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Abstract

K+ channels are proteins that facilitate the passive permeation of K+ ions
through the cell membrane. They conduct at rates close to the diffusion limit
while selecting against Na+ ions by more than a thousandfold. This transport
is crucial for a variety of physiologically fundamental processes like cell home-
ostasis or signal transduction along nerve cells. Knowledge about K+ channels
became available through electrophysiology experiments starting in the 1950s
and crystallography studies since the end of the last century. The experimental
data has been combined with computational studies, which lead to a detailed
understanding of the molecular mechanism of K+ ion permeation.
It has been confirmed that the channels’ narrowest constriction – the selec-

tivity filter – forces the K+ ions to move in single file and is thereby responsible
for both high current and high fidelity in rejecting Na+. From an evolution-
ary standpoint one could imagine a common ancestor of K+ channels, as the
selectivity filter is composed of highly conserved residues. During subsequent
specialization the underlying permeation mechanism should not have changed
too much. However, different protein backgrounds or mutations at the filters’
end do induce small differences.
In this thesis, we set off for a deeper understanding of the permeation mech-

anism by comparing computational models of different members of the K+

channel family against each other. Our findings are validated by analyzing
the effect of different force fields on the permeation mechanism. Using data
from (recently published) non–equilibrium steady state molecular dynamics
simulations of permeating K+ channels we built discrete models of the per-
meation mechanism on a reduced phase space. While individual trajectories
of permeation do indeed differ in their microscopic details, our model allows
to make humanly comprehensible statements about probabilities of how many
permeations follow similar pathways.
We could show that the ‘direct knock-on’ mechanism, where K+ ions are

in immediate adjacency to each other, is a robust process of permeation. Al-
though exhibiting small, measurable variations, it is conserved in its main
theme through all studied channels and force fields.
Exploiting local detailed balance we estimated a lower bound for the volt-

age drop across the selectivity filter, finding values which are in very good
agreement with those expected from the literature.
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1. Introduction

1.1. K+ channels

Potassium (K+) channels are proteins that penetrate the cell membrane. They
allow K+ ions to follow their electrochemical gradient through the other-
wise impermeable cell membrane. This passive transport of K+ ions through
the channel occurs at rates close to the diffusion limit [HK55]. At the same
time a selectivity for K+ against Na+ ions at a ratio of about 1:1000 is
maintained [LHM01]. Considering that the K+ is only slightly larger (<20%)
[Bat01] than the Na+ ion while both are monovalent, such a strong selectivity
is remarkable.

K+ channels have high physiological relevance as they play a crucial role
in a vast variety of physiological functions. These processes cover a versatile
range with examples being cell homeostasis and signal transduction along nerve
cells. They belong to the largest and most diverse group of ion channels
and malfunction among them leads to a variety of diseases making them a
promising drug target. [SS97]

The first experiments that lead to the postulation of K+–selective sites in the
membrane were conducted by Bernstein and documented in his famous mem-
brane hypothesis [BT06]. His postulations were confirmed by Hodgkin and
Huxley [HH39]. Their analysis lead to the widely–known Hodgkin-Huxley-
Model for the propagation of action potentials in neurons [Phi13]. Deeper
insights into the behaviour of individual entities of these K+–selective sites in
the membrane were initiated by the patch clamp technique [HMN+81].
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1. Introduction

1.1.1. Selectivity Filter

Ions move through the channel’s narrowest constriction, the selectivity filter
(SF), in single file exerting a ‘knock–on’ mechanism. Both single file as well as
a ‘knock–on’ type of transport were proposed by Hodgkin and Keynes [HK55]
more than 60 years ago, long before the first structures of proteins were avail-
able. Just by looking at the variation of ion fluxes with different electric
fields applied they could infer that ions are constrained to move in single
file with two to three sites of this chain occupied on average. This predic-
tion has been spectacularly confirmed four decades later by MacKinnon and
coworkers [DTGG11, MCZM01] when they resolved the crystal structure of
KcsA, a prokaryotic member of the potassium channel family from the bac-
terium streptomyces lividans. These experiments are just the most prominent
ones, a sheer abundance of experimental data on ion channels is available
nowadays. Especially since the advancement in x-ray crystallography, experi-
mental and computational studies have been fruitfully combined leading to a
detailed understanding of the dynamics of the molecular mechanism of perme-
ation [RK91, BR01, BR03, RABI04, KSG+14, KKV+18].

The selectivity filter has been shown to be responsible for
both the selectivity and the high K+ ion current [DCP+98].
It constitutes the four ‘canonical’ K+ binding sites (S1 – S4),
where the single file behaviour occurs. A schematic of the
SF is shown on the right, depicting one of the four subunits
in liquorice representation and the binding sites S1–S4 filled
with K+ ions by violet spheres. In addition to these four
binding sites there are two more, one at the SF’s extracellu-
lar exit (S0) and one in the otherwise water-filled cavity at
the intracellular side (Scav). As K+ channels are tetrameric
channels, the SF has a four-fold symmetry, too. The binding sites are defined
by carbonyl-oxygen atoms that face inward into the pore and stem from each of
the subunit’s backbone. It happens that one or more of these carbonyl-oxygens
moves and points radially outward of the symmetry axis of the SF. We refer
to these as flipped carbonyls. The group of residues these carbonyl–oxygens
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1.1. K+ channels

originate from is highly conserved among potassium channels. The sequence
is (TxVGYG) [HLAM94, MN12], which is referred to as the ‘signal sequence’
of K+ channels.

1.1.2. Our Selection: KcsA, MthK, Kv1.2 and NaK2K

Besides this high structural similarity, K+ channels differ notably in other
parts, especially in those sticking out of the membrane. This comes to no sur-
prise, as these parts are often involved in mediating the response to external
stimuli, which cover a diverse range. These differences in the rest of the pro-
tein cause changes to the hydrogen bond network in the protein background
that stabilizes the filter. More prominent changes are caused by mutations
of one of the residues of the SF [BM12, HLAM94]. Potential effects of these
structural differences on the permeation mechanism are the subject of this the-
sis. Incorporating different channels into the analysis has already facilitated
an understanding of the seeming contradiction of high throughput and high
selectivity [KKV+18], so we expect it to help broadening the view on the per-
meation mechanism as well. The different K+ channels we chose to analyze
are introduced here briefly.

Figure 1.1.: The selection of different members of the K+ channel family we chose to
compare against each other. Only two subunits are shown for clarity. The
similarity of the selectivity filter is immediately recognized. Image by cour-
tesy of Wojciech Kopec

.

KcsA, a pH gated channel, has been the ‘working horse’ for the study of K+

permeation [KSG+14]. The signal sequence reads TTVGYG.

3



1. Introduction

Mutating residue 71 (and the corresponding residues in the other subunits)
in KcsA from glutamate to alanine leads to a non-inactivating 1 channel named
KcsA E71A. [CMT+11] The signal sequence is TTVGYG, the change from
E to A occurred three residues prior: ETA[..] to ATA[..]. MthK from the
bacterium Methanothermobacter thermautotrophicus is a channel responding
to intracellular Ca2+ binding. ATVGYG is the signal sequence. Kv1.2 is
a mammalian voltage gated K+ channel, whose sequence reads TTVGYG.
NaK2K is an artificial channel [DSZ+11] exhibiting the four canonical binding
sites (S1–S4). It can be constructed by introducing mutations in the SF of the
normally non-selective bacterial ion channel NaK [SYA+06] that usually has
only two binding sites. The corresponding sequence is TTVGYG. The SF is
stabilized by the 3 residues preceding the signaling sequence as well as water
molecules between these. Both the residues and the number of water molecules
vary between the channels.

1.2. Computer Simulations

Problems involving the interaction of more than two bodies yield equations
that are unsolvable analytically - but with the help of a computer, typically the
solution can be determined up to a high accuracy. For this reason computer
simulations are frequently applied in the field called many particle physics.
Before computational solutions for determining properties of molecular sub-
stances were available, such properties had to be estimated using approximate
theories. Examples, where these approximations lead to exact solutions, are
the ideal gas or the harmonic crystal. One can say that certainly the major-
ity of problems in nature are not as simple. Applying computer simulations
to determining molecular dynamics, the only approximation one makes is on

1Inactivation is one of the two processes leading to a impermeable channel, the other
mechanism is gating [Yel98]. Inactivation is caused by a conformational change of the
SF while gating is a result of bundle crossing of inner helices that control the entry
to the cavity Scav. Configurations according to the gating mechanism are called open
and closed. A possible coupling between gating and inactivation cannot be excluded.
[IOTS10, CJC+10, CJCP10]
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1.2. Computer Simulations

the level of the intermolecular interaction between particles [FS02]. A more
detailed description of molecular dynamics simulations follows in chapter 2.
Computer simulations often provide deeper insights into molecular processes

than can be obtained from most experiments. In the ideal case, computer
simulations deliver properties that can be compared to experiments directly.
Especially the collaboration between scientists performing experiments and
those executing simulations lead to productive and useful results, since working
decoupled from each other both can independently misinterpret their findings.
More than 35 years ago the first protein, a bovine pancreatic trypsin in-

hibitor, was treated in a computer simulation. This simulation changed the
view of proteins from rigid to dynamic structures, whose motions are crucial
for its function [KM02].

5



1. Introduction

6



2. Theory

2.1. Molecular Dynamics

Molecular dynamics (MD) is a computer simulation technique for studying the
motion of physical systems at the atomistic level. Systems of interest are e. g.
biomolecules like proteins, where MD simulations allow useful insights in its
function, as the latter is in turn often determined by the dynamics [KM02].

The exact dynamics of molecular systems is given by the time dependent
Schrödinger Equation [Sch26]

i~∂tψ(~r, ~R) = Ĥψ(~r, ~R). (2.1)

Solving this equation is computationally prohibitively costly, even for small sys-
tems with about tens of atoms. The accessible timescales lie in the range of sev-
eral hundred picoseconds nowadays, orders of magnitude below the timescales
of biological interest.

A generic approach for reducing the computational effort is the Born–
Oppenheimer approximation. It assumes that due to the huge difference in
the mass of the light electrons (~ri) and the heavy nuclei (~Ri) their dynamics
can be addressed separately. Rephrased this means that the electrons follow
the motion of the nuclei instantaneously. Due to the separability of the prob-
lem the Schrödinger equation for the electrons can be solved for stationary
nuclei positions, which is done usually in the ground state, as the thermal
energy in biological systems usually doesn’t suffice for higher excited electronic
states. The interaction between nuclei and electrons can now be described

7



2. Theory

using this solution as an effective potential energy surface Ee(~R), resulting in

Ĥe ψe(~r, ~R) = Ee(~R) ψe(~r, ~R). (2.2)

The second step, based on the same rationale, is to treat the nuclei classically.
The nuclei’s motion is now governed by that potential function, thereby we
are neglecting tunneling effects and chemical bond breaking.

2.1.1. Integration Scheme

The dynamics of the point sized atoms can thus be described classically by
integrating Newton’s equations of motion,

mi~̈ ir = ~Fi, i = 1, ..., N, (2.3)

We change the notation for the positions of the atoms from capital ~Ri to small
~ri. Further, mi is the mass and ~Fi the force acting on one of the N particles.
The forces are calculated using an approximation Vff of the potential energy
function E(~r) which will be described in more detail in the next section. The
potential solely depends on the atoms position ~ri. The gradient of the potential
regarding the position of a particle provides the force acting on it,

~F = − ∂

∂~ri
Vff(~r1, ~r2, ..., ~rN). (2.4)

These equations of motion are integrated using a numerical integrator, e. g.
the ‘leapfrog’ algorithm, see 2.5, which is implemented in GROMACS. Contrary to
algorithms like the Runge-Kutta integrator, the former is of symplectic nature
which means that it conserves the energy of conservative systems. Conservative
systems exhibit a potential function that depends on the position of the atoms
solely. The ‘leapfrog’ algorithm calculates the velocities ~v at a time point
between the evaluation of the positions and forces.

8



2.1. Molecular Dynamics

~vt+ ∆t
2

= ~vt−∆t
2

+
~F

m
∆t,

~rt+∆t = ~rt + ~vt+ ∆t
2

∆t.
(2.5)

In order to control the numerical error associated with a finite time step ∆t,
it has to be chosen smaller than the oscillation period of the fastest vibration in
the system. This is given by the movement of hydrogen and lies at about 1 fs.
One can fix the corresponding bond length in order to double the time step and
thereby gain a better approximation of the quantum mechanical description
additionally. A maximum of ∆t = 4 fs integration time step can be achieved
if one applies virtual interaction sites [HKVDSL08], another constraint for the
hydrogen motion concerning the angular vibration.

2.1.2. Force Fields

The approximation of the effective potential E(~r) by a sum of analytic func-
tions, which are easy calculated, results in a set of parameters called the force
field Vff:

Vff(r) =
∑
b

1
2Kb(b− b0)2

+
∑
θ

1
2Kθ(θ − θ0)2

+
∑
ζ

1
2Kζ(ζ − ζ0)2

+
∑
φ

Kφ(1 + cos(nφ− δ))

+
∑

pairs: ij

qiqj
4πεrε0rij

+
∑

pairs: ij
4εij

(σij
rij

)12

−
(
σij
rij

)6


. (2.6)
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2. Theory

Based upon the assumption of additivity, the analytic functions describing the
interaction between particles can be separated into bonded and non bonded
interactions. For the the bonded interactions, the first four terms in equation
2.6, the summation indices are the bonds b, the angles θ, the improper dihedral
angles ζ and the dihedral angles φ. The last two terms in equation 2.6 are
the non bonded interactions, where the sum is taken over all pairs of atoms
i and j and are composed of the Coulomb and the Lennard–Jones potential.
The Lennard-Jones potential approximates the effects originating directly from
quantum mechanics. It consists of an attractive part representing the London
dispersion forces (van der Waals forces) and a repulsive term, accounting for
the Pauli exclusion principle. The angle δ is the regular value of the respective
dihedral angle, rij is the distance between the two atoms i and j, εr is the
dimensionless relative permittivity of the material in which the charges qi are
immersed, ε0 is the electric constant, εij is the depth of the Lennard-Jones
potential well, σij is the distance at which the inter-particle potential is zero.

For each atom type or possible pair of those a force field provides param-
eters allowing the calculation of forces for given positions. These parameters
are obtained via two different methods. Quantum mechanical calculations de-
liver ab initio parameters like in the AMBER [WWC+04] and CHARMM [BBO+83]
families. Another approach for determining parameters is to purely fit them
to experimental values in order to reproduce thermodynamic properties cor-
rectly. In theory all force fields try to approximate the same, correct PES.
In practice the force fields are optimized for different parameters and with
different priorities leading to deviations between simulations using them. In
the MD community an approach is emerging to minimize these errors, in the
consensus force field approach the results of trajectories generated with differ-
ent force fields are compared. Converging results indicate consistency whereas
diverging results point towards errors.

10



2.1. Molecular Dynamics

2.1.3. Periodic Boundary Conditions

Proteins embedded in water typically yield simulation system sizes of several
nanometers. Water droplets of this size hold an internal pressure of several tens
of atmospheric pressures. In order to avoid such non physiological numbers
it is common to make use of periodic boundary conditions, under which the
system is interacting with infinite virtual copies of itself. So particles leaving
the simulation box at one side re-enter the box from the opposing side.

2.1.4. Barostat and Thermostat

In order to reproduce the conditions of biological experiments, which are usu-
ally conducted under constant pressure and constant temperature (NpT), a
barostat and a thermostat are applied. The thermostat compensates for the
diverging kinetic energy due to the accumulation of numerical errors or the
simulation not starting from an equilibrium state. It regulates the systems’
temperature via rescaling of the atoms velocities; the barostat calculates the
systems’ pressure using virials and rescales the positions of the atoms’ to the
size according to the desired pressure [VLH+05].

2.1.5. Initialization

The initial positions of the atoms, i. e. the protein structures, are obtained
experimentally by deploying x-ray diffraction, NMR or cryo-EM techniques.
In order to prevent abnormally high forces due to too small distances between
atoms, an energy minimization step is typically performed prior to the MD
simulation. Small distances occur because of misplaced atoms during the re-
finement, or atoms that are closely packed due to crystallization in the x-ray
diffraction procedure. The positions are updated according to the potential
functions steepest descent, and are thus in a local minimum.
The initial velocities are generated according to a Maxwell distribution for

a given temperature.

11



2. Theory

2.1.6. Limitations and Outlook

As the electrons are considered to remain in the ground state, electron trans-
fer processes and electronically excited states cannot be treated and thus no
chemical reaction can be addressed directly. Thus, molecular dynamics simu-
lations are mainly limited to conformational changes of molecules as long as
quantum chemical effects are neglected. QM/MM simulations combine both
simulation types in order to take certain chemical reactions into account e. g.
active sites of enzymes in catalytic reactions [Gro13].

The introduction of an additional degree of freedom, a titration coordinate
λ , which allows the interpolation between protonation states, mimics the
behaviour of one certain type of chemical reaction. This method allows simu-
lations at constant pH, which influences the structure, dynamics, and function
of molecules in solution [DTGG11].

At the current state of computing power the temporal range of MD simula-
tions lies in several hundreds of nanoseconds per day for a system of several
nanometers / hundreds of thousands of atoms per computing node.

2.1.7. Applied Electric Field Simulations

For realistic modeling of both electrophysiological experiments and cellular
processes an electric potential difference across the membrane has to be estab-
lished.

This potential difference can be generated by applying an external elec-
tric field [Rou08] over the full simulation box or by an ionic imbalance in a
dual membrane setup, which is typical for the computational electrophysiol-
ogy (CompEl) setup [KGDZ11]. The former seems to break the periodicity
of the system by introducing different voltages for a particle crossing the box
boundaries. Nevertheless the force acting on it doesn’t exhibit discontinu-
ities. The analogy of a virtual circuit with an embedded battery clarifies the
setup [GKASR12].

12



2.2. Relevant Degrees of Freedom

2.2. Relevant Degrees of Freedom

Although one is usually interested just in the behaviour of a subset of atoms,
for a full atomistic MD simulations the trajectory of all atoms, including all
atoms of the solution, has to be calculated to reproduce thermodynamically
correct properties. In other words, such a trajectory evolves in a high dimen-
sional phase space with a subspace corresponding to the process of interest.
A strong formalism to tackle this type of problem has been proposed by Mori
[Mor65] and Zwanzig [Zwa61] more than half a century ago. The so called
projection operator approach is based on the assumption that the effect of the
environment can be modelled implicitly via a stochastic term in the otherwise
explicit description of the subset of interest.

2.2.1. Stochastic Processes

The description of the system then changes from a deterministic (Newton’s
equation) to a stochastic one, given by theGeneralized Langevin Equation
(GLE)

mi~̈ri(t) = ~Fi −
t∫

0

dt′Mi(t− t′)~̇ ir(t′) + ~fi(t), i = 1, . . . , Ñ , (2.7)

where ~Fi is the force acting on a particle i which depends just on the positions
of particles ~ri. The major difference to Newton’s equation of motion (2.3)
is the convolution of the particles velocity ~̇ ir with a memory function Mi,
which resembles a dragging force acting opposed to the particles velocity. The
stochastic term modeling the collisions with the environment is ~fi(t), it is
assumed to be stationary and has no preferred direction: 〈~fi(t)〉 = 0. The
relationship between the memory function and the stochastic force, according
to the Fluctuation-Dissipation theorem (FDT) [Kub66], reads

〈~fi(t) · ~fi(0)〉 = 3kBTMi(t). (2.8)

13



2. Theory

The memory function Mi is known to decay rapidly in a biological medium
like molecular bulk [MSO82] [MO70]. For the velocity of ions in proteins
the correlation time lies in the sub-picosecond range as shown explicitly in
[RK91]. This fast decay in Mi(t) allows to make the following approximation,
Mi(t) ' γiδ(t), which is also known as the Markov assumption. For a process
to be Markovian the following condition must be fulfilled: Only the current
state determines the probability to jump to another state, i. e. no memory
longer than one jump is taken into account to describe the process. While the
deterministic MD trajectory given by integrating Newtons equation of motion
is inherently Markovian, as the states are given by the point in phase space
which determines the next point in phase space exactly, one might introduce
memory by limiting the phase space to the configuration space. The derivation
above allows to judge that for timescales longer than several picoseconds no
memory will be introduced by neglecting the velocity of the particles. This
allows for a simplification in the GLE, leading to an equation known by the
name classical Langevin Equation (LE)

mi~̈ ir(t) = ~Fi − γi~̇ ir(t) + ~fi(t), (2.9)

with the corresponding FDT, 〈~fi(t) · ~fi(0)〉 = 6kBTγiδ(t), again assuming un-
correlated, stationary, Gaussian distributed forces.

In this case the process of interest is the ion permeation through the narrow-
est part of the channel. But not always a good intuitive choice can be found.
A good rule and requirement is to include slow processes. These are processes
that occur on a timescale where the fast processes have relaxed so that these
can be modeled with a stochastic force. Violations of this requirement might
occur if the protein undergoes changes on a longer timescale than the one on
which permeation happens. These pitfalls will be addressed and discussed in
chapter 4.

As a last approximation let us look at the case where the friction term
with coefficient γi is large compared to the inertial terms mi~̈ ir(t), which there-
fore can be neglected. In this widely known regime of a ‘low Reynolds num-
ber’ [Pur77], the dynamics become overdamped. The equation of motion de-

14



2.2. Relevant Degrees of Freedom

scribing such Brownian Dynamics is typically written using the Einstein
relation, D = kBT/γ – another form of the FDT – and reads

~̇ ir(t) = 1
γ
~Fi + 1

γ
~fi(t). (2.10)

Using this equation it is possible to make a rough approximation of ion per-
meation [KSG+14], [BR03]. The preceding description of Markovian dynamics
on the continuum level with the Langevin equation (2.9) can be transferred
onto a discrete set of states leading to a Master Equation (2.12).

2.2.2. Markov Processes

The Markov process is the simplest stochastic process exhibiting a causal re-
lationship between different time points. Its relevance lies in the beneficial
combination of its wide applicability whilst maintaining mathematical sim-
plicity [Röp87].
The above mentioned memorylessness or Markovianity can be stated in an

equation that describes the conditional probability to be in state n at timestep
t given the states before,

p(nt | nt−1 ; . . . ;nt1) = p(nt | nt−1). (2.11)

Expanding the conditional probability p(nt | nt−1) into a power series around
∆t = t − t−1 and taking the limit ∆t → 0 allows to define a transition prob-
ability wnm and by that an equation of motion for the probability of being in
state pn, which is called the Master Equation

∂

∂t
pn =

∑
m 6=n

pmwmn − pnwnm. (2.12)

The two terms under the sum can be interpreted as influx from other states m
into state n and outflux from n into these. The time dependence of p(t) has
been dropped for clarity, the transition rates wnm are assumed not to depend
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2. Theory

on the time t. The definition of a rate matrix W with elements

Wmn =


wmn, if m 6= n

−∑
k
wnk, if m = n

, (2.13)

allows to rewrite the master equation 2.12 in the following convenient way

∂

∂t
pn =

∑
m

pmWmn (2.14)

2.2.3. Steady States

One considers a process as irreducible, if the underlying network doesn’t
separate into distinct sets which are unconnected, i.e. from each state every
other state is reachable over a series of states of that network. This implies
ergodicity. Ergodic systems will, in the limit of t → ∞, visit every state
infinitely often and relax into a unique steady-state, where each of the psn
does not change over time ∂

∂t
psn = 0. A consequence of ergodicity is that

averaging over time and phase space Ω gives equal results. In a continuous
formulation for an arbitrary observable O(~x(t)) that reads

lim
t→∞

t∫
0

dt′O(~x(t)) =
∫
Ω

d~x ps(~x)O(~x). (2.15)

There are two physically distinct classes of steady states, depending on
whether the condition of detailed balance (DB) is met or not.
If the steady state obeys DB it represents the thermodynamic equilibrium

and the stationary distribution is given by the Boltzmann-Distribution,

peq
n = Z−1 exp[−En/kBT ] (2.16)

with a potential energy E and the partition function Z = ∑
n

exp[−En/kBT ].
Provided that the studied system corresponds to a thermodynamic ensemble
(NVT, NpT), the potential energy E is equal to the associated free energy (F :
Helmholtz, G: Gibbs). DB states that at equilibrium each elementary process
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2.2. Relevant Degrees of Freedom

occurs with the same frequency as its reverse process. This concept was first
explicitly mentioned by Ludwig Boltzmann in the proof of the H-Theorem
[Bol64]. There a physical justification of DB was given by microscopic re-
versibility, the fact that the underlying equations of motion are symmetric
with respect to inversion in time. For discrete states (see figure 2.1) the con-
cept is that for each pair of states (i.e. detailed) the forward and backward
transitions balance,

peq
n wnm = peq

n wmn ∀(n,m) pairs. (2.17)

Figure 2.1.: Detailed balance

In this case there is no net probability
current jnm = jmn = 0 between any pair
of states m and n. Using equation 2.16
to reformulate equation 2.17 the ratio be-
tween two transition rates or stationary
distributions is determined by the differ-
ence in the potential energy En−Em be-
tween the states n and m,

ln wmn
wnm

∣∣∣∣
eq

= ln p
eq
n

peq
m

= (Em − En)/kBT. (2.18)

When external forces or fields, for example a small uniform external electrical
field, are applied detailed balance is broken and the above equation does not
hold anymore. However, a weaker symmetry condition called Local Detailed
Balance can be found,

ln wmn
wnm

= (Em − En + µnm)/kBT. (2.19)

In such a non-equilibrium steady state (NESS) the logarithmic ratio of
transition rates between states m and n is shifted by µnm. In contrast to the
energy difference En−Em, which acts on the system in form of a conservative
force, this µnm just acts on the link between states n and m. For example, a
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2. Theory

particle with charge q undergoing a transition in an constant electric field E
along a distance dnm implies µnm = qEdnm.
The concept of local detailed balance was introduced in [KLS83] in a similar

context, i. e. of ions moving on a lattice with an electric field applied. A
deeper understanding of the constraint imposed by local detailed balance can
be found in the review [Sei12]. For transitions to obey local detailed balance
the dynamics inside a state should have equilibrated on the timescale the
transition takes place. If this constrained equilibrium is met, thermodynamic
properties like entropy, internal energy and free energy are well defined as for
conventional equilibrium thermodynamics.
If detailed balance is not met, there exist non-vanishing steady state prob-

ability currents between two states n and m,

jsmn = psmwmn − psnwnm 6= 0. (2.20)

Figure 2.2.: Conservation of probability

The master equation (2.12) ensures con-
servation of probability (see figure 2.2),
for steady states ∂

∂t
psn = 0 it means

that the net influx must equal the net
outflux of state n, see equation 2.20.
This formulation is also known as Kir-
choffs’ first law [Kir47]. As presented
in [Sch76, Kal07, JQQ03] this conserva-
tion law induces probability flux cy-

cles. The stationary probability fluxes can be decomposed using these cycles
as a basis.

2.3. Markov State Models

A Markov State Model (MSM) approximates molecular dynamics (simula-
tion and experiment) by a chain of Markov processes, where the states of the
chain are represented by a partitioning of the phase space and the transitions
are given by Markov jump processes. All the conditional transition probabili-
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2.3. Markov State Models

ties between the n distinct states of the model are stored in an n× n matrix,
the transition probability matrix P . As P = exp[W ∆t], P can be approxi-
mated from the rate matrix W by taking the first two elements of the series
expansion of the matrix exponential of W . This results in

Pmn =


wmn∆t, if m 6= n

1−∑
k
wnk∆t, if m = n

. (2.21)

P is often called the propagator as it describes the propagation of probabil-
ities through time.

If one diagonalizes P from the left,

P
(
~r1 ~r2 · · · ~rn

)
=
(
~r1 ~r2 · · · ~rn

)

λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn


PR = RΛ

and from the right, respectively,

~lT1
~lT2
...
~lTn

P =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λn




~lT1
~lT2
...
~lTn


LP = ΛL
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2. Theory

one arrives at

P = RΛR−1

P = L−1ΛL
P = RΛL (2.22)

with Λ being a diagonal matrix containing the eigenvalues and L,R the matri-
ces containing the left and right eigenvectors, respectively. As the propagator
P describes a stochastic process, the first of the eigenvalues λ1 = 1 and its
eigenvector corresponds to the stationary distribution. In NESS some of the
eigenvalues might be complex, always appearing in complex conjugate pairs
because P just contains real entries. These complex eigenvalues have in gen-
eral complex eigenvectors that are related to the above mentioned cycles. For
the other eigenvalues it holds that 0 < Re(λi) < 1, ∀i > 1. Each of the
eigenvalues λi is linked to a corresponding eigenvalue µi of W by the same
relationship linking the matrices, namely λi = exp[−∆tµi]. The reciprocal of
the rates 1/µi, is a timescale ti that describes how fast the process described
by the corresponding eigenvector decays, i. e. how fast probability density is
moved towards the equilibrium. These implied timescales

ti[P (∆t)] = −∆t
ln λi(P (∆t) (2.23)

give an idea how long the memory of the initial condition persists in the
system and are therefore often called correlation times.

The partitioning of the state space of biomolecules in general relies on the
experimental well justified assumption of long-lived, metastable states the
molecule visits during along a trajectory [WBB+10], [NGB+07], [EML+05].
As introduced above, the loss of Markovianity caused by neglecting the mo-
mentum part of the phase space gets recovered in the time scales biological
processes take place, so that the probability to jump to a certain state in the
configuration space solely depends on the previous state. One could call this
the Markov property of proteins. MSMs generate a humanly comprehensible
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2.3. Markov State Models

reduction of MD trajectory data while maintaining statistical significance, a
typical problem of traditional MD analysis. The view of single trajectories is
abandoned and replaced by a ensemble view of the dynamics [SFHD99]. Once
a transition probability matrix is estimated, individual realizations (artificial
trajectories) can be generated by performing a Monte Carlo simulation of the
Markov chain, as described in section 3.4.

21



2. Theory

22
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In this thesis we use both above mentioned methods to create an intuitive
understandable model of ion permeation. We reduce the degrees of freedom of
the phase space first and build a Markov model on this reduced phase space
assuming that all dimensions relevant for ion permeation are covered.

3.1. MD simulation
All MD simulations were carried out by Wojciech Kopec and David Köpfer. A
detailed description of the computational procedure can be found in the articles
[KKV+18] and [KSG+14] and their respective supplementary information. For
the sake of completeness we give a short overview over the computational setup.
The theoretical foundations for MD simulation can be found in section 2.1.
All channel proteins were embedded in a patch of a POPC membrane

(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine). A transmembrane voltage
U was established with the CompEL [KGDZ11] setup (U ≈ 220mV) or
with an applied electric field [GKASR12] (U ≈ 280mV) as described in sec-
tion 2.1.7. The MD simulations were performed using either GROMACS 5.0 or
5.1 [VDSLH+05, HKVDSL08, PPS+13, AMS+15]. TIP3P was used as the
water model in all simulations of this analysis [JCM+83]. For each simulation
of a channel protein two force field families were used, AMBER (version 99sb,
just Kv1.2 with 99sb*ILDN) [HAO+06, BH09, LLPP+10] and CHARMM (version
36m) [HRN+16, BBO+83, KVF+10, BZS+12]. Applying virtual sites [FHB99]
allowed for an integration timestep of 4 fs, control simulations at 2 fs assured
validity of the generated trajectories. The crystal structures of the four chan-
nel proteins were taken from the Protein Data Bank [BWF+06], all in the open
configuration, as introduced in section 1.1.
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KcsA
• PDB ID: 3f5w [CJCP10]
• conductive SF configuration from PDB ID: 1k4c [ZMCKM01]

MthK
• PDB ID: 3ldc [YLJ10]

Kv1.2
• PDB ID: 2r9r [JJES13]
• pore domain from ‘paddle-chimera’ Kv1.2-Kv2.1 structure

(remains open at positive voltages)
• W362Y mutation to prevent SF instabilities

(equivalent mutation in Kv1.6 doesn’t alter conduction and selectivity
[SZRJ11]

NaK2K
• PDB ID: 3ouf [DSZ+11]
• F92A mutation to increase ionic current [SZC+13]

The electric field in the simulations is applied in the direction that leads,
according to the natural orientation of K+ channels in the cell membrane, to
an outward current of K+ ions. The further analysis is performed for each
protein and for each force field resulting in one MSM for one of these setups.

3.2. Dimensionality Reduction

For the analysis of MD trajectories that span a time window of several µs and
exhibit hundreds of permeation events, we reduce the dimensionality of the
system.

Own contribution: The first filtering of the trajectory–the extraction the
positions of molecules in direct neighbourhood of the SF–was done using a
script written by Bert de Groot. I wrote the scripts for all steps of the further
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3.2. Dimensionality Reduction

analysis. All of those scripts are written in python [VR+07] making heavy
use of the numpy package [WCV11]. The scripts are made available at https:
//gitlab.gwdg.de/deGrootLab/permeation-pathways.

3.2.1. Projection

We first extracted the positions of oxygen atoms of the SF and of K+ ions and
water molecules in the direct neighbourhood of the SF out of the full trajectory
and projected these coordinates onto the z-axis defined by the SF. A typical
time trace of the resulting one dimensional data is shown in figure 3.1 in the
upper graph.

3.2.2. Digitization

The one dimensional binding sites in the SF are defined according to the canon-
ical binding sites (see section 1.1). The bin edges of the SF binding sites are
represented by the mean of each of the SF oxygen layers of the four subunits.
Using the identity of the K+ ions and water molecules we bin each of them
according to the defined bin edges. This procedure is done for each time step
resulting in a digitized time trace for all molecules entering or permeating the
SF. An example of such digitized molecule positions is depicted in figure 3.1,
middle panel. The outer parts of the SF can be occupied by several molecules
at once. This results in an apparent overlap of molecules in this representa-
tion, which is an artifact. For the binding sites S1-S4 on the contrary, multiple
occupation is not in agreement with the single file knock-on mechanism de-
scribed in 1.1. Since in this thesis the focus lies on the potassium permeation
mechanism, we treat deviations from the canonical occupation as exceptions.
Double occupations in S1 and S4 are mapped to the corresponding single oc-
cupation in a way that the molecule nearer to the interior of the SF is kept.
Double occupations in S2 and S3 do not comply with the single file transport,
therefore parts of the trajectory, where this happens, are cut out and not taken
into account for the analysis. Such deviations will be addressed in chapter 4.
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3. Methods

3.2.3. Discretization

The lowest graph in figure 3.1 depicts the discretized trajectory. This trajec-
tory evolves in a phase space representing the instantaneous occupation of the
SF. Assuming that each of the four binding sites can be occupied by just one
molecule (water or K+ ion) at a time or be void, the resulting phase space has
34 = 81 states. Most of these 81 states are energetically very unfavourable
and are therefore not visited during simulations of permeation resulting in a
far smaller phase space for permeation. Using the digitized time trace that we
obtained for each molecule, it is easy to extract the number of molecule jumps
between binding sites for each time step.
This step of the analysis converts the trajectory, a former 3N×T array,

X = [x1 = x(t = 0), x2 = x(t = ∆t) . . . xT = x(t = (T − 1)∆t), (3.1)

that contained the coordinates of every atom for each timestep into a 1×T
array of consecutively visited states

S = [s1, s2 . . . sT ] (3.2)

and a 2×(T-1) array for the intermediate molecule jumps

J = [j1, j2 . . . jT−1] (3.3)

for each trajectory with the number of time steps T . J contains two numbers
for each timestep: ji = (jki , jwi ) for K+ ions and water molecules, respectively.
As these arrays are not vectors in the physical sense but just tuples of numbers
we refrain from using the vector notation here.
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Figure 3.1.: Methods involved in the discretization of trajectories for MSM estimation.
From the top to the bottom different stages of discretization are depicted. All graphs
share the x-axis (simulation time). In the upper graph the z-positions of oxygen atoms
of the SF (green, lines) and of K+ ions and water molecules (violet and red lines with
dots, respectively, different shades for different molecules) in the SF are given relative to
the first layer of oxygen. The middle graph shows the digitized version of the data in the
upper graph, all molecules entering or permeating the SF are binned into the canonical
binding sites S1-S4. The graph at the bottom shows the fully discretized version of
the trajectory, the discrete states represent the instantaneous occupation of the SF. The
violet and red line count the jumps of K+ ions and water molecules through the 4 binding
sites, 5 jumps yield one full permeation.
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3.3. Markov State Model Generation

3.3.1. Transition Count Matrix

The discrete trajectory is in a format that can be used to determine a count
matrix ,

ckwod (τ) =
T−m∑
n=1

χo(sn)χd(sn+m)χkw(jn), (3.4)

where the lag time τ = m∆t needs to be an integer m multiple of the time
resolution ∆t of the trajectory. A combination of different versions of the
indicator function χ allows for discrimination of distinct transitions between
states:

χo/d(sn) =

1, if sn ∈ o/d

0, otherwise
χkw(jn) =

1, if (jkn, jwn ) = (k, w)

0, otherwise
. (3.5)

While these distinct transitions between the same states are rather untypical
for MSMs, they are mentioned in [Sei12] as transition channels and should
in principle pose no problem in the further evaluation of the count matrix.
Each possible transition contains the origin state (o), destination state (d), K+

jumps (k) and water jumps (w), requiring a four dimensional array in order to
store them. We circumvented this by storing a dictionary containing origin,
destination, k- and w-jumps as key and the corresponding count number as
value. The counts for different trajectories are all summed up in a joint count
matrix/dictionary.
The transition counts can be estimated via a subsampling with interval

τ = or with a sliding window of length τ , see figure 3.2 for a depiction.
Subsampling omits a major fraction 1 − T/τ of the trajectory, therefore the
window count method is often preferred, as T −m timesteps can be evaluated
with this approach. One has to keep in mind that nearby transitions will
very likely be statistically dependent. Nevertheless, the window count method
asymptotically leads to the correct transition matrix [PWS+11]. Throughout
this analysis the sampling time of transitions is τ = 40ps, the smallest com-
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3.4. Markov Chain Monte Carlo

Figure 3.2.: Illustration of subsampling (top arrows) and sliding window count
(lower arrows). τ is 3∆t. Arrow labels are the jumps of K+-ions during τ . Small
arrows depict the movement of the ions in one timestep ∆t, dots mean no ion move
for this transition.

mon denominator of the trajectories output frequencies.

3.3.2. Transition Probability Matrix

A transition probability matrix is row-stochastic meaning the outgoing prob-
abilities sum up to one for each state. In [PWS+11] it has been shown that
the maximum probability estimator for the probability matrix Tod is the trivial
estimator

Tod = cod
co

(3.6)

with co =
N∑
d=1

cod. The collapsed count matrix cod without superscript kw

contains the sum of all different transition types of between states o and d, the
ratio of these is saved in an additional array.

3.4. Markov Chain Monte Carlo

As soon as a MSM with conditional probabilities has been constructed, we can
perform Markov Chain Monte Carlo (MC) [VNU51, MRR+53] simulations to
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test our model for consistency and to judge whether a stationary distribution
has been reached in the trajectories used to generate the model. Artificial
realizations are generated by randomly drawing transitions according the con-
ditional probabilities given by the MSM. The starting state is chosen the same
as in the original trajectory.
The simplest possible implementation is depicted in the following algorithm.

This algorithm produces an array of states of length n and n − 1 transitions
in between, each with the corresponding K+ and water jumps (k, w).

Data : s: starting state, Tod: conditional probabilities, n: number of
samples

Result : artificial trajectory of length n
states = emtpyarray(n)
states[0 ] = s
for i in range(n):

r = random(0,1)
o = states[i]
prob = cumsum(T[o,:])
d = prob[r]
states[i+1 ] = d
if multiple transitions possible:

r = random(0,1)
prob = cumsum(T[o,d,:])
(k,w) = prob[r]

3.5. Probability Flux Cycles

There are several algorithms for decomposition of the steady state probability
currents into cycles proposed in the literature [Sch76, Kal07, JQQ03, Hil05].
Each of these algorithms exhibits an ambiguity in the decomposition, i. e. the
returned basis of cycles depends on the ordering of edges in the graph. Thus
it is an inherent property of the steady state probability fluxes and not an ar-
tifact of the algorithms. The arbitrariness can be overcome in variety of ways,
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3.5. Probability Flux Cycles

from looking for a minimum cycle basis [HKM08] to sorting a first decomposi-
tion in all possible simple cycles by edge width first and decomposing the flux
into cycles of descending occupancy. Another method for cycle decomposition
is to use further information that the trajectories provide. As permeation is
a reoccurring process we intuitively expect to see reoccurring patterns in the
trajectory. Guiding the algorithm by this information results in an appeal-
ing cycle decomposition that furthermore uncovers the exact process of the
permeation mechanism.
The following paragraph illustrates the algorithm. The discrete trajectory

is first cleaned of all repetitions. Then oscillations (trivial cycles) between
two states are removed if the forward and backward transition are exactly the
same i. e. there are no net jumps performed after those two transitions. This
preprocessed trajectory is then fed into a recursive function that decomposes
it into cycles:

def find_cycles_recursive(dtraj):
Data : discrete trajectory
Result : cycle decomposition of discrete trajectory
if no multifold states in dtraj:

save dtraj as cycle
exit

else:
s ←− first of multiple occurring states
(b,e) ←− index of first and second occurrence of s
(dtraj_1, dtraj_2, dtraj_3) ←− split dtraj at (b,e)
save dtraj_2 as cycle
m_dtraj ←− merge dtraj_1, dtraj_3
if no multifold states in m_dtraj:

save m_dtraj as cycle
exit

else:
exit find_cycles_recursive(m_dtraj)
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The algorithm is provided with a discretized version of the trajectory. All
states are referenced via a unique id because of a simpler implementation of
the algorithm for digits. A generic snippet of the trajectory is shown in the
following. As it is more pleasant for the human eye to spot multiple occurrences
in a list of digits than in a list of four letter codes which depict the selectivity
filter states, we stick to the same digits as the algorithm does:

ntraj: [10, 11, 9, 4, 22, 23, 11, 22, 11, 22, 10]

The algorithm finds all multiple occurring states in the trajectory and cuts out
the cycle between the first two occurrences of the first of the multiple occurring
states. This cut out part is saved as a cycle, together with the information
about the transported K+ ions. For the sake of clarity we refrain from showing
the additional information here, except for the total number of jumps per cycle.
In the example this first multiple times occurring state is the state with id 11
for the first and second cycle and state number 10 for the last cycle.

ntraj: [10, 11, 9, 4, 22, 23, 11, 22, 11, 22, 10]
cycle: [ 11, 9, 4, 22, 23, 11 ] K-Jumps: 5
ntraj: [10, 11, 22, 11, 22, 10]
cycle: [ 11, 22, 11 ] K-Jumps: 0
ntraj: [10, 11, 22, 10]
cycle: [10,11,22,10 ] K-Jumps: 0

This trajectory snippet was decomposed in the three cycles:

cycle: [11, 9, 4, 22, 23, 11] K-Jumps: 5
cycle: [11, 22, 11] K-Jumps: 0
cycle: [10,11,22,10] K-Jumps: 0
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4. Results and Discussion

4.1. Projection
We projected the positions of the oxygen atoms of the SF and of the K+

ions and water molecules onto the z-axis defined by the SF. Histogramming
these positions for the whole trajectory reveals that not all of the binding sites
are occupied identically among the channels. The respective distributions are
shown in figure 4.1. All positions are given relative to the first layer of oxygens
above S1, its’ position is marked with a green bar at z-position 0.
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Figure 4.1.: Histograms of the z-positions of oxygen atoms of the SF (green peaks), the
K+ ions (violet peaks) and the water molecules (red peaks).
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The overall positions of peaks in the binding sites are the same. We find
violet peaks for the K+ ions and red distributions for the water molecules
between green peaks showing the oxygen positions. Both of the outer binding
sites are occupied by more water than K+. The water distribution is spread out
wider and its’ peak is located further outside, while the potassium is located
closer to the inside of the filter. The inner binding sites S1–S4 are mainly
occupied by K+ ions, except for the AMBER versions of KcsA and KcsA E71A.
For the latter, S1 and S4 are occupied purely by water for the former two
and both versions of Kv1.2, where S1 and S4 accommodate both K+ ions
and water at slightly different positions. Some of the K+ distributions show
multiple maxima per binding site. Particularly striking is Kv1.2 where for
both force field versions most of the binding sites exhibit two peaks. While a
first interpretation for the multiple maxima might be that there exist multiple
sub-binding sites, this interpretation can be discarded if one considers that, in
Kv1.2, all the oxygen distributions exhibit two peaks as well. As all positions
are given relative to the first oxygen layer and this is the only one not exhibiting
multiple peaks, we can conclude that rather this one is the one moving between
two positions. For the other channels’ peak positions we see a shifting between
two positions in the same binding site, especially strong for S2 and S3.

These differences between the channels and force fields in figure 4.1 do not
result from inherently different positions in the binding sites. It is rather an
effect of the averaging over all occurring selectivity filter occupations. The
individual SF occupation states, like KK0K for K+ in S1, S3 and S4 with
a vacancy in S3, do not differ between the channels and force fields. The
differences we see here are actually caused by different ratios of these occupancy
states among the channels. In the appendix (A) in figure A.1 a breakdown
of this figure into the individual states is shown, confirming that indeed the
states themselves do not differ between the channels and force fields.

In contrast to the averages shown in figure 4.1, figure 4.2 shifts the view
onto the fraction of time each binding site is occupied by a molecule or being
vacant. Throughout all channels, the water fraction of S1 is higher for AMBER
than for CHARMM trajectories, meaning that the former favours states of the SF
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4.1. Projection

where water is in S1. The same holds for S4 in KcsA and KcsA E71A while for
Kv1.2 W362Y, MthK and NaK2K F92A no such general trend is noticeable.
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Figure 4.2.: A pie chart showing the fraction of each binding sites occupancy, either a
K+ ion (K, violet), a water molecule (W, red) or being vacant (0, grey).

It has to be emphasized here, that figures 4.1 and 4.2 just represent those
parts of the trajectories, where an assignment of binding sites for each molecule
was possible. These are the parts where single file transport using the canon-
ical binding sites occurs. This limitation holds for the remaining part of the
analysis, too, i. e. multiple occupations per binding site are not covered by the
analysis. Double occupations in S2 and S3 occur together with other excep-
tions at the same time, namely flips of the carbonyl oxygens in the SF and
water co-permeation. Together with anecdotal evidence showing that water
does not follow the canonical binding sites, we can formulate the hypothesis
that the water co-permeation mechanism is notably different from the one of
pure K+ permeation.
Figure A.4 in the appendix gives an overview of the used trajectories. The

plots in this figure depict both of the above mentioned exceptions, the flips of
the carbonyls as a deviation from the canonical state of the SF and the double
occupations, not in agreement with the single file permeation. The fraction of
trajectories that was used for the analysis is highlighted with a green shading.
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4. Results and Discussion

Characteristic time points of the permeation of both water and K+ ions are
depicted in these overviews, too.

4.2. Markov State Models

After having the trajectories discretized as described in section 3.2.3, count
and transition matrices are determined according to section 3.3.1 and 3.3.2.
An example of these transition matrices is shown in figure 4.3. The transition
matrices of the other channels and force field can be found in the appendix A
in figure A.2.
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Figure 4.3.: Transition matrix for KcsA AMBER. The elements of the matrix are probability
fluxes which equals transition probabilities times stationary distributions.
Additional data is shown in the appendix A. The scale bar is the same for
all later shown transition matrices in figure A.2. The units are probabilities.
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On the axes of figure 4.3 the 4 letter codes denote the often visited occupa-
tion states of the SF. The elements of the transition matrix are given here as
probability fluxes. That means that all transition probabilities are multiplied
with their origin states’ stationary probability. The scale bar attached to fig-
ure 4.3 gives the scale of these probability fluxes. The stationary distributions
are determined by averaging over all trajectories’ states. These are attached
to the matrix on the top and on the right hand side, using the same axes as
the matrix. In figure 4.3 we see that most of the elements are empty, they
are included in the matrix just for the purpose of comparing these matrices
among each other. On the diagonal we have the probability flux that stays
in the same state, thereby denoting how long-lived this state is. The matrix
possesses clusters with dark elements along and further off the diagonal in a
quite symmetrical manner. These clusters depict regions where probability
flows between a subset of states for a certain time before it leaves to other
states again. In figure 4.3 these are especially the states 0KK0 and 0KKW in
the top right corner and the states WKKW and WKK0 off diagonal. Between
these states a lot of fast processes take place,which serves as a justification for
clustering these states together later in section 4.4. Plotting the probability
flux helps to get an intuitive picture of where most of the dynamics happens.

Wherever different transition types are possible between the same two states
this is marked by a subdivision of the corresponding matrix element. The ratio
of the resulting partitions gives the ratio of the transition types.

4.2.1. Timescales

The eigendecomposition of each of the transition matrices provides us with
the eigenvalues shown in figure 4.4. For all matrices the first eigenvalue is 1,
corresponding to the stationary distribution. Each of the other eigenvalues
implies a timescale, namely the correlation time of the process the correspond-
ing eigenvector describes. These are shown in the same figure 4.4, on the right
hand side. One clearly sees that most of the processes happen on timescales
between 10 ps and 10 ns, as visual inspection of the trajectories already indi-
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cated. Interestingly, the correlation times show no spectral gap meaning that
all the processes of permeation do occur on similar timescales.
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Figure 4.4.: Eigendecomposition for the transition matrices results in eigenvalues and
eigenvectors. The eigenvectors describe the processes of the propagator and
each eigenvalue corresponds to the correlation timescale on which the process
transports probability towards the stationary distribution.

Only the first timescale of NaK2K AMBER deviates clearly from that pattern,
corresponding to the slowest process in this channels’ permeation processes.
This timescale lies in the range of more than a µ s, thereby exceeding the total
simulation time. Hence we can conclude that the sampling for this channel –
force field combination did not suffice and no steady state was reached during
simulation.

4.2.2. Distribution of Dwell Times

The fortunate combination of long simulation times and fast processes of in-
terest provides us with sufficient sampling data. This enables us to look at the
distribution of waiting times the system spends in each state.
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4.2. Markov State Models

In order to conform Markovianity, the lifetimes of the states depicting the
selectivity filters’ occupation should be distributed according to an exponen-
tial distribution which is the only one without memory. While most of them
do so, some strong deviations exist. Examples for both are shown shown in
figure 4.5. On the left hand side a distribution matching an exponential dis-
tribution is shown, the distribution on the right hand side does not follow a
single exponential distribution but rather a combination of two overlapping
ones.
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Figure 4.5.: Two generic examples for waiting time distributions, one matching the ex-
ponential distribution (l.h.s) and one not (r.h.s). The mean and fit to an
exponential distribution is shown in green, the black curve shows a fit to
just the waiting times longer than 100 ps. This superposition of two expo-
nential distributions might be caused by projecting two distinct processes
with identical SF occupations onto one process.

A possible explanation for the deviation is that the motion of the selectivity
filter itself has not been taken into account so far. Different approaches for
tackling this problem will be given in chapter 6. States with different configu-
ration of the filter but the same occupation by K+ ions can obviously exhibit
different lifetime distributions. Projection of these distinct processes onto a
common subspace will result in overlapping distributions that together do not
follow a single exponential distribution. In figure 4.5, on the right side, an
example for such a deviation is shown. The fact that a second exponential
distribution fits to the distribution of times slower than 100 ps supports the
above hypothesis of multiple overlapping processes. Figure A.3 in the ap-
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pendix shows the dwell time distributions for the most prominent common SF
occupation state of all channels. In those cases, where the distributions do not
match an exponential distribution, the separation of timescales we assumed in
section 2.2.2 is not fulfilled as the timescale of the protein movement is not on
a completely different order of magnitude as the K+ ions’ movement.

4.3. Markov Chain Monte Carlo
Using the transition matrices we estimated in the previous section we per-
formed Markov Chain Monte Carlo (MCMC) simulations. These provide a
means to test our model for consistency. If the Markov model captures all
relevant processes, artificial realizations generated according to the algorithm
in section 3.4 should be indistinguishable from the permeation time series of
the MD trajectories. Such artificial trajectories are shown in figure 4.6. The
MCMC runs are started from the same initial state as the MD runs and con-
ducted for the same time. In those cases where a part of a trajectory had to be
omitted due to multiple occupations, the resulting trajectory pieces have been
treated as individual trajectories. The starting time of these short trajectories
has been shifted in figure 4.6. Tracking of the individual ion movements allows
the estimation of currents with five consecutive K+ ion / water jumps being
equal to one full permeation event. The violin plots next to the permeation
timelines in figure 4.6 show that both the mean and the distribution width of
the currents are reproduced for the K+ permeations. Furthermore, in agree-
ment to the MD simulations, the water molecules show no net current in the
MCMC timelines either.
Differences in the averaged currents between the channels and force fields

can be tracked down on the single trajectory behaviour: These are switching
between periods of permeating and stalling nature, whereas the current in
the permeating periods is comparable between all systems. The trajectory
overview in figure A.3 confirms this finding in a more detailed manner.
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4.3. Markov Chain Monte Carlo

Figure 4.6.: Permeation time series for K+ (violet) ions and water (red) molecules from
both the MD (dark colors) and MC (light colors) runs. A scale bar depicting
an electric current of 20 pA is shown in the upper right plot. The starting
time of short trajectories has been shifted in these plots.
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MD - Stationary Distribution MC - Stationary Distribution
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Figure 4.7.: Stationary distributions of the selectivity filters occupation states for MD
trajectories (dark violet) and MC runs (light violet). A perfect agreement for
all channel – force field combinations is achieved, except for NaK2K AMBER.
This means that the MD trajectories of this system do not yet describe a
steady state, which is consistent with figure 4.4.
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4.3. Markov Chain Monte Carlo

The MCMC simulations allow to judge whether a stationary distribution
has been reached in the trajectories that are used to generate the Markov
model. Because both the MD and the MCMC trajectories relax into the same
steady state distribution for almost all channel – force field combinations, we
can conclude that the distributions are indeed stationary. In figure 4.7 both
stationary distributions of the selectivity filters’ occupation states for MD tra-
jectories (dark violet) and MC runs (light violet) are shown. As expected
from the implied timescales given by the eigenvalues of the transition matrices
which are depicted in figure 4.4, NaK2K AMBER is not equilibrated yet. How-
ever, this does not implicate that the permeation of this system cannot be
analyzed. This slow process might instead represent an artifact introduced by
the splitting of trajectories.
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Figure 4.8.: A symmetric version of the Kullback-Leibler divergence allows to define sim-
ilarity metric. This metric is applied here onto the stationary distributions
of the MD trajectories, pairwise for all channels and force fields. The squares
on the diagonal indicate the same protein.
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A quantitative method to analyze the difference between each of these sta-
tionary distributions is the Jensen-Shannon distance, the square root of the
Jensen–Shannon divergence [FT04], which again is a symmetrized version of
the Kullback–Leibler divergence [Joy11]. The Kullback-Leibler divergence is
a commonly used measure of the divergence of one probability distribution
from another. It does not take into account the ordering of the states, which
is appropriate here. We apply the Jensen-Shannon distance pairwise for all
channels and force fields onto the stationary distributions of the MD trajec-
tories. Figure 4.8 shows the result. The black squares following the diagonal
indicate distances between both force field versions of the same protein. On
the diagonal the distance is zero as it measures the distance between the same
distributions. The tri – diagonal elements in the squares show lower values
than the outer off diagonal elements, revealing that the force field has a bigger
effect on the stationary distributions than the proteins have.

4.4. Permeation Cycles
As introduced in section 3.5, permeation is a reoccurring process that produces
repeated sequences in the discretized trajectory. Repeated states and trivial
cycles (oscillations between two states) that do not lead to net transport of
ions, are not taken into account. The resulting trajectory was decomposed
using the cycle decomposition algorithm from section 3.5.
The results of this decomposition are shown in figure 4.10 on the left hand

side. Each cycle that occurred in the trajectories is drawn in the corresponding
network with a unique color. The thickness of the arrows scales linearly with
the frequency this cycle has occurred. The colors distinguish between the
cycles throughout one single graph, as there are about 250 unique cycles found
in total. For the sake of clarity, all these plots just show the 80% most frequent
cycles. The states (drawn as orange nodes) are located at the same positions for
all different systems allowing a comparison among them. The nodes shown in
the graph correspond to all states that the particular system visited during all
trajectories, the sizes are drawn according to the stationary distribution using
a logarithmic scaling. The states are arranged in a way that the majority of
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4.4. Permeation Cycles

the cycles describes clockwise cycles in the networks. Similar states regarding
their K+ positions in the binding sites are arranged next to each other.
One directly recognizes that of the 27 states that are visited in total only

a few participate in the permeation itself. Another thing striking the eye
is the higher diversity among some graphs, almost dividing them into two
groups of complicated and simple graphs. To the group of complicated graphs
belong the AMBER versions of KcsA and MthK as well as the CHARMM version
of NaK2K. The other channels do not exhibit such a high variety of cycles in
their graphs. This higher diversity is caused by additional states that have
S1 or S4 occupied by water, e. g. WKK0, 0KKW and WKKW. These states
do not occur in the ‘simple’ graphs. The integration of these states into the
network combinatorically allows for a multitude of additional cycles resulting
in more complex graphs, These additional cycles do not differ noticeably from
their simpler counterpart in regard of the potassium movement along their
edges. The common feature is an ‘in and out’ movement of water in the outer
binding sites S1 and S4 either before a K+ ion moved or afterwards.
Incorporating this information into a clustering of states results in the net-

works on the right hand side of figure 4.10. States are clustered together if they
do not differ in their K+ ion occupation (e. g. 0KK0, WKK0, 0KKW, WKKW
into xKKx) where x stands either for a vacancy or a water molecule. These
are the states that build clusters in the transition matrices too, as described
in section 4.2.
In the resulting graphs a simplified picture emerges, see figure 4.10, r.h.s..
We recognize that one main permeation cycle exists. It consists purely of

single ion jumps and comes in two small variations, which overlap in most of
the edges except for xKKK and K0Kx:

KK0K ↑ xK0K → xKKx ↑ xKKK → K0KK → KK0K

KK0K ↑ xK0K → xKKx → K0Kx ↑ K0KK → KK0K

The arrow pointing to the top ↑ marks where an ion enters or leaves the
SF and the arrow to the right → marks movements of K+ ions inside the
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KK0KK0KK

xKKxxKKK

xK0KK0Kx

Figure 4.9.: The two variations of the most basic permeation cycle. A K+ ion enters the
channel along the edge of xKKx to xKKK or from K0Kx to K0KK into S4.
The ion leaves S1 from state KK0K to xK0K.

SF. The difference between these two variations lies in the amount of direct
contacts between K+ ions. The first one allows for three K+ ions in S2, S3 and
S4 before the one from S2 jumps to S1 while the second one shows the jump
from S2 to S1 before a new K+ ion enters into S4. All of the clustered cycles
shown in the following figure 4.10 are plotted in the same honeycomb shape
as the basic permeation cycle in figure 4.9. Each system then prefers different
shortcuts through these cycles, thereby combining several K+ ion jumps in
one transition. Whether the ion jumps during these shortcuts do indeed occur
simultaneously or successively cannot be distinguished with the resolution of
the model. In chapter 6 we discuss a method to test for that. It could very
well be, that all of the studied channels do perform the same cycle and the
above mentioned shortcuts with simultaneous K+ ion movements disappear at
higher time resolutions.
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Figure 4.10.: The permeation cycles that occurred during the simulation. On the left
hand side the full number of states is shown while on the right hand side
states with the same K+ occupation are clustered together.

The shortest possible cycles observed with a resolution of ∆t = 40 ps are
those moving 5 K+ ions in one step, returning and starting at the same state.
This happens extremely rarely (less than 1 ‰) and does not represent a typical
cycle. If such cycles would happen more often, the output frequency of the
simulation had to be increased.
The most frequent cycles one can find in figure 4.10 in the clustered versions
on the r.h.s. are described in the following. The graphs in figure 4.10 are
referenced via the channel – force field combination.

KK0K 2 ↑ xKKx 3 ↑ KK0K,

which occurs mainly in KcsA both with and without mutation, to a smaller
amount in Kv1.2 and not at all in MthK and NaK2K. The cycle

KK0K 2 ↑ xKKx 2 ↑ K0KK 1 ↑ KK0K,

is observed in all KcsA variants, but more pronounced in the CHARMM versions.
It also occurs frequently in Kv1.2 and NaK2K, for both in the AMBER version.
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The cycle

KK0K 1 ↑ xK0K 1 ↑ xKKx 2 ↑ K0KK 1 ↑ KK0K,

is just found in the AMBER versions of MthK and NaK2K, and

KK0K 1 ↑ xK0K 1 ↑ xKKx 1 ↑ K0Kx 2 ↑ KK0K,

in MthK and NaK2K both in the CHARMM variant.

MthK and NaK2K prefer for both force field variants not to skip the first
intermediate state xK0K, whereas this shortcut occurs in most of the other
channels.

Figure 4.11.: The current per channel and force field.

It is interesting to see that there is no obvious correlation between the aver-
aged current of the different channels, as figure 4.11 depicts, and their cycles’
typical number of transitions. As already formulated in section 4.3, the dif-
ferences in the current are caused by stalling periods in the trajectories where
no ion motion is observed. These periods vary in length between both chan-
nels and force fields. This finding is confirmed by the distribution of dwell
times which varies remarkably between the same states in different simulation
systems, compare figure A.3.
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Figure 4.12.: A pie chart showing the occupancy of the cycles for different channels and
force fields on the left hand side and next to the most frequent cycles.
The wedge ‘other’ combines cycles with contributing less than 1% to all
permeations.52



4.4. Permeation Cycles

Figure 4.12 depicts the cycle occupations of the different channels as well as
graphs of the most frequent cycles together with the respective id referenced in
the pie charts’ wedges. We see a large similarity in form of common cycles (0,
2) for KcsA, KcsA E71A and Kv1.2, which are the cycles combining the highest
number of ion jumps in single transitions, namely double and triple jumps of
K+. The same holds for the CHARMM versions of MthK and NaK2K with cycles
9, 12, 34 and for the AMBER versions of MthK and NaK2K with cycles 2, 3, 4.
The AMBER versions of KcsA, KcsA E71A and Kv1.2 do in addition have cycle
7 in common.
We can conclude that there exists a general theme behind the potassium

permeation mechanism which is the cycle depicted in 4.9. It is a very robust
mechanism because it is in its main theme conserved through all channels
and force fields. Different channels take different shortcuts through the main
permeation cycle and thereby combine multiple transitions and their K+ jumps
into one single transition. The difference that lies between the channels is
whether the first shortcut, leaving out state xK0K, is taken or not. KcsA,
KcsA E71A and Kv1.2 prefer not to visit this state while MthK and NaK2K
do so. Whether state xKKK is skipped or visited depends on the force field,
the AMBER versions of the former three channels do all include this state while
most of the CHARMM versions skip it. This means that AMBER renders states with
three adjacent binding sites occupied with K+ more accessible than CHARMM.
KK0K and K0KK are states that seem to be mandatory for all permeation
cycles as all channel – force field combinations visit them.

4.4.1. Number of ions jumps per transition

Extracting quantitative and humanly comprehensible differences between the
cycles each system visits is not a straightforward task due to the high diversity
even after the clustering. Guided by the idea of similar shortcuts trough the
main cycle, we found a characteristic property that we could extract from
the permeation cycles of each of the systems. Focusing on the transitions of
a system, we looked for the number of K+ ions that are moved during each
transition. Collecting the ratios of these transitions and multiplying them with
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the amount of K+ ions transported, gives a relation telling how important
these different transition types are for the total K+current. These values are
not independent, as e. g. double jumps do always occur together with either
single or triple jumps in order to reach five jumps in total. Figure 4.13 shows
these relations.

KcsA AMBER KcsA CHARMM 

KcsA E71A AMBER KcsA E71A CHARMM 

Kv12 W362Y A-s-I Kv12 W362Y CHARMM 

MthK AMBER MthK CHARMM 

0 1 2 3 4 5

NaK2K F92A AMBER

0 1 2 3 4 5

NaK2K F92A CHARMM 

Figure 4.13.: Sorting transitions by the number of moved K+ ions and scaling that ratio
with the same number gives an idea of the importance of different transition
types for the permeation in the corresponding channel. These relations are
plotted here, the y-axis is the same for all variants and no units are shown
as just the relation is important.

Similarities can be found between channels as well as on a force field level:
Comparing all channels reveals that transitions with one or two transported
K+ ions are most prominent. Transitions with triple ion jumps do also occur
in all variants but are less pronounced. Only in KcsA E71A transitions with
more than three K+ ions do contribute notably to the current. Both force
field versions of KcsA, KcsA E71A and Kv1.2 have the biggest contribution
from transitions with two K+ ion jumps, MthK and NaK2K from single jump
transitions. For higher numbers of transported K+ ions, the contributions are
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4.4. Permeation Cycles

descending. The relations between the transition contributions show similari-
ties between KcsA, KcsA E71A and Kv1.2 on the one hand and between MthK
and NaK2K on the other hand. This fits to the impression one got from the
force field – independent similarities between the channels MthK and NaK2K
on the one hand and KcsA, KcsA E71A and Kv1.2 on the other hand.
Performing the same analysis using the Jensen-Shannon-Distance as in sec-

tion 4.3 on the distribution of ion jumps per transition we can validate these
similarities. Contrary to the high distances the stationary distributions had
between each other for the same channels with different force fields, figure 4.14
shows smaller distances on the tri-diagonal elements in the rectangles. Espe-
cially the two force field versions of each Kv1.2, MthK and NaK2K do not
differ severely from each other. Additionally we find that these three channels
show small distances among each other, as is depicted by a dashed rectangle
in figure 4.14. This was not identifiable from the graphs themselves.
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Figure 4.14.: The same analysis as for figure 4.8 was performed on the distribution of
ion jumps per transition, thereby validating the similarities described in
figure 4.13.
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4.5. Voltage drop across selectivity filter

Calculating the electric potential in a simulation box is done by integrating
twice over the spatial charge distribution. This is a difficult task as the high
fluctuations that occur in the positions of the charged molecules lead to ex-
treme variations in the voltage, which can just be overcome with extensive
averaging over simulation time. The voltage drop across membranes with and
without pores has been estimated for simulations with applied electric field
in [GKASR12]. There it was shown that the voltage stays constant in the so-
lution and drops over the membrane, as expected by physical intuition. Even
in water filled cavities the voltage remains constant. This is in particular rel-
evant to this work, since the channels examined here show filled cavities as
well.

Using a reformulation of equation 2.19, we obtain a fundamentally differ-
ent approach to estimate the voltage drop that arises over the length of the
selectivity filter. The local detailed balance condition gives access to the free
energy difference between two states, that equation can be combined for all the
edges of the occurring cycles. Equation 4.1 allows the calculation of the free
energy difference between both sides of the SF, by multiplying the quotient of
forward and backward rates for each edge along a cycle,

ln
∏

cycle

wmn
wnm

= (qU)/kBT. (4.1)

Assuming that the compartments on both sides of the SF do not differ in any
other aspect but the voltage, the free energy difference is directly proportional
to the voltage difference U with a factor of the charge of the transported ion,
in this case q = +1 e− for a K+ ion. Figure 4.15 shows the voltage difference in
units of kBT and mili Volt for all channels and force fields. All cycles that lead
to permeations of K+ ions are taken into account and the average is weighted
by their individual counts.
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Figure 4.15.: Using the local detailed balance relation for all subsequent transitions of the
occurring cycles we can estimate the free energy difference associated with
the transport of one K+ ion trough the selectivity filter. This violin plot
compares the distributions of values for the free energy difference among
all channels and force fields.

Most of the values for the free energy difference lie in the range of 1–5 kBT

(30–140mV). The only exception is MthK AMBER, showing a free energy differ-
ence of 7 kBT with a significantly narrower distribution. A possible explanation
for this behaviour could be, that it does not suffer from the following short-
coming. One has to consider that the voltage drop is always underestimated
due to the overestimation of transition counts. This overestimation is caused
by recrossing events, attempted transitions that directly return to the state
of origin and are therefore excess counts of both forward and backward tran-
sitions. In the equation, this leads to a ratio closer to one, the logarithm of
which is then closer to zero.
With regard to the applied voltage of (U ≈ 220 − 280mV) over the full

simulation box these results are in perfect agreement with the expected result,
which is that most of the voltage should drop along the channel with a signifi-
cant part along the selectivity filter which spans about one third of the length
of the protein.
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5. Conclusion

In this thesis we could show that the permeation of K+ ions trough the se-
lectivity filter of different K+ channels can be described with a Markov State
Model. We estimated transition matrices based on the discretized motion of
K+ ions in the SF under applied voltage. After confirming Markovianity for
most transitions we applied Markov Chain Monte Carlo sampling to verify the
reaching of a steady state for the Molecular Dynamics trajectories. Except
for one exception, NaK2K AMBER, this analysis did not suffer from insufficient
sampling.
The probability flux cycles that emerge in a non–equilibrium steady state

system have been decomposed into cycles using the information in the dis-
cretized trajectories. A further clustering of the cycles revealed a common
permeation mechanism for all of the channels, of which different variations are
realized by different channels. The variations that occur differ both between
the channels as well as the force fields.
It was not possible to track down these differences to the protein background

stabilizing the selectivity filter because the differences between the force fields
of the same channel are of the same magnitude as the inter–channel distances.
However, the dualism between the similarity of the signaling sequence (sec-
tion 1.1.1) and the selectivity filters occupation states (section 4.1) versus the
differences in the proteins background (section 1.1.1) and the states occupa-
tion times (section 4.3) of the different cycles (section 4.4) give a consistent
impression.
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6. Outlook

The analysis performed can be extended in several ways.
For a time resolution of ∆t = 40 ps, some channels shortcut transitions

during permeation. A first question arising from this finding is, whether this
behaviour is maintained at higher time resolutions or if it is an artifact of the
chosen simulation output frequency. It would be interesting to spawn new
simulations with a higher output frequency to address this question.
So far the co–permeation of water was excluded from the analysis because it

seems to follow a significantly different pathway trough the channel. Additional
states that allow for multiple occupations per binding site could cope with the
states visited during water co–permeation. Such states could be introduced
‘manually’, as an extension of the existing 81 states or with a completely dif-
ferent approach of clustering states in the 3N dimensional configuration space
with N being the number of all K+ ions and water molecules that permeate
the channel.
A more straightforward extension would be to analyze the permeation pat-

terns of different ions, e. g. Na+ ions. Thereby we could extend the findings
which explain the selectivity in these channels [KKV+18]. Simulations of these
are available. Sodium has been shown to block the permeation in potassium
channels in both experiments [FW77] and simulations [KKV+18]. However,
enough permeations have been observed to encourage further analysis.
In this work, only four Channels were examined. However, there exists a

huge variety of channels similar to the analyzed ones with respect to the ge-
ometry of the selectivity filter. Some of these exhibit only two or three binding
sites. The developed formalism could be easily extended to incorporate these
channels, provided that a discrete description of their permeation processes
seems rationale.
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6. Outlook

As noticed in the analysis of dwell times in different states, several processes
do overlap in some cases. These processes are out of reach in the current
subspace of the phase space but a first idea to search for these is in the motion
of the selectivity filter. A state of the art method for modeling full protein
trajectories as Markov models is pyEMMA [STSP+15]. Unpublished data from
Paul and Noe allows the hypothesis that the selectivity filter itself undergoes
various transitions.
A possibility to combine the pyEMMA approach with the analysis conducted

in this thesis is to include the states of the selectivity filter in form of SF state
dependent transition rates in our model. The assumption therein is that the
phase space of permeation stays the same.
The definition of an additional macro–state for a collapsed SF would hereby

provide a way to avoid the splitting of trajectories.
To overcome the problem of overestimated transition counts due to the re-

crossing problem, the introduction of core sets is common in the MSM com-
munity [LK16]. This could also be implemented as an extension.
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Figure A.1.: Histograms of the z-positions of oxygen atoms of the SF (green peaks),
the K+ ions (violet peaks) and the water molecules (red peaks). This is the
breakdown of figure 4.1 into the individual states, confirming that the states
themselves do not differ between the channels and force fields.
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Figure A.2.: All transition matrices, scale bar and ordering as in figure 4.3 to simplify
comparison.
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Figure A.3.: Dwell time distributions for the most prominent common states for all the
channels.
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Figure A.4.: These plots give an overview over all trajectories used in this thesis. De-
picted are the z – movements of the K+ ions and the water molecules in
the selectivity filter in the upper panels of the plots. In the lower panels
indications for double occupations and flips of the SF – carbonyls are given.
Below each plot a green bar marks which part of the trajectory was used.
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