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Abstract

Background: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes,
mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from
ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a
representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms
underlying the processes of adaptation and diversification within this group.
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Results: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first
water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and
this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number
of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a
variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These
expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and
epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the
rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated
with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for
diverse water habitats.

Conclusions: Our findings suggest that local gene duplications might have played an important role during the
evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the
opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits
associated with the extreme body plan and life history of water striders.
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Background
The semi-aquatic bugs (Gerromorpha) are a monophyletic
group of predatory heteropteran insects characterized by
their ability to live at the water-air interface [1–4]. Over
200 million years ago, the ancestor of the Gerromorpha
transitioned from terrestrial habitats to the water surface,
leading to a radiation that has generated over 2,000 species
classified into eight families [1]. Phylogenetic reconstructions
suggest that the ancestral habitat of the Gerromorpha was
either humid and terrestrial or marginally aquatic [1, 5, 6].
Water striders subsequently became true water surface
dwellers and colonized a diverse array of niches, including
streams, lakes, ponds, marshes, and the open ocean [1, 7, 8].
The invasion of these new habitats provided access to
resources previously underutilized by insects and made the
Gerromorpha the dominant group of insects at water
surfaces [1]. This novel specialized life style makes the Gerro-
morpha an exquisite model system to study how new eco-
logical opportunities can drive adaptation and species
diversification [2, 9–11].
This shift in habitat exposed the Gerromorpha to new

selective pressures compared to their terrestrial ancestors.
The Gerromorpha face two primary challenges unique
among insects: how to remain afloat and how to generate ef-
ficient thrust on the fluid substrate for locomotion [2, 3, 12].
Due to their specific arrangement and density, the bristles
covering the legs of water striders are adapted to keep them
afloat by acting as non-wetting structures, which exploit
water surface tension by trapping air between the leg and
water (Fig. 1a) [2, 3, 12, 13]. Furthermore, locomotion is
made possible through evolutionary changes in the mor-
phology and biomechanical adaptions associated with pat-
terns of leg movement (Fig. 1b) [2, 3, 12, 13]. Two distinct
modes of locomotion are employed by distinct species: an
ancestral mode using a tripod gait with alternating leg

movements, and a derived mode using a rowing gait through
a simultaneous sculling motion of the pair of middle legs
(Fig. 1b) [2, 12]. The rowing mode is characteristic of the
Gerridae and some Veliidae and is associated with a derived
body plan where the middle legs are the longest (Fig. 1a–b)
[2, 12]. The evolutionary trajectory of this group is also
thought to have been shaped by the novel predator-prey in-
teractions (Fig. 1c and d) associated with their water surface
life history. Following the invasion of water surfaces, other
adaptations have emerged, including: (1) the adaption of their
visual system to the surface-underwater environment; (2) the
evolution of wing polymorphisms associated with dispersal
strategies and habitat quality (Fig. 1e) [14], and changes in
cuticle composition that optimized water exchange and
homeostasis associated with living on water.
While we are starting to uncover the developmental ge-

netic and evolutionary processes underlying the adaptation
of water striders to the requirements of water surface loco-
motion, predator-prey, and sexual interactions [2, 15–19],
studies of these mechanisms at the genomic level are
hampered by the lack of a representative genome. Here we
report the genome of the water strider G. buenoi, the first
sequenced member of the infraorder Gerromorpha. G. bue-
noi is part of the family Gerridae, and has been previously
used as a model to study sexual selection and developmen-
tal genetics [15, 20–22]. Moreover, G. buenoi can easily
breed in laboratory conditions and is closely related to sev-
eral other Gerris species used as models for the study of
water-walking hydrodynamics, salinity tolerance, and sexual
conflict. With a particular focus on manual annotation and
analyses of processes involved in phenotypic adaptations to
life on water, our analysis of the G. buenoi genome suggests
that the genomic basis of water surface invasion might be,
at least in part, underpinned by clustered gene family
expansions and tandem gene duplications.
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Results and discussion
General features of the G. buenoi genome
The draft assembly of G. buenoi genome comprises
1,000,194,699 bp (GC content: 32.46%) in 20,268 scaf-
folds and 304,909 contigs (N50 length is 344,118 and
3812 bp, respectively). The assembly recovers ~ 87% of
the genome size estimated at ~ 1.15 GB based on k-mer
analysis. The G.buenoi genome is organized into 18
autosomal chromosomes with a XX/X0 sex determin-
ation system [23]. The MAKER automatic annotation
pipeline predicted 20,949 protein-coding genes, which is
greater than the 16,398 isogroups previously annotated
in the transcriptome of the closely related species
Limnoporus dissortis (PRJNA289202) [18, 24], as well as
the 14,220 genes in the bed bug Cimex lectularius
genome [25] and the 19,616 genes in the genome of the
milkweed bug Oncopeltus fasciatus [26]. The final G.
buenoi official gene set (OGS) 1.0 includes 1,277 manually
annotated genes, including 1,378 mRNAs and 15 pseudo-
genes, representing development, growth, immunity, cu-
ticle formation as well as olfaction and detoxification
pathways genes, amongst others (see Additional file 1).
Using OrthoDB [27, 28], we found that ~ 75% of G. buenoi
genes have at least one orthologue in other arthropod

species (Fig. 2). We then used benchmarking sets of
universal single-copy orthologs (BUSCOs) [29, 30] to
assess the completeness of the assembly. A total of
85.4% of BUSCOs were found complete and 12.3%
were fragmented.
In addition to BUSCOs, we used Hox and Iroquois

Complex (Iro-C) gene clusters as indicators of draft gen-
ome quality and as an opportunity to assess synteny
among species. The Hox cluster is conserved across the
Bilateria [31], and the Iro-C is found throughout the
Insecta [25, 32]. In G. buenoi, we were able to find and
annotate gene models for all ten Hox genes (Additional
file 1: Table S3). While linkage of the highly conserved
central class genes Sex combs reduced, fushi tarazu, and
Antennapedia occurred in the expected order and with
the expected transcriptional orientation, the linked
models of proboscipedia and zerknüllt (zen) occur in op-
posite transcriptional orientations (head-to-head, rather
than both 3′ to 5′). Inversion of the divergent zen locus
is not new in the Insecta [33], but was not observed in
the hemipteran C. lectularius, in which the complete
Hox cluster was fully assembled [25]. Future genomic
data will help to determine whether such a microinver-
sion within the Hox cluster is conserved within the

Fig. 1 Aspects of the biology of water striders. a Adult Gerris sp on water and zoom in on the bristles allowing this adaptation using Scanning
Electron Microscopy (insets). b G. buenoi rowing on the water surface, illustrating the adaptive locomotion mode. c Water strider jumping using
its long legs to escape the strike of a surface hunting fish. d Hoarding behavior in water striders consisting of multiples individuals feeding on a
cricket trapped by surface tension. e Wing polymorphism in G. buenoi, here illustrated by three distinct morphs with regard to wing size
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hemipteran family Gerridae. Assembly limitations are
also evident in our Hox cluster analysis. For example,
the complete gene model for labial is present but split
across scaffolds, while only partial gene models could be
created for Ultrabithorax and Abdominal-B. Further-
more, while there are clear single-copy orthologues of
members of the small Iroquois complex, iroquois and
mirror, they are not linked in the current assembly
(Additional file 1: Table S3). However, both genes are
located near the ends of their scaffolds, and direct concat-
enation of the scaffolds (5′-Scaffold451–3′, 3′-Scaf-
fold2206-5′) would correctly reconstruct this cluster: (1)
with both genes in the 5′-to-3′ transcriptional orientation
along the (+) DNA strand, (2) with no predicted interven-
ing genes within the cluster, and (3) with a total cluster
size of 308 Kb, which is fairly comparable with that of
other recently sequenced hemipterans in which the
Iro-C cluster linkage was recovered (391 Kb in C.
lectularius [25] and 403 Kb in O. fasciatus [26]). Lastly,
building on the automated BUSCO assessment for
presence of expected genes, we examined genes
associated with autophagy processes, which are highly
conserved among insects, and all required genes are
present within the genome (Additional file 2). There-
fore, along with the Hox and Iroquois Complex (Iro-C)
gene cluster analyses, the presence of a complete set of
required autophagy genes suggest good gene represen-
tation and supports further analysis.

Adaptation to water surface locomotion
One of the most important morphological adaptations
that enabled water striders to conquer water surfaces is
the change in shape, density, and arrangement of the bris-
tles that span the contact surface between their legs and
the fluid substrate. These bristles, by trapping air, act as
non-wetting structures, forming a cushion between the
legs and the water surface (Fig. 1a) [2, 3, 12, 13]. QTL
studies in flies uncovered dozens of candidate genes and
regions linked to variation in bristle density and morph-
ology [34]. In the G. buenoi genome we were able to anno-
tate 90 out of 120 genes known to be involved in bristle
development [34, 35] (Additional file 1: Table S4). Among
these, we found a single duplication, the gene Beadex
(Bx). A similar duplication found in C. lectularius and H.
halys suggest that the Bx duplication may have predated
the separation of these lineages and the radiation of
Gerromorpha, although a broader phylogenetic sampling
is needed to strengthen this conclusion. In Drosophila, Bx
is involved in neural development by controlling the acti-
vation of achaete-scute complex genes [36] and mutants
of Bx have extra sensory organs [36]. Based on this, it is
reasonable to speculate that duplication of Beadex might
have been exploited by water striders and subsequently
linked to changes in bristle pattern and density. This pos-
sibility opens up new research avenues to further under-
stand the adaptation of water striders to living on the
water surface.

Fig. 2 Orthology comparison between Gerris buenoi and other arthropod species. Genome proteins were clustered with proteins of other 12
arthropod species based on OrthoDB orthology

Armisén et al. BMC Genomics          (2018) 19:832 Page 4 of 16



A new duplication in the Insulin Receptor gene family in
the Gerromorpha
The insulin signaling pathway coordinates hormonal and
nutritional signals in animals [37–39]. This facilitates the
complex regulation of several fundamental molecular
and cellular processes including transcription, transla-
tion, cell stress, autophagy, and physiological states, such
as aging and starvation [39–42]. The action of insulin
signaling is mediated through the Insulin Receptor
(InR), a transmembrane receptor of the tyrosine kinase
class [43]. While vertebrates possess one copy of the InR
[44], arthropods generally possess either one or two
copies, although the highly duplicated Daphnia pulex
genome [45] contains four copies [46]. Interestingly, the
G. buenoi genome contains three distinct InR copies.
Further sequence examination using in-house transcrip-
tome databases of multiple Gerromorpha species con-
firmed that this additional copy is common to all of
them, indicating that it was present in the common
ancestor of the group (Fig. 3). In addition, cloning of the
three InR sequences using PCR indicates that these se-
quences originate from three distinct coding genes that
are actively transcribed in this group of insects.
Comparative protein sequence analysis revealed that
the three InR copies possess all the characteristic
domains found in InR in both vertebrates and inver-
tebrates (Fig. 3a). Together, these results validate the
presence of three InR copies in Gerromorpha, an
exceptional situation amongst Arthropoda.
While this manuscript as under evaluation, an inde-

pendent study reported the presence of a third InR gene
in Blattodea [47]. To determine: (1) the origin of the
three InR copies in the G. buenoi genome; and (2)
whether the third copy in Gerromorpha and Blattodea
share a common ancestor, we performed a phylogenetic
reconstruction that included the sequences of eight Ger-
romorpha (three InR copies), four Blattodea (three InR
copies), Daphnia (four copies) and an additional sample
of 126 Arthropoda, all of which possess either one or
two InR copies (see Additional files 3 and 4). The four
InR duplicates of Daphnia were all lineage-specific and
together formed a sister group to those found in insects.
Within insects, this analysis clustered two InR copies
into distinct InR1 and InR2 clusters (Fig. 3b). Further-
more, gerromorphan InR1 and InR2 copies clustered
with bed bug and milkweed bug InR1 and InR2, respect-
ively, while the Gerromorpha-restricted copy clustered
alone (Fig. 3b; Additional file 1: Figure S1). These data
suggest that the new InR copy, which we designated
InR1-like, most likely originated from the InR1 gene in
the common ancestor of the Gerromorpha. In contrast,
the third InR copy in Blattodea clustered with InR2, sug-
gesting an independent origin of novel InR copies in
Gerromorpha, which we therefore would suggest be

designated InR2-like. A closer examination of the
organization of the genomic locus of the InR1-like gene
in G. buenoi revealed that this copy is intronless. This
observation, together with the phylogenetic reconstruc-
tion, suggests that InR1-like is a retrocopy of InR1 that
may have originated through RNA-based duplication
[48]. In addition, our analysis suggests two independent
losses of InR2. InR2 is lost among the parasitoid wasps
yet retained in other wasps, and InR2 is also lost in the
common ancestor of Diptera and Lepidoptera. Taken to-
gether, our current phylogenetic reconstruction demon-
strates that: (1) InR was duplicated at the base of
insects, generating InR1 and InR2; (2) InR1 was subse-
quently duplicated within the Gerromorpha, while InR2
was duplicated at the common ancestor of Blattodea; (3)
InR2 was independently lost in the common ancestor of
Lepidoptera and Diptera as well as among the parasitoid
wasps, while other wasps have retained it.
In insects, the insulin signaling pathway has been im-

plicated in the developmental regulation of complex
nutrient-dependent growth phenotypes such as beetle
horns and wing polyphenisms in plant hoppers, as well
as morphological caste differentiation in social termites
and bees [49–52]. In the particular case of wing poly-
morphism in G. buenoi [1, 14, 52], our analysis found no
DNA methylation signature, as previously found in wing
polyphenic ants and aphids [53–57], but rather an
increased number of histone clusters and a unique du-
plication of the histone methyltransferase grappa (see
Additional file 1: Supplementary Data). Taken together,
it will be of interest to test the functional significance of
the new InR copy in relation to wing polyphenism, as
well as more generally how it may be potentially in-
volved in appendage plasticity, either independent of, or
alongside, epigenetic processes. Moreover, a comparative
functional approach between the novel InR genes in
Gerromorpha and Blattodea will shed light on the role
independent insulin receptor duplications have played in
functional convergence and/or diversification.

A lineage-specific expansion and possible sensitivity
shifts of long wavelength sensitive opsins
Visual ecology at the air-water interface and the excep-
tionally specialized visual system of water striders has
drawn considerable interest [58, 59]. Consisting of over
900 ommatidia, the prominent compound eyes of water
striders are involved in prey localization, mating partner
pursuit, predator evasion and dispersal by flight [60–62].
Realization of the first three tasks is associated with
dorsal-ventral differences in the photoreceptor organization
of the eye [63, 64], and polarized light-sensitivity [65] (see
Additional file 1: Supplementary Data). Each water strider
ommatidium contains six outer and two inner Recent work
has produced evidence of at least two types of ommatidia,
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Fig. 3 Characterization of the three copies of the Insulin Receptor in Gerris buenoi. a Protein domain comparison between the three InRs of G.
buenoi and the Human InR. b InR phylogenetic relationship amongst Insecta. Branch support numbers at branches. A non-circular version
included in Additional file 1: Figure S1. c Simplified Arthropoda phylogeny based on [115] depicting InR duplications and loss events
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with outer photoreceptors that are sensitive to either green
(~ 530 nm) or blue (~ 470–490 nm) wavelengths [66], but
the wavelength specificity of the two inner photoreceptors
cells is still unknown. At the molecular level, the
wavelength specificity of photoreceptor subtypes is mostly
determined by the expression of paralogous opsins (light
sensitive G-protein coupled receptor proteins), which differ
in their wavelength absorption maxima. Interestingly, our
genomic analysis of opsin diversity in G. buenoi uncovered
8 opsin homologs. Among these, we uncovered three
arthropod non-retinal opsins (c-opsin, Arthropsin and Rh7
opsin) (see Additional file 1: Supplementary Data) in
addition to five retinal opsins (Fig. 4a; Additional file 1:
Figure S2). One of these five retinal opsins was identified
as a member of the UV-sensitive opsin subfamily and the
other four were identified as tandem, clustered members
of the long wavelength sensitive (LWS) opsin subfamily
(Fig. 4b).
Surprisingly, both genomic and transcriptomic searches

in G. buenoi and other water strider species failed to de-
tect sequence evidence of homologs of the otherwise
deeply conserved blue-sensitive opsin subfamily (Fig. 4b;
Additional file 1: Table S5) [67]. Although the apparent
lack of blue opsin in G. buenoi was unexpected given the
presence of blue sensitive photoreceptors [66], it was
consistent with the lack of blue opsin sequence evidence
in the available genomes and transcriptomes of other
heteropteran species including Halyomorpha halys, Onco-
peltus fasciatus, Cimex lectularius, and Rhodnius prolixus.
Blue opsin, however, is present in other hemipteran clades,
including Cicadomorpha (Nephotettix cincticeps) and
Sternorrhyncha (Pachypsylla venusta) (Fig. 4b). Based on
the currently available sample of hemipteran species, these
data suggest that the blue-sensitive opsin subfamily was
lost early in the last common ancestor of the Heteroptera
(Fig. 4b and Additional file 1: Table S5). This raises the
question of which compensatory events explain the pre-
sence of blue sensitive photoreceptors in water striders.
Studies in butterflies and beetles produced evidence of

blue sensitivity shifts in both UV- and LWS-opsin ho-
mologs following gene duplication [68–70]. In butter-
flies, molecular evolutionary studies have implicated
amino acid residue differences at four protein sequence
sites in sensitivity shifts from green to blue: Ile17Met,
Ala64Ser, Asn70Ser, and Ser137Ala [68, 69] (Fig. 4c;
Additional file 1: Figure S2 and Supplementary Data).
Based on sequence information from physiologically
characterized LWS opsins in other insect orders and the
degree of amino acid residue conservation at these sites
in a sample of 114 LWS opsin homologs from 54 species
representing 12 insect orders (Additional file 1: Supple-
mentary Data and Additional file 5), we could identify G.
buenoi LWS opsin 3 as a high confidence candidate for
a blue-shifted paralog, followed by G. buenoi LWS opsin

1 and 2. Moreover, the G. buenoi LWS opsin 4 paralog
matches all of the butterfly green-sensitive amino acid
residue states, thus favoring this paralog as
green-sensitive (Fig. 4). These conclusions are further
backed by the fact that water striders lack ocelli, which
implies that all four paralogs are expressed in photore-
ceptors of the compound eye. Overall, it is most likely
that the differential expression of the highly diverged G.
buenoi LWS opsin paralogs accounts for the presence of
both blue- and green-sensitive peripheral photoreceptors
in water striders. Moreover, given that the outer blue
photoreceptors have been specifically implicated in the
detection of contrast differences in water striders [66], it
is tempting to speculate that the deployment of
blue-shifted LWS opsins is a convergent characteristic of
a fast-tracking visual system, similar to visual systems in
dipteran species that also feature open rhabdomeres,
neural superposition, and polarized light-sensitivity.

Expansion of cuticle gene repertoires
Desiccation resistance is essential to the colonization of
terrestrial habitats by arthropods [71]. However, contrary
to most insects, the Gerromorpha spend their entire life
cycle in contact with water and exhibit poor desiccation
resistance [1]. Cuticle proteins and aquaporins are essen-
tial for desiccation resistance through regulation of
water loss and rehydration [72–75]. Unexpectedly in the
G. buenoi genome, most members of cuticular and
aquaporin protein families are present in similar num-
bers compared to other hemipterans (Additional file 1:
Table S6 and Figure S3; Additional files 6 and 7). We iden-
tified 155 putative cuticle proteins belonging to five cu-
ticular families: CPR (identified by Rebers and Riddiford
Consensus region), CPAP1 and CPAP3 (Cuticular Proteins
of Low-Complexity with Alanine residues), CPF (identified
by a conserved region of about 44 amino acids), and
TWDL (Tweedle) [76, 77] (Additional file 1: Table S6).
Interestingly, almost half of them are arranged in clusters,
indicative of local duplication events (Additional file 1:
Table S7). Moreover, while most insect species, including
other hemipterans, have only three TWDL genes, we
found that the TWDL family in G. buenoi has been ex-
panded to ten genes (Additional file 1: Figure S4). This ex-
pansion of the TWDL family is similar to that observed in
some Diptera that possess Drosophila-specific and
mosquito-specific TWDL expansions [77, 78]. Mutations
in the Drosophila TwdlD are known to alter body shape
[78]. Given the high diversification in body sizes and
shapes in association with various aquatic habitats in the
Gerromorpha in general [1, 2] and the Gerridae in par-
ticular [79, 80], it is possible that the expansion of the
TWDL gene family is linked to this diversification. There-
fore, a functional analysis of TWDL genes and compara-
tive analysis with other hemipterans will provide
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important insights into the evolutionary origins and func-
tional significance of TWDL expansion in G. buenoi.

Prey detection in water surface environments
Unlike many closely related species that feed on plant
sap or animal blood, G. buenoi feeds on various arthro-
pods trapped by surface tension (Fig. 1d), thus making
their diet highly variable. Chemoreceptors play a crucial
role for prey detection and selection, in addition to vi-
brational and visual signals. We annotated the three
families of chemoreceptors that mediate most of the
sensitivity and specificity of chemoperception in insects:
odorant receptors (ORs; Additional file 1: Figure S5A and

Additional file 8), gustatory receptors (GRs; Additional
file 1: Figure S5B and Additional file 8) and ionotropic
receptors (IRs; Additional file 1: Figure S5C and Additional
file 8) (e.g. [81, 82]). Interestingly, we found an increase in
the number of chemosensory genes in G. buenoi (Additional
file 1: Table S8). First, the OR family is expanded, with a total
of 155 OR proteins. This expansion is the result of lineage-
specific “blooms” of particular gene subfamilies, including ex-
pansions of the 4, 8, 9, 13, 13, 16, 18, and 44 subfamilies
(Additional file 1: Figure S5A and Supplementary Data).
Second, the GR family is also fairly large (Additional file 1:
Figure S5B), but the expansions here are primarily the result
of extensive alternative splicing, such that 60 genes encode

Fig. 4 Genomic locus and global analysis of the Gerris buenoi opsin gene repertoire. a Structure of the scaffold containing the four G. buenoi long
wavelength (LWS) opsins. b Retinal opsin repertoires of key hemipteran species and reconstructed opsin subfamily loss and expansion events
along the hemipteran phylogeny. c Comparison of amino acid residues at the four tuning sites identified in the LWS opsins of Lepidoptera [68,
69]. Site numbers based on [68]. Numbers in parentheses are experimentally determined sensitivity maxima. Species abbreviations: Amel = Apis
mellifera, Dmel = Drosophila melanogaster, Gbue = Gerris buenoi, Gbim = Gryllus bimaculatus, Larc = Limenitis archippus, Lart = Limenitis
arthemis astyanax
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135 GR proteins (Additional file 1: Table S8). These GRs in-
clude six genes encoding proteins related to the carbon diox-
ide receptors of flies, three related to sugar receptors, and
one related to the fructose receptor (Additional file 1: Figure
S5B). The remaining GRs include several highly divergent
proteins, as well as four blooms, the largest of which com-
prises 80 proteins (Additional file 1: Figure S5B and Supple-
mentary Data). By analogy with D. melanogaster, most of
these proteins are likely to be “bitter” receptors, although
some might be involved in perception of cuticular hydrocar-
bons and other molecules. Finally, the IR family is expanded
to 45 proteins. In contrast with the OR/GR families, where
the only orthologs across four heteropterans (Rhodnius pro-
lixus, Cimex lectularius, Oncopeltus fasciatus and Gerris bue-
noi) and Drosophila are the single OrCo and fructose
receptors, the IR family has single orthologs in each species.
This is not restricted to only the highly conserved
co-receptors (IR8a, 25a, and 76b) but also includes receptors
implicated in sensing amino acids, temperature, and humid-
ity (Ir21a, 40a, 68a, and 93a). As is common in other insects
the amine-sensing IR41a lineage is expanded to four genes,
while the acid-sensing IR75 lineage is highly expanded to 24
genes, and like the other heteropterans there are nine more
highly divergent IRs (Additional file 1: Figure S5C and
Supplementary Data).
We hypothesize that the high number of ORs may be

linked to prey detection mediated by odor molecules at
the air-water interface, although functional analysis will
be needed to test this. As G. buenoi are faced with prey
that have fallen on the water surface, and therefore indi-
viduals exhibit more of a scavenger strategy as compared
to a hunter strategy, this expansion of ORs may enhance
their ability to evaluate palatability. As toxic molecules
are often perceived as bitter, the GR expansion might
provide a complex bitter taste system to detect and even
discriminate between molecules of different toxicities
[83]. Finally, expansion of the IR family could be linked
with prey detection as well as pheromone detection of
water-soluble hydrophilic acids and amines, many of
which are common chemosensory signals for aquatic
species [84, 85].

Detoxification pathways
Water striders can be exposed to various toxic com-
pounds found in the water, including those generated by
pesticides, insecticides, and from other human activities
as well as those found in their prey. Insect cytochrome
P450 (CYP) proteins play a role in metabolic detoxifica-
tion of xenobiotics including insecticides [86, 87]. They
are also known to be responsible for the synthesis and deg-
radation of endogenous molecules, such as ecdysteroids
[88] and juvenile hormone [89]. The insect CYPs, one of
the oldest and largest gene families in insects, underwent a
high degree of diversification after multiple instances of

gene duplication, which may have enhanced a species’
adaptive range [90]. In addition to CYP proteins we have
also surveyed the presence of UDP-glycosyltransferase
(UGT) genes in G. buenoi. UGTs are important for
xenobiotic detoxification and the regulation of endo-
biotics in insects [91]. UGTs catalyse the conjugation
of a range of small hydrophobic compounds to
produce water-soluble glycosides that can be easily
excreted in a number of insects [92, 93].
We annotated and analyzed a total of 103 CYP genes

(Additional file 1: Table S9, Additional files 3 and 9) and
28 putative UGT genes, including several partial sequences
due to genomic gaps (Additional file 1: Table S10). Ten
more CYP fragments were found, but they were not in-
cluded in this analysis due to their short lengths (<250 aa).
This is the largest number of CYP genes among the hemip-
teran and other species’ genomes in which CYPomes were
annotated: O. fasciatus (58 CYPs), R. prolixus (88 CYPs)
and N. lugens (68 CYPs) [26, 94, 95], D. melanogaster
(85), A. mellifera (45), and B. mori (86) (Additional
file 1: Table S9). Indeed, the G. buenoi CYP protein
family size is only exceeded by that of T. castaneum
(131 proteins). CYP genes fall into one of the four
distinct subfamilies: Clan 2 (6 genes), Clan mito (62
genes), Clan 3 (25 genes) and Clan 4 (10 genes)
(Fig. 5; see Additional file 1: Supplementary Data).
Similarly, the number of UGT genes is also higher than
that of O. fasciatus (1) [26], C. lectularius (7) [25], D. mel-
anogaster (11), A. mellifera (6) and B. mori (14) [96], and
identical to T. castaneum (28) [96].
Interestingly, both CYP and UGT gene family

expansions seem to be closely linked with tandem
duplication events. In the particular case of G. bue-
noi CYPs, the Clan 2 and Clan mito have undergone
relatively little gene expansion (Fig. 5a and b). How-
ever, an exceptional gene expansion is observed in
the mitochondrial Clan of the G. buenoi CYPs,
where seven CYP302Bs form a lineage-specific clus-
ter (Fig. 5b). The Clan 3 and Clan 4 are highly ex-
panded in insects such as T. castaneum, B. mori, R.
prolixus, and N. lugens, as well as in G. buenoi, of
which 45% (28/62 CYP genes) might have been gen-
erated by tandem gene duplications (Fig. 5c and d).
On the other hand, ten UGT genes are clustered on
Scaffold1549, suggesting gene duplication events
may have produced this large gene cluster (Additional
file 1: Figure S6). In addition, multiple UGT genes
are linked within Scaffold1323, Scaffold3228, and
Scaffold2126. A consensus Maximum-likelihood tree
(Additional file 1: Figure S7) based on the conserved
C-terminal half of the deduced amino acid sequences
from G. buenoi UGTs supports the conclusion that genes
clustered within the genome derive from recent tandem
duplications.
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Overall, our phylogenetic analysis revealed the con-
servation of CYPs and UGTs across insects, and the
possibility for expansions via lineage-specific gene
duplication. We hypothesize that this expansion may
have been important in order to diversify the xeno-
biotic detoxification range and the regulation of
endobiotics during the terrestrial-to-water surface
transition.

Conclusions
The sequencing of the G. buenoi genome provides a
unique opportunity to understand the molecular mecha-
nisms underlying initial adaptations to water surface life
and the subsequent diversification that followed. In par-
ticular, gene duplication is known to drive the evolution
of adaptations and evolutionary innovations in a variety
of lineages including water striders [80, 97–99]. The G.

Fig. 5 Phylogenetic analysis of four different Clans of the cytochrome P450s of Gerris buenoi with other insect species. a Clan 2, b Clan
mitochondria, c Clan 3, and d Clan 4. The G. buenoi sequences are indicated in red and bold
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buenoi genome revealed a number of clustered duplications
in genes that can be linked to processes associated with the
specialized life style of water striders. Some are shared with
closely related Hemiptera, for example, the duplicated fac-
tor Beadex is an activator of the Achaete/Scute complex
known to play an important role in bristle development.
Other genes and gene family duplications are particularly
rare, such as that found with the insulin receptors, which
are known in other insects to be involved in a range of
rocesses including wing development, growth, as well as a
number of life history traits including reproduction [49, 52,
100]. The functional significance of the duplication of the
histone methyltransferase grappa and histone cluster dupli-
cations remains unknown, yet opens up new avenues for
investigation into the relationship between epigenetics and
phenotypic plasticity. Expansions in the cuticle protein fam-
ilies involved in desiccation resistance or genes repertoires
involved in xenobiotic detoxification and endobiotic regula-
tion pathways may have played an important role during
water surface specialization [78, 101]. Furthermore, the
expansion of the opsin gene family and possible light sensi-
tivity shifts are also likely associated with particularities of
polarized light detection within the aquatic environment in
which G. buenoi specializes. The impact of these duplica-
tions on the ability of water striders to function efficiently
in water surface habitats remains to be experimentally
tested. G. buenoi, which is now emerging as a tractable
experimental model, offers a range of experimental tools to
test these hypotheses. More generally, the G. buenoi
genome provides a good opportunity to further understand
the molecular and developmental genetic basis underlying
adaptive radiations and diversification upon the conquest of
new ecological habitats.

Methods
Animal collection and rearing
Adult G. buenoi individuals were collected from a pond
in Toronto, Ontario, Canada. G. buenoi were kept in
aquaria at 25 °C with a 14-h light/10-h dark cycle and
fed on live crickets. Pieces of floating Styrofoam were
regularly supplied to female water striders to lay eggs.
The colony was inbred following a sib-sib mating proto-
col for six generations prior to DNA/RNA extraction.

DNA and total RNA extraction
Genomic DNA was isolated from adults using Qiagen
Genome Tip 20 (Qiagen Inc., Valencia CA). The 180 and
500 bp paired-end libraries as well as the 3 kb mate-pair
library were made from eight adult males. The 8 kb
mate-pair library was made from eight adult females.
Total RNA was isolated from 39 embryos, three first in-
star nymphs, one second instar nymph, one third instar
nymph, one fourth instar nymph, one fifth instar nymph,

one adult male and one adult female. RNA was extracted
using a Trizol protocol (Invitrogen).

Genome sequencing and assembly
Genomic DNA was sequenced using HiSeq2500 Illu-
mina technology. 180 and 500 bp paired-end and 3 and
10 kb mate-pair libraries were constructed and 100 bp
reads were sequenced. Estimated coverage was 28.6×,
7.3×, 21×, 17×, 72.9× respectively for each library. Se-
quenced reads were assembled in draft assembly using
ALLPATHS-LG [102] and automatically annotated using
custom MAKER2 annotation pipeline [103]. (More de-
tails can be found in Additional file 1: Supplementary
Data). Expected genome size was calculated counting
from Kmer based methods and using Jellyfish 2.2.3 and
perl scripts from [104].

Community curation of the G. buenoi genome
International groups within the i5k initiative have collabo-
rated on manual curation of G. buenoi automatic annota-
tion. These curators selected genes or gene families based
on their own research interests and manually curated
MAKER-predicted gene set GBUE_v0.5.3 at the i5k Work-
space@NAL [105] resulting in the non-redundant Official
Gene Set OGSv1.0 [106].

Assessing genome assembly and annotation
completeness with BUSCOs
Genome assembly completeness was assessed using
BUSCO [29]. The Arthropoda gene set of 2675 single
copy genes was used to test G. buenoi predicted
genes.

Orthology analyses
OrthoDB8 (http://orthodb.org/) was used to find ortho-
logues of G. buenoi (OGS 1.0) on 76 arthropod species.
Proteins on each species were categorised using custom
Perl scripts according to the number of hits on other
eight arthropod species: Drosophila melanogaster,
Danaus plexippus, Tribolium castaneum, Apis mellifera,
Acyrthosiphon pisum, Cimex lectularius, Pediculus
humanus and Daphnia pulex.

Insulin receptors phylogeny
Sequences were retrieved from ‘nr’ database by sequence
similarity using BLASTp with search restricted to Insecta
(taxid:50557). Each G. buenoi InR sequence was individu-
ally blasted and best 250 hits were recovered. A total of
304 unique id sequences were retrieved. Additionally, we
recovered the genes annotated by Kremer et al. [47] as
well as Caenorhabditis elegans insulin receptor homolog
AAC47715.1 as outgroup. We performed a preliminary
analysis aligning the sequences with Clustal Omega
[107–109] and building a simple phylogeny using MrBayes
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[110] (one chain, 100,000 generations). Based on that pre-
liminary phylogeny, we selected a single isoform for
each InR gene (Additional file 4). Final InR phylogeny
tree was estimated aligning the sequences with MAFFT
[111] using E-INS-i iterative method and using MrBayes
(four chains, for 1,000,000 generations). Final phyl-
ogeny include InR sequences from (copy number in
parenthesis):
Acromyrmex echinatior (2), Acyrthosiphon pisum (2),

Aedes aegypti (1), Aedes albopictus (1), Aethina tumida
(2), Agrilus planipennis (2), Amyelois transitella (1),
Anopheles darlingi (1), Anopheles gambiae (1), Anoph-
eles sinensis (1), Anoplophora glabripennis (2), Aphis
citricidus (2), Apis cerana (2), Apis dorsata (2), Apis
florea (1), Apis mellifera (2), Aquarius paludum (3),
Athalia rosae (2), Atta cephalotes (2), Atta colombica
(2), Bactrocera dorsalis (1), Bactrocera latifrons (1), Bac-
trocera oleae (1), Bemisia tabaci (2), Blattella germanica
(3), Bombus impatiens (2), Bombus terrestris (2), Bombyx
mori (1), Caenorhabditis elegans (1), Camponotus flori-
danus (2), Cephus cinctus (2), Ceratina calcarata (2),
Ceratitis capitata (1), Ceratosolen solmsi marchali (1),
Cimex lectularius (2), Clunio marinus (1), Copidosoma
floridanum (1), Cryptotermes secundus (3), Cyphomyr-
mex costatus (2), Danaus plexippus (1), Daphnia pulex
(4), Dendroctonus ponderosae (1), Diachasma alloeum
(2), Diaphorina citri (1), Dinoponera quadriceps (2),
Diuraphis noxia (2), Drosophila ananassae (1), Drosoph-
ila arizonae (1), Drosophila biarmipes (1), Drosophila
bipectinata (1), Drosophila busckii (1), Drosophila ele-
gans (1), Drosophila erecta (1), Drosophila eugracilis (1),
Drosophila ficusphila (1), Drosophila grimshawi (1),
Drosophila kikkawai (1), Drosophila melanogaster (1),
Drosophila miranda (1), Drosophila mojavensis (1),
Drosophila obscura (1), Drosophila persimilis (1), Dros-
ophila pseudoobscura (1), Drosophila rhopaloa (1), Dros-
ophila sechellia (1), Drosophila serrata (1), Drosophila
simulans (1), Drosophila suzukii (1), Drosophila takaha-
shii (1), Drosophila virilis (1), Drosophila willistoni (1),
Drosophila yakuba (1), Dufourea novaeangliae (2),
Ephemera danica (2), Eufriesea mexicana (2), Fopius
arisanus (2), Gerris buenoi (3), Glossina morsitans morsi-
tans (1), Habropoda laboriosa (2), Halyomorpha halys
(2), Harpegnathos saltator (2), Hebrus sp (3), Helicoverpa
armigera (1), Heliothis virescens (1), Hydrometra cumata
(3), Lasius niger (2), Leptinotarsa decemlineata (2), Lim-
noporus dissortis (3), Linepithema humile (2), Locusta
migratoria (2), Macrotermes natalensis (3), Manduca
sexta (1), Maruca vitrata (1), Megachile rotundata (2),
Melipona quadrifasciata (1), Mesovelia furcata (3),
Microplitis demolitor (2), Microvelia longipes (3), Mono-
chamus alternatus (1), Monomorium pharaonis (2),
Musca domestica (1), Myzus persicae (2), Nasonia vitri-
pennis (1), Neodiprion lecontei (2), Nicrophorus

vespilloides (2), Nilaparvata lugens (2), Oncopeltus fas-
ciatus (2), Onthophagus nigriventris (1), Onthophagus
taurus (2), Ooceraea biroi (2), Orussus abietinus (2),
Oryctes borbonicus (1), Papilio machaon (2), Papilio
polytes (1), Papilio xuthus (1), Parasteatoda tepidar-
iorum (2), Pediculus humanus corporis (1), Pieris rapae
(1), Plutella xylostella (1), Pogonomyrmex barbatus (2),
Polistes canadensis (2), Polistes dominula (2), Pseudo-
myrmex gracilis (2), Rhagoletis zephyria (1), Rhagovelia
antilleana (3), Rhodnius prolixus (2), Solenopsis invicta
(2), Spodoptera litura (1), Stomoxys calcitrans (1), Striga-
mia maritima (1), Trachymyrmex cornetzi (2), Trachy-
myrmex septentrionalis (2), Trachymyrmex zeteki (2),
Tribolium castaneum (2), Trichogramma pretiosum (1),
Trichomalopsis sarcophagae (1), Vollenhovia emeryi (2),
Wasmannia auropunctata (2), Zeugodacus cucurbitae
(1), and Zootermopsis nevadensis (3).

Cytochrome P450 proteins phylogeny
CYPs phylogenetic analysis was performed using
Maximum-Likelihood method and the trees were gener-
ated by MEGA 6. The phylogenetic trees were generated
by MEGA 6 with Maximum-Likelihood method using
the amino acid sequences from Gerris buenoi (Gb),
Rhodnius prolixus (Rp), Nilaparvata lugens (Nl), Bombyx
mori (Bm) and Tribolium castaneum (Tc). All nodes
have significant bootstrap support based on 1000
replicates.
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