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Introduction

The achievement of plasma fusion is strongly related to ttdetstanding of the non-linear
mechanisms by which the turbulence self-organizes in adiweestructures such as streamers
and zonal flows [1]. The latter are modulated by, and intesaitt, a multitude of other struc-
tures, instabilities, waves and so on, regulating the gnieegnsport properties in tokamak de-
vices. For example, the zonal flow presents an oscillatiemt@ypart named geodesic acoustic
mode (GAM), that in the last decades received much attefdioits potential role in the fusion
energy confinement. The GAM interacts with turbulence inmrrenment in which the plasma
shape and profile gradients strongly affect its properfiemperature and density gradients in-
fluence the amplitude of GAMs by regulating the drive and tampging in a not completely
understood manner. Moreover, the non-uniform temperaiwoie can determine an evolution
of frequency of GAMs, affecting the properties of propagatf these structures [2].

Because of the complexity of these problems, the investigatf zonal flows, GAM dynam-
ics, etc... certainly requires new simulations and new expnts. However, in parallel, it is
crucial to develop and to apply new techniques and diagt®satile to capture and to distin-
guish the essential characteristics of specific mechaniBorsthis purpose, in this work we
apply techniques derived in the field of optics to the GAM bations. In this new context, we
show that these theories represent a heuristic base foregwigtion of many characteristics
of radial propagation and spreading of GAMs. The most attradeature of these methods is
represented by their universality and intuitive appliigbiMoreover, in many cases optical
techniques are the only possible approximation for catmgavave fields in the presence of
homogeneous and inhomogeneous media. In the following resept and apply two different
optical methods able to describe the spreading of GAMs mdeaf local inhomogeneous plane
waves. The adopted methods are the complex eikonal thejJoapfizhe paraxial WKB (pWKB)
approximation [4, 5]. Both of them present several advarstaglee former is based on a set of
partial differential equations and in several cases givéisegt intuitive picture of the physical
dynamics of the phenomena. The latter method deals withaf sebre simple ordinary differ-
ential equation and presents an important advantage frammautational point of view. These
methods have been previously applied to the problem of RRrnggaturrent drive and plasma
diagnostics with microwave beams in fusion domain. Hereapay them to GAM dynamics
and we demonstrate their efficacy by means of a compariséngyiokinetic simulations.
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Model

In this work, we use the global gyrokinetic code ORB5 [6], whicihw includes all extensions
made in the NEMORSB project [7]. The ORB5 code uses a Lagrangramuiation based on the
gyrokinetic Vlasov-Maxwell equations. The code solvesfthie f gyrokinetic Vlasov equation
for ions, using a particle-in-cedl f method. Electrons are treated adiabatically, yet they Isan a
be treated drift-kinetically with ORB5. Energy and momentuomservations can be proved
via gyrokinetic field theory. To obtain the potent@l the Vlasov equation must be coupled
to the quasi-neutrality condition. In the code, titnés normalized to the inverse of the ion
cyclotron frequency; = eBy/m; at a specific radial position. The radial direction is norized
to ps = \/kaTeomi/(eBo) in which T is the electron temperature, and the potential is given
in @9 = kgTeo/€ units. The quantityBy is calculated in the axial radial position, afigl is
calculated in the middle of the radial domain. The thermal i@armor radius is defined as
0 = V2\/Tio/TeoPs = V'2,/1/Teps whereT, o is the ion temperature again in the middle of
the radial domain.

Complex-eikonal and Beam tracing methods applied to the GAM eolution

The Complex eikonal theory and the beam tracing equatiores een developed to describe
inhomogeneous wave fields such as Gaussian beams that at@pagnomogeneous or inho-
mogeneous media. The peculiarity of this approach consisesiucing the Maxwell equations
to a set of simpler differential equations taking into actaine diffraction effects which are
disregarded in the standard geometrical optics. In this whgcomes possible to separate very
efficiently the dispersive effects from those linked to tl&sgbative properties of the medium.
In this section we discuss the complex eikonal approach ladéeam tracing methods and
we apply them in an original manner to the GAM dynamics. As&xged in [3], the complex
eikonal description arises from the conventional theorgeadmetrical optics with the principal
equations represented by the eikonal and the transporegsipn respectively:

(092-n*=0  [0?S+(20S-0)INE=0 (1)

whereE is the amplitude of a signal that propagates in a medium witimaex of refractiom .

In this description, we consider a complex ph&se s+ i@ in which the real pars determines
the propagation of the equiphase surfaces, while the irnagpeartg describes the phase-path
and the attenuation of the signal [3]. For fields wjtk- O, the ray paths of geometrical optics are
co-directional withJS. They are straight in homogeneous, but curved in inhomagenmedia.
By substituting the complex pha&an the eikonal equation and by indicating withandz the
unit vector tangent to the phase-path and equiphase wagtespectively, we obtain:

B2—a’=n? B%C = ndn/dz+ ada /dz (2)

where = |Os|, a = |O¢| andC is the curvature related to the phase-path. We observe that
Eq. 2 takes into account the gradient of the index of refoaatiand the gradient o linked to
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the beam. In order to apply the eikonal theory, we recallttheh gradient must be smaller than
the gradient of the beam packet. Whens constant, we find the classical eikonal solution. It
is interesting to observe that even in the case in which we hasonstant refraction inde,
the curvatur€ can be different from zero (e.g. peripheral rays of a difirarGaussian beam).
Here, we focus on this case describing a GAM that evolves inradgeneous equilibrium.
For a more general description we refer the reader to Ref\WB]consider an initial Gaussian
electric fieldE(r) = Egexp—(r —ro)2/Wg] that propagates in &,r)-plane (see Fig.1). For
smallt values the direction andz can be approximated to those of the cartesian vettansl

f. Thus, by using Eg. 2 we can write the equatién p) for the phase-paths:

Cr d’r/dt® ~ (ada/d2)/B% = p(2/noWg)? — r(t, p) = pl(2°/mgWg +1]  (3)

wherep is a parameter that identifies the initial position of a genginase-path from the center
of the packet. In particular we can calculate the spreadfrtheosignal by writingW(t) as a
function of the index of refractiong associated to the medium and of the initial witlth of
the packet:
W(t)? = WE[L+ 2t /ngWg] (4)

in agreement with known results of classical optics [9]. $ame result can be obtained by using
the pWKB approach. This method also starts from the complenail expressiols=s+i@
but provides a solution of the real and complex parBbly means of an expansion around the
reference eikonal rasp:

S(t) = so(t) +n(t) [Xa —Xa (t)] + (1/2)Sap(t) [Xa —Xa (t)][¥g — X (t)] + ... ()
@(t) = (1/2)PaplXa —Xa(t)][Xg — X (t)] + ... (6)

Thus, all time-dependent quantities, such as the cooelinatd the index of refractiom(t)
are calculated along the reference sgit). In particular, along this ray we note that= 0
by construction. Moreover, we have thgjlg is a function of the wave front curvature and
Qap = 2/W(t)? is related to the widthV of the Gaussian beam. Because of the Hamilton-Jacobi
nature of the eikonal equation these two functions can beenrin terms of the Hamiltonian
expressiorH associates to the system. For the one dimensional probl&Abfs that oscillate
in a homogeneous equilibrium we recall that the dispersabation isw? = wg(l+ alkrzpiz)
[2]. The equation for the evolution of the beam envedop Syo + i@g Can be written in the
form: d5/dt = —(0%H /0K with H = (14 a1k2p?) — 62 = 0 )
We assume no initial focusing and the initial conditign= 2/W02. Then, the solution for the
evolving width of the packet is:

Pa(t) = @/ (L+wgazpgt?) — WA(t) = WG [1+ (2anaipt/Wg)?] (8)

We observe that Eq. 4 and Eq.8 are the same and we can associatex of refractiomg to
the equilibrium conditions for the GAM evolution. In order\erify this relation we performed
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Figure 1:Time evolution of GAMs with Gaussian electric field profiles oscillating in a hemegus
equilibrium for two different values of ¢ The overlapped phase-path trajectories (orange lines), pre-
dicted analytically, well reproduce the spreading of GAMs.

several simulations with the gyrokinetic code ORB5. We assulneenogeneous conditions of
temperature and density, an inverse aspect gatid.1, a diametet, = 2/p* = 320 withp* =
ps/a. We considered a regime in which the dissipative effectshss the Landau damping,
are small in order to emphasize the dispersive effects ibestby the theory. This has been
achieved by considering a safety factpe 3 and largere values [2]. The results are shown in
Fig. 1 in which we present the time evolution of two GAM Gaassprofiles with two different
width valuesWp = 0.04 (left panel) and\p = 0.02 (right panel). We observe that the theory
well reproduces the spreading of the GAM packet. In parictihe spreading increases by
decreasing the value ¥f. Moreover, the spreading increases in time in agreemeht tvé
value of the index of refraction associated to the equiliforiconditions. Thus, the spreading of
GAM in time can be predicted and interpreted as a diffractfiect.

AcknowledgmentsSimulations were performed on the Marconi supercomputer within the frarkewo
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