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Abstract: Finite isospin chemical potential µI and temperature T have been introduced

in the framework of soft-wall AdS/QCD model. By self-consistently solving the equation of

motion, we obtain the phase boundary of pion condensation phase, across which the system

undergoes a phase transition between pion condensation phase and normal phase. Compar-

ing the free energy of solutions with and without pion condensation, we find that the phase

transition is of first order type both at large µI and small µI . Qualitatively, the behavior

at large µI is in agreement with the lattice simulation in [6], while the behavior at small

µI is different from lattice simulations and previous studies in hard wall AdS/QCD model.

This indicates that a full back-reaction model including the interaction of gluo-dynamics

and chiral dynamics might be necessary to describe the small µI pion condensation phase.

This study could provide certain clues to build a more realistic holographic model.
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1 Introduction

Phase transitions of Quantum Chromodynamics (QCD) with finite temperature and isospin

density nI = nu−nd, which describes the asymmetry between up and down quarks as well

as protons and neutrons, have attracted many attentions in the past decades. The isospin

asymmetry exists widely in many different situations. For example, the proton-to-neutron

ratio in relativistic heavy ion collisions (RHIC) is about 2/3 in Au or Pb beams, which

might causes the imbalance between the generated charged pions [1]. In astronomy, the

formation of neutron stars is strongly related to the equation of state at finite isospin

chemical potential [2, 3]. In the early Universe, the isospin asymmetry in baryon sector

coming from the lepton asymmetry could affect the equilibrium conditions around the time

of QCD transition [4].

The non-perturbative physics dominant near transition point requires methods be-

yond traditional perturbative expansion. Many efforts have been made to deal with

the non-perturbative physics at finite isospin asymmetry, including lattice simulations

(LQCD) [5–10], functional renormalization group (FRG) [11, 12], chiral perturbation the-

ory (χPT) [13, 14], perturbative methods [15], random matrix models [16, 17], effective

models [18–25] and so on. Different from baryon number density, finite isospin chemical

potential would not cause sign problem, due to the opposite signs of the chemical potentials

for u and d. Therefore, lattice simulations could be safely applied in this region. Currently,

the lattice simulations seem to support the χPT study, which predicts a second order phase

transition from normal phase to pion condensation phase at zero temperature. The critical

value of µI is around half of pion mass mπ. However, different from monotonous rise of

µI,c(T ) with the increasing of T as predicted by χPT, µI,c(T ) predicted by lattice simu-

lations has a flatten pattern at the intermediate region of T [10], as shown in figure 1(a).

Moreover, at zero temperature, pion condensation does not grow with µI monotonously.
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(a) (b)

Figure 1. Sketch plot of phase diagram in µI −T plane (panel (a), taken from [10]) and pion con-

densation as functions of isospin chemical potential µI at zero temperature from lattice simulation

(panel (b), taken from [6]).

The growth will ceased at ceratin µI and pion condensation starts to decrease to zero [6] at

large µI (see figure 1(b), taken from [6]). Also, the simulations in [6] support a first order

phase transition at large µI .

Besides the above traditional methods, it is also quite interesting to study the effects

of isospin chemical potential in a new framework named ‘holography’, which is developed

based on the discovery of anti-de Sitter/conformal field theory (AdS/CFT) correspon-

dence [26–28]. The holographic framework has provided a new approach to deal with the

non-perturbative physics of QCD, e.g. hadron spectra and hot/dense QCD matter (for

details, please refer to [29–33]). On QCD matter at finite isospin chemical potential, many

efforts have been made in [34–38], as well. In the framework of bottom-up holographic

approach, the authors of [36] studied the isospin chemical dependence of pion condensa-

tion in the framework of hard-wall model [39]. It is found that pion condensation becomes

finite exactly at µI = mπ and grows with the increasing of µI , which is consistent with

the χPT investigation. Moreover, it is found chiral symmetry breaking is enhanced by the

phase transition between pion condensed phase and normal phase. Compared to hard-wall

model, the soft-wall model [40] contains the information of linear confinement as well as

chiral symmetry breaking. Its extended models [41–53] could predict meson spectra in

good agreement with experimental data. It is also easy to be extended to finite tempera-

ture and give good description of chiral phase transition [54–66] (see also other bottom-up

holographic models [67–72]). Thus, we will follow the idea of [36] and introduce tempera-

ture T and isospin chemical potential µI in soft-wall model. Then, we will study the T, µI
dependence of pion condensation, as well as the properties of phase transition between

pion condensation phase and normal phase. Here, we will set the baryon number chemical

potential µB to zero. Because, at top energies of Large Hadron Collider (LHC), more

particles past through and the baryons left are fewer. Thus, the ration of baryon number

chemical potential µB over temperature µB/T is much smaller than 1. If the expansion in

µB/T is controllable, then the study at µB = 0 could provide important information about
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the heavy ion collisions at this energy. Also, for simplicity, we will focus on Nf = 2 in this

work, under which we need not to deal with more complicated phase structures related to

kaon condensation phase and the other kinds of bosonic condensation.

The paper is organized as follows. In section 2, we will give a brief introduction to soft-

wall AdS/QCD model. We will introduce isospin density to the model and derive the equa-

tion of motion in this situation. Then, in section 3, we will discuss the numerical results.

We will show the isospin effects at different temperatures. Then, we will give the phase

boundary of pion condensation phase. Finally, we will give a brief summary in section 4.

2 Soft wall model with finite isospin chemical potential

In bottom-up holographic framework, the soft-wall model [40] provides a good start point

to describe both chiral symmetry breaking and linear confinement in the vacuum. In the

extended soft-wall models [41–53], meson spectra consistent with experimental data have

been obtained. At finite temperature, it has been shown in [54–66] that the qualitative

properties of phase transition between chiral asymmetric phase and chiral symmetric phase

agree very well with the 4D understanding from lattice simulations and model calculations.

Since the soft-wall model promotes the 4D global chiral symmetry SU(Nf )L×SU(Nf )R to

5D gauge symmetry. The 5D gauge field could be dual to the corresponding conserved cur-

rent in 4D theory. Thus, it is also quite interesting to investigate the phase transition with

finite isospin chemical potential µI by introducing µI through the corresponding current.

Considering only u, d quarks (Nf = 2), the action of soft-wall model with SU(2)L × SU(2)R
gauge symmetry takes the form [40]

S = −
∫
d5xe−Φ(z)√gTr

(
DMX

+DMX + V (|X|) +
1

4g2
5

(F 2
L + F 2

R)

)
, (2.1)

with g the determinant of the metric gMN , Φ(z) the dilaton field depending only on the

fifth dimension z, X a complex 2×2 matrix-valued scalar field, V (|X|) the scalar potential,

g5 = 2π [39] the 5D gauge coupling. Since we will not consider the baryon number density,

the gauge field related to U(1) gauge symmetry (4D global UB(1) symmetry) is neglected.

Also, since the ω meson will not be considered below, we do not have to add the Chern-

Simons term in the current model (see discussion in [36]). In the above action, FL and FR
are the field strength tensor of left and right gauge field LM , RM , defined as

FL,MN = ∂MLN − ∂NLM − i[LM , LN ],

FR,MN = ∂MR
N − ∂NRM − i[RM , RN ]. (2.2)

Accordingly, the covariant derivative DM will be defined as

DMX = ∂MX − iLMX + iXRM . (2.3)

One can redefine the vector (V ) and axial-vector (A) gauge fields as

VM =
LM +RM

2
, AM =

LM −RM
2

. (2.4)

– 3 –
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Then one has F 2
L + F 2

R = 2
(
F 2
V + F 2

A

)
, with

FV,MN = ∂MVN − ∂NVM −
i√
2

[VM , VN ], (2.5)

FA,MN = ∂MAN − ∂NAM −
i√
2

[AM , AN ]. (2.6)

The covariant derivative becomes

DMX = ∂MX − i[VM , X]− i{AM , X}. (2.7)

Here VM , AM are matrix-valued gauge filed as VM = V a
M t

a, AM = AaM t
a, a = 1, 2, 3, with ta

the generator of SU(2) group satisfying Tr[tatb] = δab/2. Generally, the eight real degrees

of freedom of the 2× 2 complex matrix-valued scalar field could be parameterized as

X = (χt0 + Sata)ei2π
btb+iη (2.8)

with a, b = 1, 2, 3, t0 = I2
2 and I2 the 2 × 2 identity matrix. Using the gauge symmetry,

one can take the fifth component of gauge fields to be zero, i.e. Vz = Az = 0.

The above holographic model is possible to describe strong-interaction matter related

to QCD. The matrix-valued scalar field Xα,β is dual to the operators q̄αqβ (ūu, ūd . . ., like

scalar mesons), with α, β index of flavor space (u, d for two flavor case, and u, d, s, . . . for

Nf > 2). The 5D non-Abelian gauge fileds AaL/R is dual to operators q̄αL/Rγ
µtaαβq

β
L/R. Of

course, after the recombination, the vector field and the axial vector field are dual to q̄γµtaq

and q̄γµγ5taq, which are the vector current and axial vector current. The background parts

of these fields are dual to the vacuum expectation values of the corresponding operators,

while the perturbations under the background parts are dual to the corresponding meson

degrees of freedom. The gluonic dynamics are supposed to be described by the Einstein-

dilaton system as [47, 73]. The baryon-anti-baryon fluctuations will contribute to the

partition function and the free energy. In [74], the author suggests to consider the baryon

degrees of freedom with the Chern-Simons action. Thus, to consider all the dynamics of

QCD from holography, one has to coupled all these parts together. To consider strong

interaction matter in thermal equilibrium, one have to solve a static background of the

full holographic system, which embeds contributions from all the sectors. However, it is

not easy to solve the full system numerically. Here, to reduce the complexity, we take

the background field as input, which is of the same form solved in probe limit. In this

way, we take the contributions of different sectors into account, at least partially. If one

focuses on finite temperature case, then both the vector and axial vector field vanish. In

this case, one can check Sa, πb, η vanish if there are no extra source of the corresponding

operator. The phase structure in this situation has been studied in [54–66]. In this work,

since we would like to discuss the effects of isospin chemical potential on phase transition,

we have to take non-vanishing VM , AM . According to the discussion of [36, 37], with finite

isospin chemical potential, the non-vanishing components of scalar field and gauge filed

could be set as χ,Π ≡ π1, V 3
0 , A

1
0, A

2
0. Therefore, the non-vanishing field contents left are

as following

X = χ(t0 cos Π + it1 sin Π), A1
0, A

2
0, V

3
0 . (2.9)
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If we only consider the homogeneous phase, we can assume that all the above fields depend

only on the fifth coordinate z. In [36, 37], the authors consider isospin chemical potential

effect and take the metric ansatz as the pure AdS5 metric (in this work, we will always

take the AdS radius as 1)

ds2 =
1

z2
(−dt2 + dz2 + dxidxi). (2.10)

The temperature effect has not been taken into account. Here, we would like to study the

temperature effect also. Thus, we take the following metric ansatz

ds2 = e2A(z)(−f(z)dt2 +
1

f(z)
dz2 + dxidx

i). (2.11)

The temperature could be introduced if there is a horizon z = zh where f(z) = 0. The

temperature is related to zh by the formula

T = |f
′
(zh)

4π
|. (2.12)

In general, A(z), f(z) should be solved from certain kind of gravity system coupled with

the soft-wall model action. But the full back-reaction solution is difficult to obtained,

and the simple approximation ‘potential reconstruction method’ used in [73, 77–84] can

not be used here. Because it can not take into account the temperature dependent of

condensations. Thus, for simplicity, in the sense of probe limit, we take the following

Anti-de Sitter-Reissner-Nordstrom (AdS-RN) metric solution with finite isospin number1

A(z) = − ln(z), (2.13)

f(z) = 1− (1 + γµ2
Iz

2
h)
z4

z4
h

+ γµ2
I

z6

z4
h

, (2.14)

v ≡ V 3
0 (z) = µI

(
1− z2

z2
h

)
. (2.15)

Here, µI is the isospin chemical potential and γ is related to the coupling of V 3
0 with gravity,

which will be taken as a free parameter. For simplicity, we take γ = 1 in later calculation.

Different from [36, 37], we will take V 3
0 as a background field other than a dynamical field

in the following discussion. Under this background, temperature could be extracted from

eq. (2.12) and it becomes a simple function of the horizon zh

T =
2− γµ2

Iz
2
h

2πzh
, (2.16)

in which we have taken the outer horizon zh <
√

2√
γµI

. We note that at finite isospin chemical

potential it is zh =
√

2√
γµI

other than f ≡ 1, standing for T = 0 background.2

1This solution could be obtained by coupling the F 2 term in eq. (2.1) with the 5D Einstein-Hilbert action

SEH = 1
16πG5

∫
d5x
√
−g(R + 12

L2 ) [75, 76]. It is the simplest way to introduce the effect of isospin number

in the current framework. One can introduce the back-reaction and consider the full system in the future.
2Here, we would like to emphasize that the zero temperature limit of the AdS-RN metric does not lead

f(z) ≡ 1 at finite µI . Thus, the metric ansatz in [36] is quite different from that of this work.
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According to the above discussion, effectively, the 5D Lagrangian becomes

Leff = −e
3A−Φf

2
[χ

′2 + χ2Π
′2] +

eA−Φ

2g2
5

[a
′2
1 + a

′2
2 ]− e5A−ΦV (χ)

+
e3A−Φχ2

2f
[v2 sin2(Π)− a2v sin(2Π) + a2

1 + a2
2 cos2(Π)]. (2.17)

Here, we have replaced V 3
0 , A

1
0, A

2
0 with more compact form v ≡ V 3

0 , a1 = A1
0, a2 = A2

0, and

redefined V (χ) ≡ Tr[V (|X|)]. As [56, 57], we will take

V (χ) = −3

2
χ2 + v4χ

4. (2.18)

One can easily get the equation of motion for a1 as

∂z

(
eA−Φ

g2
5

∂za1

)
− e3A−Φχ2

f
a1 = 0. (2.19)

Since we do not have explicit source for the axial-vector current, thus we require a1 = 0

at the boundary. Furthermore, the background metric considered is a black hole solution.

Thus, a1(zh) = 0 is also necessary. One can easy check that a1 = 0 satisfies both the

equation of motion and the boundary conditions. Thus, we will take a1 = 0 as an ansatz,

which is different from the study in [36, 37]. Then, it is also quite direct to derive the

equation of motion for the corresponding fields χ,Π, a2 as

∂z(e
3A−Φf∂zχ)− e5A−Φ∂χV (χ)

−e
3A−Φχ

f
(f2Π

′2 − v2 sin2(Π) + a2v sin(2Π)− a2
2 cos2(Π)) = 0 (2.20)

∂z(e
3A−Φfχ2∂zΠ) +

e3A−Φχ2

2f
[(v2 − a2

2) sin(2Π)− 2a2v cos(2Π)] = 0 (2.21)

∂z

(
eA−Φ

g2
5

∂za2

)
− e3A−Φχ2

2f
[2a2 cos2(Π)− v sin(2Π)] = 0 (2.22)

This group of equations are too complicated to impose analytical analysis. To get the

numerical solution, firstly, we have to make the boundary conditions clear. At the UV

boundary z = 0, the leading expansion of χ,Π, a2 could be solved as

χ(z) = mζz +mζΦ
′
(0)z2 +

1

2
mζ(Φ

′′
(0)− 2Φ

′2(0) + 4v4m
2ζ2)z3 ln(z) +

σ

ζ
z3 + o(z3),

Π(z) =
π1

mζ2
z2 + 2

π1

mζ2
Φ

′
(0)z3 + o(z3),

a2(z) = a2uz
2 +

2

3
a2,uΦ

′
(0)z3, (2.23)

where we have imposed the AdS/CFT dictionary and identified the coefficient of the leading

terms with quark mass m, chiral condensate σ, pion condensate π1. In this expression, we

have neglected the constant term in Π(z) and a2(z), since they are related to the sources of

axial current, which is not be considered in this work. The constant ζ =
√
Nc

2π is introduced

– 6 –
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Figure 2. Solution with T = 100 MeV, µ = 100 MeV,m = 5 MeV, v4 = 8 and Φ(z) = −z2.

The integral constants are solved as σ = 0.007 GeV3, π1 = 0.077 GeV3, a2u = 0.005 GeV2, χ0 =

0.303,Π0 = 1.475, d1 = −0.0005 GeV.

to match the two point function q̄q(p)q̄q(0) from holographic calculation and 4D calculation

(for details, please refer to [85]). Similarly, one can calculate the near horizon expansion as

χ(z) = χ0 −
3χ0 − 4v4χ

3
0

2zh(−2 + γµ2z2
h)

(z − zh) + o(z − zh)

Π(z) = Π0 +
−4d1µzh cos(2Π0) + (d2

1z
2
h − 4µ2) sin(2Π0)

32(2zh(−2 + γµ2z2
h)

(z − zh) + o(z − zh)

a2(z) = d1(z − zh) + o(z − zh) (2.24)

These UV and IR expansions guarantee the AdS/CFT dictionary and the regularity of

physical solution. The UV coefficient m could be fixed by the quark mass considered, which

in some sense could be tuned as a parameter.3 The other integral constants σ, π1, a2u, χ0,

Π0, d1 could be solved self-consistently using ‘shooting-method’, requiring the solutions

from UV boundary and IR boundary connecting smoothly in the intermediate region. We

take T = 100 MeV, µI = 100 MeV,m = 5 MeV, v4 = 8 and Φ(z) = −z2 as an example, and

show the solution in figure 2. From figure 2, we could see that all the three solutions χ,Π, a2

equals zero at UV boundary. At the horizon zh = 3.04 GeV−1, χ = 0.303,Π = 1.475, while

a2 = 0. Also, at this condition, both chiral condensation and pion condensation are finite.

3 Chiral condensation and pion condensation at finite isospin chemical

potential

In last section, we have given a short introduction on how to introduce isospin chemical

potential in soft-wall model. In this section, we will continue the discussion and calculate

the temperature and isospin dependence of both chiral condensation and pion condensation.

In [57, 59, 60, 65], we have shown that the qualitative properties of chiral phase transition

could be well described when the dilaton profile takes the following form

Φ(z) = −µ2
1z

2 + (µ2
1 + µ2

0)z2 tanh(µ2
2z

2). (3.1)

At UV, Φ(z) tends to −µ2
1z

2, which is responsible for chiral symmetry spontaneous break-

ing as shown in [57]. In addition Φ(z) tends to µ2
0z

2 when z → ∞, which is responsible

3Due to color confinement, the exact values of current quark masses are not measured directly.
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parameter γ v4 µ0 µ1 µ2

value 1 8 0.430 GeV 0.830 GeV 0.176 GeV

Table 1. The values of free parameters used in numerical calculation.

for the linear spectra. Considering the vacuum value of chiral condensate, the transition

temperature of chiral phase transition and the Regge slope of meson spectra, we will follow

our previous study and take µ0 = 0.430 GeV, µ1 = 0.830 GeV, µ2 = 0.176 GeV in the fol-

lowing calculation. Further, for the parameter v4 in the scalar potential eq. (2.18), we will

also follow our previous fitting and take v4 = 8. For a summary, we list all the parameter

values in table 1. Instead of trying to get quantitative result, in this work, we will focus

on study the qualitative behavior of phase transition between pion condensation phase and

normal phase, as well as chiral phase transition. Inserting the dilaton profile eq. (3.1) and

the scalar potential eq. (2.18) into the equations of motion eqs. (2.20), (2.21), (2.22), we

can solve out σ, π1, as well as the other integral constants. Since the equations of motion

are quite complicated, analytical analysis is impossible. So we use numerical method to

solve it. From the numerical results, solution structure at finite isospin chemical potential

depends on temperature. Solutions with finite pion condensation only exist at tempera-

ture below T3 = 0.127 GeV. However, comparing the free energy, we find that only below

T2 = 0.113 GeV, there could be thermodynamical stable solutions with finite pion conden-

sation. In the following sections, we will describe the details of numerical results obtained

from the soft-wall model given above.

3.1 Low temperature results

Firstly, we investigate the isospin chemical potential effect at low temperature. We find

that below T1 = 0.080 GeV, the characteristic behavior of the solutions is like the results

for T = 0.020 GeV, which is given in figures 3.

It is easy to see from eqs. (2.20), (2.21), (2.22) that if one sets π1 = 0, a2,u = 0, then the

equations reduced to the one without pion condensation. In this situation, depending on

the dilaton profile, chiral condensate could be finite. From our numerical analysis, we found

that there are always solutions with finite chiral condensate and vanishing pion condensate.

The results are given in the blue lines (both dashed and solid ones) in figures 3. However,

if one hopes to get solutions with finite pion condensation, then it is necessary to solve the

coupled equations eqs. (2.20), (2.21), (2.22). We find that for T = 0.020 GeV, only at the

range of 0.313 GeV < µI < 0.897 GeV, there are solutions with finite pion condensation.

At µI = 0.897 GeV, pion condensation disappears, and the solutions with and without pion

condensation merge together. This could be seen from figure 3 in the enlarge view of the

corresponding area. From the enlarge view in figure 3(a), we could see that π1 decreases

monotonically to zero. From a first glance, there should be a second order phase transition

in this region, because the order parameter π1 decreases continuously from finite to zero.
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Figure 3. Pion condensation (panel (a)), chiral condensation (panel (b)) and free energy difference

∆F (panel (c)) as functions of isospin chemical potential µI at T = 0.020 GeV. Qualitatively, the

solution structures for T < 0.080 GeV are similar to the one showed here. The red and blue lines

in panels (a), (b) and (c) represent results with and without pion condensation respectively. The

red and blue solid lines represent the thermodynamical stable solutions, while the red and blue

dashed lines represent thermodynamical unstable solutions. The black dashed lines are auxiliary

line to show the jump between different solutions, which shows a first order phase transition. The

embedded figures are the enlarge view of the corresponding areas.

To check the order of phase transition, we calculate the free energy according to the

equivalence of the partition function conjecture

ZQCD = Zgravity w e−SE = e−βF , (3.2)

which gives the expression of the free energy density

F ≡ F

V3
= −

∫ zh

0
dzLeff . (3.3)

Here F is the free energy, SE is the Euclidean on-shell action and V3 is the three dimen-

sion volume. In principle, one can insert the solutions obtained above and get the free

energy. However, when m 6= 0, the above expression is divergent around z = 0. Thus,

holographic re-normalization process are required for finite quark masses to get finite free

energy density. Noting that the main goals of calculating free energy here is to determine

the thermodynamical favored solution at the same µI and T , the real quantity needed is

the free energy differences

∆F = Fπ 6=0 −Fπ=0. (3.4)

In probe limit, the background metrics are the same for different solutions with the same

µI , T . Therefore, one just inserts the solutions into eqs. (3.3), (3.4). Then it is easy to see

that the divergence is cancelled for solutions with the same µI , T,m. Then one does not

need to do holographic re-normalization procedure.

Following this logic, we calculate the free energy differences of solutions with and with-

out pion condensation. The results are shown in figure 3(c). In figure 3(c), from the enlarge

view of the region around µI = 0.894 GeV, before pion condensation decreases to zero at

µcI = 0.897 GeV, ∆F reaches zero at µcI = 0.894 GeV, revealing the thermodynamically

instability of pion condensation above µcI (labeled with dashed lines). Thus, though it

looks like a second order phase transition in terms of the behavior of pion condensation,

the real transition order is first order.
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Figure 4. The full condensation (panel (a)) σ̃ ≡
√
σ2 + π2

1 and chiral circle (panel (b)) as functions

of isospin chemical potential µI at T = 0.020 GeV. The red lines represent solution with pion

condensation and the blue lines represent solutions without.

Then, we turn to the small µI region. At around 0.0313 GeV < µI < 0.113 GeV, there

are three solutions for each value of µI . Two of them have finite pion condensation, while

the other one without pion condensation (for details, please refer to the enlarge view of

the corresponding area). The triple solution structure is a characterize signal of first order

phase transition. To confirm this, we also calculate the free energy differences and show

the results in figure 3(c). From figure 3(c), we could see a swallowtail structure in the

enlarge view. This confirms a first order phase transition at µcI = 0.057 GeV.

From the above discussion, the thermodynamical stable path are the solid lines (both

red and blue lines) in figure 3. At µI < 0.057 GeV, there are no pion condensation and

chiral condensation equals almost to its vacuum value σ0 = 0.0352 GeV3 = (327 MeV)3.

At µI = 0.057 GeV, a first order phase transition happens and pion condensation jumps

to a finite value π1 = 0.0355 GeV3 ≈ 1.01σ0. The system transits from normal phase

to pion condensed phase. Meanwhile, chiral condensate decreases from its vacuum value

σ0 to a very small value σ = 0.001 GeV3 ≈ 0.03σ0. It seems that chiral symmetry is

restored together with the transition to pion condensed phase. However, since isospin

chemical potential will rotate the condensates, when considering chiral symmetry, one

has to considered the full condensate σ̃ ≡
√
σ2 + π2

1. To check the restoration of chiral

symmetry, we plot σ̃ as a function of µI in figure 4(a). From the plot, we could see that

instead of decreasing to a small value, σ̃ jumps to a larger value, showing the enhancement

of chiral symmetry after the phase transition at µI = 0.057 GeV. Despite of the transition

order, the enhancement of chiral symmetry after the phase transition is similar to the

study in hard-wall model [36, 37]. When µI continues to increase, pion condensation

increases continuously to a maximal value π1 = 0.0375 GeV ≈ 1.07σ0 at µI = 0.294 GeV,

and then starts to decrease until the phase transition at µI = 0.894 GeV. During this

procedure, σ̃ also increase first and then decrease to almost zero, showing enhancement of

chiral symmetry breaking at small value of µI and suppression of chiral symmetry breaking

at very large µI . After the phase transition, both chiral symmetry is restored and pion

condensation disappears. The system become symmetry restored phase and normal phase
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(a) (b) (c)

Figure 5. Condensations π1 (a), σ (b) and free energy difference ∆F (c) as functions of isospin

chemical potential µI when T = 0.100 GeV. In both (a) and (b), red and blue lines are solution from

EoMs with and without pion condensation respectively. Solutions with pion condensation exist in

the range 0.109 GeV < µI < 0.451 GeV. Black solid lines are auxiliary lines to show the jump of

π1, σ at the first order transition points, locating at µc
I = 0.163 GeV and µc

I = 0.433 GeV. According

to the free energy comparison, the red and blue solid lines are thermodynamical stable solutions,

while the red and blue dashed lines are thermodynamical unstable solutions. The thermodynamical

favored path is along the solid lines.

without pion condensation. At low temperature, we have seen more complicated phase

structure than µI = 0 case.

Finally, we also show the chiral circle in figure 4(b). From the figure, we find that

points of (σ0, π1) at small µI locate almost at the unit circle σ2

σ2
0

+
π2
1

σ2
0
. This is in agreement

with the study of hard-wall calculation in [36, 37]. Nevertheless, this part of solutions is

unstable. Instead, the stable solutions in the intermediate region of µI deviate from the

unit circle.

3.2 High temperature results

From our numerical analysis, we find that the small µI triple solution region shrinks to a

point when increasing the temperature, and it ends to be a point at T = 0.080 GeV. When

0.080 GeV < T < 0.114 GeV, the solution structure is like the plot shown in figure 5, where

we have taken T = 0.100 GeV as an example to show the qualitative behavior.

From figure 5(a), at T = 0.1 GeV, there are no solutions with pion condensation when

µI < 0.109 GeV. From figure 5(b), the solutions without pion condensation have finite chi-

ral condensation, which decreases with the increasing of µI . Comparing to T = 0.020 GeV,

we observe that at the same µI σ of T = 0.100 GeV is smaller, indicating the suppression of

condensate by temperature effect. Then, when µI increases, solutions with pion condensa-

tion appear. Different from T = 0.020 GeV, pion condensation increase monotonically and

continuously from zero. There are no triple solution regions any more. Similarly, though

this behavior looks very like a second order phase transition, we have to check it with free

energy comparison. Therefore, we plot the free energy difference ∆F in figure 5(c). From

the plot, we find that the free energy of solutions with pion condensation in the range

0.109 GeV < µI < 0.163 GeV is larger than that of the solutions without pion condensa-

tion. This indicates the phase transition is a first order one. Pion condensation jumps

discontinuously from zero to a finite value π1 = 0.0283 GeV at µI = 0.163 GeV. At the
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Figure 6. The full condensation (panel (a)) σ̃ ≡
√
σ2 + π2

1 as a functions of isospin chemical

potential µI at T = 0.100 GeV. The red lines represent solution with pion condensation and the

blue lines represent solutions without.

same time, chiral condensate decreases suddenly from σ = 0.0303 GeV to σ = 0.010 GeV.

Also, to check the effect on chiral symmetry restoration, we examine the full condensation

σ̃ in figure 6. From the plot, we find that σ̃ jumps to a higher value at the transition

point. So the phase transition enhance chiral symmetry breaking. But different from low

temperature region, σ̃ decreases monotonically after the transition until the large µI tran-

sition. After the phase transition, pion condensation is still not monotonic function of

µI . It increases in the range of 0.163 GeV < µI < 0.200 GeV and decreases in the range

0.200 GeV < µI < 0.433 GeV. Above µI = 0.433 GeV, solutions with pion condensation

have larger free energy from figure 5(c), and it is thermodynamically unfavored, which

should be replaced by the normal phase without pion condensation. There is a first order

phase transition at this point.

3.3 The phase boundary

From our numerical analysis at high temperature, we find that the solutions with finite pion

condensation exist until µI =0.127 GeV. However, in the range 0.114 GeV<µI<0.127 GeV,

all the solutions with pion condensation become thermodynamically unstable. To show this

fact, we take T = 0.120 GeV as an example and plot the numerical results in figure 7.

From figure 7(a), we could see that solutions with pion condensation exist only in the

range 0.165 GeV < µI < 0.328 GeV, while non-trivial solutions without pion condensation

appears in the whole range of µI . In the solutions without pion condensation, σ decreases

with the increasing of µI . From the free energy results in figure 7(c), we find that all the

solutions with pion condensation have a larger free energy than solutions without pion con-

densation with the same T, µI , which indicates no pion condensation in thermodynamical

stable phase. As a result, no pion condensation exist above T = 0.114 GeV.

Based on all of the above discussions, we summarize the results in figure 8. From the

figure, the range of solutions with pion condensation is surrounded by the blue dashed line

and the horizontal axes. Outside this range there would not be solutions with pion con-

densation. However, the solutions with pion condensation inside this region are not always

thermodynamically stable. Only the area surrounded by the black solid line in figure 8 is
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(a) (b) (c)

Figure 7. Condensations π1 (a), σ (b) and free energy difference ∆F (c) as functions of isospin

chemical potential µI when T = 0.120 GeV. In panels (a), (b) and (c), red and blue lines are solution

from EoMs with and without pion condensation respectively. Solutions with pion condensation exist

only in the range 0.165 GeV < µI < 0.328 GeV. From the free energy calculation in (c), solutions

with pion condensation are thermodynamically unfavored.

Figure 8. Phase boundary of pion condensation in µI − T plane. Inside the region surrounded

by the blue dashed line and the µI axis, there are solutions with non-zero pion condensation, while

outside the region no solutions with pion condensation are founded. From free energy calculation,

only the solutions inside the region surrounded by the black solid line and the µI axes are ther-

modynamically stable. The solutions in the region between the blue dashed line and black solid

line are thermodynamically unstable. The black solid line is the phase boundary between the pion

condensation phase and normal phase. It is also labeled that between the blue and cyan dashed

lines there are triple solutions with non-zero pion condensation. The end point of this region is the

blue dot, locating at µI ≈ 0.077 GeV,T ≈ 0.080 GeV.

related to the stable solutions. Also, the triple solutions area is separated out by blue, cyan

dashed lines and the horizontal line. It is also observed that along the phase boundary

there is a first order phase transition between pion condensation phase and normal phase.

4 Conclusion and discussion

We investigate QCD phase transition, especially transition between pion condensation

phase and normal phase, in a soft-wall AdS/QCD model. Introducing an interpolating

dilaton filed as refs. [56, 57, 59, 60] and AdS-RN black hole solution with finite isospin

chemical potential, we derive the equations of motion for the scalar, pseudo-scalar and

axial vector filed. Then we calculate the near boundary expansion of those fields and
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match the integral constants to the quark mass, chiral condensation and pion condensation.

The existence of horizon at finite isospin chemical potential makes the solution easy to

diverge. Only at certain value of chiral and pion condensation the solution could be regular

everywhere. As a result, requiring the regularity of physical solution, chiral and pion

condensation could be solved self-consistently from the equations of motion. Using the

‘shooting method’, we solve the temperature and isospin chemical potential dependence of

condensates when the quark mass m = 0.005 GeV, around the physical value.

It is easy to check that there are two kinds of solutions. If one set the pion field and axial

vector field to be zero, the solution would be reduced to those without pion condensation as

discussed in [56, 57, 59, 60]. The other kind is with finite pion condensation. The numerical

results are summarized in figure 8. It shows that the pion condensation only exists in a

bounded region surrounded by the black solid line and the µI axes in figure 8. When

a system goes across the phase boundary, it will undergo a first order phase transition

between pion condensation phase and normal phase without pion condensation.

In more details, the numerical calculation shows that the solution with pion conden-

sation only exist below T = 0.127 GeV. At a certain temperature below T = 0.127 GeV,

solutions with pion condensation only exist in a short range of µI . The region for solutions

with finite pion condensation are bounded by the blue dashed line and the µI axes. In

this region, when T < 0.080 GeV, there are triple solutions for a certain value of µI . We

labeled this region with the blue, the cyan dashed lines and the µI axes in figure 8. The

triple solution structure strongly indicates a first order phase transition in small µI , and

the free energy calculation confirms it. At large µI with small temperature T < 0.080 GeV,

pion condensation decreases to zero continuously. This behavior looks like a second order

phase transition, since the order parameter is continuous. However, from the free energy

comparison, we find that it is actually a first order phase transition. The first order phase

transition at large µI is in agreement with lattice simulations from [6]. However, the lat-

tice simulations [6, 10] at small µI strongly indicates a second order phase transition in

small µI . This might be related to the probe limit approximation we used in this model.

The background metric are simply taken as the AdS-RN black hole with isospin chemical

potential, which could be seen as the first several expansion near the boundary z = 0. At

large µI and T , the probe limit could be a good approximation, since at this range the

horizon are very small. But at small µI and T , the horizon becomes large. Thus, significant

corrections might be obtained from the full dynamics.

Further, when 0.080 GeV < T < 0.114 GeV, we find that the region of triple solutions

disappears. In this temperature region, pion condensation is single valued at each µI .

At certain value of µI(T ), pion condensation starts to grow up. Then after a short and

rapid growth, pion condensation begin to decrease. This behavior is very similar to the

lattice simulations at µI in [6] (see figure 5(a) and figure 1(b)). It looks like a second

order phase transition from normal phase to pion condensation phase. However, the free

energy calculation gives a first order phase transition again. Further confirmation from a

full dynamical soft-wall model might be necessary to improve the small µI results. In the

large µI part, qualitatively, it is almost the same as small T . Thus, it is coincident with

the lattice simulation [6].
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Then, in the temperature region 0.114 GeV < T < 0.127 GeV, though there are so-

lutions with pion condensation, the free energy of these solutions are larger than that of

solutions without pion condensation. In fact, these solutions are thermodynamically dis-

favored. Therefore, pion condensation can not survive above T = 0.127 GeV. Considering

the deconfinement transition temperature at zero µI is around T = 0.17 GeV, if the de-

confinement transition line does not bend toward µI axis very fast, it could connect to the

BEC-BCS crossover at high isospin asymmetries continuously. The maximum temperature

in the transition line is T = 0.114 GeV. However, the LHC data implies that the chemical

freeze-out temperature Tch is around 0.155 GeV [86], larger than the maximum transition

temperature. When the fire ball expanses and cools down, before pion condensation forms,

the particle numbers would be fixed. Therefore, it seems that the pion condensed phase

would not affect heavy ion collisions at the current stage. However, the thermal/kinetic

freeze-out temperature Tth is estimated as Tth ∼ 0.1–0.12 GeV [87–90]. If it is smaller than

the transition temperature. The pion condensation could form before kinetic freeze-out.

Since pions condense in the ground state, it would cause enhancement in the low energy

spectra of pions in final detection. Also, the coherent fraction of pions would increase due

to the formation of pion condensation.

Finally, it is also worth to mention that after the first order phase transition, the full

condensation σ̃ jumps to a higher value, showing an enhancement effect of µI on chiral

symmetry breaking at the transition point. This phenomena is in agreement with the

study in hard-wall model [36, 37]. The enhancement of chiral symmetry breaking might

have certain effects on heavy ion collisions. The condensation itself is charged, so it could

be related to the imbalance between charged pions. Furthermore, the phase transition to

pion condensation phase are shown to be of first order in the current scenario, which is

different from the study of chiral perturbation theory. If one consider the equation of states,

for sure it would be quite different from those with continuous phase transition. Different

from these previous studies, at larger µI , σ̃ will decrease with the increasing of µI , which

might need confirmation in a full dynamical model. If it is confirmed, the disappear of

pion condensation might indicate other interesting phenomena which is not considered in

the current work. For example, the rho meson condensation might appear at larger µI .

From the above discussions, when µI is not too large, the soft-wall model discussed

in this work gives a first order phase transition from normal phase to pion condensation

phase with the increasing of µI . The phase transition is accompanied with enhancement

of chiral symmetry breaking. Then when µI is sufficiently large, pion condensation will

decrease and jump down to zero at a first order transition point at large µI . After this

transition, the system jumps to the normal phase and chiral symmetry would be restored.

The large µI behavior of transition is in agreement with lattice simulation. However, the

small µI transition needs to be check in a full dynamical holographic model, with the self-

consistent interaction of gluo-dynamics and chiral dynamics. Furthermore, currently, we

only consider phase diagram in T −µI plane without baryon number density. However, the

results here already reveal a complex phase structure in T − µI plane. One can imagine

that if considering a more realistic case, the phase structure obtained here might generate

certain kinds of phase structure in T − µI − µB space, which might have some effects on

studying heavy ion collisions and neutron star physics.
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