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Abstract
We discuss the time-reversal behavior of dynamic cross-couplings among various hydrodynamic degrees of freedom in liquid
crystal systems. Using a standard hydrodynamic description including linear irreversible thermodynamics, we show that the
distinct thermodynamic requirements for reversible and irreversible couplings lead to experimentally accessible differences.
We critically compare our descriptions with those of existing standard continuum mechanics theories, where time-reversal
symmetry is not adequately invoked. The motivation comes from recent experimental progress allowing to discriminate
between the hydrodynamic description and the continuum mechanics approach. This concerns the dynamics of Lehmann-
type effects in chiral liquid crystals and the dynamic magneto-electric response in ferronematics and ferromagnetic nematics,
a liquid multiferroic system. In addition, we discuss the consequences of time-reversal symmetry for flow alignment of the
director in nematics (or pretransitional nematic domains) and for the dynamic thermo-mechanical and electro-mechanical
couplings in textured nematic liquid crystals.

Keywords Macroscopic dynamics · Lehmann effect · Flow alignment · Thermo-mechanical effects ·
Ferromagnetic nematics

liquid crystals in particular, there existed a description based
on continuummechanics that did not use time-reversal sym-
metry (Ericksen 1960, 1961; Leslie 1968). Basically, this
approach was adapted by de Gennes (1975) giving the
impression that both descriptions are equivalent. Due to its
mechanical picture, the Leslie-Ericksen picture is still used
mostly in the experimental community, while on the theo-
retical side both approaches are used in parallel, e.g., for the
description of the dynamics of biaxial nematics (Brand and
Pleiner 1981; Liu 1981; Saupe 1981).

However, with the advent of ever more complex
liquid crystal and soft matter systems, like bent-core
nematic and smectic liquid crystals, systems involving
tetrahedral order, polar and magnetic liquids, polymers,
and elastomers, ordered active matter, it has become
obvious that a thorough theoretical description based on
thermodynamics is inevitable. Time-reversal symmetry is
an important element of that. In addition, despite the
common belief, there are subtle differences between the
two schools of describing the dynamics, even for simple
liquid crystal phases including uniaxial nematics and
cholesterics. Carefully designed experiments are needed,
and nowadays available, to identify these theoretically
decisive, yet practically often rather small differences in real

Introduction

Time-reversal symmetry is one of the fundamental proper-
ties of microscopic as well as of macroscopic systems. For
the latter, the second law of thermodynamics states that a
process in a thermally isolated system is reversible if and
only if the entropy of the system remains unchanged during
this process. In the field of complex fluids, liquid crystals
for instance, the seminal work, which is rigorous in this
respect, is by Martin et al. (1972). Nevertheless, for nematic
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complex fluid systems. Therefore, it is important for the
scientific field to understand and recognize the approaches
that firmly reside on thermodynamic grounds, and tell them
apart from other less stringent yet possibly almost equally
successful models.

There is a very general formalism to derive non-equilib-
rium reversible and irreversible equations, GENERIC (Grmela
and Öttinger 1997; Öttinger and Grmela 1997), and Grmela
(2002), which is very similar in spirit to the hydrodynamic
method used in this paper: There are two functionals, energy
and entropy, that govern the statics and the irreversible
dynamics, respectively, with the fundamental laws of ther-
modynamics built in. The GENERIC equations are set up in
terms of Poisson brackets and irreversible (‘Grmela’) brack-
ets making use of Onsager symmetry and Casimir skew-
symmetry (Öttinger 2014). The hydrodynamic description
is somewhat simpler, since it is confined to non-equilibrium
situations that are close to equilibrium. Nevertheless,
equations derived in that regime, like the Navier-Stokes
equations for simple fluids, can subsequently be used to
successfully describe situations far from equilibrium, like
chaos or turbulence. Hydrodynamic equations can be set
up without relying on any microscopic pictures or models,
although there are connections to linear response theory
(cf. Appendix B). The strongest argument for using the
hydrodynamic method is that not only thermodynamics is
taken care of (by means of time-reversal symmetry), but
also the spatial symmetries are lucidly dealt with. This is of
great advantage for the description of nematic and nematic-
like systems. In particular, for some conditions, imposed
by thermodynamic requirements, the spatial structure of
the coupling between different variables is crucial. We are
not aware of any derivation of macroscopic equations for
nematic-type systems using GENERIC, but we are pretty
sure that they would be compatible with the hydrodynamic
ones we are using.

To derive macroscopic equations, other approaches have
been suggested. They include, for example, the use of
hierarchies of orientational correlation functions (Doi 1981;
Kuzuu and Doi 1983). However, This approach has been
shown (Pleiner et al. 2002) to be incompatible with
the systematically derived macroscopic equations for the
nematic order parameter Qij .

We use a stringent hydrodynamic description based
on (linear irreversible) thermodynamics considering the
symmetries and broken symmetries involved. We focus
on macroscopic consequences of time-reversal behavior
in the hydrodynamic regime, describing the low fre-
quency, long-wavelength response. Of particular interest are
dynamic cross-couplings among the various degrees of free-
dom. Here, different time-reversal behavior discriminates
reversible from irreversible couplings, with zero entropy

production in the former case and positive entropy pro-
duction in the latter. This is the fundamental notion of the
hydrodynamic description and is discussed in detail in the
“Thermodynamic forces and currents in linear irreversible
thermodynamics” section. Failure of dealing correctly with
time-reversal symmetry, generally results in a violation of
irreversible thermodynamics. We show how the form of
dynamic cross-couplings is different depending on whether
they are of reversible or irreversible nature. This will be
the key feature of the subsequent discussion of the various
dynamic effects under consideration.

In the “Lehmann-type effects in chiral liquid crystals”
section, we discuss how time-reversal symmetry influences
the nature and the structure of dynamic cross-coupling terms
describing Lehmann-type effects in chiral liquid crystals
(Madhusudana and Pratibha 1987; Brand and Pleiner 1988;
Madhusudana and Pratibha 1989; Tabe and Yokoyama
2003; Svenšek et al. 2006, 2008; Oswald and Dequidt 2008;
Pleiner and Brand 2010; Seki et al. 2011; Brand et al.
2013; Yoshioka et al. 2014; Yamamoto et al. 2015) and
where a recent experiment (Sato et al. 2017) paves the way
to corroborate this description. We compare hydrodyna-
mics with various continuum mechanics approaches. We
will show that all continuum mechanics approaches have
missed the so-called static Lehmann-type couplings. The
dynamic Lehmann couplings were rewritten by de Gennes
(1975) (subsequently taken over by Oswald and Pieranski
(2005) with the erroneous claim that they follow from the
reversible part of the dynamics, disregarding the correct
time-reversal symmetry behavior of the quantities involved.
Instead, those couplings are irreversible (with a nonzero
entropy production) and that leads to differences that
can experimentally be detected when the inverse Lehmann
effects are considered.

The “Reversible dynamic coupling of flow to the nematic
director dynamics” section is devoted to dynamic cross-
couplings between flow and an orientational degree of
freedom, in particular, the director in nematic liquid crystals
and pretransitional nematic domains in the isotropic phase
above the nematic one. The flow alignment in external
shear flow is governed by a dynamic parameter that is
part of the reversible dynamics. This has been overlooked
by Leslie (1968II) and de Gennes (1975) who have taken
these effects as dissipative viscosities. As a result, erroneous
positivity conditions are claimed that correlate dissipative
with reversible parameters in violation of linear irreversible
thermodynamics.

In the “Dynamic thermo-mechanical effects in textured
nematic liquid crystals” section, it is shown, using time-
reversal behavior, that the dynamic thermo-mechanical
and electro-mechanical effects in textured nematic liquid
crystals are reversible. On the contrary, Akopyan and
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Zeldovich (1984) have erroneously assumed these thermo-
mechanical couplings to be dissipative. The failure of their
description becomes apparent when both, the direct and the
inverse effects are measured simultaneously.

In the “Thermodynamic forces and currents in ferrone-
matics and ferromagnetic nematics” section, we discuss as
another example, the coupled dynamics of the magnetiza-
tion and the director field in ferronematics and ferromag-
netic nematics (Jarkova et al. 2001, 2003). The different
behavior under time reversal of the nematic director and
of the magnetization leads to characteristic, experimentally
detectable features (Potisk and et al. 2017, 2018). Those
features have not been found using a continuum mechan-
ics approach (Raikher and Stepanov 1996, 1999), where the
director and the magnetization are treated on equal footing,
disregarding their different time-reversal behavior.

Similar discussions of an erroneous use of time reversal
of dynamic cross-coupling terms in bio-inspired active sys-
tems, regarding active stresses (Brand et al. 2014) and active
transport (Pleiner et al. 2016II) have been given previously.

In Appendix A, we list the complete set of hydrodynamic
nematic equations as a reference and in Appendix B, we
recall the impact of time-reversal symmetry on memory and
frequency matrices in the projector formalism of Forster,
Mori, and Zwanzig in the hydrodynamic regime.

Thermodynamic forces and currents in linear
irreversible thermodynamics

In this section, we summarise briefly the essence of linear
irreversible thermodynamics, in particular, we elucidate the
role of time-reversal symmetry, as this will be one of
the major tools used throughout the manuscript. A more
explicit exposition for nematic liquid crystals is provided in
Appendix A as reference. Although this material is not new,
we will make use of it in the main part of this manuscript.

We describe systems that are in local thermodynamic
equilibrium, that is, all microscopic variables are in
equilibrium averaged over a suitably chosen volume and
time interval. Then only a few slow variables, the state
variables xα , which are space-time fields, describe the
macroscopic dynamic behavior of the system. The first
law of thermodynamics requires that the state variables are
related due to energy conservation by the Gibbs relation
(de Groot and Mazur 1962; Martin et al. 1972; Pleiner and
Brand 1996)

T dσ = dε − Fαdxα (1)

connecting the macroscopic variables to the entropy den-
sity σ , with T the temperature and ε the energy density.
The index α denotes the appropriate variables involved and

Einstein summation is assumed. The fields Fα are thermo-
dynamically conjugate to the variables. They are defined as
partial derivatives of an energy functional. Deviations of Fα

from their equilibrium values are the thermodynamic forces.
Since the time-reversal symmetry is crucial, we will

discriminate, where appropriate, between variables that are
even under time reversal xe

α(t) = +xe
α(−t), or εT

(
xe
α

) =
+1, and the odd ones xo

α(t) = −xo
α(−t)with εT

(
xo
α

) = −1.
The former comprise, e.g., mass density ρ, concentration c,
and the nematic director ni , while in the latter group one
finds the momentum density gi , the angular momentum ωi ,
and the magnetization mi . Temperature, energy density, and
entropy density are time-reversal symmetric, with the result
that the thermodynamically conjugates must have the same
time-reversal behavior as the appropriate variables xα and
Eq. 1 could be written as T dσ = dε − Fe

αdxe
α − Fo

αdxo
α .

The macroscopic variables satisfy dynamic balance
equations of the general form

ẋα + Jα({Fα}) = 0 (2)

with the dot denoting a partial time derivative. The currents
Ji are associated with the dynamics of all other macroscopic
variables, generated by the thermodynamic forces. For the
conserved degrees of freedom, like momentum density or
mass density, the (thermodynamic) currents Jα = ∇ij

α
i

have the form of a divergence of a (physical) current, reflect-
ing the local conservation law ẋα + ∇ij

α
i = 0 for those

variables. In the liquid crystal literature, sometimes the cur-
rents of non-conserved variables are called “quasi-currents,”
and only in the case of conserved variables “current” is used.
Generally, this distinction is not really necessary.

Non-conserved variables enter macroscopic dynamics
in two variants, either they are symmetry variables
representing Goldstone modes connected to spontaneously
broken continuous symmetries, or they are slowly varying
mesoscopic variables. Examples for the former are the
nematic director ni , the smectic phase variable describing
rotations of a preferred direction and translation of
layers, respectively. For the latter type of non-conserved
macroscopic variables, a discussion of the specific system
is necessary—an example is relative rotations in a nematic
elastomer. We will make the distinction between conserved
and non-conserved quantities only where necessary.

Of course, also the energy density obeys a local conserva-
tion law

ε̇ + ∇ij
ε
i = 0 (3)

while the entropy density is only conserved for reversible
processes, but not for irreversible ones

σ̇ + ∇ij
σ
i = 2R/T (4)
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It is this place where the second law of thermodynamics
enters macroscopic dynamics: The dissipation function
vanishes, R = 0, for reversible processes, while it is
positive, R > 0, for irreversible ones. This distinction is
unique (and complete), since on the macroscopic level the
dynamic processes are either time-reversal symmetric or
change sign under time reversal, which exactly corresponds
to the distinction, reversible or irreversible.

In the following, we discuss the implication of the second
law of thermodynamics on the form of the currents, Jα . To
facilitate this, the currents are (uniquely) separated

Jα = JR
α + JD

α (5)

into a reversible (R) and an irreversible part (D) according
to their time-reversal behavior. The reversible part JR

α trans-
forms like ẋα , while the irreversible one, JD

α has the oppo-
site behavior and therefore transforms like xα . Explicitly,
the time-reversed form of Eq. 2, TR

[
ẋα + JR

α + JD
α = 0

]

reads ẋα + JR
α − JD

α = 0.
The distinction (5) defines the time-reversal behavior of

JR
α and JD

α relative to that of ẋα . To get the absolute time-
reversal behavior one has to take into account, whether the
variable itself is even or odd. Writing ẋe

α + J eR
α + J eD

α = 0
one finds J eR

α to be odd and J eD
α to be even, while for

ẋo
α + J oR

α + J oD
α = 0 one gets J oR

α to be even and J oD
α to

be odd under time reversal

εT
(
J eR

α

)
= −1 and εT

(
J eD

α

)
= +1

εT
(
J oR

α

)
= +1 and εT

(
J oD

α

)
= −1 (6)

These results apply identically to the (physical) currents, jα
i .

The source term in Eq. 4 is an example of −JD
α in Eq. 5,

since it is nonzero only for dissipative processes. Because
the variable σ is even, it behaves as J eD

α and therefore, the
dissipation R has to be even under time reversal. Physically
that means, a dissipative process produces the same amount
of entropy, whether time runs forward or backward, or
more pronounced, a process that increases entropy does not
decrease it, when the time axis is inverted.

Putting all dynamic equations into the Gibbs relation (1)
we get

− jσR
i ∇iT + FαJR

α −jαR
i ∇iFα = 0 (7)

2R = −jσD
i ∇iT + FαJD

α −jαD
i ∇iFα > 0 (8)

as a compact form of the second law of thermodynamics.
For conserved quantities Jα = ∇ij

α
i , for both, the reversible

and the irreversible case, and the appropriate contributions
to the second law of thermodynamics show that in this case
the actual force is ∇iFα , rather than Fα . To get this form,
surface contributions like ∇i (j

α
i Fα) have been subsumed

into the divergence of the energy current density ∇ij
ε
i . This

procedure will be discussed in detail explicitly when we
present the macroscopic dynamics of nematic liquid crystals

in Appendix A. The basic meaning of Eqs. 7 and 8 is that
all dissipative contributions have to add up to something
positive, while the reversible processes cancel each other to
zero entropy production.

To be more specific, we employ linear irreversible ther-
modynamics, a systematic framework to derive macroscopic
equations for a set of macroscopic variables {xα} for sit-
uations that are driven out of equilibrium by a set of
thermodynamic forces {Fα} (de Groot and Mazur 1962;
Landau and Lifshitz 1959; Martin et al. 1972; Forster 1975).
Here, the relations between the currents induced by the ther-
modynamic forces are linear, Jα = ζαβFβ . This does not
mean the resulting dynamic equations are linear, since the
dynamic coupling matrices ζαβ are generally functions of
the state variables {xα} and of possible external fields. Only
if the ζαβ are constant, they produce linear contributions to
the dynamic equations.

To discuss the linear current/force relation in more detail,
we make the distinction between reversible and irreversible
processes

JR
α = ζR

αβFβ (9)

JD
α = ζD

αβFβ (10)

introducing reversible and irreversible transport parameters,
ζR
αβ and ζD

αβ , respectively. It should be noted that the quali-
fiers “reversible” and “irreversible” refer to themacroscopic
processes they describe, not to their microscopic origin, cf.
the discussion after Eq. 15 and Appendix B.

We have already shown that the forces Fα have the
same time-reversal signature as the appropriate variables,
εT
α = +1 or −1 for even and odd variables, respectively.
The same is true for the dissipative currents JD

α , while
the reversible ones, JR

α , have the opposite time reversible
signature −εT

α . As a result, the dynamic coupling matrices
ζαβ must transform as

εT
(
ζR
αβ

)
= −εT

α εT
β (11)

εT
(
ζD
αβ

)
= +εT

α εT
β (12)

In the linear case, where the coupling matrices are con-
stants, one can conclude that dissipative couplings are
only possible among variables of the same time-reversal
behavior (including self-couplings), while reversible cou-
plings requires opposite time-reversal behavior. Examples
for the dissipative case are the Soret/Dufour effect, Eqs. 90
and 91 (and Newtonian viscosity, Eq. 89), while nematic
flow alignment and backflow, Eqs. 82 and 83, represents
a reversible coupling. In the nonlinear case, there is the
possibility that the coefficients ζαβ depend on a quantity
that is odd under time reversal, like the magnetization or a
magnetic field. Then, also dissipative (reversible) couplings
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are possible among variables of opposite (equal) time-
reversal symmetry. Examples are discussed in Eqs. 53–55
and Eqs. 58–60, respectively.

The linear current-force relation, Eq. 10, allows the
dissipation function to be written as, 2R = ζD

αβFαFβ , and
to serve as a quadratic potential for deriving dissipative
currents by partial derivation according to Eq. 8. It also
facilitates the discussion of the symmetry requirements,
ζD
αβ = ζD

βα and the positivity R > 0. Taking as an example

R = 1
2ζ

D
11F

2
1 + ζD

12F1F2 + 1
2ζ

D
22F

2
2 , with F1 and F2 of the

same time-reversal behavior, the appropriate currents are

JD
1 = ζD

11F1 + ζD
12F2 (13)

JD
2 = ζD

22F2 + ζD
21F1 (14)

where, according to Eq. 12, the dissipative transport
coefficients have to be even under time reversal, (e.g.,
being constant), irrespective of the (common) time-reversal
behavior of the two variables involved. By the very
construction of R, they fulfill ζD

12 = ζD
21 (Onsager relation),

and the conditions ζD
11 > 0, ζD

22 > 0, ζD
11ζ

D
22 > (ζD

12)
2 must

hold to guarantee positivity of the entropy production for
irreversible processes (8).

If the two degrees of freedom of this example are
conserved, one gets equivalent results, when JD

1,2 is replaced

by −jD
1,2 and F1,2 by ∇iF1,2, respectively. An example of

that case is the coupled diffusion of heat and concentration,
the anisotropic version of which is used in Eqs. 88, 90,
and 91. Of course, also dissipative couplings between a
conserved variable (F2) and a non-conserved one (F1) are
possible, but only in systems that lack spatial inversion
symmetry, as can be seen from the coupling term in
the dissipation function R = 1

2ζ
D
11F

2
1 + ζD

12,iF1∇iF2 +
1
2ζ

D
22(∇iF2)

2 (in the isotropic case): ζD
12,i has to be odd under

spatial inversion. An example for that situation is described
in cholesteric liquid crystals, Eqs. 17, 18, and 24.

There is no macroscopic potential for reversible currents.
Here, one has to write down possible cross-couplings
allowed by time-reversal symmetry, Eq. 11, and then use (7)
to guarantee zero dissipation R = 0. If there are reversible
cross-couplings between two variables of opposite time-
reversal behavior

JR
3 = ζR

34F4

JR
4 = ζR

43F3 (15)

the reversible transport coefficients ζR
34 and ζR

43 must be
time-reversal symmetric according to Eq. 11, e.g., being
constant. Zero entropy production, Eq. 7, requires an
antisymmetric relation ζR

34 = −ζR
43, and there is no

restriction on the sign or the size of the reversible transport
coefficient. In isotropic, simple liquids such a reversible
coupling is not possible. Generally, in anisotropic systems,
the reversible coupling coefficients come in the form of

tensors and the actual condition for zero entropy production
depends also on the structure of those tensors. Typical
physical examples are flow alignment and backflow in
nematic liquid crystals, Eqs. 82 and 83 and the dynamic
reversible cross-coupling between the director and the
magnetization in ferrronematics, Eqs. 54 and 55.

The macroscopic reversible transport coefficients can
have two different microscopic origins, cf. Appendix B,
either the reactive instantaneous response, or the imaginary
part of the (non-instantaneous) memory function.With respect
to the latter part, the antisymmetry ζR

34 = −ζR
43 is sometimes

called Casimir relation (Öttinger 2014). For macroscopic
equations, there is no need to discriminate between the two
origins and the antisymmetry relation simply follows from
the macroscopic time-reversal behavior (11).

The convective nonlinearities in macroscopic equations,
e.g., Jα ∼ vi∇ixα , are reversible and describe the transport
part of the convective time derivatives (related to Galilei
invariance) and the co-rotational part (related to the proper
rotational behavior) of, e.g., the nematic director. They
are generic and do not come with any phenomenological,
material-dependent parameters. Taken all together, they do
not increase entropy and fulfill (7) automatically, when the
(isotropic) pressure p is expressed as a quadratic function
of the variables according to the Gibbs-Duhem relation
(Pleiner and Brand 1996). For nematic liquid crystals, this
is discussed in more detail in Appendix A, after (74).

To obtain a closed set of equations one needs relations
between the variables and the thermodynamic conjugates
as defined in Eq. 1. This can be achieved by taking the
variational derivative of a (static) potential, typically an
energy expression that is linear or nonlinear in the variables
(Pleiner and Brand 1996)

Fα = δε({xα})/δxα (16)

This energy functional has to be a scalar (rotational
invariant) and even under time reversal.

Lehmann-type effects in chiral liquid crystals

More than 100 years ago, Lehmann (1900) observed the
rotation of the director in a cholesteric droplet in an
external temperature gradient. Only about seven decades
later this observation was taken up in modeling by Leslie
(1968, 1969) and in a different form by de Gennes
(1975). Leslie described Lehmann-type effects using a
continuum mechanics description of Ericksen and assumed
the Lehmann effect to be due to a chiral dynamic coupling
(Leslie 1968). Another two decades later Madhusudana and
Pratibha (1987, 1989) performed experiments on cholesteric
droplets in an external electric field in the two-phase region
near the isotropic – cholesteric transition.
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Over the last decade, there has been a strongly increasing
interest in the study of the Lehmann effect induced by
external forces such as temperature gradients and external
electric fields. Most of these studies were using cholesteric
droplets in the two-phase region near the isotropic–
cholesteric transition (Oswald and Dequidt 2008; Yoshioka
et al. 2014; Yamamoto et al. 2015). There appears to be only
one study using freely suspended chiral smectic films (Seki
et al. 2011).

Stimulated by the experiments of Madhusudana and
Pratibha, Lehmann effects were examined in the frame-
work of hydrodynamics based on linear irreversible ther-
modynamics (Brand and Pleiner 1988). It turned out that
Lehmann effects in chiral liquid crystals can have two
different origins. Either chiral cross-couplings in the dis-
sipative currents are combined with achiral static sus-
ceptibilities (called “dynamic Lehmann”), or chiral static
cross-couplings are combined with achiral dissipative cur-
rents (“static Lehmann”). The former case leads to director
rotations due to temperature, density, and concentration gra-
dients and electric fields. The latter case, which involves
only temperature, concentration, and density gradients but
no electric field, has not been considered in the traditional
descriptions.

There is always an inverse Lehmann effect, if there is a
direct one, due to the reciprocal nature of cross-couplings
within linear irreversible thermodynamics. Inverse effects,
where concentration, heat, or electric currents can be
generated by director rotation, have only recently been
discussed in detail (Svenšek et al. 2008). In all cases,
Lehmann effects are related to the dissipative dynamics
(and not the reversible one), in contrast to what is claimed
sometimes (de Gennes 1975; Oswald and Pieranski 2005).

Macroscopic chirality is described by the existence of
a pseudoscalar quantity, the chirality parameter q0, that is
invariant under spatial rotation, but changes sign (q0 →
−q0) under spatial inversion (odd parity). This pseudoscalar
is responsible, in isotropic fluids made of chiral molecules,
for the optical activity (the rotation of the plane of
polarization of linearly polarized light), and in cholesterics
for the helical ground state of the director (due to a chiral
linear twist term in the free energy), and for the Lehmann
effects.

We note that the origin of macroscopic chirality can also
be related to geometric chirality (Bouligand 1969, 1972,
Livolant and Bouligand 1978, Rey 2010, Murugesan and
Rey 2010, Aguilar-Gutierrez and Rey 2014, 2016) and
charge chirality (Murugesan and Rey 2010; Rey 2010; Rey
and Herrera-Valencia 2012). These features are in particular
important for biological systems.

However, the existence of q0 is not necessarily related to
chiral molecules, since there are phases, which are chiral,
although the molecules are achiral (structural chirality). An

example is the CB2 smectic phase, where achiral bent-core
molecules (characterized by a director and a perpendicular
polarization) are tilted w.r.t. to the smectic layers. The tilt
is responsible for the existence of a q0, and since both
tilt possibilities are equally likely, but describe opposite
handedness, such systems are called ambidextrous chiral
(Cladis et al. 1999). Another example of such a structural
chirality is the D2-symmetric phase that occurs, if there
is tetrahedral order in an orthorhombic biaxial nematic
(Pleiner and Brand 2014). Generally, any phase with at least
one preferred direction that shows a q0, for whatever reason,
exhibits helicoidal ground states and Lehmann-type effects
(Brand et al. 2013).

On the other hand, the existence of a helical ground
state does not necessarily mean that the phase is chiral.
There are achiral phases with a helical ground state, e.g., the
D2d -symmetric phase where uniaxial nematic orientation is
suitably combined with tetrahedral order (Pleiner and Brand
2016). Helical structures are favoured by an achiral linear
gradient term in the free energy, which is possible due to the
broken spatial inversion symmetry of that phase1. Since left-
and right-handed helices are equally likely, this is called
ambidextrous helicity. Such a phenomenon can even occur
in an optically isotropic system, when tetrahedral order is
combined with transient elasticity (Brand and Pleiner 2017).

Describing cholesteric liquid crystals locally (Martin et
al. 1972, Lubensky 1972, 1973, Pleiner and Brand 1996),
we use the nematic director n as a state variable, despite
the helical ground state. We note that usual chiral nematics
cholesterics are biaxial locally and that therefore the single
director model is an approximation. As discussed in the
textbook by de Gennes (1975), this biaxiality is small for
usual thermotropic lowmolecular weight materials (of order
(q0a)2, where a is a typical molecular dimension). This
situation changes when lyotropic biaxial nematic phases
are chiralized. In this case, the observed textures change
(Figueiredo Neto et al. 1985; Pleiner and Brand 1985) and
the tendency to twist around different axes leads frequently
to complex defect structures (Melnick and Saupe 1987;
Pleiner and Brand 1990). For biological materials and
processes, frequently an intermediate situation of moderate
biaxiality arises (Rey 2010; Rey and Herrera-Valencia 2012;
Aguilar Gutierrez and Rey 2016).

We start with the description of the dynamic side of the
Lehmann effect. Chirality allows in the dissipation function
for additional terms (compared to nematics) of the form

R = Rn + q0 nkεijkhj (ψσ ∇iT + ψc∇iμc + ψeEi) (17)

where Rn is the dissipation function of a nematic, given in
Eq. 88. The chiral terms provide dissipative cross-couplings

1 Although the original and the inverted structures are not identical,
they can be brought to coincidence by a mere rotation, rendering the
phase achiral.
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between hi , the thermodynamic force related to the nematic
degree of freedom, with gradients of the temperature T ,
osmotic pressure μc, and with an electric fieldEi , which are
the thermodynamic forces related to the thermal degree of
freedom, to concentration c, and to the electric displacement
fieldDi , respectively. In a nematic phase, they are forbidden
due to the spatial inversion symmetry of that phase.

For the dissipative part of the director current, YD
i (cf.

Eqs. 72 and 80), one gets

YD
i = ∂R

∂hi

= 1

γ1
δ⊥
ikhk

+ q0 εijknj (ψσ ∇kT + ψc∇kμc + ψeEk) (18)

with δ⊥
ik = δik − nink and where the second line

describes the chiral additions to the nematic case (93). All
contributions to Eq. 18 are even under time reversal, that is
opposite to ṅi , and are therefore dissipative. The reversible
current YR

i is odd under time reversal, but does not show
any chiral addition.

Now we switch to the static aspects of Lehmann effects.
Cholesterics are characterized by a linear contribution in the
twist part of the gradient free energy

εtw = 1

2
K2[n·(∇ × n)]2 + q0L2 n· (∇ × n) (19)

which is minimized by a helical superstructure of the
director with an equilibrium helical pitch qh = − n· (∇ ×
n)|eq = q0L2/K2. Often, L2 = K2 is chosen, although
there is no a priori reason for this choice (Frank 1958). For
deviations from this ground state, the hydrodynamic free
energy involving twist reads, cf. Brand and Pleiner (1988)
and in a slightly different context Pleiner and Brand (1987),

ε = 1

2
K2[n·(∇ × n) + qh]2

− q0 [n·(∇ × n) + qh] (τcδc + τσ δσ + τρδρ) (20)

showing chiral (static) cross-couplings between the director
degree of freedom and the scalar state variables.

The thermodynamic force (“molecular field”) hi follows
from the energy by variational derivative, Eqs. 16 and 67.
For rigid rotations of the homogeneous helix one gets

hch
i = q0εijknj (τc∇kc + τσ ∇kσ + τρ∇kρ) (21)

that only contains the chiral terms. Hence, in the first line of
Eq. 18, the result (21) leads to contributions rather similar to
those in the second line of Eq. 18. Since in this case, there
is no backflow, YR

i of Eq. 83 is zero and the dynamics of ni

is given by YD
i only, which describes Lehmann rotations

n × ṅ = −n × YD = � (22)

in the plane perpendicular to the driving forces. In terms of
experimentally viable forces, we get

� = q0(ψσ + ψcχ1 − γ −1
1 τσ χ4)∇T

+ q0(ψcχ2 − γ −1
1 [τρ + τσ χ5])∇ρ

+ q0(ψcχ3 − γ −1
1 [τc + τσ χ6])∇c

+ q0ψeE (23)

where χ1...6 are combinations of various static suscepti-
bilities (Svenšek et al. 2008). The individual frequency
contributions are generally composed of parts that are prod-
ucts either (“dynamic Lehmann”) of a chiral dissipative
transport parameter (ψc,σ,e), Eq. 17, with achiral static sus-
ceptibilities χ1,2,3, or (“static Lehmann”) of the achiral
dissipative transport parameter 1/γ1, Eq. 88, with the chiral
static susceptibilities (τc,σ,ρ), Eq. 20, except for an electric
field, where the latter case is not possible in linear order
of E.

It should be noted that in actual experiments the
Lehmann frequencies depend on the boundary conditions
chosen. For instance, for torque-free boundaries with n ×
h = 0 the helical pitch gets a linear profile, qh = qh0 +q ′

hz,
and the parts with the chiral static susceptibilities drop out
of Eq. 23.

All frequencies (23) are linear in the external driving field
and in the pseudoscalar chirality parameter q0. They change
sign when going from the left-handed version of a substance
to its right-handed one. There is the possibility to have a
finite Lehmann effect (q0 �= 0), even for a compensated
mixture, where the helical pitch is zero (qh ∼ L2 = 0
meaning there is no helix) (Pleiner and Brand 2010).

It has been shown experimentally that the existence of a
helical structure is not necessary for detecting Lehmann
effects: in Langmuir monolayers of chiral smectic sys-
tems that do have a q0, which results in a helix in
three-dimensional samples, Lehmann rotations have been
observed by Tabe and Yokoyama (2003), despite the lack
of a helix in a monolayer. The results have been shown to
be fully compatible (Svenšek et al. 2006) with the hydrody-
namic approach described above.

Lehmann-type effects exist in all phases that have a pseu-
doscalar chirality parameter q0. These include other chiral
liquid crystal phases (Brand and Pleiner 1988), like smec-
tic C* phases, where the in-plane director ci plays the
role of ni , but also phases with structural, ambidextrous
chirality, like bent-core smectic CB2 and tetrahedral D2

phases. Phases with ambidextrous helicity, like the tetra-
hedral D2d phase, however, are achiral and do not show
classical Lehmann-type effects (Pleiner and Brand 2016).

The chiral cross-coupling terms in the dissipation function
(17) not only lead to the Lehmann contributions in YD

i , but
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also to chiral additions to the dissipative entropy current,
concentration current, and electric current, Eqs. 90-92,

jσD
i = − ∂R

∂∇iT
= q0ψσ εijknjhk (24)

jc D
i = − ∂R

∂∇iμc

= q0ψcεijknjhk (25)

je D
i = ∂R

∂Ei

= −q0ψeεijknjhk (26)

Here hi = hn
i + hch

i , where hn
i is the nematic part and

the chiral part hch
i is given by Eq. 21. The latter merely

gives rise to chiral corrections ∼ q2
0 to heat conduction,

diffusion, and electric conduction (and all the appropriate
nematic cross effects in Eqs. 90–92).

On the other hand, rotating the director, e.g., by rotating
electric (or magnetic) external fields (Cladis et al. 1995),
a nonzero nematic molecular field hn

i = −εanjEjEkδ
⊥
ik

exists due to the dielectric (diamagnetic) anisotropy energy.
By Eqs. 24–26, this leads to finite contributions to the
heat, concentration, and electric currents along n × E,
i.e., perpendicular to the rotation plane. This is the inverse
Lehmann effect (Svenšek et al. 2008) that can be used
as a microscopic pump for heat, particles, or charges.
An experimental realization of these effects resides on a
phase lag between the synchronous rotations of E and n,
which emerges due to dissipation resulting in a nonzero
hn. Alternatively, a nonzero hn can be also due to spatial
inhomogeneities, e.g., created by flow as in the rotating
needle experiment (Cladis et al. 1985). Recently an inverse
Lehmann effect has been detected experimentally (Sato
et al. 2017) for a rotating cholesteric droplet that produced
a heat current (unidirectional heat transport). So far, all
published data are compatible with the analysis of Svenšek
et al. (2008) on using inverse Lehmann effects as a
microscopic pump.

Clearly, it would be most desirable to have more
experiments on the inverse Lehmann effect, which could
then also be used—in combination with the results of
measurements of the direct Lehmann effect—to determine
the “static” (∼ τc,σ,ρ) and the “dissipative” chiral
contributions (∼ ψc,σ,e) separately.

We will now comment on some earlier descriptions of
Lehmann effects. Leslie’s description of the Lehmann effect
(Leslie 1968) in cholesteric liquid crystals is compatible
to ours. Since it does not consider time-reversal symmetry,
it does not distinguish between reversible and irreversible
effects. Nevertheless, Leslie’s Lehmann contributions are
obviously dissipative, as are ours. In Leslie’s eq. (5.4), the
heat current qi (= Tjσ

i in our notation) and the molecular
field gi (hi in our notation) are given as linear functions
of ∇iT and of Ni (= −Yi in our notation, cf. Eq. 72 and
Leslie’s eq. (2.1)). But a simple rearrangement brings them

into the standard form, Eqs. 9 and 10. Since gi and ∇iT

are even under time reversal, Leslie’s eq. (5.4) requires that
his qi and Ni also have to be even under time reversal with
the result that only the dissipative parts of the currents are
involved. Then, this fits to our description in Eqs. 18 and 24
and requires in Leslie’s eq. (5.6) all inequalities ≤ and ≥ to
be replaced by < and >, respectively.

Nevertheless, there are some shortcomings. First,
Leslie’s description only includes thermal gradients as driv-
ing forces. Second, it considers only the dynamic chiral
contributions omitting the static ones, Eq. 21. Since it does
not employ linear irreversible thermodynamics, it uses two
independent dissipative transport parameters for the direct
and the inverse Lehmann effect (λ3 and κ3 in Leslie’s nota-
tion), while the existence of the dissipation function requires
T λ3 = −κ3. Moreover, the inverse effect is apparently not
explicitly identified. With these caveats the two last lines of
Leslie’s eq. (5.4) are equivalent to our Eqs. 18 and 24.

The situation is somewhat different with the de Gennes
description (de Gennes 1975). First, it includes not only
temperature gradients, but also concentration gradients and
electric fields. Second, de Gennes introduces time-reversal
behavior to discuss this effect, but unfortunately in an
unsatisfactory way. The statement (after his eq. (6.99)) that
the electric current j e (J in his notation) is odd is true only
for its reversible part. The electric charge density ρe is even
under time reversal and therefore ∂ρe/∂t has to be odd. As a
consequence, the reversible part of the electric current je R

i

is odd as well, leaving the dynamic equation (74) invariant,
while the dissipative part je D

i is even and destroys the time-
reversal invariance of Eq. 74. Furthermore, he states, just
before his eq. (5.27), that N and his h are odd (in the
following, we call the latter hdG in order to avoid confusion
with our h). However, the molecular field hdG

i , which is−hi

in our notation, [cf. Eq. 67 and his eq. (3.21)], has the same
time-reversal behavior as the director ni , which is even. In
addition, Ni , which is −Yi in our notation, [cf. Eq. 72 and
his eq. (5.22)], behaves odd only for the reversible part YR

i ,
but is even for the dissipative one, YD

i , similar to the case of
je
i discussed above.
Now, de Gennes describes the Lehmann effects in his

eqs. (6.98) and (6.99). Omitting flow they read in his
notation

hdG
i = hH

i + ν εijknjEk (27)

Ji = σE⊥ Ei +
(
σE‖ − σE⊥

)
ninjEJ + ν εijknjNk (28)

where hH
i denotes the achiral (nematic) contribution. This

is a rather unorthodox way of presenting the flux—force
relation in linear irreversible thermodynamics, since Eq. 27
relates two forces with each other and Eq. 28 two fluxes.
Nevertheless, he gets the Lehmann effect (almost) right. In
his discussion of the Lehmann effect in subsection (6.3.4.2)
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he only uses Eq. 27. With Ni = (1/γ1)hdG
i , this leads to

an expression which is equivalent to the second line of our
Eq. 18, if ν = −q0γ1ψe is chosen. His rotation frequency
eq. (6.104) then coincides with our expression in the last
line of Eq. 23. Obviously, the Lehmann effect is related to
the dissipative dynamics YD

i and is not a reversible feature:
Despite time running forward or backward, the amount of
dissipated energy, the external driving field has to provide
is the same. In de Gennes’ description there are no “static”
parts of the Lehmann effects, since he does not consider the
chiral static contributions given in Eq. 21.

In Eq. 28, the electric conductivities (σE⊥ and σE‖ ) clearly
denote dissipative processes, and indeed, using the correct
time-reversal behavior, Ji and Nk should be replaced by
their dissipative parts (both reversible parts are then found to
be zero). Replacing ND

k = −YD
k by −(1/γ1)hk via Eq. 18,

one can compare with our Eq. 26 leading to ν = q0γ1ψe,
which differs in sign from what we have got above from
Eq. 27. The reason is that the signs for the ν terms have been
chosen by de Gennes such that they cancel each other in the
entropy production (which would be the right thing to do
for reversible processes). Actually, for dissipative processes
they should add up and Eq. 28 should read

JD
i = σE

ij Ej − ν εijknjN
D
k (29)

This equation, not needed for the direct Lehmann effect,
could lead to the inverse Lehmann effect, which was,
however, not considered by de Gennes. Only when one
measures both, the direct and the inverse Lehmann effect,
one can detect the difference between Eqs. 28 and 29.
Although Eqs. 27 and 29 can describe the (“dynamic” parts
of the) Lehmann effects, the underlying concept is not
suitable for a general description taking into account other
hydrodynamic effects or variables, due to its special form
relating forces with forces and fluxes with fluxes.

Reversible dynamic coupling of flow to the
nematic director dynamics

As another example for the importance of time-reversal
symmetry, we briefly discuss the reversible dynamic
coupling between flow and the orientational degree of
freedom, first, in nematics and, second, in pretransitional
orientational fluctuations above the isotropic to nematic
phase transition.

This reversible coupling is of the general form (15).
Using the hydrodynamic description of nematic liquid
crystals, it is given by Eqs. 82 and 83 describing
flow alignment and backflow effects. In the continuum
mechanics treatment of Leslie (1968II), this coupling is

taken on equal footing with the (dissipative) viscosities as is
seen in eqs. (5.31) and (5.32) of de Gennes (1975)

σdG
ij = α1ninjnknlAkl + α4Aij + α5ninkAjk

+ α6njnkAik + α2niNj + α3njNi (30)

hdG
i = γ1Ni + γ2njAij (31)

with α2+α3 = γ2 and where σdG
ij = −σij , hdG

i = −hi , and
Ni = −Yi in our notation. In a symmetrized version of the
stress tensor, only the sums α2 + α3 and α5 + α6 show up.

Since hi is even and Aij is odd under time reversal,
Eq. 31 is split into a reversible part, NR

i = −(γ2/γ1)njAij

and a dissipative one NR
i = (1/γ1)hdG

I . This is compatible
with our description, Eqs. 83 and 93, for γ2 = −λγ1, a
relation already given in eq. (5.40) of de Gennes (1975).
Clearly, γ2 (and therefore α2 + α3) are reversible reactive
parameters as is λ, and only α1, α4 and α5 + α6 are
dissipative parameters. Indeed, when de Gennes rewrites his
equations in the hydrodynamic form, he finds that only three
viscosities ν1,2,3 and γ1 enter the dissipation function, cf. his
eq. (5.41), while γ2 does not, as is required for a reversible
parameter. Thermodynamics then requires the dissipative
transport parameters, ν1,2,3 and γ1, all to be positive.

In terms of the α parameters used by de Gennes in his
eq. (5.31) one gets, cf. his eqs. (5.39) and (5.34),

2ν1 = α1 + α4 + α5 + α6 (32)

2ν2 = α4 (33)

2ν3 = α4 + 1

2
(α5 + α6) − 1

2γ1
γ 2
2 (34)

and the positivity requirements for ν1 and ν2 translate
into appropriate positivity conditions on the dissipative α

parameters. However, the positivity requirement ν3 > 0
would bound the value of the reversible reactive parameter
γ2 from above by the values of dissipative ones, or vice
versa, it would bound dissipative parameters γ1[α4 +
(1/2)(α5 + α6)] by the value of a reactive one. Such a
mixture of reversible reactive with irreversible transport
parameters is physically unsound, since the microscopic
origins of reversible and irreversible parameters are
completely different as is shown by the Mori-Zwanzig
formalism recalled in Appendix B. Dissipation originates
exclusively from the non-instantaneous response covered by
the memory matrix, while reversible dynamics is related
to instantaneous response from the frequency matrix and,
in the case of the flow alignment parameter, also from the
memory matrix. A general relation mixing reversible and
irreversible parameters is not possible, since it would relate
dissipative processes with the instantaneous dynamics,
which is neither possible in the quantum mechanical nor in
the classical particle dynamics. The conclusion is that the
continuum mechanics approach does not correctly describe
the positivity of dissipative processes in this case.
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Flow alignment effects due to the reversible coupling
between flow and director rotations exist in all liquid crystal
phases that possess at least one nematic degree of freedom,
but also for complex fluids with a preferred direction that is
described by a polar vector (Brand et al. 2006), a velocity
(Pleiner et al. 2013), a magnetization (Jarkova et al. 2003),
or a vorticity (Brand et al. 2011).

There is a related problem in the dynamics of the
isotropic to uniaxial nematic phase transition with respect to
the dynamic coupling of the nematic order parameter Qij to
flow, introduced by de Gennes (1971). We again show that
it is crucial to correctly identify the time-reversal symmetry
of the currents to get the correct thermodynamic restrictions
on the dynamic material parameters.

Using the hydrodynamic method, we start with the Gibbs
relation, Eq. 1,

T dσ = dε − vidgi − �ijdQij (35)

where �ij is the thermodynamic conjugate quantity to
Qij . Both are even under time reversal and under spatial
inversion. Here, the energy ε is the Landau free energy of
the isotropic to nematic phase transition, a power series in
Qij .

In the isotropic phase, the linearized dynamic equations,
defining the fluxes, can be written as

ġi = ∇j σ̃j i (36)

Q̇ij = Rij (37)

which is written in a way that facilitates the comparison with
de Gennes (1975). With the dynamic entropy equation (4)
the entropy production can be written

2R = �ijRij + Aij σ̃ij (38)

which is identical to eq. (5.102) of de Gennes (1975). The
second law of thermodynamic leads to the conditions

2R = �ijR
D
ij + Aij σ̃

D
ij > 0 (39)

�ijR
R
ij + Aij σ̃

R
ij = 0 (40)

for, respectively, the irreversible and reversible parts of the
currents and quasi-currents. Since ġi (Q̇ij ) is even (odd)
under time reversal, σ̃ R

ij and RD
ij are even and σ̃D

ij and RR
ij

are odd under time reversal. This allows for the following
expressions

RR
ij = −2μ

ν
Aij and RD

ij = 1

ν
�ij (41)

σ̃ R
ij = 2μ

ν
�ij and σ̃D

ij = 2η̃Aij (42)

The condition for the dissipative currents, Eq. 39, requires
for the dissipative transport parameters ν > 0 and η̃ > 0,
while Eq. 40 is fulfilled automatically and does not pose any
restriction on the reactive reversible parameter μ.

In de Gennes (1975), eqs. (5.104) and (5.105), the current
- force relations are written as

�ij = 2μAij + νRij (43)

σ̃ij = 2ηAij + 2μRij (44)

where all three material parameters are classified as
viscosities. Equations 43 and 44 are compatible with Eqs. 41
and 42 for η = η̃ + 2μ2/ν. This comparison shows that
μ is a reactive parameter and not a viscosity, and η is an
oxymoron with dissipative (η̃) and reversible parts (μ).

Now, de Gennes puts the full expressions for �ij and σ̃ij

into the dissipation function R, Eq. 38, requiring R > 0.
By this procedure, he gets in his eq. (5.106) the positivity
conditions ν > 0, νη > 2μ2, and η > 0. These restrictions
are difficult to interpret physically, since the oxymoron
quantity η is involved. In terms of the physically relevant
parameters, the three conditions are translated into ν > 0,
η̃ > 0, and νη̃ > 2μ2, respectively. Compared to the
hydrodynamic treatment, the third condition is an additional
restriction in de Gennes’ description. As in the case of
ν3 > 0, Eq. 34, this condition would bound the value of the
reversible reactive parameter μ from above by the values of
dissipative ones, or vice versa, it would bound dissipative
parameters νη̃ by the value of a reactive one. As discussed
above, based on the Mori-Zwanzig formalism (Appendix B),
such a mixture of reversible reactive with irreversible
transport parameters is physically unsound. Again, the
continuum mechanics approach does not correctly describe
the positivity of dissipative processes in this case.

Similar couplings between flow and orientational order
can be found in macroscopic equations describing the
dynamics close to phase transitions have been derived on
the basis of linear irreversible thermodynamics for the
isotropic–superfluid phase transition in 3He (Liu 1975), the
uniaxial–biaxial phase transition in nematic liquid crystals
(Jacobsen and Swift 1982) and also the isotropic–uniaxial
nematic phase transition incorporating the effects of electric
fields and spatial inhomogeneities Brand (1986, 1986II).

Dynamic thermo-mechanical effects
in textured nematic liquid crystals

Hydrodynamics has been used to point out the existence
of reversible cross-couplings between flow and temperature
gradients (Brand and Pleiner 1987). They require the
existence of director textures and explicitly take the form

σR
ij = · · · + α

(σ)
ijklp(∇kT )(∇lnp) (45)

jσR
k = − α

(σ)
ijklp(∇ivj )(∇lnp) (46)

where the . . . mean the expression given in Eq. 82. In
addition, there are similar electro- and diffuso-mechanical
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effects replacing the temperature gradient by an electric
field or a concentration gradient, and the heat current by
the electric current or the concentration current, respectively
(Brand and Pleiner 1987).

The thermo-mechanical coupling contributions are
reversible, since the right-hand side of Eq. 45 is even under
time reversal, as is ġi , while the right-hand side of Eq. 46
is odd, as is σ̇ , cf. Eqs. 70 and 71 and the discussion after
(80). Therefore, they must give rise to zero entropy produc-
tion R ≡ 0, i.e., they must fulfill (81). Indeed, the opposite
sign in Eq. 45 compared to Eq. 46 just guarantees this.

We note that the structure of the terms implies that
the α tensors must contain an odd number of n. Under
this condition each αijklp tensor contains ten independent
coefficients

αijklp = α1(niδ
⊥
jkδ

⊥
lp + nj δ

⊥
ikδ

⊥
lp) + α2nkδ

⊥
ij δ

⊥
lp

+ α3(niδ
⊥
j lδ

⊥
kp + nj δ

⊥
il δ

⊥
kp) + α4nlδ

⊥
ij δ

⊥
kp

+ α5(niδ
⊥
jpδ⊥

kl + nj δ
⊥
ipδ⊥

kl) + α6ninjnlδ
⊥
kp

+ α7(nkδ
⊥
il δ

⊥
pj + nkδ

⊥
ipδ⊥

j l) + α8ninjnkδ
⊥
lp

+ α9nl(δ
⊥
ikδ

⊥
pj + δ⊥

ipδ⊥
jk)

+ α10nknl(δ
⊥
ipnj + δ⊥

jpni) (47)

Already in Akopyan and Zeldovich (1984) thermo-
mechanical effects in deformed nematics have been
suggested. Without invoking time reversal, they erroneously
assumed that those effects are dissipative and can be
derived from a dissipation function, cf. their eq. A4. Such
a “dissipation” function would have the form Rthm =
αijklpAij (∇kT )(∇lnp) and is given in the Appendix of
Hakobyan et al. (2004).

If one uses Rthm as a dissipation function and derives the
currents by partial differentiation (as would be the correct
procedure, if the currents were dissipative, Eqs. 89 and
90), one would get the same heat current as Eq. 46, but in
the stress tensor the α term would have the same sign as
in the heat current, in contrast to our description, Eq. 45.
This means the two approaches, Brand and Pleiner (1987)
and Akopyan and Zeldovich (1984) are not equal, but the
difference becomes manifest only, if both, the direct thermo-
mechanical effect in the heat current and the inverse effect
in the stress tensor are considered. The claim of Hakobyan
et al. (2004) that the two descriptions are equal, is wrong,
since they overlooked that our definition of the stress tensor
differs from theirs by a sign (in our case σD

ij = −∂R/∂Aij

while they use σR
ij = ∂Rthm/∂Aij ).

However, the discrepancy is much deeper. Since Aij (or
the velocity vi) is odd under time reversal, the functionRthm

is odd, and can never be used as a dissipation function. If
Rthm is positive for a given situation, it becomes negative,
when the velocities are reversed. Such a behavior would
grossly violate the second law of thermodynamics that

requires the entropy production to be non-negative. Indeed,
since the thermo-mechanical effects are reversible, their
entropy production is zero, and from a function that is zero
you can never derive currents by partial differentiation.

Thermodynamic forces and currents
in ferronematics and ferromagnetic
nematics

Ferronematics are suspensions of ferromagnetic particles
in a nematic liquid crystal without magnetic order
in equilibrium. If there is a finite magnetization in
equilibrium, they are called ferromagnetic nematics. We
restrict ourselves to the uniaxial case, where the director
and the magnetization are parallel in equilibrium. In the
following, the complex interplay of nematic, magnetic, and
flow dynamics will be discussed and we compare critically
the continuum mechanics approach by Raikher and
Stepanov (1996, 1999) with the hydrodynamic approach by
Jarkova et al. (2001, 2003).

The magnetization M is the additional degree of freedom
compared to ordinary nematic liquid crystals. The nematic
Gibbs relation (65) has to be generalized appropriately
(Jarkova et al. 2003)

dε = T dσ +μdρ+vidgi +HidBi +hM
i dMi +hn

i dni (48)

containing changes of the magnetization dMi , with hM
i , the

magnetic molecular field, as the conjugate thermodynamic
force. To accommodate external fields we have added
Bi , the magnetic flux density with its conjugate Hi , the
magnetic Maxwell field, and electrodynamics is neglected.

The hydrodynamic equations for the density of linear
momentum gi , the director ni and the magnetization Mi

read, cf. Eqs. 70 and 72

ġi + ∇j

(
vjgi + p δij + σ th

ij + σij

)
= 0 (49)

ṅi + vj∇j ni + (n × ω)i + Yi = 0 (50)

Ṁi + vj∇jMi + (M × ω)i + Xi = 0 (51)

with σ th
ij = −BjHi − 1

2

(
Mjh

M
i − Mih

M
j

)

− 1

2

(
njh

n
i − nih

n
j

)
+ �kj∇ink (52)

where ωi = 1
2εijk∇j vk is the vorticity. The thermodynamic

contribution to the stress tensor, σ th
ij , can be symmetrized by

a standard procedure (Martin et al. 1972).
The parts of the currents shown explicitly in Eqs. 49–

52 are reversible and material-independent and are given by
general symmetry and thermodynamic principles (Pleiner
and Brand 1996), like transformation behavior under
translations (convective terms) or rotations (co-rotational
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terms, ∼ ω) and by the requirement of zero entropy
production (R = 0).

The phenomenological currents in Eqs. 49–51, σij ,
Yi and Xi are split into dissipative (superscript D) and
reversible (superscript R) parts, like in Eq. 5. They are
obtained using the transformation behavior under spatial
inversion and time reversal of the quantities involved. Since
the magnetization Mi and the magnetic field hM

i are odd
under time reversal (in contrast to ni and hn

i ), but even
under spatial inversion, the reversible currents have the form
(Jarkova et al. 2003)

σR
ij = −1

2
λkjih

n
k − cR

kij (M)hM
k − νR

ijkl(M)Akl (53)

YR
i = −1

2
λijkAjk +

(
γ −1

)R

ij
(M)hn

j + χR
(
n×hM

)

i
(54)

XR
i = bR

ij (M)hM
j + χR

(
n × hn

)
i
− cR

ijk(M)Ajk (55)

with Aij = 1
2

(∇ivj + ∇j vi

)
and the nematic flow

alignment tensor λijk , Eq. 85 containing the flow alignment
parameter λ.

The reversible couplings between director and magneti-
zation provided by χR lead to zero entropy production due
to their tensorial structure, hn

i (n×hM)i +hM
i (n×hn)i = 0,

rather than due to different signs as in the case of Eq. 15.
The magnetization-dependent tensors (γ −1)Rij (M),

bR
ij (M), νR

ijkl(M), and cR
ijk(M) are all odd functions of the

magnetization. Throughout the rest of this section, we will
take into account only terms linear in the magnetization
Mi . The second rank tensors, i.e. the reversible analogues
of director relaxation (γ −1)Rij (M) in Eq. 54 and the mag-

netization relaxation bR
ij (M) in Eq. 55, are both of the

form

κR
ij (M) = κR

1 εijkMk + κR
2 εijknknpMp

+ κR
3

(
εipqMpnqnj − εjpqMpnqni

)
(56)

They are antisymmetric, κR
ij (M) = −κR

ji(M), according to

Onsager’s relation κR
ij (M) = κR

ji(−M) and give rise to zero
entropy production (Jarkova et al. 2001).

The third-rank tensor cR
ijk in Eqs. 53 and 55, describing

dynamic cross-couplings between flow and magnetization,
is symmetric in the last two indices and reads

cR
ijk(M) = cR

1 Minjnk + cR
2 (δijMk + δikMj )

+ cR
3 Miδjk + cR

4 niMpnpδjk

+ cR
5 (niMjnk + niMknj )

+ cR
6 niMpnpnjnk (57)

The fourth-rank tensor νR
ijkl(M) of Eq. 53, describing a self-

coupling between different components of the flow field,

is not needed here. Its explicit form is given by eq. B3 of
Jarkova et al. (2003).

The dissipative parts of the currents read

σD
ij = −νD

ijklAkl − λD
kij (M)hn

k − cD
kijh

M
k (58)

YD
i = 1

γ1
δ⊥
ij hn

j + χD
ij (M)hM

j + λD
ijk(M)Ajk (59)

XD
i = bD

ij hM
j + χD

ji (M)hn
j + cD

ijkAjk (60)

where 1/γ1 is associated with director relaxation or diffu-
sion, bD

ij is of the standard uniaxial form, bD
ij = bD⊥δ⊥

ij +
bD‖ ninj , describing the longitudinal and transverse relax-

ation of the magnetization, while cD
ijk = cD(εimknmnj +

εimjnmnk) provides a dissipative coupling between flow and
orientation of the magnetization.

The dissipative second rank tensor χD
ij in Eqs. 59 and 60,

coupling the director and the magnetization dynamics, has a
form different from that of the reversible ones (56), since it
has to contain an odd number of n’s,

χD
ij (M) = χD

1 δ⊥
ikMknj + χD

2 δ⊥
ij Mknk (61)

The third-rank tensor λD
ijk in Eqs. 58 and 59, the

dissipative analogue of the reversible flow alignment tensor,
is symmetric w.r.t. the last two indices and transverse to n

in the first index,

λD
ijk(M) = λD

1

(
δ⊥
iqεpjqMpnk + δ⊥

iqεpkqMpnj

)

+λD
2

(
δ⊥
ikMpεpjqnq + δ⊥

ij Mpεpkqnq

)

+λD
3

(
Mjεipknp + Mkεipjnp

)

+λD
4

(
Mqnqnj εipknp + Mqnqnkεipjnp

)

+λD
5 Mpεpiqnqnjnk + λD

6 Mpεpiqnqδ⊥
jk (62)

As a reference for the comparison following below, we
list the couplings of Eqs. 53-62 specific for ferronematics:

1: Dynamic reversible cross-coupling between director
and magnetization ∼ χR

2: Dynamic reversible cross-coupling between flow and
magnetization ∼ cR

kij

3: Dynamic reversible self-coupling of the director ∼
(γ −1)Rij

4: Dynamic reversible self-coupling of the magnetization
∼ bR

ij

5: Dynamic dissipative cross-coupling between director
and magnetization ∼ χD

ij

6: Dynamic dissipative cross-coupling between flow and
magnetization ∼ cD

kij

7: Dynamic dissipative cross-coupling between flow and
director ∼ λD

kij
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8: Dynamic dissipative self-coupling of the magnetization
∼ bD

ij

In the continuum mechanics approach of ferronematics
by Raikher and Stepanov (1996, 1999), the dynamics of
the nematic director field, Eq. 2 of Raikher and Stepanov
(1996), is given in our notation by

εijknj

(
Nk + γ2

γ1
Akl nl

)
− 1

γ1

(
n × hn

)
i
= 0 (63)

whereN = ṅ−ω×n. The rotational “viscosity” coefficients
γ1 and γ2 are as in the continuum mechanics approach
of uniaxial nematics and hn is the molecular field of the
director (de Gennes 1975).

For the dynamics of the magnetization, Raikher and
Stepanov suggest an equation of a very similar structure as
for the director

εijkmj

(
MRS

k + γ2ρ

γ1ρ
Akl ml

)
− 1

γ1ρ

(
m × hm

)
i
= Si (64)

where MRS = ṁ − ω × m, with the normalized
magnetization m = M/|M| and where S is a source term
arising from a surface energy that does not contain any
reversible or dissipative dynamic transport parameters.

Now, we are ready to compare the hydrodynamic
approach with the continuum mechanics approach by
Raikher and Stepanov. Equation 63 is the standard nematic
director equation in the continuum mechanics description.
It is shown in “Reversible dynamic coupling of flow to the
nematic director dynamics” that the γ1 is the same as in
Eq. 59, while γ2 is related to the flow alignment parameter λ

in Eq. 54 by γ2 = −λγ1. Since both Nk and Akl nl in Eq. 63
have the same time-reversal behavior (odd), it is obvious
that γ2 is a reversible reactive parameter.

In the magnetization dynamics, Eq. 64, γ1ρ corresponds
to the transverse magnetization relaxation 1/bD⊥ in Eq. 60,
while γ2ρ is related to cR

2 in Eq. 55 by γ2ρ = −2γ1ρcR
2 .

Since both, MRS
k and Akl ml in Eq. 64 are even under time

reversal, cR
2 is a reversible reactive parameter. All other

parameters contained in the cR
ijk tensor of Eq. 57 do not

show up in the continuum mechanics approach.
The two parameters γ1ρ and γ2ρ , respectively, correspond

to the points 8: and 2: in the list provided above. All
other couplings listed there, points 1: and 3: to 7: are
completely missing in the continuum mechanics approach.
Those couplings owe their existence to the fact that n and
m have opposite time-reversal behavior, demonstrating the
importance of this symmetry when setting up hydrodynamic
equations.

There is no expression for the stress tensor given by
Raikher and Stepanov. However, the flow couplings ∼ γ2
and ∼ γ2ρ require counter terms in the stress tensor in

order to guarantee zero entropy production, cf. Eq. 53. Even
if one disregards flow, the couplings number 3: to 5: are
still missing. This clearly contradicts the recent claim by
Boychuk et al. (2016), that the two approaches, namely,
the one by Raikher and Stepanov on the one hand and by
Jarkova et al. on the other would be equivalent without flow
field.

We point out that the couplings missing in the continuum
mechanics approach are important for the understanding of
recent magneto-optic experiments. A couple of years ago
uniaxial ferromagnetic nematics have been synthesised and
their physical properties have been characterised (Mertelj
et al. 2013, 2014; Sahoo et al. 2015). Very recently, it
has become clear experimentally and theoretically (Potisk
and et al. 2017, 2018) that dynamic cross-coupling terms
between the director and the magnetization of the type
discussed above (point 5:, ∼ χD

ij ), are crucial to explain the
experimental observations. It must be emphasized that for
the considered materials these couplings are far from being
just corrections – if they are missing, the dynamics takes a
qualitatively different path, one that is not observed in the
experiment. As has been shown by Potisk and et al (2017),
it is exactly the dissipative cross coupling χD

2 of Eq. 61
that is responsible for the observed, unusually fast magneto-
electric response. This result opens the door to applications
of these new ferromagnetic liquids in devices requiring
small electric and/or magnetic fields for controlling large
magneto-optic effects.

Summary

Using the hydrodynamic description, we have shown that
the behavior under time reversal plays an important role
for the macroscopic description of soft matter systems.
First, we discuss Lehmann-type effects in chiral liquid
crystals that have a nematic degree of freedom. We show
that the direct Lehmann effect, director rotations driven by
external fields perpendicular to the director, generally has
two origins. It arises due to a chiral dissipative dynamic
cross-coupling (together with achiral static susceptibilities)
as well as due a chiral static cross-coupling (together
with an achiral dissipative dynamic parameter), which are
sometimes called “dynamic” and “static” Lehmann effect,
respectively. In the continuum mechanics approaches, the
latter is missing and the Lehmann effect is erroneously
related to the reversible dynamics. The latter point is
crucial for the inverse Lehmann effect, where driven
director rotations lead to temperature, concentration, or
electric currents perpendicular to the director (heat, particle,
or charge transportation across the rotation plane). This
inverse Lehmann effect is governed by the same dissipative
dynamic cross-coupling parameter that is responsible for
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the direct “dynamic” Lehmann effect. In the continuum
mechanics approaches, the inverse Lehmann effect is
generally overlooked, although it is present in their
formulas. However, due to their assumption of reversibility,
it comes with the wrong sign. This difference to the
hydrodynamic description becomes manifest in recent
experiments that are able to measure the direct and the
inverse Lehmann effect for the same system.

Secondly, the flow alignment effect, the oblique orien-
tation of a director in a steady shear flow is described in
hydrodynamics by a reversible dynamic reactive parameter.
In continuum mechanics approaches, the effect is assumed
to be a dissipative one and, as a result, there is a positiv-
ity condition (common for irreversible transport parameters)
that contains a combination of reversible and irreversible
parameters. Such a restriction of a reversible parameter
by dissipative ones (and vice versa) is impossible, since
microscopically irreversible parameters are connected to the
non-instantaneous response and a reversible one (at least
partly) to the instantaneous response, and both cannot mix.
In the hydrodynamic picture, the positivity conditions only
apply to dissipative parameters, while the reversible one
is not restricted. This applies also to nematic fluctuations
above the isotropic to nematic phase transition and to sys-
tems with a preferred direction other than a director, e.g., a
magnetization.

Thirdly, we discuss thermo-mechanical (and electro-
mechanical) effects in textured nematic liquid crystals that
are of interest for engineering applications. These are cross-
couplings between flow and temperature gradients (and
electric fields) that are reversible according to their time-
reversal behavior. In the literature, it is claimed that such
effects are irreversible, an error that becomes manifest, if
both, the direct thermo-mechanical effect in the heat current
and the inverse effect in the stress tensor are measured.

Finally, we compare the hydrodynamic description
of ferronematics (and ferromagnetic nematics) with an
approach that uses Leslie-Ericksen-type equations for the
nematic as well as for the magnetic degree of freedom. This
continuum mechanics approach lacks many (reversible and
irreversible) dynamic cross-couplings among the nematic
and the magnetic aspects of those materials. These cross-
couplings are possible due to the different time-reversal
behavior of a director and a magnetization. They are
important as has been shown recently in magneto-optic
measurements (Potisk and et al 2017; 2018).
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Appendix A: Application to nematic liquid
crystals

For uniaxial nematic liquid crystals, a fluid system
with spontaneously broken continuous rotational symme-
try (Forster 1975), the hydrodynamic equations have been
derived in the framework of linear irreversible thermody-
namics (Forster et al. 1971). As additional hydrodynamic
variables compared to a simple fluid one has the rotation
of the director, ni , with n2i = 1 and the ni → −ni equiv-
alence, since one cannot distinguish between head and tail
in a nematic liquid crystal (quadrupolar orientational order).
In addition, we consider a concentration field c to allow for
mixtures and lyotropic systems and an electric polarization
via the electric displacement field Di .

The Gibbs relation (1) for uniaxial nematics reads

T dσ = dε − μdρ − ρμcdc − v · dg − h′
idni − φij d∇j ni

−EidDi (65)

or equivalently

T dσ = dε−μdρ −ρμcdc−v ·dg−hidni −EidDi (66)

where ε is the energy density, ρ the (mass) density, σ the
entropy density, and gi the density of linear momentum.
The thermodynamic forces (16) introduced by Eq. 66 are
chemical potential μ, osmotic pressure μc, temperature T ,
velocity vi , electric field Ei , and the molecular field of the
director

hi = δε

δni

= ∂ε

∂ni

− ∇j

∂ε

∂∇j ni

= h′
i − ∇jφij (67)

The variables and conjugates that are even under time
reversal are T , σ , ε, μ, ρ, c, μc, Di , Ei , hi and ni , while vi

and gi are odd.
For the dynamic equations (2), we have (for details cf.

Pleiner and Brand (1996))

ρ̇ + ∇igi = 0 (68)

ċ + vi∇ic + 1

ρ
∇ij

c
i = 0 (69)

ġi + ∇j (δijp + vigj + σ th
ij + σij ) = 0 (70)

σ̇ + ∇i (viσ ) + ∇ij
σ
i = 2R

T
(71)

ṅi + vj∇j ni + (n × ω)i + Yi = 0 (72)

ε̇ + ∇ivi(ε + p) + ∇ij
ε
i = 0 (73)

ρ̇e + ∇i (viρe) + ∇ij
e
i = 0 (74)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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with ρe and je
i the charge density and the electric current,

respectively, p = −ε + μρ + ρμcc + v · g the pressure,
ωi = (1/2)εijk∇j vk the vorticity, and where we have
made explicit the convective terms associated with the
hydrodynamic variables. The thermodynamic contribution
to the stress tensor, σ th

ij = φkj∇ink + (1/2)(nihj − njhi)

can be symmetrized by a standard procedure (Martin et al.
1972). In σ th

ij and in the pressure, there are some electric
field effects (Pleiner and Brand 1996), which are irrelevant
for the present purpose. The dissipation function R = 0 for
reversible processes and R > 0 for irreversible ones. There
is no need to write down an explicit dynamic equation for
the energy density, since it follows from the other dynamic
equations via the Gibbs relation. The mass current in Eq. 68
does not have an irreversible part, since it is the momentum
density gi = ρvi .

Splitting up the total currents into reversible (R) and
irreversible (D) parts like in Eq. 5

σij = σR
ij + σD

ij (75)

jσ = jσR + jσD (76)

j c = j cR + j c D (77)

j e = j eR + j e D (78)

j ε = j εR + j ε D (79)

Yi = YR
i + YD

i (80)

we get a definite time-reversal behavior for the currents,
since the reversible ones behave the same way as the time
derivative of the appropriate variable, while the dissipative
ones have the opposite time-reversal behavior. In particular
σR

ij , jσD
i , jcD

i , jeD
i and YD

i are even, while σD
ij , jσR

i , jcR
i ,

jeR
i and YR

i are odd.
First, we summarise the reversible part of the dynamics

following closely Forster et al. (1971) and Pleiner and Brand
(1996). Inserting all dynamic equations, that is Eqs. 68–74
into Eq. 66 leads to the conditions, which the reversible parts
of the currents and quasi-currents must satisfy to conserve
entropy. They are, requiring R ≡ 0

∇k

(
jεR
k − viσ

R
ik − �ikY

R
i − TjσR

i − jcR
i μc

)

= −jσR
i ∇iT − jcR

i ∇iμc − σR
ij ∇j vi

+ hiδ
⊥
ij Y

R
j + je R

i Ei (81)

Defining the energy current density jεR
i such that the total

divergence of the first line vanishes, the remaining condition
has the form of Eq. 7. Since there is no potential from
which reversible currents can be obtained, one has to look

for the most general expressions allowed by time reversal
symmetry according to Eq. 6 and by spatial symmetry

σR
ij = −1

2
λkjihk (82)

YR
i = −1

2
λijk∇j vk (83)

jσR
i = 0 = jc R

i = je R
i (84)

with λijk = λ
(
δ⊥
ij nk + δ⊥

iknj

)
(85)

containing the flow alignment parameter λ, a reversible
reactive parameter, whose sign is not fixed and whose value
is not bounded. The reversible cross-coupling in Eqs. 82
and 83 comes with the same (symmetric) sign, since here
we deal with the cross-coupling between a conserved and a
non-conserved variable, contrary to the antisymmetric case
of Eq. 15. In addition, the sequence of the indices of the
coupling tensor in the two equations is different indicating
the connection of thermodynamic conditions and spatial
structures in anisotropic systems.

In the presence of director textures there are, additionally,
reversible cross-couplings between flow and temperature
gradient, concentration gradients and electric fields, which
are discussed in “Dynamic thermo-mechanical effects in
textured nematic liquid crystals” section.

For the dissipative nematic currents we proceed along
the same lines as above for the reversible currents. The
general positivity condition (8) according to the second law
of thermodynamics leads for the dissipation function to

0 < 2Rn = −jσ D
i ∇iT − jcD

i ∇iμc + jeD
i Ei

− σD
ij ∇j vi + hiδ

⊥
ij YD

j (86)

and for the dissipative energy current we obtain

jεD
i = TjσD

i + vjσ
D
ji + μcj

cD
i + �ijY

D
j (87)

We also note that for the solution of boundary value
problems for liquid crystals one uses specific boundary
conditions such as planar, homeotropic or hybrid (planar on
one bounding plate and homeotropic on the other) for the
nematic director at top and bottom plate of a typical sample
(compare, for example (de Gennes 1975; Rey 2010)).

To obtain the dissipative parts of the currents one can start
with the dissipation function R as a bilinear function of the
forces. Taking into account the time-reversal symmetries of
the forces (and of R) one gets

Rn = 1

2γ1
hiδ

⊥
ij hj + 1

2
νijkl(∇j vi)(∇lvk)

+1

2
κij (∇iT )(∇j T ) + 1

2
Dij (∇iμc)(∇jμc)

+DT
ij (∇iT )(∇jμc) + 1

2
�E

ij EiEj

+DE
ijEi∇jμc + κE

ij Ei∇iT (88)
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where the tensors associated with heat conductivity, κij ,
diffusion Dij , electric conductivity �E

ij , thermoelectricity

κE
ij , thermal diffusion DT

ij , and the concentration-electric

tensor DE
ij are of the usual uniaxial form, e.g. κij =

κ⊥δ⊥
ij +κ‖ninj , while the viscosity tensor νijkl contains five

independent viscous coefficients (Mason 1958), and there
is only one rotational viscosity γ1. Positivity of the entropy
production leads to the requirement that γ1, κ⊥, κ‖, D‖, D⊥,
�E‖ and �E⊥ are all positive with corresponding additional
requirements on the five viscous coefficients (compare, for
example, the monograph of Forster (1975) or the Appendix
of Pleiner and Brand (1996)).

The dissipative currents and quasi-currents are then
obtained by taking functional derivatives of the dissipation
function with respect to the forces

− σD
ij = ∂R

∂∇j vi

= νijkl∇kvl (89)

−jσD
i = ∂R

∂∇iT
= κij∇j T + DT

ij∇jμc + κE
ij Ei (90)

−jc D
i = ∂R

∂∇iμc

= Dij∇jμc + DT
ij∇j T + DE

ijEi (91)

je D
i = ∂R

∂Ei

= �E
ij Ej + DE

ij∇jμc + κE
ij ∇j T (92)

YD
i = ∂R

∂hi

= 1

γ1
δ⊥
ij hj . (93)

The hydrodynamic description of nematic liquid crystals
is completed by providing an energy functional, ε, that
leads to the static relations between the variables and
the conjugates. In the nematic case, ε is a sum of the
isotropic liquid expression and the Frank gradient energy,
including electric field effects. The former contains the
scalar susceptibilities, specific heat, compressibility and
thermal expansion etc., while the latter shows the three
Frank constants K1,2,3 describing splay, bend, and twist
deformations of the director field and flexoelectricity. In
addition, it contains the dielectric term and the effects of the
concentration field c.

We close this review-type section by mentioning a
qualitative difference in the viscous behavior between
nematic and cholesteric liquid crystals. For nematics, one
has the three so-called Miesowicz viscosities (Miesowicz
1935, 1946) related to the three configurations under
shear flow measured for a strong aligning magnetic or
electric field for the director (de Gennes 1975): ηc for the
director parallel to the velocity gradient direction, ηb for
the director aligned in the velocity direction and ηa for
the director aligned in the vorticity direction. For usual
rod-like nematics, one typically finds the inequalities (de
Gennes 1975; Beens and de Jeu 1983) ηb < ηa < ηc. As
has been elucidated in (Rey 2000), this situation changes
qualitatively by considering cholesteric liquid crystals in

the small frequency limit for aligned helical axis. Denoting
the viscosity for the case of the helix oriented along the
flow direction by ηf , for the helical axis oriented along the
gradient direction of the velocity field by ηg and for the
helix along the vorticity direction by ηv , one obtains in the
low frequency limit (Rey 2000) the inequalities ηg < ηv <

ηf .

Appendix B: Instantaneous versus
non-instantaneous contributions
to reversible currents

In the bulk part of this paper, we have focused on the
phenomenological, symmetry-based analysis of reversible
and irreversible currents. Here, we make use of a
statistical mechanics approach pioneered by Forster (1974,
1974II, 1975) applying the Mori-Zwanzig formalism in
the hydrodynamic regime. The Mori-Zwanzig projector
formalism (Zwanzig 1960, 1961; Mori 1965) leads to
dynamic equations for the correlation functions of the
variables of choice by projecting out all irrelevant variables.
By construction, this approach has automatically built-in
linear irreversible thermodynamics (Forster 1975).

We summarise here very briefly the main results and refer
for the details of the derivation as well as for the application
to many different physical systems to the monograph
of Forster (1975). The central object is the matrix of
Kubo functions, Ckj (z), defined as Laplace-transformed,
equilibrium-averaged correlation functions

Cij (z) =
〈
Ai

∣∣∣∣
i

z − L

∣∣∣∣ Aj

〉
(94)

where L is the Liouville operator and
〈
Ai |Bj

〉
is the scalar

product of the set of variables Ai and Bj in the proper
Hilbert space. The main result is the complex dynamic
matrix equation

[zδik − �ik + i�ik]Ckj (z) = iβ−1χij (95)

with β−1 = kBT . The matrix of static correlation functions,
χij = β〈Ai |Aj 〉 acts as the source term in Eq. 95. The
matrix �ij ≡ ωikχ

−1
kj is related to the frequency matrix ωij

that describes the instantaneous response ωij = iβ〈 .
Ai |Aj 〉.

Finally, �ij (z) ≡ σm
ik (z)χ−1

kj is related to the memory
matrix σm

ij (z) that describes the non-instantaneous response

σm
ij (z) = β

〈
.

Ai

∣∣∣∣ Q
i

z − QLQ
Q

∣∣∣∣
.

Aj

〉
(96)

Here, the projection onto the relevant variables is manifest
by Q ≡ 1 − P , the complement of the projector operator

P = |Ai〉 β χ−1
ij 〈Aj | (97)

which is at the heart of this method.
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The main result (95) can be applied and compared to
linear hydrodynamics (Forster 1975). The matrix of static
susceptibilities χij gives the static susceptibilities, e.g., the
compressibility, specific heat, and thermal expansion, but
also the superfluid density (for quantum fluids) and the
Frank elastic constants (for nematic liquid crystals).

The frequency matrix ωij comprises the instantaneous
response as the expectation value of an equal time com-
mutator (quantum mechanically) or a Poisson bracket (clas-
sically) and contains only reversible effects, in particular,
dynamic reactive parameters.

The memory matrix σm
ij contains all dissipative transport

parameters, like heat conductivity, shear and bulk viscosity,
and (in liquid crystals) the nematic orientational viscosity.
However, even in the hydrodynamic regime, the memory
matrix can contain not only dissipative contributions, but
also reversible ones. The first system for which this was
found to be the case were uniaxial nematic liquid crystals
(Forster 1974, 1974II, 1975), namely, for the flow alignment
coefficient, λ, Eq. 85. Therefore, λ has two contributions, an
instantaneous one from the real part of the frequency matrix
ωij , and a non-instantaneous one from the imaginary part
of the memory matrix σm

ij . The antisymmetry of the latter

part is sometimes called Casimir relation (Öttinger 2014).
Nevertheless, λ is a reversible, reactive parameter describing
macroscopic reversible effects.

The situation is somewhat similar for the reversible
coefficient χR describing the coupling between director
and magnetization in Eqs. 54 and 55: it has a reversible
contribution from the memory matrix, i.e., there is a Casimir
contribution. In the case of χR , both contributions (∼ ωij

and ∼ σm
ij ) do not vanish in the long wavelength limit.

Later this phenomenon was found also for superfluid
3He-A (Brand et al. 1979), superfluid 3He-A in high
magnetic fields (Brand and Pleiner 1981II), superfluid 3P2

neutron star matter (Brand and Pleiner 1981III), superfluid
3He-A1 (Brand and Pleiner 1981II), in superfluid 3He-B
in high magnetic fields (Pleiner and Brand 1983), as well
as in biaxial nematics (Brand and Pleiner 1981, 1982; Liu
1981) and in smectic C (Brand and Pleiner 1982III). It also
arises for polar nematics (Brand et al. 2006) and in hexatic
F and I phases (Pleiner 1984), as well as in the tetrahedral
phases with preferred directions, D2d, D2, and S4 (Pleiner
and Brand 2014, 2016).

The characteristic feature of all these hydrodynamic
cases having reversible contributions from the memory
matrix is that they either involve broken rotational
symmetry in real space associated with angular momentum
density as the generator of the broken rotational symmetry
or, alternatively, the total angular momentum �J = �L + �S
with the spin �S as it is the case for superfluid 3P2 neutron
star matter (Brand H and Pleiner H 1981III).

The importance of this statistical mechanics approach
in terms of correlation functions for linear hydrodynamics
lies in the possibility to relate atomistic or coarse-grained
numerical simulation data to the values of the hydrodynamic
parameters. In the present context, however, we use this
approach to argue in the “Reversible dynamic coupling of
flow to the nematic director dynamics” that restrictive
conditions such as inequalities between reversible and
irreversible dynamic parameters cannot occur, due to their
physically different origins.

For a long time, it is known (Forster et al. 1971;
Forster 1974, 1974II, 1975) that the hydrodynamics of
nematic liquid crystals has got a dynamic reversible
“reactive” parameter, the flow alignment parameter, whose
value depends on the material and is not fixed by
invariance principles. The dynamics governed by this
reversible reactive parameter does not generate entropy. For
example, the homogeneous rotation of the director during
the transient flow-aligning process does not contribute to
dissipation, and neither does tumbling. Such reversible
cross-coupling terms (between flow and the rotation of a
preferred direction) leading to vanishing entropy production
have also been found to arise for other systems, including
smectic C (Martin et al. 1972), biaxial nematics (Brand
and Pleiner 1981; Liu 1981), and several of the superfluid
phases of 3He (Brand et al. 1979; Brand and Pleiner 1981II,
1981III, 1982II; Pleiner and Brand 1983).

We close this Appendix by pointing out that the
approaches using exclusively Poisson brackets, such as for
example the investigations of Dzyaloshinskii and Volovick
(1980) and by Edwards and Beris (Edwards and Beris
1998), do not contain reversible contributions from the
memory matrix, since they focus exclusively on the
instantaneous response.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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