Example for: Representing and understanding the
carbon cycle using the theory of compartmental

dynamical systems
Carlos A. Sierra, Verdnika Ceballos-Nunez, Holger Metzler, Markus Miiller

4/9/2018

This document presents an example with a specific model for some of the ideas expressed in the manuscript.
It contains R code to reproduce all results. It consists of two parts: first, a description of the model used in
the example; second, a explicit computation of the two cases represented in Figure 1, the autonomous and
the non-autonomous case.

The 8-pool linear model

Weng & Luo (2011) proposed an eight-pool model to simulate the observed C dynamics at Duke forest, North
Carolina. The model has 8 pools (foliage, woody biomass, fine roots, metabolic litter, structural litter, fast
SOM, slow SOM, and passive SOM), and can be expressed in the general form of the linear autonomous model
of Equation 1. Using inverse parameter estimation, Weng & Luo (2011) found the following parameterization
for the model’s components

Inputs by photosynthesis (GPP) in g C m-2 day-1
U=3.370

#Partitioning of photosynthetic producs (unitless)
b=c(0.14,0.26,0.14,rep(0,5))

#Diagonal matriz with cycling rates for each pool (day-1)
C=diag(c(0.00258,0.0000586,0.002390,0.0109,0.00095,0.0105,0.0000995,0.0000115))

#Values of transfer coefficients among pools (unitless)
£41=0.9; £43=0.20

£51=0.1; £52=1; £53=0.80

£64=0.45; £65=0.275; £67=0.42; £68=0.45

£75=0.275; £76=0.296

£86=0.004;£87=0.01

#Matriz of transfers coefficients (unitless)

A=matrix(c(-1, 0, 0, 0, 0, 0, O,
O, =iy, @y, ©, @
0, 0, -1, 0, 0, 0, O,
f41, 0, f43, -1, 0, 0, O, O,
f51, £52, £53, 0, -1, O, O, O,
o0, 0, 0, f64, f65, -1, f67, £68,
o, o, 0, 0, £f75, £f76, -1, O,
0, 0, 0, 0, 0, £86, £87, -1),

byrow=TRUE,nrow=8,ncol=8)

Initial conditions (g C m-2)
X0=c(250,4145,192,93,545,146,1585,300)

The compartmental system

This linear autonomous system has the following compartmental matrix B = AC

The autnomous compartmental matriz

B=A%*%C

B

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.002580 0.00e+00 0.000000 0.000000 0.00000000 0.000000
[2,] 0.000000 -5.86e-05 0.000000 0.000000 0.00000000 0.000000
[3,] 0.000000 0.00e+00 -0.002390 0.000000 0.00000000 0.000000
[4,] 0.002322 0.00e+00 0.000478 -0.010900 0.00000000 0.000000
[56,] 0.000258 5.86e-05 0.001912 0.000000 -0.00095000 0.000000
[6,] 0.000000 0.00e+00 0.000000 0.004905 0.00026125 -0.010500
[7,] 0.000000 0.00e+00 0.000000 0.000000 0.00026125 0.003108
[8,] 0.000000 0.00e+00 0.000000 0.000000 0.00000000 0.000042
[,7] [,8]

[1,] 0.000e+00 0.000e+00

[2,] 0.000e+00 0.000e+00

[3,] 0.000e+00 0.000e+00

[4,] 0.000e+00 0.000e+00

[5,] 0.000e+00 0.000e+00

[6,] 4.179e-05 b5.175e-06

[7,] -9.950e-05 0.000e+00

[8,] 9.950e-07 -1.150e-05

A compartmental matrix must follow three important properties: 1) all diagonal elements must be non-possitive
diag(B)<=0

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

2. All off-diagonal elements must be non-negative

B[lower.tri(B)]1>=0 # Lower diagonal elements

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Blupper.tri(B)1>=0 # Upper diagonal elements

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

3. The sum of all elements from each colum must be non-possitive

round(colSums(B), 5) # round to 5 digits

[1] 0.00000 0.00000 0.00000 -0.00600 -0.00043 -0.00735 -0.00006 -0.00001
round (colSums(B), 5) <= 0

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

This system has a steady-state solution given by x = —B~!- U - b, which is a fixed point in the state space.

Steady-state solution of the LA system in Mg C ha-1
x=(-1*solve(B)%*%(Uxb)) /100
X

[,1]
[1,] 1.8286822
[2,] 149.5221843
[3,] 1.9740586
[4,] 0.4761284
[5,] 13.6928421
[6,] 0.8111121
[7,] 61.2883566
[8,] 8.2650977

Simulations for the autonomous case

We will run now a set of 10 simulations with different values of the initial conditions to observe that in all
cases the solution trajectories converge to a single point in the state-space. Since the dimension of the system
is 8, we will plot the results in 2-D plots by summing all pools that belong to the vegetation pool, and all
pools that belong to the soil and litter pools.

First, we will create a vector of time-steps to compute the solution of the system, and load the SoilR package
(Sierra, Miiller, & Trumbore, 2012) that will be used to compute the trajectories. We will run simulations for
300 years at a daily time-step. A function that creates the model using SoilR’s sintax is available in the file
modWengLuo.R, and we will load this file into our working environment.

days=seq(from=0,t0=365*300)
library(SoilR)
source ("modWengLuo.R")

Now we will create 10 random perturbations to the initial conditions using an uniform distribution with a
minimum of 0.5 and a maximum of 1.5. The idea is to take these random numbers and multiply them by the
fixed initial conditions. The resul is a set of 10 different initial conditions in a range between half and twice
the values of the initial conditions from the original similation in Weng & Luo (2011).

set.seed(21) #Fized random number generator for reproducibility
rx0O=replicate(10, runif(8, 0.5, 1.5))

Using a loop, we will compute 10 different simulations with 10 different initial conditions
n=10
vLA=NULL
sLA=NULL
for(i in 1:n){
x0=rx0[1:8,i]*X0
mod=modWengLuo (t=days,U=U,b=b,A=A,C=C,X0=x0,xi=1, pass=TRUE)
ct=getC(mod) /100
V=rowSums(ct[,1:3])
S=rowSums (ct[,4:8])
vLA<-cbind (vLA,V)
sLA<-cbind (sLA,S)
}

We can now plot all solution trajectories for the aggregated vegetation and soil pools. The range of initial
conditions will be enclosed inside a polygon.

matplot(vLA, sLA, type="1", x1im=c(20,180), ylim=c(0,100),
xlab=expression(paste("Vegetation carbon (Mg C ", ha~{-1},")")),
ylab=expression(paste("Soil carbon (Mg C ", ha~{-1}, ")")), 1lty=1, col=1, bty="n")

polygon(x=rep(range(vLA[1,]), each=2), y=c(range(sLA[1,]), rev(range(sLA[1,]1))))

points(sum(x[1:3]), sum(x[4:8]), pch=20, col=2)

legend("topleft", "a", bty="n")

o
O_
— a
- ’
© (o0}
<
@)
2 8-
=t
g 8-
I
(@]
n N
o_
| | |
50 100 150

Vegetation carbon (Mg C ha™)

Notice that all trajectories converge to the fixed point (steady-state) given by the vector x that we previously
computed and plotted as a red dot.

Simulations for the non-autonomous case

We will create now random photosynthetic inputs by creating a random walk, with an initial value equivalent
to U plus random noise from a normal distribution with mean 0 and standard deviation of 0.01.
set.seed(19)

rwI=U+cumsum(rnorm(days,0,0.01)) #Randow walk

rI=data.frame(time=days, In=rwl)

plot(rI,type="1", xlab="Time (days)", ylab="Carbon inputs (g C m-2 day-1)")

o_
—
7
>
S]
I w
¢
£ <
@)
(=)}
N
2 o
S
o
£
c N —
o
o
S
S
@) — —

| | | | | |
0e+00 2e+04 4e+04 6e+04 8e+04 1le+05

Time (days)

We will also create a seasonal cycle of temperatures with added random noise in order to perturb all cycling
rates of the matrix B with a rate modifier function £(¢). In this case we use a Q10 function (Sierra et al.,
2012) to obtain the rate modifier from artificial temperature data with a mean of 15 degrees Celcius, a
seasonal amplitude of 10 degrees C, and daily random noise from a normal distribution with a mean of 0 and
standard deviation of 1 degree C.

xi=data.frame(days,xi=fT.Q10(Temp=15+10*sin(2*pi*days/365)+rnorm(n=length(days) ,mean=0,sd=1)))
plot(xi, type="1")

XI
05 10 15 20 25 3.0 35

| | | | | |
0e+00 2e+04 4e+04 6e+04 8e+04 1le+05

days

Now we run a set of 10 simulations with different initial conditions as in the first set of simulations, but using
now the perturbing random signals for the inputs and the cycling rates.

n=10

vLNA=NULL

sLNA=NULL

for(i in 1:n){
x0=rx0[,i] *X0
mod=modWengLuo (t=days,U=rI,b=b,A=A,C=C,X0=x0,xi=xi,pass=TRUE)
ct=getC(mod) /100
V=rowSums (ct[,1:3])
S=rowSums (ct[,4:8])
vLNA<-cbind (vLNA,V)
sLNA<-cbind (sLNA,S)

}

We can plot now the results,

matplot (vLNA, sLNA, xlab=expression(paste("Vegetation carbon (Mg C ", ha~{-1},")")),
ylab=expression(paste("Soil carbon (Mg C ", ha~{-1}, ")")), col=1, lty=1,
x1im=c(20,180), ylim=c(0,100), type="1", bty="n")
polygon(x=rep(range(vLNA[1,]), each=2), y=c(range(sLNA[1,]), rev(range(sLNA[1,]1))))
legend("topleft", "b", bty="n")

3
— b
o o _|
I(.U o0
e
© o
c’ p—
O
=
p—
5
o _|
Qo <
]
(@] 4
S o
5 8-
o_

I I I
50 100 150

Vegetation carbon (Mg C ha™)

par (mfrow=c(1,1))

Notice that in all cases, the trajectories start at different values of the state space, increase after certain value
and subsequently decline. They converge among each other but do not reach any fixed point (steady state).
The overall behavior is mostly controlled by the dynamic behavior of the photosynthetic inputs U, which for
this case increase to a certain level and then decline, causing the increase and decrease of vegetation and soil

carbon observed in these simulations.

With this example, we wanted to show that the concepts of fixed point or steady-state are irrelevant for
non-autonomous simulations. Furthermore, the concept of attractor in the non-autonomous case applies at

the level of trajectories or sets in the state space, but not at the level of fixed points.

References

Sierra, C. A., Miiller, M., & Trumbore, S. E. (2012). Models of soil organic matter decomposition: The SoilR
package, version 1.0. Geosci. Model Dev., 5(4), 1045-1060.

Weng, E., & Luo, Y. (2011). Relative information contributions of model vs. Data to short- and long-term
forecasts of forest carbon dynamics. Fcological Applications, 21(5), 1490-1505. https://doi.org/10.1890/
09-1394.1

https://doi.org/10.1890/09-1394.1
https://doi.org/10.1890/09-1394.1

	The 8-pool linear model
	The compartmental system
	Simulations for the autonomous case
	Simulations for the non-autonomous case
	References

