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Introduction

The achievement of plasma fusion is strongly related to the understanding of the non-linear

mechanisms by which the turbulence self-organizes in convective structures such as streamers

and zonal flows [1]. The latter are modulated by, and interactwith, a multitude of other struc-

tures, instabilities, waves and so on, regulating the energy transport properties in tokamak de-

vices. For example, the zonal flow presents an oscillation counterpart named geodesic acoustic

mode (GAM), that in the last decades received much attentionfor its potential role in the fusion

energy confinement. The GAM interacts with turbulence in an environment in which the plasma

shape and profile gradients strongly affect its properties.Temperature and density gradients in-

fluence the amplitude of GAMs by regulating the drive and the damping in a not completely

understood manner. Moreover, the non-uniform temperatureprofile can determine an evolution

of frequency of GAMs, affecting the properties of propagation of these structures [2].

Because of the complexity of these problems, the investigation of zonal flows, GAM dynam-

ics, etc... certainly requires new simulations and new experiments. However, in parallel, it is

crucial to develop and to apply new techniques and diagnostics able to capture and to distin-

guish the essential characteristics of specific mechanisms. For this purpose, in this work we

apply techniques derived in the field of optics to the GAM oscillations. In this new context, we

show that these theories represent a heuristic base for the description of many characteristics

of radial propagation and spreading of GAMs. The most attractive feature of these methods is

represented by their universality and intuitive applicability. Moreover, in many cases optical

techniques are the only possible approximation for calculating wave fields in the presence of

homogeneous and inhomogeneous media. In the following, we present and apply two different

optical methods able to describe the spreading of GAMs in terms of local inhomogeneous plane

waves. The adopted methods are the complex eikonal theory [3] and the paraxial WKB (pWKB)

approximation [4, 5]. Both of them present several advantages. The former is based on a set of

partial differential equations and in several cases gives adirect intuitive picture of the physical

dynamics of the phenomena. The latter method deals with a setof more simple ordinary differ-

ential equation and presents an important advantage from a computational point of view. These

methods have been previously applied to the problem of RF heating, current drive and plasma

diagnostics with microwave beams in fusion domain. Here, weapply them to GAM dynamics

and we demonstrate their efficacy by means of a comparison with gyrokinetic simulations.
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Model

In this work, we use the global gyrokinetic code ORB5 [6], whichnow includes all extensions

made in the NEMORB project [7]. The ORB5 code uses a Lagrangian formulation based on the

gyrokinetic Vlasov-Maxwell equations. The code solves thefull- f gyrokinetic Vlasov equation

for ions, using a particle-in-cellδ f method. Electrons are treated adiabatically, yet they can also

be treated drift-kinetically with ORB5. Energy and momentum conservations can be proved

via gyrokinetic field theory. To obtain the potentialΦ, the Vlasov equation must be coupled

to the quasi-neutrality condition. In the code, timet is normalized to the inverse of the ion

cyclotron frequencyΩi = eB0/mi at a specific radial position. The radial direction is normalized

to ρs =
√

kBTe,0mi/(eB0) in which Te,0 is the electron temperature, and the potential is given

in Φ0 = kBTe,0/e units. The quantityB0 is calculated in the axial radial position, andTe,0 is

calculated in the middle of the radial domain. The thermal ion Larmor radius is defined as

ρi =
√

2
√

Ti,0/Te,0ρs =
√

2
√

1/τeρs whereTi,0 is the ion temperature again in the middle of

the radial domain.

Complex-eikonal and Beam tracing methods applied to the GAM evolution

The Complex eikonal theory and the beam tracing equations have been developed to describe

inhomogeneous wave fields such as Gaussian beams that propagate in homogeneous or inho-

mogeneous media. The peculiarity of this approach consistsin reducing the Maxwell equations

to a set of simpler differential equations taking into account the diffraction effects which are

disregarded in the standard geometrical optics. In this way, it becomes possible to separate very

efficiently the dispersive effects from those linked to the dissipative properties of the medium.

In this section we discuss the complex eikonal approach and the beam tracing methods and

we apply them in an original manner to the GAM dynamics. As explained in [3], the complex

eikonal description arises from the conventional theory ofgeometrical optics with the principal

equations represented by the eikonal and the transport expression respectively:

(∇S)2−n2 = 0 ∇2S+(2∇S·∇) lnE = 0 (1)

whereE is the amplitude of a signal that propagates in a medium with an index of refractionn .

In this description, we consider a complex phaseS= s+ iφ in which the real parts determines

the propagation of the equiphase surfaces, while the imaginary partφ describes the phase-path

and the attenuation of the signal [3]. For fields withφ = 0, the ray paths of geometrical optics are

co-directional with∇S. They are straight in homogeneous, but curved in inhomogeneous media.

By substituting the complex phaseS in the eikonal equation and by indicating withτ̂ andẑ the

unit vector tangent to the phase-path and equiphase trajectories respectively, we obtain:

β 2−α2 = n2 β 2C= ndn/dz+αdα/dz (2)

whereβ = |∇s|, α = |∇φ | andC is the curvature related to the phase-path. We observe that

Eq. 2 takes into account the gradient of the index of refractionn and the gradient ofα linked to
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the beam. In order to apply the eikonal theory, we recall thatthen gradient must be smaller than

the gradient of the beam packet. Whenα is constant, we find the classical eikonal solution. It

is interesting to observe that even in the case in which we have a constant refraction indexn0,

the curvatureC can be different from zero (e.g. peripheral rays of a diffracting Gaussian beam).

Here, we focus on this case describing a GAM that evolves in a homogeneous equilibrium.

For a more general description we refer the reader to Ref. [8].We consider an initial Gaussian

electric fieldE(r) = E0exp[−(r − r0)
2/W2

0 ] that propagates in a(t, r)-plane (see Fig.1). For

smallt values the directionŝτ andẑ can be approximated to those of the cartesian vectorst̂ and

r̂ . Thus, by using Eq. 2 we can write the equationr(t, p) for the phase-paths:

C≈ d2r/dt2 ≈ (αdα/dz)/β 2 = p(2/n0W
2
0 )

2 −→ r(t, p) = p[(2t2/n2
0W

4
0 +1] (3)

wherep is a parameter that identifies the initial position of a generic phase-path from the center

of the packet. In particular we can calculate the spreading of the signal by writingW(t) as a

function of the index of refractionn0 associated to the medium and of the initial widthW0 of

the packet:
W(t)2 =W2

0 [1+2t2/n2
0W

4
0 ] (4)

in agreement with known results of classical optics [9]. Thesame result can be obtained by using

the pWKB approach. This method also starts from the complex eikonal expressionS= s+ iφ
but provides a solution of the real and complex part ofSby means of an expansion around the

reference eikonal rays0:

s(t) = s0(t)+n(t)[xα − x̄α(t)]+(1/2)sαβ (t)[xα − x̄α(t)][xβ − x̄β (t)]+ ... (5)

φ(t) = (1/2)φαβ [xα − x̄α(t)][xβ − x̄β (t)]+ ... (6)

Thus, all time-dependent quantities, such as the coordinates and the index of refractionn(t)

are calculated along the reference rays0(t). In particular, along this ray we note thatφ = 0

by construction. Moreover, we have thatsαβ is a function of the wave front curvature and

φαβ = 2/W(t)2 is related to the widthW of the Gaussian beam. Because of the Hamilton-Jacobi

nature of the eikonal equation these two functions can be written in terms of the Hamiltonian

expressionH associates to the system. For the one dimensional problem ofGAMs that oscillate

in a homogeneous equilibrium we recall that the dispersion relation isω2 = ω2
0(1+α1k2

r ρ2
i )

[2]. The equation for the evolution of the beam envelop ¯s= sαα + iφαα can be written in the

form:
ds̄/dt =−(∂ 2H/∂k2)s̄2 with H = ω2

0(1+α1k2
r ρ2

i )−ω2 = 0 (7)

We assume no initial focusing and the initial conditionφ0 = 2/W2
0 . Then, the solution for the

evolving width of the packet is:

φαα(t) = φ0/(1+ω2
0α2

1ρ4
i φ2

0 t2)−→W2(t) =W2
0 [1+(2ω0α1ρ2

i t/W2
0 )

2] (8)

We observe that Eq. 4 and Eq.8 are the same and we can associatean index of refractionn0 to

the equilibrium conditions for the GAM evolution. In order to verify this relation we performed
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Figure 1:Time evolution of GAMs with Gaussian electric field profiles oscillating in a homogeneous
equilibrium for two different values of W0. The overlapped phase-path trajectories (orange lines), pre-
dicted analytically, well reproduce the spreading of GAMs.

several simulations with the gyrokinetic code ORB5. We assumed homogeneous conditions of

temperature and density, an inverse aspect ratioε = 0.1, a diameterLr = 2/ρ∗ = 320 withρ∗ =

ρs/a. We considered a regime in which the dissipative effects, such as the Landau damping,

are small in order to emphasize the dispersive effects described by the theory. This has been

achieved by considering a safety factorq= 3 and largeτe values [2]. The results are shown in

Fig. 1 in which we present the time evolution of two GAM Gaussian profiles with two different

width valuesW0 = 0.04 (left panel) andW0 = 0.02 (right panel). We observe that the theory

well reproduces the spreading of the GAM packet. In particular the spreading increases by

decreasing the value ofW0. Moreover, the spreading increases in time in agreement with the

value of the index of refraction associated to the equilibrium conditions. Thus, the spreading of

GAM in time can be predicted and interpreted as a diffractioneffect.

AcknowledgmentsSimulations were performed on the Marconi supercomputer within the framework

of ORBFAST and Enabling Research NAT project.
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