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There is increasing evidence from string theory that effective field theories are only

reliable over approximately sub-Planckian field excursions. The two most promising

effective models for early universe cosmology, inflation and ekpyrosis, are mecha-

nisms that, in order to address cosmological puzzles, must operate over vast expan-

sion/energy ranges. This suggests that it might be appropriate to describe them

using scaling laws. Here we combine these two ideas and demonstrate that they

drive inflation and ekpyrosis to their extremes: inflation must start at ultra-slow-

roll, and ekpyrosis at ultra-fast-roll. At face value, the implied spectra are overly

tilted to the red, although in both cases minor departures from pure scale freedom

bring the spectral indices within current observational bounds. These models predict

a significant spectral running at a level detectable in the near future (αs ≈ −10−3).

Ekpyrotic models with minimal coupling are nevertheless ruled out, as they lead to

levels of non-Gaussianity that are at least an order of magnitude too large. No such

restrictions apply to models with a kinetic coupling between the two ekpyrotic scalar

fields, and these remain the most promising ekpyrotic models.

An additional swampland criterion that was recently proposed for the slope of the

scalar field potential would however rule out all ultra-slow-roll models of inflation.

Finally, we speculate on the existence of corresponding restrictions on the slope

at negative potential values, which might lead to similarly severe constraints on

ekpyrotic models.
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I. INTRODUCTION

For a long time, cosmological model building rested on the premise that essentially any

4-dimensional effective field theory provided a justified starting point. But there is now

increasing evidence that there may exist strong restrictions on what kind of effective theory

is allowed in quantum gravity, or at the very least in string theory. This is a highly welcome

development, as it implies that string theory finally puts restrictions on 4-dimensional, low-

energy properties of the world. There is thus a shift of perspective from an “anything-goes”

attitude to Vafa’s swampland [1, 2] with its surprising connections between gravity and

particle physics for consistent low-energy theories. For example, the weak gravity conjecture

has been used to derive a connection between the scale of dark energy and the Higgs and

neutrino masses [3]. For cosmology, two principles are especially relevant: the field excursion

bound [4], and the newly proposed slope bound [5–7] – see also [8–12] for further studies of

these bounds.

In the present paper, these principles will be applied to inflation and ekpyrosis, in com-

bination with the hydrodynamical approach introduced by Mukhanov [13] and developed

by Ijjas, Steinhardt and Loeb [14]. More specifically, we will take the attitude that since
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inflation has to work over an enormous range of scale factor values, and since ekpyrosis

has to work over an equally enormous range of energy scales, it is natural to assume that

they must operate according to scaling laws. Putting these physical principles together, i.e.

imposing a small field range and adopting a description in terms of scaling laws, implies

surprisingly strong constraints on early universe cosmological models. In the inflationary

context, such an approach was already considered in [15] while our results regarding ekpy-

rosis are new. For completeness the inflationary calculation will however also be reviewed

below. In all cases we assume the best case scenario in terms of initial conditions, i.e. we

will assume that the scalar field will start at rest and with a spatially uniform distribution

at the desired location of the scalar field potential. The fundamental origin of such initial

conditions remains elusive to date [16], and will ultimately require a convincing explanation,

but this will not be the topic of the present work.

Our setting will be ordinary general relativity minimally coupled to a scalar field φ with

a potential V (φ), so that the action is given by

S =
1

2

∫
d4x
√
−g
[
R− (∂φ)2 − 2V (φ)

]
, (1)

where we use reduced Planck units, 8πG = 1. In a flat Robertson-Walker background ds2 =

−dt2 +a2(t)dx2, and assuming the scalar depends only on time, the constraint and equations

of motion are given by

3H2 = ρ , (2)

Ḣ = −1

2
(ρ+ p) , (3)

ρ̇+ 3H(ρ+ p) = 0 , (4)

where the expansion rate is denoted by H = ȧ/a, and where the energy density ρ and the

pressure p are given by

ρ =
1

2
φ̇2 + V (φ) , p =

1

2
φ̇2 − V (φ) . (5)
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A highly useful quantity is the slow-roll/fast-roll parameter

ε =
3

2

(
1 +

p

ρ

)
, (6)

which has a simple dependence on the equation of state p/ρ. Inflation occurs when H > 0

and ε < 1, since these conditions are equivalent to demanding accelerated expansion. By

contrast, an ekpyrotic phase is defined as corresponding to contraction (H < 0) with ε > 3,

with the latter condition ensuring that the ekpyrotic field’s energy density (∝ a−2ε) grows

faster than that contained in small anisotropies of the metric (∝ a−6). We will discuss both

theories in turn, starting with a review of results on inflation [13–15, 17].

II. INFLATION

The duration of inflation can be characterised by looking at the number of e-folds N of

expansion that occur before the end of inflation,

dN ≡ −d ln(a) , (7)

where the end of inflation is reached when the slow-roll parameter ε reaches the value 1. As

a consequence, a scale-free description of inflation is achieved by considering the scaling law

[14]

εi =
1

(N + 1)γi
, (8)

where γi is a parameter and the superscript i will be reserved for inflationary quantities.

In realistic models, N would then run from a value of at least about 60 (depending on the

details of reheating) down to 0, where the inflationary phase would end. In order to derive

the associated field range, one may make use of the many re-writings of the slow-roll/fast-roll

parameter defined in Eq. (6), which can equivalently be defined or expressed as

ε ≡ d ln(H)

dN
= − Ḣ

H2
=

1

2

d ln(ρ)

dN
. (9)



5

These relations allow one to find a relation between the field and the number of e-folds,

dφ

dN
= −
√

2ε , (10)

which one can integrate to find the inflationary field range ∆φi (when γ 6= 2)

∆φi =
2
√

2

γ − 2

[
(∆N + 1)

2−γ
γ − 1

]
. (11)

Note that had we treated the slow-roll parameter as constant (which we refer to as the

“naive” case, since it does not take into account the fact that inflation must come to an

end), this expression would have simplified to

∆φinaive =
√

2ε∆N . (12)

We are now in a position to determine the consequences of imposing a bound on the total

field excursion – in particular we will impose that the field range should be at most ∆φi = 1

in reduced Planck units. The expressions for the field ranges (11) and (12) then imply that

the parameter γi must be larger than a lower bound that we call γimin and which for the two

cases of constant and scaling ε is given by

γimin,naive = 2.1 → εi = 1.8× 10−4 , (13)

γimin,scaling = 4.8 → εi60 = 2.7× 10−9 . (14)

We can see that for constant ε the required value is already very small. However, in the

physically more appealing case of scale-free ε, inflation is required to start out at ultra-

slow-roll values of εi60 / 10−9. In other words, the implied scalar potential would start out

being ultra-flat, and it would gradually steepen until the end of inflation is reached. Here

the notation εi60 refers to the value of the slow-roll parameter at N = 60, i.e. at about the

time when the currently observable fluctuations are amplified. This brings us to the topic of

fluctuations and observational consequences of these models. Standard calculations [18–21]

show that the spectral tilt ns of the scalar density fluctuations, its running αs (i.e. the

change of the spectral index with frequency k, more explicitly αs = dns
d ln(k)

≈ −dns
dN

at Hubble
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crossing k = aH) and the tensor-to-scalar ratio r are given by

ns = 1− 2

(N + 1)γ
− γ

N + 1
, (15)

αs = − 2γ

(N + 1)γ+1
− γ

(N + 1)2
, (16)

r = 16ε . (17)

In the present case we then obtain the predictions

nis,naive = 0.97 nis,scaling = 0.92 , (18)

αis,naive = −5.8× 10−4 αis,scaling = −1.3× 10−3 , (19)

rinaive = 0.003 riscaling = 4.3× 10−8 . (20)

Note that the naive tilt is spot-on regarding current observational bounds (as we will discuss

in more detail below). Also, the running is small, which is unsurprising since we have a

constant equation of state, and the level at which gravitational waves would be expected is

again small, but within reach of near-future experiments. But such models with constant

equation of state fail to take into account that inflation must come to an end. If we want

this evolution to be smooth, rather than abrupt, the scaling model is a natural candidate

to look at. Interestingly, it predicts a tilt that is very red. Moreover, this model leads to

a significant running, which again is intuitively clear as the equation of state is changing.

Finally, the fact that at 60 e-folds from the end the equation of state must be absolutely tiny

implies that the strength of long-wavelength primordial gravitational waves is truly tiny, at

a level that is essentially undetectable. Below we will discuss the comparison to observations

in more detail – for now, the main lesson is that the combination of demanding a small field

range and a scaling law imposes highly non-trivial constraints on inflationary models, with

interesting consequences regarding observational signatures. We can now compare this with

ekpyrosis.
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III. EKPYROSIS

In ekpyrosis, the standard cosmological puzzles (regarding flatness, causality and inho-

mogeneities) are addressed during a contracting phase taking place prior to the current

expanding phase [22, 23]. In these models, the change from contraction to expansion is

typically envisioned to occur via a cosmological bounce, for which many models are being

explored [24–32]. For us, the most important aspect of these bounces is that they occur

on small (microphysical) scales, and that we may thus expect that they will not signifi-

cantly alter the properties of long-wavelength perturbations seen in the CMB sky. Concrete

calculations support this point of view, see e.g. [33]. But first we should discuss the back-

ground evolution. During an ekpyrotic phase the universe slowly contracts according to

a(t) ∼ (−t)1/ε, with ε > 3. In contrast to inflation, the requirement on ε does not come from

demanding a solution to the flatness problem, as in a contracting universe the relative energy

density of homogeneous curvature (which scales as 1/a2) naturally becomes subdominant

in any case. In other words, a contracting universe does not have a flatness problem in

the usual sense. However, small anisotropies in the metric (which in an expanding universe

quickly decay away) grow rather fast during a contraction phase, as they scale as a−6. In or-

der for the universe not to become dominated by anisotropies, which would entail a complete

loss of predictivity, one demands that the ekpyrotic matter (scaling as a−2ε) becomes more

dominant than anisotropies, i.e. one demands that ε > 3. The length of such an ekpyrotic

phase is then usefully characterised by the change in aH, and we will define the number of

e-folds N of ekpyrosis left before the end via the relation

dN ≡ −d ln(aH) . (21)

Thus the change in aH is related to the change in the scale factor alone via

dN = (ε− 1)dN . (22)

Ekpyrosis is a mechanism that must operate over a vast range of energy scales in order to

enhance flatness/isotropy and to produce cosmological perturbations on the relevant scales,

and in analogy with inflation we will consider the equation of state (fast-roll parameter) to
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evolve according to the power law [14]

εe = 3(N + 1)γ
e

, (23)

which ensures that the ekpyrotic phase comes to an end when N reaches zero. The su-

perscript e will be reserved for ekpyrotic quantities. Using Eq. (22), we can then find an

expression for the infinitesimal field range,

dφ

dN
= −

√
2ε

ε− 1
, (24)

which can be integrated to yield the total ekpyrotic field excursion

∆φe = −
√

6

∫ 0

∆N

(N + 1)γ/2

3(N + 1)γ − 1
dN . (25)

If we had assumed a constant equation of state, which we again refer to as the “naive”

model, we would have obtained the simpler expression

∆φenaive =

√
2ε

ε− 1
∆N . (26)

We can now explore the consequences of imposing the field range bound ∆φe ≤ 1 on ekpyrotic

models. This bound implies a minimum value of the parameter γe, which for the cases of

constant and scaling equation of state translates into the values

γemin,naive = 1.9→ εe = 7400 , (27)

γemin,scaling = 3.7→ εe60 = 1.2× 107 . (28)

As we can see, for the constant equation of state case the fast-roll parameter already has to be

very high, and in the scaling case we must start out at ultra-fast-roll in order to stay within

the specified field range. Hence here also the cosmological dynamics is driven to its extreme,

and the field range bound is just as constraining for ekpyrotic models as it is for inflationary

ones. In the scaling case, 60 e-folds before the end of ekpyrosis the fast-roll parameter has to

be more than a million times larger than the minimum value required for ekpyrosis. What

consequences does this have for observational predictions? Here the situation in ekpyrosis is
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slightly different than that in inflation, as the ekpyrotic scalar itself does not lead to long-

wavelength classical density fluctuations [34]. Rather, ekpyrotic models produce structure

by having a second field whose perturbations get enhanced. These entropy perturbations

must subsequently be converted into curvature perturbations, typically after the end of the

ekpyrotic phase. Thus the formation of structure is somewhat more dissociated from the

background evolution – nevertheless, we may demand equally simple scaling behaviour in

this sector.

There are two main classes of models: those with minimally coupled scalar fields [35–

37] and those with non-minimal coupling [38–40]. In the first instance, the scalar potential

must be significantly curved in the field direction perpendicular to the ekpyrotic background

trajectory, while the second class of models can operate with a flat transverse potential. For

models with minimal coupling, the action contains a second scalar field χ and the total

scalar potential is assumed to be of the form [41, 42]

V (φ, χ) = V (φ, 0)

[
1 +

κ2

2

V,φφ
V (φ, 0)

χ2 +
κ3

3!
ε3/2χ3 +

κ4

4!
ε2χ4 + · · ·

]
(29)

where κ2 = ε
εχ

is the ratio between the equations of state associated with the two scalars,

and which we will assume to be close to unity. The normalisation of the higher order

κ3,4 coefficients is such that one would expect them to be O(1) quantities in general [43].

At the level of linear perturbation theory these models yield the observational predictions

[14, 37, 41, 44–46]

ns = 1− 2

3(N + 1)γ
− γ

N + 1
+

4

3
(1− κ2) , (30)

αs = − 2γ

3(N + 1)γ+1
− γ

(N + 1)2
, (31)

r = rmin , (32)

where we assumed that κ2,N ≈ 0. For the naive and the scaling equations of state, assuming

exact scale freedom κ2 = 1, one thus obtains the respective predictions

nes,naive = 0.97 nes,scaling = 0.94 , (33)

αes,naive = −5.0× 10−4 αes,scaling = −1.0× 10−3 , (34)
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renaive = rmin rescaling = rmin . (35)

Again, we find that the spectral tilt is spot-on for the naive model, while the scaling model

is redder, though not quite as red as for the inflationary scaling model. The running of the

spectral index is significant, especially for the scaling model. Moreover, a general feature

of ekpyrosis is that gravitational waves are not produced at linear order, since the universe

slowly contracts during ekpyrosis, and gravitational waves are only sensitive to the evolution

(here almost a non-evolution) of the scale factor. However, at second order in perturbation

theory, the scalar fluctuations act as a source for gravitational waves, and this minimal signal,

which however has frequency-dependent features [46], is the only primordial gravitational

wave signal produced in these models – this is why we state the tensor-to-scalar ratio as

rmin. (We note in passing that more involved models might generate gravitational waves due

to couplings to additional fields, see e.g. [47, 48].)

The models with non-minimal kinetic coupling assume an action of the form [38–40]

S =
1

2

∫
d4x
√
−g
[
R− (∂φ)2 − Ω2(φ)(∂χ)2 − 2V (φ)

]
, (36)

where the non-minimal coupling Ω(φ) plays the role of an effective equation of state for the

scalar χ, which remains frozen at background level during the ekpyrotic phase. At large N ,

we may approximate the ekpyrotic potential by V (φ) ≈ −V0e
−
√

2εφ for a constant V0, and

the coupling function by Ω2(φ) ≈ e−
√

2κ2εφ. One then obtains the observational predictions

[38, 39, 44, 49]

ns = 1 + 2(1−
√
κ2)− 7γ

3(N + 1)
, (37)

αs = − 7γ

3(N + 1)2
, (38)

r = rmin . (39)

For the naive and the scaling equations of state, assuming again κ2 = 1, one thus obtains

the respective predictions

nes,naive = 0.93 nes,scaling = 0.86 , (40)
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αes,naive = −1.2× 10−3 αes,scaling = −2.3× 10−3 , (41)

renaive = rmin rescaling = rmin . (42)

The scalar tilt comes out as very red, and with a significant running in both cases.

IV. COMPARISON TO OBSERVATIONS AND SMALL DEFORMATIONS

We can now compare our models to current observational bounds in a little more detail.

Measurements of the cosmic microwave background by the Planck satellite yield the following

observed parameters (stated at one sigma accuracy, except for the upper bound on the

tensor-to-scalar ratio) [50, 51]:

ns = 0.968± 0.006 , (43)

r < 0.07 (95%C.L.) , (44)

αs = −0.003± 0.007 . (45)

The most obvious feature of the small-field scale-free models described above is that they all

predict a tilt that is too red! This discrepancy can however be remedied by allowing small

deviations from exactly scale-free power law relations. For instance, for inflation we may

consider models where the slow-roll parameter evolves according to [13, 14]

εi =
δ

(N + 1)γi
, (46)

where we have allowed for an overall coefficient δ. This changes the field range to

∆φi =
2
√

2

γ − 2
δ
[
(N + 1)

2−γ
γ − 1

]
, (47)

while observational parameters are modified according to

ns = 1− 2δ

(N + 1)γ
− γ

N + 1
, (48)

αs = − 2γδ

(N + 1)γ+1
− γ

(N + 1)2
, (49)
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r = 16ε . (50)

We can then lower the value of γi in order to obtain a spectral index that is not quite

as red, while simultaneously choosing δ small enough that the field range bound is still

satisfied. The most favourable case is obtained by the combination γi = 2.4, δ = 0.25, which

corresponds to εi60 = 1.3 × 10−5. This brings the tilt to within one sigma of the observed

value and leads to the “predictions”

ns = 0.96, αs = −6.5× 10−4, r = 2.1× 10−4 . (51)

The running is then again smaller, while the tensor-to-scalar ratio is increased, though still

quite small in terms of expectations for a near future detection.

Similarly, in the minimally coupled ekpyrotic case we could consider

εe = 3δ(N + 1)γ (52)

This would modify the field range to

∆φe = −
√

6δ

∫
(N + 1)γ/2

3δ(N + 1)γ − 1
dN , (53)

while the observational parameters are changed to

ns = 1− 2

3δ(N + 1)γ
− γ

N + 1
, (54)

αs = − 2γ

3δ(N + 1)γ+1
− γ

(N + 1)2
. (55)

Here the combination γe = 2.4, δ = 5.3 is optimal, in that it leads to

ns = 0.96, αs = −6.5× 10−4, εe60 = 3.1× 105 . (56)

For ekpyrotic models with non-minimal kinetic coupling, we may exploit the freedom in

the coupling function to obtain a spectral index in accord with observational bounds, while

maintaining the exact scale-free evolution for the background. For instance, if we choose a

constant ratio between the equations of state implied by the potential and coupling function,
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in particular κ2 = 0.90, we obtain

ns = 0.96, αs = −2.3× 10−3, εe60 = 1.2× 107 . (57)

In this case only the spectral index is changed, while the expectation remains for the running

to be substantial.

So far we have focussed on linear perturbations, but interesting additional constraints

arise when considering corrections to a Gaussian distribution of perturbations, especially for

ekpyrotic models. Current observational bounds on local non-Gaussianity are [52]

fNL = 0.8± 5.0 , (58)

gNL = (7.9± 9.0)× 104 , (59)

where fNL is the local bispectrum parameter and gNL the local trispectrum parameter,

which govern the sizes of any quadratic and cubic corrections to the real space curvature

fluctuation on uniform density hypersurfaces ζ [53],

ζ = ζL +
3

5
ζ2
L +

9

25
ζ3
L . (60)

The inflationary models we were led to are all of an ultra-slow-roll type with very small values

of the slow-roll parameter during the time when observable fluctuations are amplified. This

immediately implies that these models have tiny self-interactions of the inflaton field, and

lead to absolutely tiny corrections to Gaussianity easily in agreement with the observational

bounds. By contrast, the ekpyrotic models are ultra-fast-roll, such that one may expect the

opposite situation, i.e. one expects the deviations from Gaussianity to be substantial. Here

again there is a big difference between the models with minimal coupling and those with a

non-minimal kinetic coupling. The minimally coupled models have a scalar potential of the

form (29), where κ3,4 are order 1 numbers that parameterise the skewness of the potential and

its quartic correction around the ekpyrotic background trajectory. These higher order terms

in the potential lead to non-Gaussian corrections to the entropy perturbation already during

the ekpyrotic phase [54], and during conversion from entropy to curvature fluctuations these

corrections get transferred to non-Gaussian features of the curvature perturbations [55, 56].
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By contrast, the non-minimally coupled models have a flat potential in the entropy direction

(by assumption), and thus they do not generate non-Gaussianity during the ekpyrotic phase

[49]. However, the conversion process itself is necessarily non-linear, and in and of itself it

induces a certain amount of non-Gaussianity that was determined by numerical studies in

[57, 58]. The predictions for both types of models can be summarised as follows

f eNL,minimal ∼ κ3

√
ε60 & κ3103 f eNL,kinetic ∼ ±5 (61)

geNL,minimal ∼ O(1)

(
κ2

3

80
+
κ4

60
− 19

60

)
ε60 & 106 geNL,kinetic ∼ −O(103) (62)

For minimally coupled models the bispectrum parameter fNL comes out as too large by two

orders of magnitude, unless κ3 is finely tuned to be small. One may imagine that a symmetry

might require the potential to be even in χ, and this would imply that κ3 = 0. However,

even in such a case, the trispectrum parameter is still very large, of order 105 or 106 at least,

because there is a term in gNL that depends purely on ε60 independently of the characteristics

of the potential. This is at least an order of magnitude larger than the observational bound,

and in fact this parameter is so large that according to (60) one may question the validity of

perturbation theory. Hence we conclude that ultra-fast-roll minimally coupled models are

in fact ruled out because of the large amount of non-Gaussianity that they produce. On the

other hand, the models with non-minimal kinetic coupling have predictions that fit well with

current observational bounds, though one would expect to observe a non-trivial bispectrum

parameter fNL in upcoming CMB experiments (or, alternatively, one may try to identify a

conversion mechanism that does not lead to large non-Gaussian corrections). Certainly, in

view of these bounds, the kinetically coupled ekpyrotic models remain the most promising

small-field models that can generate curvature perturbations in agreement with observations

during a contracting phase.

V. DISCUSSION

It is an interesting and highly welcome development that bounds that come from quantum

gravity impose significant restrictions on cosmological models. By imposing the field range

bound, i.e. the requirement that a scalar field should not change by more than one Planck

mass during the course of its evolution (as the effective theory that one uses would otherwise
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lose its validity), combined with the physical requirement of demanding a scale-free power

law evolution of the equation of state, one obtains severe restrictions on both inflationary

and ekpyrotic models. In all cases the dynamics is driven to rather extreme parameter

ranges, namely ultra-slow-roll for inflation and ultra-fast-roll for ekpyrosis. One striking

consequence of these bounds is that all such models end up predicting a tilt of the scalar

spectral index that is too red by many standard deviations to agree with observations. As

we saw, one is thus forced to give up exact scale freedom. By allowing for small deviations

from an exact scale-free power law, the spectral index can be brought into agreement with

observations, but at the expense of diluting some of the physical motivation for these models.

There are however other generic predictions, which are not significantly altered in the models

deviating slightly from scale freedom: in particular the spectral running in all models is at a

level of O(10−4) to O(10−3) and in all cases negative in sign, leading to a clear observational

signature that one can look for in upcoming CMB experiments. Meanwhile, the level of

predicted gravitational waves is very low, even in the inflationary case. This is certainly in

agreement with the current upper bounds, but unfortunately means that for these models

one would not expect a detection of primordial gravity waves any time soon. The biggest

discrepancy between the inflationary and ekpyrotic models remains at the level of non-

Gaussianity. Ultra-fast minimally coupled ekpyrotic models are in fact already ruled out by

current observational upper bounds, while models with non-minimal kinetic coupling lead

to interesting expectations regarding upcoming CMB observations.

We should note that the field range bound has further implications for ekpyrotic models.

As we discussed above, in ekpyrotic models entropy perturbations are generated first, and

these are then converted into curvature perturbations, either before or after a cosmological

bounce [59]. We applied the field range bound to the ekpyrotic phase alone. But the conver-

sion phase will require its own region in moduli space, and similarly for the bounce. In fact, in

the models considered so far conversion happens during a phase of kinetic domination, during

which the fields evolve according to φ(t) = − ln(±
√

3
2
t) + φ0, a(t) = a0(−t)1/3 with φ0, a0

being integration constants. This immediately implies that ∆φconversion = ln(
√

2
3
tbeg/tend)

where tbeg,end denote the beginning and end of the conversion phase. If the conversion phase

lasts for about one e-fold of evolution, implying tbeg/tend ≈ e3/2, then the field range is

∆φconversion ∼ O(1). Thus the conversion phase itself takes up about one Planck mass in

terms of field range. The picture that emerges is then that there might be different effective
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theories for the separate phases of ekpyrosis, conversion and bounce. From a fundamental

physics point of view this is certainly not unexpected, but it means that a precise descrip-

tion of ekpyrotic models in quantum gravity will entail an understanding of these different

effective theories, and of the transitions between them. We may thus still be quite a long

way away from a fundamental understanding of such models.

VI. COMMENTS ON THE SLOPE BOUND

In closing, it is interesting to also discuss a recent bound on the slope of scalar potentials

proposed in [5, 6] (and see also [7]), namely that at positive values of the potential the slope

must be at least as large as the potential value itself,

|∇V |
V

& O(1) , (V > 0) . (63)

This means that for positive potentials one would expect ε & O(1). Such a bound is con-

jectured from many examples of string compactifications and, if true, would have very sig-

nificant implications for cosmology. For example, it would immediately rule out all of the

ultra-slow-roll models considered in the present paper! However, it would not restrict ekpy-

rotic models, as these operate at negative values of the potential. More generally, such a

bound imposes strong restrictions on inflationary models, and it will be important to clarify

what the precise value of the O(1) minimum slope really is.

Such a bound would also have important ramifications for the global structure of space-

time, as it might render false-vacuum eternal inflation inoperative (as one could always roll

out of a local “minimum” and thus the necessary time-scale for Coleman-De Luccia type

tunneling [60] to occur would simply not be available), while slow-roll eternal inflation would

be pushed to extremely high values of the potential where one might not trust the theory

anymore.

One may wonder how one can see (on a more technical level) where the difficulty in

having a small slope at positive values of the potential could come from. The supergrav-

ity approximation to string theory offers some insights in this respect. In particular, in

4-dimensional models with minimal supersymmetry, the scalar fields are described by a

Kähler potential K(A,A?), which is a hermitian function of a complex scalar field A, and a
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superpotential W (A), which is a holomorphic function of A. The kinetic term is then given

by −K,AA?∂
µA∂µA

?, and the potential by the famous formula [61–63]

V = eK
[
K ,AA? [(∂A +K,A)W (A)][(∂A? +K,A?)W

?(A?)]− 3WW ?
]
. (64)

As a representative example, consider the Kähler potential K = −1
2
(A−A?)2. If one writes

the complex scalar in terms of two real scalars, A = 1√
2
(φ+ iχ), then this choice leads to a

canonically normalised kinetic term

−K,AA?∂
µA∂µA

? = −∂µA∂µA? = −1

2
(∂φ)2 − 1

2
(∂χ)2 . (65)

Meanwhile, with a simple choice for the superpotentialW = w0e
cA, where w0, c are constants,

one obtains the scalar potential (in the φ direction)

V (φ) = |w0|2(c2 − 3)e
√

2cφ . (66)

This form of the potential is both typical and suggestive: one can obtain a positive potential

for c2 > 3, which immediately implies that it will be too steep as it implies ε > 3, or one

can obtain a negative potential for c2 < 3, but this will then be too shallow for ekpyrosis

as ε < 3 (an ekpyrotic model embedded in supergravity has been constructed in [64] – this

model uses a much more elaborate form for the superpotential and results in ε only slightly

smaller than 3 and consequently involves a very large field range). One thus typically obtains

exactly the opposite of what would be required in both types of cosmological models. The

formula (64) for the potential illustrates the general behaviour: large derivatives cause the

first term in brackets to grow, thus raising the potential, while small derivatives render

the second, negative term more important. The preference is clearly for a positive steep

potential or a negative shallow one, and this is a source of tension for both inflationary and

ekpyrotic models (we note that a no-go theorem to that effect was recently exhibited in the

context of ten-dimensional type IIB supergravity in [65]). The goal then is to either find

counterexamples to these slope bounds, or to start thinking about cosmological models that

can fit all the bounds in a natural way and at the same time agree with observations of the

sky.
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