], be the corresponding solution of system (4) with an initial data
x(0) = x0 ∈ X. If the conditions (5) and (6) are satisfied, then

N∑
i=1

τiu
i
1 = τ ū1, τi = ti − ti−1 > 0, (19)

and

N∑
i=1

(
τifi +

τ 2
i

2
Lfifi

)
+

∑
1≤j<i≤N

τiτjLfjfi+
N∑

i,j,l=1

∫ tl

tl−1

Vij(t)dt LfjLfifl = O(τ 4),

(20)
where

2Vii(t) =


0, t ≤ ti−1,
(t− ti−1)2, t ∈ (ti−1, ti),
τ 2
i , t ≥ ti,

Vij(t) = 0 for i < j, (21)
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Vij(t) =


0, t ≤ ti−1,
(t− ti−1)τj, t ∈ (ti−1, ti),
τiτj, t ≥ ti,

for i > j. (22)

Moreover, the cost (10) is equal to J [x] = x̄1, where

x̄ =
1

τ

∫ τ

0

x(t)dt = x0 +
1

2τ

N∑
i=1

τi (τi + 2(τ − ti)) fi

+
1

6τ

N∑
i=1

τ2i (τi + 3(τ − ti))Lfifi +
1

2τ

∑
1≤j<i≤N

τiτj (τi + 2(τ − ti))Lfjfi +O(τ3).

(23)

The vector fields in formulas (20) and (23) are evaluated at x = x0.
Proof. If the piecewise-constant control u(t) is given by formula (9)

then
∫ τ

0
u(t)dt =

∑N
i=1 τiu

i, and the isoperimetric constraint (5) is reduced
to (19). Let x(t) be the solution of system (4) corresponding to the initial
data x(0) = x0 and u = u(t), then x(t) is also a solution of system (11)
with the control (13), so that we will use the Fliess expansion (17) to prove
formulas (20) and (23). Straightforward computation of the integrals in (18)
yields

Vi(t) =


0, t ≤ ti−1,
t− ti−1, t ∈ (ti−1, ti),
τi, t ≥ ti,

(24)

together with the relations (21), (22), and

Vijl(t) =

∫ t

0

vi(s)Vjl(s)ds, Vijl(τ) =

∫ ti

ti−1

Vjl(s)ds. (25)

Then the assertion (20) follows from the boundary condition x(0) = x(τ)
and formulas (17), (21), (22), (24), (25) with t = τ . Similarly we obtain the
representation (23) by expressing

∫ τ
0
x(t)dt from (17). �

We also deduce one corollary of Theorem 3.1 with the following parametriza-
tion of switching times:

τj = αjτ, αj > 0, j = 2, ..., N,

τ1 =

(
1−

N∑
j=2

αj

)
τ > 0.

(26)

The above notations are convenient for eliminating τ1 from (20) and (23).
Then Theorem 3.1 implies
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Corollary 3.1. Let u(t) be a control defined by (9) with some parameters
N ≥ 2, {u1, u2, ..., uN} ⊂ U , 0 = t0 < t1 < t2 < ... < tN = τ , and let x(t),
t ∈ [0, τ ], be the corresponding solution of system (4) with an initial data
x(0) = x0 ∈ X. If the conditions (5) and (6) are satisfied, then

u1
1 +

N∑
i=2

αi(u
i
1 − u1

1) = ū1, (27)

and

f1 +

N∑
j=2

αj(fj − f1) +
τ

2

{
Lf1f1 + 2

N∑
j=2

αjLf1(fj − f1)

+

N∑
j=2

α2
j (Lf1(f1 − 2fj) + Lfjfj) + 2

∑
2≤j<i≤N

αiαj(Lf1(f1 − fi − fj) + Lfjfi)
}

= O(τ2),

(28)

x̄ =x0 +
τ

2

{
f1 +

N∑
j=2

αj

(
αj + 2

N∑
i=j+1

αi

)
(fj − f1)

}

+
τ 2

6

{
Lf1f1 + 3

N∑
j=2

αj

(
αj + 2

N∑
i=j+1

αi

)
Lf1(fj − f1)

+
N∑
j=2

α2
j

(
αj + 3

N∑
i=j+1

αi

)
(Lf1(2f1 − 3fj) + Lfjfj)

+6
∑

2≤i<j<l≤N

αiαjαl(Lf1(2f1 − 2fi − fj) + Lfifj)

+3
∑

2≤i<j≤N

αiα
2
j (Lf1(2f1 − 2fi − fj) + Lfifj)

}
+O(τ 3),

(29)

where αi > 0 are related to τi = ti − ti−1 > 0 by means of (26).
We also formulate particular corollaries of the above result for the case

ū1 = 0 and symmetric U ⊂ Rm, i.e., if u ∈ U implies −u ∈ U .
Corollary 3.2. Let the assumptions of Corollary 3.1 be satisfied with

N = 2, ū1 = 0, u1
1 6= 0, and let τ1, τ2 > 0 be related to α2 by means of (26).

Then

u2
1 = −u1

1, τ1 = τ2 =
τ

2
, α2 =

1

2
, (30)

and

f1 + f2 +
τ

4
(Lf1f1 − Lf2f2) +

τ 2

24
(Lf1Lf1f1 + Lf2Lf2f2) = O(τ 2), (31)
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x̄ = x0 +
τ

8
(f1 − f2) +

τ 2

48
(Lf1f1 + Lf2f2) +O(τ 3). (32)

Corollary 3.3. Let the assumptions of Corollary 3.1 be satisfied with
N = 3, ū1 = 0, u1

1 = −u2
1 = −u3

1 6= 0, and let τ1, τ2, τ3 > 0 be related to
α2, α3 by means of (26). Then

τ1 =
τ

2
, τ2 = α2τ, τ3 =

(
1

2
− α2

)
τ, α2 ∈

(
0,

1

2

)
, (33)

and

f1 + f3 + 2α2(f2 − f3) +
τ

4

{
Lf1f1 + 2Lf1f3 + Lf3f3

+4α2(Lf1f2 − Lf1f3 + Lf2f3 − Lf3f3) + 4α2
2(Lf2f2 − 2Lf2f3 + Lf3f3)

}
= O(τ2),

(34)

x̄ = x0 +
τ

8
{3f1 + f3 + 4α2(1− α2)(f2 − f3)}

+
τ 2

48

{
4Lf1f1 + 3Lf1f3 + Lf3f3 + 6α2(2Lf1f2 − 2Lf1f3 + Lf2f3 − Lf3f3)

+ 12α2
2(Lf1f3 − Lf1f2 + Lf2f2 − 2Lf2f3 + Lf3f3)

}
+O(τ 3).

(35)

Corollary 3.4. Let the assumptions of Corollary 3.1 be satisfied with
N = 4, ū1 = 0, u1

1 = −u2
1 = −u3

1 = u4
1, and let τ1, τ2, τ3, τ4 > 0 be related to

α2, α3, α4 by means of (26). Then

τ1 =

(
1

2
− α4

)
τ, τ2 = α2τ, τ3 =

(
1

2
− α2

)
τ, τ4 = α4τ, α2, α4 ∈

(
0,

1

2

)
,

(36)
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and

f1 + f3 +
τ

4
(Lf1f1 − Lf3f3) +

τ 2

24
(L2

f1
f1 + L2

f3
f3)

+ α2

{
2(f2 − f3) + τ(Lf1f2 + Lf3f3) +

τ 2

4
(L2

f1
f2 − L2

f3
f3)

}
− α4

{
2(f1 − f4) + τ(Lf1f1 + Lf4f3) +

τ 2

4
(L2

f1
f1 − Lf4Lf3f3)

}
+ α2

2τ
{
Lf2f2 − Lf3f3 +

τ

2
(L2

f3
f3 + Lf1Lf2f2)

}
+ 2α2α4τ

{
Lf4f3 − Lf1f2 −

τ

2
(L2

f1
f2 + Lf4Lf3f3)

}
+ α2

4τ
{
Lf1f1 − Lf4f4 +

τ

2
(L2

f1
f1 + L2

f4
f3)
}

= O(τ 2),

(37)

x̄ = x0 +
τ

2

{1

4
(f1 − f3) + α2(f1 + f3)− α4(f1 + f4) + α2

2(f2 − f3)

+ α4(α4 − 2α2)(f1 − f4)
}

+
τ 2

4

{ 1

12
(Lf1f1 + Lf3f3) +

α2

2
(Lf1f1 − Lf3f3)

− α4

2
(Lf1f1 − Lf4f3) + α2

2(Lf1f2 + Lf3f3) + α2
4(Lf1f1 + Lf4f4)

− 2α2α4(Lf1f1 + Lf4f3)
}

+O(τ 3).

(38)

Note that conditions (30), (33), and (36) follow from the assertion (27)
of Corollary 3.1 under the assumptions that ū1 = 0 and that the set U is
symmetric in Corollaries 3.2–3.4. Equations (31), (34), and (37) are obtained
from the above Fliess expansions under the periodicity condition (14) with
the τi given by (26); and (32), (35), (38) are obtained by integrating the
Fliess expansion for x(t) over the period [0, τ ].

4 Numerical simulations and discussion

The above analytical results will be applied in this section for computing
switching controls in order to optimize the performance measure of the hy-
drolysis reaction with the input reactant (CH3CO)2O (denoted by A) and
the product CH3COOH. Namely, we will treat system (1) with the vec-
tor fields given by (2) as a mathematical model of the chemical reaction
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(CH3CO)2O + H2O→ 2 CH3COOH with the following dimensionless param-
eters:

n̄ = 1, κ = 17.77, k1 = 5.819 · 107, k2 = −8.99 · 105, φ1 = φ2 = 1. (39)

These values correspond to physical parameters of the adiabatic reaction by
formulas from [2, 23]:

κ =
EA
RT̄

, R = 8.3144598
J

K ·mol
, k1 = k0C̄

n̄−1
A

V

F̄
, k2 =

∆HRk0C̄
n̄
AV

ρcpT̄ F̄
,

φ1 = φ2 =
F

F̄
,

where EA = 44.35 kJ
mol

is the activation energy, k0 = 1.4 · 105 s−1 is the
collision factor, ∆HR = −55.5 kJ

mol
is the reaction heat, ρcp = 4.186 kJ

K·l is
the product of the density and the heat capacity, V = 0.298 l is the reactor
volume, F = 7.17 · 10−4 l

s
is the volumetric flow-rate of the reaction stream,

F̄ = F is the steady-state flow-rate, C̄A = 0.3498 mol
l

is the steady-state
outlet concentration of A, and T̄ = 300.17K is the steady-state temperature

in the reactor. The state of system (1) is described by x1(t) = CA(t)−C̄A
C̄A

and x2(t) = T (t)−T̄
T̄

, where the time variable t corresponds to rescaling the
physical time by F/V , CA(t) is the concentration of A in the reactor, and
T (t) is the temperature in the reactor.

The reaction is controlled by modulating the inlet concentration CAi(t)
of A and the inlet temperature Ti(t). These physical inputs correspond to
the dimensionless controls u1(t) and u2(t) in (1):

u1(t) =
k1(F − F̄ )e−κ

F̄
+

(1 + k1e
−κ)F

F̄ C̄Ai
(CAi(t)− C̄Ai),

u2(t) =
k2(F − F̄ )e−κ

F̄
+

(1 + k2e
−κ)F

F̄ T̄i
(Ti(t)− T̄i),

where C̄Ai = 0.74 mol
l

is the steady-state inlet concentration of A and T̄i =
295K, is the steady-state inlet temperature. We assume the possibility of
controlling the concentration CAi(t) in the range of (1 ± 0.85)C̄Ai, and the
temperature Ti(t) in the range of T̄i ± 20K. This results in the control
constraints (u1, u2)T ∈ U = coUb with

Ub =

{(
umin1

umin2

)
,

(
umin1

umax2

)
,

(
umax1

umin2

)
,

(
umax1

umax2

)}
, (40)
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and
umax1 = −umin1 = 1.798, umax2 = −umin2 = 0.06663. (41)

The equilibrium x1 = x2 = 0 of system (1) with u1 = u2 = 0 corresponds
to the steady-state operating mode of the reactor with CA(t) = C̄A and
T (t) = T̄ . Our goal is to improve the conversion of A to the product by using
the same amount of input reactant A over a period, which is formally stated
as Problem 2.1 with the isoperimetric constant ū1 = 0. The application of
condition (3) with parameters (39) yields D ≈ 2.36 > 0. Hence, we will
follow the assumption stated in Remark 2.1 and consider bang-bang controls
of the form (9) with N ≤ 4 only.

Let us first consider constant controls. Note that system (1) admits the
following equilibria with u1 = 0 and u2 = ±umax2 :

x− ≈ (−0.566139, 0.075376)T with u1 = 0, u2 = umax2 ,

x+ ≈ (0.689896, −0.077288)T with u1 = 0, u2 = −umax2 ,

and both of the above equilibria satisfy the constraints of Problem 2.1. The
solution x− gives better performance in comparison with the trivial equilib-
rium:

J [x−] = x−1 ≈ −0.566139 < 0. (42)

Hence, if a periodic trajectory {x̃(t)}t∈[0,τ ] of system (1) with some ũ ∈ Uτ is
contained in an ε-neighborhood of x− such that ε ∈ (0, |x−|), then

J [x̃] ≤ x− + ε < J [x]

for any solution x(t) ∈ X (0 ≤ t ≤ τ) of system (1) with u ∈ Uτ , where

X = {x ∈ R2 : x1 > x− + ε}.

This means that the global solutions to Problem 2.1 cannot be obtained by
considering just small loops around x = 0. Some periodic trajectories of
system (1) outside the equilibrium x = 0 are shown in Fig. 1 for controls (9)
with N = 2, 3, 4. These figures are obtained by numerical simulations in
Maple.

From the practical viewpoint, the goal for studying Problem 2.1 is to op-
timize the performance in a neighborhood of the given steady-state x = 0 by
small variations of controls, while the steady-state x− corresponds to another
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a: N = 2, J [x] ≈ −0.566800.

c: N = 3, α2 = 0.2, J [x] ≈ −0.287099.

b: N = 3, α2 = 0.4, J [x] ≈ −0.482341.

d: N = 4, α2 = 0.4, α4 = 0.1, J [x] ≈ −0.379688.

Figure 1: Periodic trajectories of system (1) outside the equilibrium x = 0,
τ = 1.

operating mode of the reactor (which may not be desirable due to require-
ments on the purity of the product or energy consumption). To exclude the
case x = x− from further consideration, we impose one more isoperimetric
constraint:

ū2 =
1

τ

∫ τ

0

u2(t)dt = 0. (43)
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The above constraint corresponds to the assumption of using the same amount
of energy as for the reference steady-state x = 0. Then the equilibrium x− is
not a feasible solution anymore, and we will study the admissible switching
strategies for N ≤ 4.

Let the numbers τ > 0 and N be fixed, and let the control u(t) be given
by (9):

u(t) = uj for t ∈ [tj−1, tj), j = 1, N, (44)

for some switching scenario

u1, u2, ..., uN ∈ Ub

and switching times
0 = t0 < t1 < ... < tN = τ. (45)

It is easy to see that the cases N = 1 and N = 3 (if all τ1, τ2, τ3 are positive)
are not consistent with the two isoperimetric constraints (19) and (43) as
ū1 = ū2 = 0 and umax1 > 0, umax2 > 0.

For N ≥ 2, we express the switching times (45) using (26) in terms of the
positive parameters α2, ...., αN such that α2 + ...+ αN < 1:

t1 =

(
1−

N∑
j=2

αj

)
τ,

tj = tj−1 + αjτ, j = 2, ..., N.

(46)

Let us now consider the control (44) with N = 2:

u(t) =

{
u1, t ∈ [0, (1− α2)τ),
u2, t ∈ [(1− α2)τ, τ ].

(47)

Then u(t) satisfy the isoperimetric constraint (19) with ū1 = 0 and (43) if
and only if

u2 = −u1, α2 = 1/2, (48)

as it follows from Corollary 3.2. Note that, for an arbitrary initial condition
x(0) = x0 ∈ R2, the solution x(t) of system (1) with (47) is not necessary
τ -periodic. Thus we apply Corollary 3.2 to find a relation between x0 and
τ such that the corresponding solution x(t) of (1) with the chosen switching
strategy satisfies the periodic boundary condition x(0) = x(τ). We rewrite
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formulas (31) and (32) in terms of the original vector fields f0, g1, g2 of
system (1), (2) as follows:

f0 +
τ

4
Lg̃1f0 +

τ 2

24
(Lf0Lf0 + Lg̃1Lg̃1) f0 = O(τ 2), (49)

x̄ = x0 +
τ

4
g̃1 +

τ 2

24
Lf0f0 +O(τ 3), (50)

where we have assumed that g̃1 = u1
1g1 +u1

2g2 is a constant vector field. Note
that the vector fields in (49) and (50) are evaluated at x = x0, so that the
equation (49) implicitly defines the map

x0 = c1τ + c2τ
2 +O(τ 3) (51)

with

c1 = −(Gx0)
−1Gτ , c2 = −1

2
(Gx0)

−1
{
cT1Gx0x0c1 +Gτx0c1 +Gττ

}
,

for small τ > 0, where G(x0, τ) denotes the left-hand side of (49), and Gτ ,
Gx0 , Gτx0 , Gx0x0 are corresponding derivatives of G at τ = 0, x0 = 0 (we
treat Gx0 as the Jacobian matrix and Gx0x0 as the Hessian). We have:

Gx0 =

(
−φ1 − k1e

−κ −k1κe−κ
−k2e

−κ −φ2 − k2κe−κ
)
≈
(
−2.115 −19.820
0.0172 −0.694

)
.

We see that the matrix Gx0 is nonsingular, det(Gx0) ≈ 1.809 6= 0, so
that the proposed method for approximate computation of the inital con-
ditions for periodic trajectories with N = 2 and small periods succeeds:
c1 ≈ (−0.4495,−0.0167)T and c2 ≈ (−0.14133,−0.00218)T in formula (51).

Trajectories of system (1) with the control (47) under the switching strat-
egy u1 = −u2 = (umax1 , umax2 )T are shown in Fig. 2 (a–c). We also summarize
the obtained numerical results in Table 1 for different values of τ . As one
can see, J [x] < 0 along the constructed periodic trajectories, so that the con-
trol (47) improves the reactor performance in comparison to the steady-state
trajectory x = 0.

The significance of the above theoretical results is also underpinned by
possible applications of the formula (50) for analytic approximation of the
cost J . Indeed, let us denote by Jest2 (x0, τ) the first coordinate of x̄ in (50)
with higher order terms being neglected. The values of Jest2 (x0, τ) are pre-
sented in Table 1 together with the corresponding cost, and we see that
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a: τ = 0.1, J [x] ≈ −0.00040.

d: τ = 1, α2 = α4 = 0.05,

J [x] ≈ −0.03112.

b: τ = 0.5, J [x] ≈ −0.00726.

e: τ = 1, α2 = α4 = 0.1,

J [x] ≈ −0.02497.

c: τ = 1, J [x] ≈ −0.03385.

f: τ = 1, α2 = α4 = 0.25,

J [x] ≈ −0.00295.

Figure 2: Periodic trajectories around x = 0 with small τ : N = 2 (a–c) and
N = 4 (d–f).

Jest2 (x0, τ) gives a good approximation of J [x] for τ ≤ 1. Moreover, by sub-
stituting (51) into Jest2 (x0, τ) and computing its Taylor expansion at τ = 0,
we obtain

Jest2 = c∗ · τ 2 +O(τ 3), (52)

where c∗ ≈ −0.141 for the considered example. As c∗ < 0, we conclude
that any periodic trajectory corresponding to the control (47) is profitable
in comparison to x = 0, provided that τ > 0 is small enough.

To study the behavior of system (1) with N = 4, we choose the con-
trol (44) with the following switching scenario:

u1 = −u3 = (umax1 , umax2 )T , u2 = −u4 = (umin1 , umax2 )T .

Then Corollary 3.4 implies, assuming that g̃1 = u1
1g1 + u1

2g2 = const and
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τ x0 J [x] Jest2 (x0, τ)
0.1 (−0.04529,−0.00165)T -0.00040 -0.00039
0.2 (−0.09130,−0.00325)T -0.00188 -0.00186
0.3 (−0.13601,−0.00498)T -0.00276 -0.00269
0.4 (−0.18170,−0.00659)T -0.00554 -0.04935
0.5 (−0.22511,−0.00840)T -0.00726 -0.00730
0.6 (−0.27032,−0.00986)T -0.01248 -0.01268
0.7 (−0.31291,−0.01152)T -0.01674 -0.01728
0.8 (−0.35420,−0.01315)T -0.02172 -0.02269
0.9 (−0.39371,−0.01482)T -0.02709 -0.02868
1.0 (−0.43202,−0.01630)T -0.03385 -0.03580

Table 1: Simulation results for N = 2.

g̃2 = u2
1g1 + u2

2g2 = const:

f0 + (α2 − α4)(g̃1 + g̃2) +
τ

2

{1

2
Lg̃1f0 + 2α2Lf0f0 − α4(2Lf0 + Lg̃1 − Lg̃2)f0

+ (α2 − α4)2(Lg̃1 + Lg̃2)f0

}
+ τ 2

{ 1

24
(L2

f0
+ L2

g̃1
)

+
α2

4
(Lf0Lg̃1 + Lg̃1Lf0)−

α4

8
(2Lf0Lg̃1 + Lg̃1Lf0 + Lg̃2Lf0 + L2

g̃1
+ Lg̃2Lg̃1)

+
α2

2

4
(2L2

f0
− Lf0Lg̃1 + Lf0Lg̃2 + L2

g̃1
+ Lg̃1Lg̃2)

− α2α4

2
(2L2

f0
+ Lg̃1Lf0 − Lg̃2Lf0 + L2

g̃1
+ Lg̃2Lg̃1)

+
α2

4

2
(2L2

f0
+ Lf0Lg̃1 − Lf0Lg̃2 + Lg̃1Lf0 − Lg̃2Lf0 + L2

g̃1
+ L2

g̃2
)

+
α3

2

6
(Lf0Lg̃1 + Lf0Lg̃2 + Lg̃1Lf0 + Lg̃2Lf0 − L2

g̃1
+ L2

g̃2
)

− α2
2α4

2
(Lf0Lg̃1 + Lf0Lg̃2 + Lg̃1Lf0 + Lg̃2Lf0)

+
α2α

2
4

2
(Lf0Lg̃1 + Lf0Lg̃2 + Lg̃1Lf0 + Lg̃2Lf0 − L2

g̃2
)

− α3
4

6
(Lf0Lg̃1 + Lf0Lg̃2 + Lg̃1Lf0 + Lg̃2Lf0 + L2

g̃1
− L2

g̃2
)
}
f0 = O(τ 3),

(53)
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x̄ = x0 +
τ

2

{1

2
g̃1 + 2α2f0 − α4(2f0 + g̃1 − g̃2) + (α2 − α4)2(g̃1 + g̃2)

}
+
τ 2

2

{ 1

12
Lf0f0 +

α2

2
Lg̃1f0 −

α4

4
(Lg̃1 + Lg̃2)f0 + α2

2Lf0f0

+ α4(α4 − 2α2)(Lf0 +
1

2
Lg̃1 −

1

2
Lg̃2)f0

}
+O(τ 3).

(54)

Similarly to the previous consideration (51), we exploit the periodicity
condition (53) to define x0 for small values of τ :

x0 = c̄1(α2, α4)τ + c̄2(α2, α4)τ 2 +O(τ 3), (55)

where c̄i(α2, α4) are polynomials of (α2, α4). The above x0 is used for com-
puting periodic trajectories of system (1), depending on the parameters
α2, α4 ∈ (0, 1/2) and τ > 0. Fig. 2 (d–f) illustrate these trajectories for
controls of the form (44) with N = 4. We observe that J [x] < 0 for the
considered trajectories; thus, the proposed controls with N = 4 improve the
performance in comparison to the steady-state operation x = 0.

To compare the reactor performances with N = 2 and N = 4, we denote
by Jest4 (x0, τ, α2, α4) the first coordinate of x̄ in (54) without the terms O(τ 3)
and substitute the expression (55) into Jest4 (x0, τ, α2, α4). As a result, we
have

Jest4 = c̄(α2, α4) · τ 2 +O(τ 3), (56)

where c̄(α2, α4) is a polynomial of (α2, α4). Our numerical study shows that
c̄(α2, α4) > c∗ for all (α2, α4) ∈ (0, 1/2)2, where the constant c∗ appears
in (52).

Thus, for the considered numerical example, we have analyzed the asymp-
totic expansions Jest2 and Jest4 under the periodicity conditions (49) and (53)
for small τ to conclude that the controls with N = 4 do not improve the
performance in comparison with the case N = 2 locally, along the periodic
trajectories near zero. This conclusion is also confirmed by the simulations
presented in Fig. 2.

The above analytical results are valid for small values of τ . However,
the data of Table 1 and estimates of the type (52), (56) suggest that the
increasing of τ leads to the decreasing of the cost under appropriate control
strategies. To illustrate this behavior, we compute periodic trajectories of
system (1) numerically with the control (47) for increasing values of τ . These
trajectories together with their costs are presented in Fig. 3.
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We observe that the cost J [x] is monotonically decreasing when τ is in-
creasing, so that the sequence of controls (47) with τ → +∞ may be con-
sidered as a candidate for a minimizing sequence for Problem 2.1. The cor-
responding trajectories {x(t)}t∈[0,τ ] converge very fast (in the orbital sense)
to some limit curve, as the plots for τ = 10, τ = 100, and τ = 1000 look
almost identical in Fig. 3. We also note that the trajectory with τ = 1000
ensures even better performance J [x] ≈ −0.57565 than the steady-state solu-
tion x = x− with J [x−] ≈ −0.566139. However, such trajectories with a large
time horizon exhibit considerable deviations from the reference steady-state
x = 0, which may not be acceptable in practical applications.

5 Conclusions

The proposed control design scheme generalizes the results of [24] for multi-
dimensional nonlinear control-affine systems and bang-bang strategies with

a: τ = 2, J [x] ≈ −0.10898.

d: τ = 10, J [x] ≈ −0.41555.

b: τ = 3, J [x] ≈ −0.18622.

e: τ = 100, J [x] ≈ −0.56096.

c: τ = 5, J [x] ≈ −0.28761.

f: τ = 1000, J [x] ≈ −0.57565.

Figure 3: Periodic trajectories around x = 0 with large τ , N = 2.

24



an arbitrary number of switchings. As it follows from the comparison of
analytical and numerical results in Section 4, our approach can be used for
estimating the performance of nonlinear chemical reactors analytically and
improving the conversion “A→ product” with respect to the trivial steady-
state solution. It should also be noted that this approach has a potential for
minimizing the cost J analytically by varying the phase parameters αj under
a fixed time horizon τ in order to tune the phases of different input signals in
an optimal fashion. The development of analytical tools for estimating per-
formance measures with large values of τ remains to be an issue for future
study.
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