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SU(3) trimer resonating-valence-bond state on the square lattice
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We propose and study an SU(3) trimer resonating-valence-bond (tRVB) state with Cy, point-
group symmetry on the square lattice. By devising a projected entangled-pair state representation,
we show that all (connected) correlation functions between local operators in this SU(3) tRVB
state decay exponentially, indicating its gapped nature. We further calculate the modular S and
T matrices by constructing all nine topological sectors on a torus and establish the existence of Z3

topological order in this SU(3) tRVB state.

Introduction — The search for topological phases of
matter in realistic systems has attracted tremendous in-
terest in recent years [1]. The celebrated examples that
have been realized in experiments are the integer and
fractional quantum Hall states [2—4]. These exotic phases
are not amenable to Landau’s local order parameter de-
scription and are instead characterized by the topolog-
ical characters, such as protected ground-state degener-
acy on a torus, energy gap above the ground-state man-
ifold, gapless edge excitations, and quasiparticles with
fractionalized quantum numbers and anyonic statistics.
The robustness to external perturbations renders topo-
logical states potential applications in quantum informa-
tion processing [5-7].

Frustrated magnetic materials form another important
platform for studying topological phases. Much effort in
this area has been devoted to finding spin liquids that do
not order down to zero temperature [8]. From the the-
oretical viewpoint, a large fraction of spin liquids, when
a gap is present, are topological phases enriched by spin
rotational and/or lattice symmetries. Further classifica-
tion of these spin liquids can be carried out based on the
type of topological order and present symmetries. How-
ever, for a given spin model, it is usually notoriously
difficult to determine whether the ground state is a spin
liquid, let alone how it fits into the classification scheme.
In this regard, wave functions capturing the essential
physics provide an important link between the classifi-
cation and the microscopic models. One such example
is the spin-1/2 nearest-neighbor resonating-valence-bond
(RVB) state on the triangular lattice [9], which is a Zs
spin liquid realizing the simplest Zs topological order.
The Kalmeyer-Laughlin state is another example which
is a chiral spin liquid with broken time-reversal symme-
try [10].

In recent years, rapid development in the experimen-
tal manipulation of cold atoms with SU(NV)-symmetric
exchange interactions has attracted considerable inter-
est [11, 12], partly because of the potential of host-
ing chiral spin liquids [13]. Further theoretical and nu-
merical investigations on SU(N) quantum magnets have

found a number of magnetically ordered and topologi-
cal phases [14-17] which do not seem to have obvious
SU(2) counterparts. For studying possible novel phases
in SU(N) magnets, it is thus expected that the wave
function approach can provide useful information com-
plementing field theoretical and numerical approaches.
However, except for the SU(N) generalization of the
Kalmeyer-Laughlin state [18, 19], wave functions for
SU(N) magnets remain largely unexplored so far.

In this work, we propose and study an SU(3) trimer
resonating-valence-bond (tRVB) state with Cjy, point-
group symmetry on the square lattice. The tRVB state,
with its elementary building block being 90-degree bent
SU(3) trimer singlets extending over three adjacent sites,
is an equal-weight superposition of trimer coverings on
the lattice. Unlike the SU(2) spin-1/2 nearest-neighbor
RVB state which is a gapless spin liquid on the square
lattice [20, 21], we show that the SU(3) tRVB state is a
gapped spin liquid with Zs topological order. For that
we devise a projected entangled-pair state (PEPS) repre-
sentation, and characterize the state with powerful PEPS
techniques. We show that (i) all (connected) correlation
functions between local operators in the tRVB state de-
cay exponentially; (ii) the calculated modular S and T
matrices are in agreement with the Zs topological order.
These results demonstrate that the SU(3) tRVB state on
the square lattice is indeed a Zg spin liquid.

SU(3) tRVB state — Let us consider a square lattice
with spins on each site transforming under the funda-
mental representation (denoted by 3) of SU(3). The
local spin basis is defined by |a), where a = 1,2,3.
The elementary building block of the SU(3) tRVB state
is an SU(3) trimer singlet formed among three sites:
[trimer);;r = Za,b7c€{1,2,3} Eabel@)i|b)jlc)i , where 4,7, k
stand for lattice sites and €. is a totally antisymmetric
tensor with €193 = 1. For such trimer, it is convenient
to assign an orientation as i — j — k. For our purpose,
we only consider four kinds of “short-range” bent trimers
for which both (7, j) and (4, k) are nearest neighbors and
the angle between two orientations ¢ — j and j — k is
90 degrees [see Fig. 1(a)].
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FIG. 1. (a) Schematics of the SU(3) trimers. (b) Typical
trimer covering configuration on the square lattice. (c) Pro-
jected entangled-pair state representation of the SU(3) tRVB
state. (d) Two kinds of projectors mapping virtual states to
physical states.

The SU(3) tRVB state of our interest is an equal weight
superposition of trimer coverings on the square lattice;
see Fig. 1(b) for an example of the trimer covering con-
figuration. The relative sign of trimer covering configu-
rations is fixed by the local orientations of the trimers,
i.e., only trimers with orientations shown in Fig. 1(a)
are allowed. It is then straightforward to verify that the
tRVB state so obtained respects the full Cy, symmetry
of the square lattice. Similar to the non-orthogonality
of SU(2) valence-bond dimer coverings, the SU(3) trimer
covering configurations do not form an orthogonal basis
either. Thus, our tRVB is different from a recent proposal
[22] of tRVB wave function which consists of orthogonal
trimer configurations, in the same sense as the differ-
ence between the spin-1/2 nearest-neighbor RVB state
[23] and the Rokhsar-Kivelson wave function [24]. Due
to the non-orthogonality, there is a prior: no reason to
suppose that the correlations of the SU(3) tRVB state
are similar to its classical analog [25].

PEPS representation — In order to characterize the
SU(3) tRVB state, we switch to its PEPS representa-
tion. Similar strategy has been proven very successful
in characterizing the spin-1/2 RVB [26-30] and spin-1
resonating AKLT-loop states [31, 32] on various lattices.
Following the projective construction of PEPS, we in-
troduce at every site four virtual particles, each of which
supports a 7-dimensional auxiliary Hilbert space V4 with
basis vectors |0) belonging to the SU(3) trivial represen-
tation, and {|1),2),[3)} ({|1),]2),]3)}) transforming un-
der the fundamental (anti-fundamental) representation
3 (3), respectively. Each pair of virtual particles be-
tween adjacent sites forms a maximally entangled state

[see Fig. 1(c)]
|E) = |00) + [11) + [22) + [33) 4 |11) + |22) + |33). (1)

For later purpose we compactly write the maximally en-
tangled state (1) between sites i1 and iy as

Z Ea.ﬂ‘a>i1|ﬂ>i2, (2)

a,BEVA

|E>i1-,i2 =

where the nonvanishing entries of E, g can be obtained
from (1).

To recover the physical Hilbert space, the four virtual
states at each site are projected back to the physical state
by a projector 15, defined by

p - Z Z PZ,B,n,'y‘a><a7B7na7|v (3)

a€V a,B,m,7€EVa

where «, 3,1, are assigned for the virtual states at left,
right, up, down positions [see Fig. 1(c)], V is the physical
Hilbert space on each site, and Pg 5, . is a tensor to
be specified below. To reproduce the tRVB state, we
decompose the projector P into two parts,

P =P+ b, (4)

where P, identifies one of the virtual state in 3 as the
physical state [the rest three virtual particles are in the
trivial representaiton; see upper panel in Fig. 1(d) for an
example],
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acV a,B,m,vEVaA
—0a,008,0(0n,a0~,0 + 0n,005,0)lla){c, B,m,7], (5)

and P, maps two adjacent virtual states in 3 into the
physical state [the rest two virtual particles are in the
trivial representation; see lower panel in Fig. 1(d)],
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a€V o, B8,m,v€Va M,Ne(1,2,3)

[(5a,a6,6’,0 + 6(1,066,(1)577,057,0

EaMN(da,Méﬁ,OénJ\?d’Yao

+0a,5108,000,00,, 5 + 00,00 510y, 5 0~,0

+60¢,05,8,M§77a06'y,ﬁ)|a’><a7Banv/ﬂ' (6)
The tensor Py 5, in (3) is thus defined through the sum

of tensor entries in (5) and (6). It is also easy to verify
that both P, and P» belong to the B; irreducible rep-
resentation of the Cy, point-group symmetry [33]. Here
we would like to mention that, the linear trimer configu-
ration where the three neighboring sites forming singlet
are on a straight line is excluded since it does not belong
to the By irreducible representation of Cly,.

With the PEPS projector and the virtual bonds in
hand, the PEPS for the SU(3) tRVB state is obtained by
applying the product of projectors to the virtual bonds

N

|¢> = ®P(l) ® |E>i1,i25 (7)

i=1 (i1,i2)



which is shown in Fig. 1(c). By construction, each trimer
consists of three sites with P» acting on the middle site
and P; acting on the two end sites. Only the configura-
tions of trimer coverings, in which each site belongs to
one and only one trimer, have non-zero weight in [¢)),
and all trimer covering configurations have equal weights
with sign conventions consistent with the definition in
Fig. 1(a). The state will not change if there is a nonzero
real coefficient \ in P = ]31 + )\]52.

An alternative representation of [¢) that will also
be used below is obtained by eliminating the vir-
tual states in (7), and the wave-function amplitude
takes the form of a tensor network, ¥(...,a;,...) =
Zz,ﬁi,m,% ) gﬁﬂ?ﬂ 1S

Z{...ai,ﬂimu’ﬁ~~}(' A

given in terms of the virtual bond (2) and the PEPS
projector (3) as
By = Z Pas o~ Eor 5B - (8)

B'n'€Va

Correlation functions — The PEPS formulation is par-
ticularly convenient for calculating correlation functions
characterizing the tRVB state. The norm of the PEPS
is a bi-layer tensor network obtained by contracting the
physical indices of the PEPS (ket layer) and its complex
conjugate (bra layer). The expectation value of local op-
erators or their correlators is a similar bi-layer tensor net-
work with local operators being inserted between the ket
and bra layers. Here we consider an infinite system and
contract the bi-layer tensor networks by using bound-
ary infinite matrix-product state (iMPS) method [34]:
the left (right) environment of the bi-layer tensor net-
works is represented by a boundary iMPS @, (®r). One
column of tensors, formed by a bi-layer element shown
in Fig. 2(a), defines an infinite matrix-product operator
(iMPO). The environments, represented by two iMPSs,
are obtained by iteratively applying the iMPO to initial
boundary iMPSs. After a few iteration steps, it is nec-
essary to truncate the bond dimension of the iMPSs, the
maximum of which is denoted by the truncation bond
dimension x. As shown in Fig. 2(b), the iMPSs are ob-
tained by using the infinite time-evolving block decima-
tion algorithm (iTEBD) [35, 36], which determines the
iMPSs as fixed points of the iteration. Once converged
iMPSs <I>£ and <I>IJ; (f stands for “fixed point”) are ob-
tained, a transfer matrix (TM) can be constructed as
shown in the inset of Fig. 3 (note that the iTEBD al-
gorithm produces an enlarged two-site unit cell, and we
have checked that the one-site translational symmetry of
physical observables is not broken with large enough x).
For the tRVB state, we find that the largest eigenvalue
of the TM is unique (normalized to unity) and there is a
finite gap between the largest eigenvalue and the second
largest eigenvalue (see Fig. 3 for the saturation of the gap
when increasing x up to x = 490 with the largest trun-
cation error ~ 4 x 107%). Thus, there is no spontaneous
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FIG. 2. (a) Each of the local tenor A of iPEPS is contracted
with its complex conjugate by the physical index to form the
bi-layer tensor network. (b) Schematic plot of the contraction
of bi-layer tensor network based on boundary iMPS.
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FIG. 3. The spectrum of the transfer matrix (only the abso-
lute values are shown). The eigenvalues are normalized such
that the largest eigenvalue is 1. The inset defines the transfer
matrix for a two-site unit cell and shows the upper bound of
the correlation length £ versus the truncation bond dimension

X-

symmetry breaking in the tRVB state and all (connected)
correlation functions decay exponentially with a correla-
tion length upper bounded by £ = —2/log(|A|) ~ 1.317
(estimate with y = 490), where the factor of 2 appears
due to the two-site unit cell in the fixed-point iMPSs,
and A is the second largest eigenvalue of the TM. Be-
cause of the Cy, symmetry of the tRVB state, the corre-
lation lengths are the same along horizontal and vertical
directions.

To identify dominant local correlations in the tRVB
state, we have directly calculated several spin-spin and
trimer-trimer correlation functions with the fixed-point
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FIG. 4. The correlation functions (a) [(A*(0)A*(d))|, (b)
(SO @)], (c) C1(d) = [(B1(0)Bi(d)) — (Bi (0)}(Ba(d)],
and (d) Ca(d) = |(B1(0)B2(d)) — (B1(0))(Bz(d))| vs. distance
d, respectively. The black dashed lines correspond to the plot
of the exponentially decaying function « exp(—d/&) with cor-
relation length £ = 1.23 estimated from the gap of the transfer
matrix.

boundary iMPSs. The spin-spin correlation functions in-
clude |[(A3(0)A3(d))| and [(A\*(0)A3(d))|, where A® and \®
are two diagonal SU(3) Gell-Mann matrices,

1 00 L (100
N=l0-10|, X=—101 0|,
0 0 0 V3100 -2

and d stands for the distance between the opera-
tors in the vertical direction. As shown in Fig. 4(a)
and (b), these numerically obtained spin-spin correla-
tion functions are equal up to a high precision, which
is in agreement with the SU(3) symmetry, and de-
cay with momentum (7,7) exponentially at large dis-
tance, [(A*(0)A°(d))| = [(A*(0)A%(d))| oc exp(—d/¢€%),
where & ~ 0.57 for x = 147. The trimer-
trimer correlation functions that we have calculated are
Cr(d) = [(B1(0)B(d)) — (B1(0))(B1(d))] and Cs(d) —
[(B1(0)Ba(d)) — (B1(0)){(Ba(d))|, where B; and DBs
are projectors (i.e., |trimer)(trimer|) onto two different
trimers shown in the inset of Fig. 4(c) and (d), respec-
tively. These correlation functions also decay exponen-
tially at large distance, and the correlation lengths for
X = 147 are €& ~ 1.1 and & ~ 1.2, respectively. As a
comparison, the upper bound of the correlation length
obtained from the TM spectrum (with x = 147) is given
by & ~ 1.23 (see dashed lines in Fig. 4). Thus, the correla-
tion of one Bi-type and one Bs-type trimers is dominant
in the tRVB state.

Characterizing topological order — The fact that the
SU(3) tRVB state does not break Cy, and transla-

tion symmetries and has only short-range correlations
indicates that it is a gapped symmetric ground state
of a local SU(3) spin Hamiltonian (e.g., the parent
Hamiltonian constructed from the PEPS representa-
tion). According to a straightforward SU(3) general-
ization of the celebrated Lieb-Schultz-Mattis-Hastings-
Oshikawa (LSMHO) theorem [37-39], the SU(3) spin
model on the square lattice with fundamental representa-
tion 3 on each site cannot have a non-degenerate gapped
ground state preserving both SU(3) and translation sym-
metries. In other words, a gapped ground state with both
SU(3) and translational symmetry must be topologically
ordered. Based on this LSMHO argument, the SU(3)
tRVB state must be a topological spin liquid.

Let us now analyze the topological properties of the
tRVB state. An important observation is that the SU(3)
tRVB state has a Zs gauge symmetry in its PEPS
representation. By defining the Zgz-symmetry gener-
ator v = diag(l,w,w,w,w? w? w?) with w = ?27/3
(the vectors in the virtual Hilbert space are arranged
as [0),[1),12),]3),[1),]2),|3) so that v plays the role of
counting the Zs charge), the local tensor A defining the
PEPS, given by (8), satisfies the following Zs-injectivity
condition [40]:

(91 ® gr ® gu ® ga)A = wA, 9)

where A is now viewed as a matrix mapping from phys-
ical to virtual spaces, and ¢; = gq4 = v and ¢, = g, = v?,
indicating that the left/down/right/up virtual space in
each site has a Zs gauge symmetry. The symmetry con-
dition (9) is graphically shown in Fig. 5(a). Notice that,
919r = guga = 1 (I is an identity matrix in the virtual
space V4), as required from the gauge symmetry condi-
tion in PEPS [40].

The Z3 gauge symmetry, together with the absence of
any symmetry breaking order (as revealed from correla-
tion functions), finite correlation length and the LSMHO
argument, gives an indication that the tRVB state has
Zs topological order. Indeed, when the PEPS is defined
on a torus, inserting gauge transformations (g, h) on vir-
tual indices in both horizontal and vertical directions [see
Fig, 5(b)] leads to nine states |¢)(g, h)) in total (g and h
can separately take the choice of I, v, v?), which form the
nine-fold degeneracy of Zs topological order on a torus.
However, the linear independence of the nine states is not
guaranteed and requires a careful numerical check, which
we address below.

To verify the nine-fold ground-state degeneracy and
characterize the topological order, we utilize the tensor
renormalization group (TRG) method [41] to compute
the modular S and T matrices, which can be viewed as
order parameters for topological phases [42]. The TRG
process is essentially to compute the overlap of the nine
states by first real-space coarse graining the double ten-
sor to a fixed-point tensor, and then contracting a small
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FIG. 5. (a) Zs gauge symmetry of the PEPS local tensor. (b)
Constructing nine states by inserting gauge flux along two
non-contractible loops on a torus. (c, d) A 3 x 1 torus formed
by double tensors and the Zs gauge symmetry elements is
used to compute modular S and T matrices.

cluster formed by the fixed-point tensor and gauge trans-
formations [see Fig. 5(c, d)]. At each renormalization
group (RG) step, a truncation has to be introduced to
avoid the exponential growth of bond dimensions, which
is achieved by keeping x singular values in each RG step.

In order to compute the modular matrices, it is impor-
tant to keep track of the Zs gauge symmetry in each layer,
which can be achieved through a simple block singular-
value decomposition (SVD) method [42]. After each RG
step, we apply the following formula to compute modular
S and T matrices:

(W(g', 1)[SI(g, 1)) = (W(g' 1) (h, g~ ")),
(W(g', KT (g, b)) = (g, 1) i(g, gh)),

Compared to the TRG method for the Z3 deformed
toric code state [43], there is one subtlety for the tRVB
case: the site tensor carries a Zs gauge charge 1 or 2,
depending on the number of RG steps. This arises from
the fact that the physical degree of freedom belongs to
the SU(3) fundamental representation and, in each RG
step, effectively two sites are merged together. This is
different from the spin-1/2 RVB state with Zy topolog-
ical order, where after one RG step, the double tensor
becomes charge neutral [30]. The gauge charge not only
influences how we separate the double tensor into differ-
ent blocks, but also has important consequence in the
process of computing the wave-function overlap. In fact,
we need to compute wave-function overlaps on the 3 x 1
or 3 x 3 cluster where a charge neutral object is formed,
instead of a 1 x 1 cluster which has gauge charge 1 or
2. Computationally, contracting the bi-layer tensor net-
work on a 3 x 3 cluster on a torus is more challenging
than a 3 x 1 torus. Thus, we utilize the 3 x 1 torus

6
O tx(S), x = 49
5 Otr(T), x =49
* tr(S), x =70
4 * tr(T), x =70
3
2
1

0 5 10 15 20
TRG step

FIG. 6. Modular matrices from TRG. With increasing RG
steps, the modular matrices converge to their fixed point re-
sults, as seen from their traces.

for computing the modular matrices [see Fig. 5(c, d)].
Another point worth mentioning is that for calculating
wave-function overlaps, gauge transformation generator
in the upper layer and down layer should be complex
conjugate of each other.

For the tRVB state, with x = 49 and 70, within 5 RG
steps, the double tensor has flowed to its fixed point, as
revealed by the changes in modular matrices during RG
(see Fig. 6). This quick convergence is in agreement with
the short correlation length. Eventually, the converged
modular S and T matrices are found to be

T = (11)

n
Il
[eloleleleleleleliy
[eclolelelel Holels]
[eslel Hololelelels]
[clolelelelel dole]
[slelelHelelelele]
=lelololelelele]
[elelelelelelol ]
[olelolol ololol]
[l elolelelelel=]
[elelelelelelelel
[elelelelelelelje]
[elelelelelel jole]
[elelolol ololol=]
[elelelHolelelele]
[elelololelelole]
HOOOOOOOO
[elel Helelelelels]
[l elelelelelols]

The linear independence of the nine states and the Zg
topological order are unambiguously demonstrated with
above modular S and T matrices.

Summary and discussion — In summary, we have
proposed an SU(3) trimer resonating-valence-bond state
with Cy, point-group symmetry on the square lattice and
have characterized it as a Zg gapped spin liquid by using
the projected entangled-pair state representation. The
gap in the transfer matrix demonstrates that all (con-
nected) local correlation functions decay exponentially,
and the dominate short-range correlation is found to be
one type of the trimer-trimer correlation. The topological
order has been established by constructing the topologi-
cal sectors and calculating the modular S and T matrices,
which are in perfect agreement with the Zs topological
order.

For the SU(2) spin-1/2 nearest-neighbor RVB state,
it is known to be a gapless spin liquid on bipartite lat-
tices [20, 21] and a Zs topological spin liquid on nonbipar-



tite lattices [9, 27, 28], so the interplay between the on-
site physical symmetry and the underlying lattice sym-
metry plays an important role in determining the nature
of the state. For the SU(3) tRVB state, further investiga-
tions are still needed to characterize it on lattices other
than the square lattice.

It is also natural to ask whether there is a realistic
Hamiltonian with the SU(3) tRVB state (or its nearby
Z3 spin liquid) being its ground state. The identification
of a realistic Hamiltonian stabilizing the Zs spin liquid
would be quite useful for designing experimental simula-
tion setups with cold atoms in optical lattices. Further-
more, it would also be interesting to study in a micro-
scopic model the competition between the Z3 spin liquid
and other candidate ground states found in SU(3) spin
models [14-17].

Note added — During the preparation of this
manuscript, we became aware of an article [44] on the
PEPS construction of an SU(3) spin liquid on the kagome
lattice.
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