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Abstract Models representing exchange of carbon between the atmosphere and the terrestrial bio-
sphere include a large variety of processes and mechanisms, and have increased in complexity in the last
decades. These models are no exception of the simulation versus understanding conundrum previously
articulated for models of the physical climate, which states that increasing detail in process representation
in models, and the simulations they produce, hinders understanding of holistic system behavior. However,
recent theoretical progress on the mathematical representation of the carbon cycle in ecosystems may help
to provide a general framework for the qualitative understanding of models without compromising detail in
process representation. Here we (1) briefly review recent ideas on the theory of transient dynamics of the
terrestrial carbon cycle and its matrix representation, pointing out issues of interpretation, (2) show that
these ideas can be further generalized in the mathematical concept of nonautonomous compartmental
systems, and (3) provide thoughts on how this framework can be used to address a new set of questions in
carbon cycle science.

1. Introduction

The global carbon cycle consists of a variety of complex processes that requires the development of models
for its understanding and prediction of future dynamics. The history of carbon cycle modeling is rich, and
for many decades, different models with different levels of complexity have been proposed (Bolin et al.,
1983; Cramer et al,, 2001; Friedlingstein et al., 2014; Prentice et al., 2007; Raupach et al., 2005). The terrestrial
carbon cycle, in particular, has been described with a large numbers of models that vary in their degree of
complexity, number of processes represented, scales of application, and implementation in different com-
puting languages (Prentice et al., 2007; Raupach et al., 2005). It is therefore difficult to compare different
models, and for this reason researchers resort to comparisons of model output to assess the performance of
models (e.g., Cramer et al., 2001; Friedlingstein et al., 2014), rather than to the concepts and the mathemat-
ics directly implemented in the model.

The problem does not necessarily belong to carbon cycle models only, but climate and Earth system models
in general. For instance, Held (2005) describes a conundrum in modeling the physical climate for which the
high degree of complexity and sophistication of model implementations hinders understanding of general
patterns of atmospheric circulation and climate dynamics. On the one hand, it is important to implement
detailed representations of relevant processes in models to attain realism; but on the other hand, as the
level of detail increases in a model, so does the uncertainty in parameterizations and predictions as well as
our inability to understand general dynamics of the overrepresented system (Bolin et al., 1983; Held, 2005,
2014; Raupach et al., 2005).

The tension between understanding and complexity can be resolved to some extent by viewing carbon
cycle models through the lens of dynamical systems, allowing carbon cycle models of varying complexity
and detail to be understood in a consistent framework using well-established mathematical concepts. This
approach can help increase our level of understanding of general system dynamics while simultaneously
allowing complex representations of multiple processes. There has been recent progress in this direction
through the representation of terrestrial carbon models in matrix form (Jiang et al., 2018; Luo et al., 2017;
Sierra & Miiller, 2015; Xia et al.,, 2013), which we can potentially use to take full advantage of the rich existing
mathematical theory of dynamical systems. This would allow us to make progress not only on holistic sys-
tem understanding, but also in the development of more efficient and clean codes; develop models at

SIERRA ET AL.

1729


http://dx.doi.org/10.1029/2018MS001360
http://orcid.org/0000-0003-0009-4169
http://orcid.org/0000-0002-0046-1160
http://orcid.org/0000-0002-8239-1601
http://orcid.org/0000-0003-1791-9542
https://doi.org/10.1029/2018MS001360
https://doi.org/10.1029/2018MS001360
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1029/2018MS001360
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-2466/
http://publications.agu.org/

~1
AGU

100

ADVANCING EARTH
/AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems  10.1029/2018ms001360

different levels of complexity under one overarching theory; and facilitate comparisons of competing theo-
ries implemented in different models.

In this commentary, we will review recent progress on the mathematical representation of terrestrial carbon
models as dynamical systems while highlighting issues of interpretation, propose a general representation
and classification of models using the concept of compartmental systems, and highlight new research
opportunities.

2. Carbon Cycle Models as Dynamical Systems

The terrestrial carbon cycle is generally conceptualized as a set of reservoirs (pools, compartments) such as
foliage, wood, roots, and soils that store and exchange carbon among them in different forms (gas, dis-
solved, solid) (Bolin et al., 1983; Emanuel & Killough, 1984; Luo et al., 2015; Schimel, 1995). The terrestrial car-
bon cycle is also conceptualized as an open system defined by an observer-defined boundary that
exchanges carbon with the external environment through the process of photosynthesis as the main input,
and with multiple output fluxes such as autotrophic and heterotrophic respiration as well as dissolved
organic forms (Luo et al,, 2015; Trumbore, 2006).

Models of the terrestrial carbon cycle, and Earth system models in general, fit in the general mathematical
definition of dynamical system (e.g., Lucarini et al.,, 2017; Luo et al,, 2017; Raupach, 2013; Xia et al., 2013).
According to Jost (2005, p. 1), “A dynamical system is a system that evolves in time through the iterated appli-
cation of an underlying dynamical rule. That transition rule describes the change of the actual state in terms of
itself and possibly also previous states.” Independent of how complicated a model might be, we can think of
it as a rule that is applied repeatedly to describe the time evolution of mass and/or energy. In early carbon
cycle models, this rule is implemented as a large loop that updates the state of the system, generally C
stocks in separate compartments, in discrete time steps such as days or years. Other models implement the
update rules based on sets of ordinary or partial differential equations with variable time steps, which also
fit the definition of dynamical systems.

The set of equations generally implemented in models are based on mass balance constraints, and can be
written more compactly in matrix and vector form. Bolin (1983) was one of the first to write a simple carbon
cycle model in matrix form. However, this form of representing carbon models has become more common
recently by the development of the dynamic disequilibrium (Luo & Weng, 2011), traceability framework (Xia
et al,, 2013), and the transient dynamics theory (Jiang et al., 2018; Luo et al.,, 2017) of the terrestrial carbon
cycle. Within these frameworks, carbon stocks in ecosystem pools x are represented as

O — x()=0(0) - b+e() - A-K-x(0),  x(t=0)=x, g

where x(t) is a vector of carbon pool sizes; U(t) is a scalar function that represents photosynthetically fixed
carbon; b is a vector of partitioning coefficients of the photosynthetically fixed carbon to plant pools (e.g.,
leaf, root, and woody biomass). The square matrices A and K contain coefficients to calculate carbon trans-
fers among the different pools, and the rates of carbon processing in each individual compartment, respec-
tively. The time-dependent diagonal matrix £(t) modifies process and transfer rates according to time-
dependent environmental factors such as temperature and precipitation.

Equation (1) is a very general representation of carbon cycle models, and emerges from the similarities in
which the terrestrial carbon cycle is implemented in many models. By expressing models in this general
and compact form, it is possible to better understand holistic behaviors of terrestrial carbon cycle models.
For instance, the framework can be applied to better trace different components of the carbon cycle (Xia
et al., 2013), determine timescales of different processes (Huang et al., 2018; Yan et al., 2017), determine the
predictability and dynamic disequilibrium of the carbon cycle (Luo et al, 2015; Luo & Weng, 2011), and
assess carbon storage capacity and potential (Jiang et al.,, 2018; Luo et al,, 2017; Luo & Weng, 2011).

However, it is important to highlight that the model of equation (1) is a linear representation of the carbon
cycle, and nonlinear processes in which the rate of change of one state variable depends on the state of
other variables cannot be represented. This can occur when, for example, carbon uptake U(t) also depends
on the amount of stored carbon in other ecosystem compartments such as foliage, nonstructural
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Table 1

Classification of Carbon Cycle Models According to Their Dependence on the
Vector of States (Linearity), and on Time (Autonomy)

carbohydrates, or fine roots; or when the presence of carbon of a
labile soil organic matter pool influences the rate of more recalcitrant
pools such as the case of the priming effect (Sierra & Muller, 2015;

Wutzler & Reichstein, 2008). Clearly, a more general framework that

t-dependence can accommodate nonlinear interactions among carbon cycle compo-

nents is needed.

x-dependence Autonomous Nonautonomous
Linear u+B-x(t) u(t)+B(t) - x(t) Such a general model that allows nonlinear interactions among eco-
Nonlinear u(x)+B(x) - x(t) u(x,t)+B(x,t) -x(t)  system components can be expressed as

Note. Cells are expressions for the differential equation describing x(t) x(t)=u(x(t),t) +B(x(t),t) - x(t), x(t=0)=xo, 2

that captures the change of carbon contents with respect to time.

where u(x(t),t) is a vector-valued function of external inputs to the

system and B(x(t), t) a matrix-valued function of cycling and transfer
rates, where both can depend on the vector of states x(t) and can also change over time t. Note that these
matrices and vectors can not only be populated by constant coefficients, but by functions that may depend
on other functions and parameters.

This general representation reveals an important classification of models according to their mathematical
properties (Table 1), i.e., according to model dependence on the vector of states (linearity), and time (auton-
omy). We call a model linear when the vector of inputs and the matrix of cycling rates are not dependent
on the vector of states, and nonlinear otherwise. Similarly, we call a model autonomous when inputs and
cycling rates are not explicitly time-dependent, and nonautonomous otherwise.

The model of equation (1) proposed for the disequilibrium, traceability, and transient dynamics frameworks
(Jiang et al., 2018; Luo et al.,, 2017; Luo & Weng, 2011; Xia et al., 2013) can be classified as linear nonautono-
mous because there are no dependencies on the vector of states, but rates and inputs are time-dependent.
We will see below that this classification is of fundamental importance to study the qualitative mathemati-
cal properties and overall behavior of ecosystem models.

3. Compartmental Systems

Carbon in and out of ecosystem reservoirs must obey mass balance constraints independent on the degree
of complexity and number of functions that determine process rates in a model. These mass balance con-
straints impose strong attributes on the dynamical system of equation (2), and in particular on the matrix
B(x(t),t). We say that system (2) is compartmental if B(x(t), t) has (i) all its diagonal elements nonpositive,
(i) all off-diagonal elements nonnegative, and (iii) the sum of all elements in each individual column non-
positive. These conditions must apply for all times t and for all possible values of x(t) predicted by the
model (Anderson, 1983; Jacquez & Simon, 1993; Rasmussen et al,, 2016). In the supplement, we show an
example on how to compute these properties for the ecosystem model described in Weng and Luo (2011).

There is already a very rich theory on compartmental systems that can be transferred to problems related
to the global carbon cycle. For instance, there are already important results on the qualitative behavior of
different types of compartmental systems and necessary conditions for their stability (convergence to
attractors in the long-term), identifiability (determination of model parameters from observations), and con-
trol (manipulation of the system to obtain a desired state) (Anderson, 1983; Jacquez & Simon, 1993), and
the calculation of system diagnostics such as ages and transit times (Metzler et al., 2018; Metzler & Sierra,
2018; Rasmussen et al., 2016), among others. These results, however, may change dramatically depending
on whether one is dealing with linear versus a nonlinear systems, or with autonomous versus nonautono-
mous systems.

4. Autonomous Versus Nonautonomous Systems

In the autonomous case (Table 1), mass inputs and process rates in the system are constant. This implies
that the external environment (e.g., atmospheric CO, concentrations, temperature, and precipitation) are
assumed constant. Although this may sound unrealistic or nonapplicable for most of the simulation work
that is done in carbon cycle research, many concepts that are commonly used to describe system dynamics
are borrowed from mathematical concepts that only apply to autonomous systems. These concepts include:
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steady state, tipping point, fixed point, or impulse response function, which are quantities that do not
change over time and can only be computed because the system is autonomous. Other concepts or metrics
such as ages and transit times of mass in the system would also need very different formulas depending on
whether one is dealing with an autonomous or a nonautonomous system (Metzler et al., 2018; Rasmussen
et al,, 2016; Sierra et al., 2017).

One main difference in the theory of nonautonomous systems compared to autonomous systems is that
instead of thinking of concepts such as steady state defined by a single point in the state space, sets of
points or trajectories define concepts such as attractors (Figure 1). Similarly, methods such as eigenvalue/
eigenvector analysis to determine the qualitative behavior of a trajectory as it converges to a fix point are
of little use in the analysis of nonautonomous systems. Instead, the properties of the perturbing signal are
of outmost importance in the analysis of nonautonomous compartmental systems (Muller & Sierra, 2017).

Issues of interpretation are evident in the recent theory of transient dynamics of the carbon cycle (Jiang
et al, 2018; Luo et al., 2017). For instance, if we adopt the notation of the linear nonautonomous system of
Table 1, we can rewrite it as

x(£)=B7'(t) - x(t)=B'(¢) - u(t). (3)

Luo et al. (2017) defined the second term of the right-hand side as an attractor and denoted it the carbon
storage capacity, and the first term the carbon storage potential (notice that signs are reversed in relation
to Luo et al. (2017) due to the definition of compartmental systems, in which all diagonal elements of B are
negative or zero). This interpretation, however, is rather awkward because we are dealing with quantities
that are changing all the time. The storage capacity may be reached by the system if all rates and inputs

A

Xj Xj

Time X

Time Xj

Figure 1. Trajectories for (upper plots) autonomous and (lower plots) nonautonomous linear compartmental systems
(left) with respect to time and (right) in a two-dimensional state space. In the autonomous case, all trajectories converge
to a fixed point in the state space (red dot) independent of their initial conditions, while in the nonautonomous case all
trajectories are forward attracting, with a unique pullback attracting trajectory (red curve).
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remain constant after some time, but because they are permanently changing, the storage capacity
behaves more like a moving target that is never reached by the system. Similarly for the storage potential,
it changes at all times and it is difficult to grasp what this value really means.

For linear nonautonomous systems, we can only say that any solution is forward attracting (Rasmussen
et al, 2016), i.e., solutions with different initial conditions exponentially converge to each other (supporting
information Figure 1), but they do not reach any fixed point in the state space. Rasmussen et al. (2016) also
showed that there exist a unique pullback attracting solution (trajectory) to which all other trajectories are
attracted to. This trajectory, which is not a point but rather a set in the state space, is the attractor of the lin-
ear nonautonomous system. Since the carbon storage capacity is not a solution trajectory,
x(t) # —B~'(t) - u(t), it cannot be defined as the attractor of the system.

Nevertheless, the concepts of attractors and repellers are very powerful abstractions, which bring together
mathematical concepts from dynamical system theory with concepts from ecosystem ecology, biogeo-
chemistry and Earth system science.

5. Opportunities and Future Research

Recent work on representing the terrestrial carbon cycle as nonautonomous dynamical systems opens the
door to new opportunities for increasing our understanding of general patterns and properties of the car-
bon cycle. Taking advantage of the fact that these systems must comply with the requirements of compart-
mental systems, it is possible to ask a new set of questions not necessarily explored in previous research.
For instance, one could ask: what are meaningful pairs of attractors and repellers for different compart-
ments of the global carbon cycle and how global change drivers may modify these attractors? What specific
biogeochemical processes determine rates of convergence to these attractors? How are critical transitions
in the state of the global carbon cycle expressed in the nonautonomous sense? These are just a few ques-
tions that this new approach to carbon cycle research can tackle.

To address these questions though, it would be helpful to represent existing and new models as compart-
mental dynamical systems in matrix form. This would facilitate the analysis of models within the theoretical
framework of dynamical systems using a common mathematical language independent from the program-
ing language used for model implementation.

In summary, new advances in expressing models as compartmental dynamical systems and studying their
properties in the nonautonomous sense can potentially change the way we currently understand and repre-
sent processes in the carbon cycle. It can help us better understand the overall dynamics of models, even
for those with complex implementations. In addition, it can help us develop new models in ways such that
we can easily understand their structure and overall behavior. More importantly, it can help us address a
whole new set of questions not addressed before in carbon cycle science, bridging a gap between simula-
tion and understanding.
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